Properties

Label 3447.2.a.j.1.3
Level $3447$
Weight $2$
Character 3447.1
Self dual yes
Analytic conductor $27.524$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3447,2,Mod(1,3447)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3447, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3447.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3447 = 3^{2} \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3447.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.5244335767\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 383)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 3447.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56319 q^{2} +4.56992 q^{4} -0.275873 q^{5} -0.724431 q^{7} -6.58718 q^{8} +0.707113 q^{10} -6.18852 q^{11} -3.89050 q^{13} +1.85685 q^{14} +7.74432 q^{16} +1.81930 q^{17} -4.40463 q^{19} -1.26072 q^{20} +15.8623 q^{22} -3.70367 q^{23} -4.92389 q^{25} +9.97208 q^{26} -3.31059 q^{28} -6.02479 q^{29} -3.23181 q^{31} -6.67577 q^{32} -4.66319 q^{34} +0.199851 q^{35} +0.897967 q^{37} +11.2899 q^{38} +1.81722 q^{40} +5.23804 q^{41} -7.55001 q^{43} -28.2810 q^{44} +9.49319 q^{46} -2.40640 q^{47} -6.47520 q^{49} +12.6209 q^{50} -17.7793 q^{52} -6.26043 q^{53} +1.70724 q^{55} +4.77196 q^{56} +15.4427 q^{58} +2.55836 q^{59} +15.3570 q^{61} +8.28373 q^{62} +1.62259 q^{64} +1.07328 q^{65} +9.09612 q^{67} +8.31403 q^{68} -0.512254 q^{70} +11.6560 q^{71} +14.9224 q^{73} -2.30166 q^{74} -20.1288 q^{76} +4.48316 q^{77} -6.96653 q^{79} -2.13645 q^{80} -13.4261 q^{82} -9.66159 q^{83} -0.501894 q^{85} +19.3521 q^{86} +40.7649 q^{88} +1.89411 q^{89} +2.81840 q^{91} -16.9255 q^{92} +6.16805 q^{94} +1.21512 q^{95} +11.2780 q^{97} +16.5971 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 5 q^{2} + 29 q^{4} - 3 q^{5} + 17 q^{7} - 15 q^{8} + q^{10} + 28 q^{13} + 8 q^{14} + 35 q^{16} - 16 q^{17} + 13 q^{19} + 4 q^{20} + 12 q^{22} - 7 q^{23} + 67 q^{25} + 14 q^{26} + 39 q^{28} + 2 q^{29}+ \cdots + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.56319 −1.81245 −0.906223 0.422800i \(-0.861047\pi\)
−0.906223 + 0.422800i \(0.861047\pi\)
\(3\) 0 0
\(4\) 4.56992 2.28496
\(5\) −0.275873 −0.123374 −0.0616870 0.998096i \(-0.519648\pi\)
−0.0616870 + 0.998096i \(0.519648\pi\)
\(6\) 0 0
\(7\) −0.724431 −0.273809 −0.136905 0.990584i \(-0.543715\pi\)
−0.136905 + 0.990584i \(0.543715\pi\)
\(8\) −6.58718 −2.32892
\(9\) 0 0
\(10\) 0.707113 0.223609
\(11\) −6.18852 −1.86591 −0.932955 0.359994i \(-0.882779\pi\)
−0.932955 + 0.359994i \(0.882779\pi\)
\(12\) 0 0
\(13\) −3.89050 −1.07903 −0.539516 0.841975i \(-0.681393\pi\)
−0.539516 + 0.841975i \(0.681393\pi\)
\(14\) 1.85685 0.496264
\(15\) 0 0
\(16\) 7.74432 1.93608
\(17\) 1.81930 0.441244 0.220622 0.975359i \(-0.429191\pi\)
0.220622 + 0.975359i \(0.429191\pi\)
\(18\) 0 0
\(19\) −4.40463 −1.01049 −0.505246 0.862975i \(-0.668598\pi\)
−0.505246 + 0.862975i \(0.668598\pi\)
\(20\) −1.26072 −0.281905
\(21\) 0 0
\(22\) 15.8623 3.38186
\(23\) −3.70367 −0.772269 −0.386134 0.922443i \(-0.626190\pi\)
−0.386134 + 0.922443i \(0.626190\pi\)
\(24\) 0 0
\(25\) −4.92389 −0.984779
\(26\) 9.97208 1.95569
\(27\) 0 0
\(28\) −3.31059 −0.625643
\(29\) −6.02479 −1.11878 −0.559388 0.828906i \(-0.688964\pi\)
−0.559388 + 0.828906i \(0.688964\pi\)
\(30\) 0 0
\(31\) −3.23181 −0.580451 −0.290225 0.956958i \(-0.593730\pi\)
−0.290225 + 0.956958i \(0.593730\pi\)
\(32\) −6.67577 −1.18012
\(33\) 0 0
\(34\) −4.66319 −0.799731
\(35\) 0.199851 0.0337809
\(36\) 0 0
\(37\) 0.897967 0.147625 0.0738125 0.997272i \(-0.476483\pi\)
0.0738125 + 0.997272i \(0.476483\pi\)
\(38\) 11.2899 1.83146
\(39\) 0 0
\(40\) 1.81722 0.287328
\(41\) 5.23804 0.818044 0.409022 0.912525i \(-0.365870\pi\)
0.409022 + 0.912525i \(0.365870\pi\)
\(42\) 0 0
\(43\) −7.55001 −1.15137 −0.575683 0.817673i \(-0.695264\pi\)
−0.575683 + 0.817673i \(0.695264\pi\)
\(44\) −28.2810 −4.26353
\(45\) 0 0
\(46\) 9.49319 1.39969
\(47\) −2.40640 −0.351010 −0.175505 0.984479i \(-0.556156\pi\)
−0.175505 + 0.984479i \(0.556156\pi\)
\(48\) 0 0
\(49\) −6.47520 −0.925029
\(50\) 12.6209 1.78486
\(51\) 0 0
\(52\) −17.7793 −2.46554
\(53\) −6.26043 −0.859937 −0.429968 0.902844i \(-0.641475\pi\)
−0.429968 + 0.902844i \(0.641475\pi\)
\(54\) 0 0
\(55\) 1.70724 0.230205
\(56\) 4.77196 0.637679
\(57\) 0 0
\(58\) 15.4427 2.02772
\(59\) 2.55836 0.333070 0.166535 0.986036i \(-0.446742\pi\)
0.166535 + 0.986036i \(0.446742\pi\)
\(60\) 0 0
\(61\) 15.3570 1.96627 0.983134 0.182889i \(-0.0585448\pi\)
0.983134 + 0.182889i \(0.0585448\pi\)
\(62\) 8.28373 1.05204
\(63\) 0 0
\(64\) 1.62259 0.202824
\(65\) 1.07328 0.133124
\(66\) 0 0
\(67\) 9.09612 1.11127 0.555634 0.831427i \(-0.312476\pi\)
0.555634 + 0.831427i \(0.312476\pi\)
\(68\) 8.31403 1.00822
\(69\) 0 0
\(70\) −0.512254 −0.0612261
\(71\) 11.6560 1.38331 0.691657 0.722226i \(-0.256881\pi\)
0.691657 + 0.722226i \(0.256881\pi\)
\(72\) 0 0
\(73\) 14.9224 1.74654 0.873270 0.487236i \(-0.161995\pi\)
0.873270 + 0.487236i \(0.161995\pi\)
\(74\) −2.30166 −0.267562
\(75\) 0 0
\(76\) −20.1288 −2.30893
\(77\) 4.48316 0.510903
\(78\) 0 0
\(79\) −6.96653 −0.783796 −0.391898 0.920009i \(-0.628181\pi\)
−0.391898 + 0.920009i \(0.628181\pi\)
\(80\) −2.13645 −0.238862
\(81\) 0 0
\(82\) −13.4261 −1.48266
\(83\) −9.66159 −1.06050 −0.530249 0.847842i \(-0.677901\pi\)
−0.530249 + 0.847842i \(0.677901\pi\)
\(84\) 0 0
\(85\) −0.501894 −0.0544380
\(86\) 19.3521 2.08679
\(87\) 0 0
\(88\) 40.7649 4.34555
\(89\) 1.89411 0.200775 0.100388 0.994948i \(-0.467992\pi\)
0.100388 + 0.994948i \(0.467992\pi\)
\(90\) 0 0
\(91\) 2.81840 0.295449
\(92\) −16.9255 −1.76460
\(93\) 0 0
\(94\) 6.16805 0.636186
\(95\) 1.21512 0.124668
\(96\) 0 0
\(97\) 11.2780 1.14511 0.572554 0.819867i \(-0.305953\pi\)
0.572554 + 0.819867i \(0.305953\pi\)
\(98\) 16.5971 1.67656
\(99\) 0 0
\(100\) −22.5018 −2.25018
\(101\) 7.40701 0.737025 0.368512 0.929623i \(-0.379867\pi\)
0.368512 + 0.929623i \(0.379867\pi\)
\(102\) 0 0
\(103\) −9.70228 −0.955994 −0.477997 0.878361i \(-0.658637\pi\)
−0.477997 + 0.878361i \(0.658637\pi\)
\(104\) 25.6274 2.51298
\(105\) 0 0
\(106\) 16.0467 1.55859
\(107\) 12.0662 1.16648 0.583240 0.812300i \(-0.301785\pi\)
0.583240 + 0.812300i \(0.301785\pi\)
\(108\) 0 0
\(109\) −6.44479 −0.617299 −0.308649 0.951176i \(-0.599877\pi\)
−0.308649 + 0.951176i \(0.599877\pi\)
\(110\) −4.37598 −0.417233
\(111\) 0 0
\(112\) −5.61022 −0.530116
\(113\) −3.04951 −0.286874 −0.143437 0.989659i \(-0.545815\pi\)
−0.143437 + 0.989659i \(0.545815\pi\)
\(114\) 0 0
\(115\) 1.02174 0.0952779
\(116\) −27.5328 −2.55636
\(117\) 0 0
\(118\) −6.55754 −0.603671
\(119\) −1.31795 −0.120817
\(120\) 0 0
\(121\) 27.2978 2.48162
\(122\) −39.3629 −3.56375
\(123\) 0 0
\(124\) −14.7691 −1.32631
\(125\) 2.73773 0.244870
\(126\) 0 0
\(127\) 12.7664 1.13284 0.566419 0.824117i \(-0.308328\pi\)
0.566419 + 0.824117i \(0.308328\pi\)
\(128\) 9.19253 0.812513
\(129\) 0 0
\(130\) −2.75102 −0.241281
\(131\) −12.9828 −1.13432 −0.567158 0.823609i \(-0.691957\pi\)
−0.567158 + 0.823609i \(0.691957\pi\)
\(132\) 0 0
\(133\) 3.19085 0.276682
\(134\) −23.3151 −2.01411
\(135\) 0 0
\(136\) −11.9840 −1.02762
\(137\) −21.9737 −1.87734 −0.938668 0.344821i \(-0.887939\pi\)
−0.938668 + 0.344821i \(0.887939\pi\)
\(138\) 0 0
\(139\) 0.926515 0.0785860 0.0392930 0.999228i \(-0.487489\pi\)
0.0392930 + 0.999228i \(0.487489\pi\)
\(140\) 0.913302 0.0771881
\(141\) 0 0
\(142\) −29.8765 −2.50718
\(143\) 24.0765 2.01337
\(144\) 0 0
\(145\) 1.66207 0.138028
\(146\) −38.2490 −3.16551
\(147\) 0 0
\(148\) 4.10364 0.337317
\(149\) −1.64679 −0.134910 −0.0674552 0.997722i \(-0.521488\pi\)
−0.0674552 + 0.997722i \(0.521488\pi\)
\(150\) 0 0
\(151\) −2.08624 −0.169776 −0.0848879 0.996391i \(-0.527053\pi\)
−0.0848879 + 0.996391i \(0.527053\pi\)
\(152\) 29.0141 2.35335
\(153\) 0 0
\(154\) −11.4912 −0.925984
\(155\) 0.891569 0.0716125
\(156\) 0 0
\(157\) 9.43640 0.753107 0.376553 0.926395i \(-0.377109\pi\)
0.376553 + 0.926395i \(0.377109\pi\)
\(158\) 17.8565 1.42059
\(159\) 0 0
\(160\) 1.84166 0.145596
\(161\) 2.68305 0.211454
\(162\) 0 0
\(163\) 11.4108 0.893762 0.446881 0.894593i \(-0.352535\pi\)
0.446881 + 0.894593i \(0.352535\pi\)
\(164\) 23.9374 1.86920
\(165\) 0 0
\(166\) 24.7644 1.92209
\(167\) 14.3143 1.10767 0.553835 0.832626i \(-0.313164\pi\)
0.553835 + 0.832626i \(0.313164\pi\)
\(168\) 0 0
\(169\) 2.13602 0.164309
\(170\) 1.28645 0.0986660
\(171\) 0 0
\(172\) −34.5029 −2.63082
\(173\) −6.67783 −0.507706 −0.253853 0.967243i \(-0.581698\pi\)
−0.253853 + 0.967243i \(0.581698\pi\)
\(174\) 0 0
\(175\) 3.56702 0.269642
\(176\) −47.9259 −3.61255
\(177\) 0 0
\(178\) −4.85496 −0.363895
\(179\) 1.34485 0.100519 0.0502594 0.998736i \(-0.483995\pi\)
0.0502594 + 0.998736i \(0.483995\pi\)
\(180\) 0 0
\(181\) −14.5795 −1.08369 −0.541844 0.840479i \(-0.682274\pi\)
−0.541844 + 0.840479i \(0.682274\pi\)
\(182\) −7.22409 −0.535485
\(183\) 0 0
\(184\) 24.3967 1.79855
\(185\) −0.247725 −0.0182131
\(186\) 0 0
\(187\) −11.2588 −0.823321
\(188\) −10.9971 −0.802043
\(189\) 0 0
\(190\) −3.11457 −0.225955
\(191\) −21.4002 −1.54846 −0.774231 0.632903i \(-0.781863\pi\)
−0.774231 + 0.632903i \(0.781863\pi\)
\(192\) 0 0
\(193\) −2.75873 −0.198578 −0.0992889 0.995059i \(-0.531657\pi\)
−0.0992889 + 0.995059i \(0.531657\pi\)
\(194\) −28.9076 −2.07544
\(195\) 0 0
\(196\) −29.5911 −2.11365
\(197\) −3.15359 −0.224684 −0.112342 0.993670i \(-0.535835\pi\)
−0.112342 + 0.993670i \(0.535835\pi\)
\(198\) 0 0
\(199\) −22.4100 −1.58861 −0.794303 0.607522i \(-0.792164\pi\)
−0.794303 + 0.607522i \(0.792164\pi\)
\(200\) 32.4346 2.29347
\(201\) 0 0
\(202\) −18.9855 −1.33582
\(203\) 4.36455 0.306331
\(204\) 0 0
\(205\) −1.44503 −0.100925
\(206\) 24.8687 1.73269
\(207\) 0 0
\(208\) −30.1293 −2.08909
\(209\) 27.2581 1.88549
\(210\) 0 0
\(211\) 7.09180 0.488220 0.244110 0.969748i \(-0.421504\pi\)
0.244110 + 0.969748i \(0.421504\pi\)
\(212\) −28.6097 −1.96492
\(213\) 0 0
\(214\) −30.9278 −2.11418
\(215\) 2.08284 0.142049
\(216\) 0 0
\(217\) 2.34123 0.158933
\(218\) 16.5192 1.11882
\(219\) 0 0
\(220\) 7.80196 0.526008
\(221\) −7.07798 −0.476116
\(222\) 0 0
\(223\) −4.10459 −0.274864 −0.137432 0.990511i \(-0.543885\pi\)
−0.137432 + 0.990511i \(0.543885\pi\)
\(224\) 4.83613 0.323128
\(225\) 0 0
\(226\) 7.81645 0.519943
\(227\) −15.7449 −1.04502 −0.522512 0.852632i \(-0.675005\pi\)
−0.522512 + 0.852632i \(0.675005\pi\)
\(228\) 0 0
\(229\) −18.7647 −1.24000 −0.620002 0.784600i \(-0.712868\pi\)
−0.620002 + 0.784600i \(0.712868\pi\)
\(230\) −2.61891 −0.172686
\(231\) 0 0
\(232\) 39.6864 2.60554
\(233\) 1.93072 0.126486 0.0632430 0.997998i \(-0.479856\pi\)
0.0632430 + 0.997998i \(0.479856\pi\)
\(234\) 0 0
\(235\) 0.663861 0.0433055
\(236\) 11.6915 0.761051
\(237\) 0 0
\(238\) 3.37816 0.218974
\(239\) 3.04733 0.197115 0.0985577 0.995131i \(-0.468577\pi\)
0.0985577 + 0.995131i \(0.468577\pi\)
\(240\) 0 0
\(241\) 6.43356 0.414422 0.207211 0.978296i \(-0.433561\pi\)
0.207211 + 0.978296i \(0.433561\pi\)
\(242\) −69.9693 −4.49780
\(243\) 0 0
\(244\) 70.1804 4.49284
\(245\) 1.78633 0.114124
\(246\) 0 0
\(247\) 17.1362 1.09035
\(248\) 21.2885 1.35182
\(249\) 0 0
\(250\) −7.01731 −0.443814
\(251\) −12.1288 −0.765563 −0.382782 0.923839i \(-0.625034\pi\)
−0.382782 + 0.923839i \(0.625034\pi\)
\(252\) 0 0
\(253\) 22.9202 1.44098
\(254\) −32.7227 −2.05321
\(255\) 0 0
\(256\) −26.8073 −1.67546
\(257\) 22.7143 1.41688 0.708440 0.705772i \(-0.249399\pi\)
0.708440 + 0.705772i \(0.249399\pi\)
\(258\) 0 0
\(259\) −0.650515 −0.0404211
\(260\) 4.90482 0.304184
\(261\) 0 0
\(262\) 33.2774 2.05589
\(263\) −7.06731 −0.435789 −0.217895 0.975972i \(-0.569919\pi\)
−0.217895 + 0.975972i \(0.569919\pi\)
\(264\) 0 0
\(265\) 1.72708 0.106094
\(266\) −8.17874 −0.501471
\(267\) 0 0
\(268\) 41.5685 2.53920
\(269\) −0.0762491 −0.00464899 −0.00232449 0.999997i \(-0.500740\pi\)
−0.00232449 + 0.999997i \(0.500740\pi\)
\(270\) 0 0
\(271\) −5.45496 −0.331365 −0.165683 0.986179i \(-0.552983\pi\)
−0.165683 + 0.986179i \(0.552983\pi\)
\(272\) 14.0892 0.854284
\(273\) 0 0
\(274\) 56.3226 3.40257
\(275\) 30.4716 1.83751
\(276\) 0 0
\(277\) 21.9674 1.31990 0.659948 0.751312i \(-0.270578\pi\)
0.659948 + 0.751312i \(0.270578\pi\)
\(278\) −2.37483 −0.142433
\(279\) 0 0
\(280\) −1.31645 −0.0786731
\(281\) −9.43640 −0.562928 −0.281464 0.959572i \(-0.590820\pi\)
−0.281464 + 0.959572i \(0.590820\pi\)
\(282\) 0 0
\(283\) −10.2835 −0.611289 −0.305644 0.952146i \(-0.598872\pi\)
−0.305644 + 0.952146i \(0.598872\pi\)
\(284\) 53.2671 3.16082
\(285\) 0 0
\(286\) −61.7124 −3.64913
\(287\) −3.79460 −0.223988
\(288\) 0 0
\(289\) −13.6902 −0.805304
\(290\) −4.26021 −0.250168
\(291\) 0 0
\(292\) 68.1944 3.99077
\(293\) 26.1438 1.52734 0.763668 0.645609i \(-0.223396\pi\)
0.763668 + 0.645609i \(0.223396\pi\)
\(294\) 0 0
\(295\) −0.705781 −0.0410921
\(296\) −5.91507 −0.343806
\(297\) 0 0
\(298\) 4.22103 0.244518
\(299\) 14.4091 0.833302
\(300\) 0 0
\(301\) 5.46946 0.315254
\(302\) 5.34742 0.307709
\(303\) 0 0
\(304\) −34.1109 −1.95639
\(305\) −4.23659 −0.242586
\(306\) 0 0
\(307\) 7.72432 0.440850 0.220425 0.975404i \(-0.429256\pi\)
0.220425 + 0.975404i \(0.429256\pi\)
\(308\) 20.4877 1.16739
\(309\) 0 0
\(310\) −2.28526 −0.129794
\(311\) 30.3693 1.72209 0.861043 0.508532i \(-0.169812\pi\)
0.861043 + 0.508532i \(0.169812\pi\)
\(312\) 0 0
\(313\) 17.7502 1.00330 0.501649 0.865071i \(-0.332727\pi\)
0.501649 + 0.865071i \(0.332727\pi\)
\(314\) −24.1872 −1.36497
\(315\) 0 0
\(316\) −31.8365 −1.79094
\(317\) 23.3873 1.31356 0.656782 0.754081i \(-0.271917\pi\)
0.656782 + 0.754081i \(0.271917\pi\)
\(318\) 0 0
\(319\) 37.2845 2.08753
\(320\) −0.447628 −0.0250232
\(321\) 0 0
\(322\) −6.87716 −0.383249
\(323\) −8.01333 −0.445873
\(324\) 0 0
\(325\) 19.1564 1.06261
\(326\) −29.2480 −1.61990
\(327\) 0 0
\(328\) −34.5039 −1.90516
\(329\) 1.74327 0.0961097
\(330\) 0 0
\(331\) −28.4098 −1.56155 −0.780773 0.624815i \(-0.785174\pi\)
−0.780773 + 0.624815i \(0.785174\pi\)
\(332\) −44.1527 −2.42319
\(333\) 0 0
\(334\) −36.6901 −2.00759
\(335\) −2.50937 −0.137102
\(336\) 0 0
\(337\) −34.5819 −1.88380 −0.941899 0.335897i \(-0.890960\pi\)
−0.941899 + 0.335897i \(0.890960\pi\)
\(338\) −5.47501 −0.297801
\(339\) 0 0
\(340\) −2.29361 −0.124389
\(341\) 20.0001 1.08307
\(342\) 0 0
\(343\) 9.76185 0.527091
\(344\) 49.7332 2.68144
\(345\) 0 0
\(346\) 17.1165 0.920190
\(347\) 8.47863 0.455157 0.227578 0.973760i \(-0.426919\pi\)
0.227578 + 0.973760i \(0.426919\pi\)
\(348\) 0 0
\(349\) −20.9320 −1.12047 −0.560233 0.828335i \(-0.689288\pi\)
−0.560233 + 0.828335i \(0.689288\pi\)
\(350\) −9.14294 −0.488711
\(351\) 0 0
\(352\) 41.3131 2.20200
\(353\) 27.3164 1.45390 0.726952 0.686688i \(-0.240936\pi\)
0.726952 + 0.686688i \(0.240936\pi\)
\(354\) 0 0
\(355\) −3.21558 −0.170665
\(356\) 8.65594 0.458764
\(357\) 0 0
\(358\) −3.44710 −0.182185
\(359\) −10.4982 −0.554075 −0.277038 0.960859i \(-0.589353\pi\)
−0.277038 + 0.960859i \(0.589353\pi\)
\(360\) 0 0
\(361\) 0.400772 0.0210933
\(362\) 37.3700 1.96413
\(363\) 0 0
\(364\) 12.8799 0.675088
\(365\) −4.11670 −0.215478
\(366\) 0 0
\(367\) −22.5082 −1.17492 −0.587459 0.809254i \(-0.699872\pi\)
−0.587459 + 0.809254i \(0.699872\pi\)
\(368\) −28.6824 −1.49517
\(369\) 0 0
\(370\) 0.634964 0.0330102
\(371\) 4.53525 0.235459
\(372\) 0 0
\(373\) −17.2736 −0.894393 −0.447196 0.894436i \(-0.647577\pi\)
−0.447196 + 0.894436i \(0.647577\pi\)
\(374\) 28.8583 1.49223
\(375\) 0 0
\(376\) 15.8514 0.817473
\(377\) 23.4395 1.20719
\(378\) 0 0
\(379\) −34.8131 −1.78823 −0.894115 0.447837i \(-0.852194\pi\)
−0.894115 + 0.447837i \(0.852194\pi\)
\(380\) 5.55299 0.284862
\(381\) 0 0
\(382\) 54.8526 2.80650
\(383\) −1.00000 −0.0510976
\(384\) 0 0
\(385\) −1.23678 −0.0630322
\(386\) 7.07114 0.359911
\(387\) 0 0
\(388\) 51.5395 2.61652
\(389\) 17.9176 0.908458 0.454229 0.890885i \(-0.349915\pi\)
0.454229 + 0.890885i \(0.349915\pi\)
\(390\) 0 0
\(391\) −6.73807 −0.340759
\(392\) 42.6533 2.15432
\(393\) 0 0
\(394\) 8.08324 0.407228
\(395\) 1.92188 0.0967000
\(396\) 0 0
\(397\) 30.6082 1.53618 0.768092 0.640340i \(-0.221206\pi\)
0.768092 + 0.640340i \(0.221206\pi\)
\(398\) 57.4411 2.87926
\(399\) 0 0
\(400\) −38.1322 −1.90661
\(401\) −1.98264 −0.0990081 −0.0495041 0.998774i \(-0.515764\pi\)
−0.0495041 + 0.998774i \(0.515764\pi\)
\(402\) 0 0
\(403\) 12.5734 0.626324
\(404\) 33.8494 1.68407
\(405\) 0 0
\(406\) −11.1871 −0.555208
\(407\) −5.55709 −0.275455
\(408\) 0 0
\(409\) 30.0219 1.48449 0.742244 0.670129i \(-0.233761\pi\)
0.742244 + 0.670129i \(0.233761\pi\)
\(410\) 3.70388 0.182922
\(411\) 0 0
\(412\) −44.3386 −2.18441
\(413\) −1.85335 −0.0911975
\(414\) 0 0
\(415\) 2.66537 0.130838
\(416\) 25.9721 1.27339
\(417\) 0 0
\(418\) −69.8677 −3.41734
\(419\) −10.9723 −0.536031 −0.268016 0.963415i \(-0.586368\pi\)
−0.268016 + 0.963415i \(0.586368\pi\)
\(420\) 0 0
\(421\) −9.53417 −0.464667 −0.232334 0.972636i \(-0.574636\pi\)
−0.232334 + 0.972636i \(0.574636\pi\)
\(422\) −18.1776 −0.884872
\(423\) 0 0
\(424\) 41.2386 2.00272
\(425\) −8.95802 −0.434528
\(426\) 0 0
\(427\) −11.1251 −0.538382
\(428\) 55.1413 2.66536
\(429\) 0 0
\(430\) −5.33871 −0.257455
\(431\) 14.8405 0.714843 0.357422 0.933943i \(-0.383656\pi\)
0.357422 + 0.933943i \(0.383656\pi\)
\(432\) 0 0
\(433\) 35.5848 1.71010 0.855048 0.518550i \(-0.173528\pi\)
0.855048 + 0.518550i \(0.173528\pi\)
\(434\) −6.00099 −0.288057
\(435\) 0 0
\(436\) −29.4521 −1.41050
\(437\) 16.3133 0.780371
\(438\) 0 0
\(439\) 35.8309 1.71012 0.855058 0.518532i \(-0.173521\pi\)
0.855058 + 0.518532i \(0.173521\pi\)
\(440\) −11.2459 −0.536128
\(441\) 0 0
\(442\) 18.1422 0.862935
\(443\) 0.764802 0.0363369 0.0181684 0.999835i \(-0.494216\pi\)
0.0181684 + 0.999835i \(0.494216\pi\)
\(444\) 0 0
\(445\) −0.522534 −0.0247705
\(446\) 10.5208 0.498175
\(447\) 0 0
\(448\) −1.17545 −0.0555350
\(449\) −9.02876 −0.426094 −0.213047 0.977042i \(-0.568339\pi\)
−0.213047 + 0.977042i \(0.568339\pi\)
\(450\) 0 0
\(451\) −32.4157 −1.52640
\(452\) −13.9360 −0.655494
\(453\) 0 0
\(454\) 40.3570 1.89405
\(455\) −0.777520 −0.0364507
\(456\) 0 0
\(457\) 20.8558 0.975591 0.487795 0.872958i \(-0.337801\pi\)
0.487795 + 0.872958i \(0.337801\pi\)
\(458\) 48.0973 2.24744
\(459\) 0 0
\(460\) 4.66927 0.217706
\(461\) −27.8874 −1.29885 −0.649424 0.760427i \(-0.724990\pi\)
−0.649424 + 0.760427i \(0.724990\pi\)
\(462\) 0 0
\(463\) −15.1892 −0.705901 −0.352950 0.935642i \(-0.614822\pi\)
−0.352950 + 0.935642i \(0.614822\pi\)
\(464\) −46.6579 −2.16604
\(465\) 0 0
\(466\) −4.94880 −0.229249
\(467\) 26.1563 1.21037 0.605184 0.796086i \(-0.293100\pi\)
0.605184 + 0.796086i \(0.293100\pi\)
\(468\) 0 0
\(469\) −6.58952 −0.304276
\(470\) −1.70160 −0.0784888
\(471\) 0 0
\(472\) −16.8523 −0.775692
\(473\) 46.7234 2.14834
\(474\) 0 0
\(475\) 21.6879 0.995111
\(476\) −6.02294 −0.276061
\(477\) 0 0
\(478\) −7.81087 −0.357261
\(479\) 38.6333 1.76520 0.882599 0.470126i \(-0.155791\pi\)
0.882599 + 0.470126i \(0.155791\pi\)
\(480\) 0 0
\(481\) −3.49354 −0.159292
\(482\) −16.4904 −0.751117
\(483\) 0 0
\(484\) 124.749 5.67039
\(485\) −3.11129 −0.141276
\(486\) 0 0
\(487\) −22.2807 −1.00963 −0.504817 0.863226i \(-0.668440\pi\)
−0.504817 + 0.863226i \(0.668440\pi\)
\(488\) −101.160 −4.57928
\(489\) 0 0
\(490\) −4.57870 −0.206844
\(491\) 4.56067 0.205820 0.102910 0.994691i \(-0.467185\pi\)
0.102910 + 0.994691i \(0.467185\pi\)
\(492\) 0 0
\(493\) −10.9609 −0.493653
\(494\) −43.9233 −1.97620
\(495\) 0 0
\(496\) −25.0282 −1.12380
\(497\) −8.44398 −0.378764
\(498\) 0 0
\(499\) 39.3596 1.76198 0.880989 0.473137i \(-0.156879\pi\)
0.880989 + 0.473137i \(0.156879\pi\)
\(500\) 12.5112 0.559518
\(501\) 0 0
\(502\) 31.0884 1.38754
\(503\) 20.5894 0.918037 0.459018 0.888427i \(-0.348201\pi\)
0.459018 + 0.888427i \(0.348201\pi\)
\(504\) 0 0
\(505\) −2.04339 −0.0909297
\(506\) −58.7488 −2.61170
\(507\) 0 0
\(508\) 58.3416 2.58849
\(509\) −15.4099 −0.683033 −0.341517 0.939876i \(-0.610941\pi\)
−0.341517 + 0.939876i \(0.610941\pi\)
\(510\) 0 0
\(511\) −10.8103 −0.478219
\(512\) 50.3271 2.22417
\(513\) 0 0
\(514\) −58.2210 −2.56802
\(515\) 2.67659 0.117945
\(516\) 0 0
\(517\) 14.8921 0.654953
\(518\) 1.66739 0.0732610
\(519\) 0 0
\(520\) −7.06991 −0.310036
\(521\) −44.5290 −1.95085 −0.975425 0.220333i \(-0.929286\pi\)
−0.975425 + 0.220333i \(0.929286\pi\)
\(522\) 0 0
\(523\) 14.8949 0.651308 0.325654 0.945489i \(-0.394415\pi\)
0.325654 + 0.945489i \(0.394415\pi\)
\(524\) −59.3306 −2.59187
\(525\) 0 0
\(526\) 18.1148 0.789844
\(527\) −5.87962 −0.256120
\(528\) 0 0
\(529\) −9.28283 −0.403601
\(530\) −4.42683 −0.192289
\(531\) 0 0
\(532\) 14.5819 0.632207
\(533\) −20.3786 −0.882695
\(534\) 0 0
\(535\) −3.32872 −0.143913
\(536\) −59.9178 −2.58805
\(537\) 0 0
\(538\) 0.195440 0.00842604
\(539\) 40.0719 1.72602
\(540\) 0 0
\(541\) 18.5092 0.795775 0.397887 0.917434i \(-0.369743\pi\)
0.397887 + 0.917434i \(0.369743\pi\)
\(542\) 13.9821 0.600582
\(543\) 0 0
\(544\) −12.1452 −0.520721
\(545\) 1.77794 0.0761586
\(546\) 0 0
\(547\) −17.7546 −0.759132 −0.379566 0.925165i \(-0.623927\pi\)
−0.379566 + 0.925165i \(0.623927\pi\)
\(548\) −100.418 −4.28964
\(549\) 0 0
\(550\) −78.1044 −3.33038
\(551\) 26.5370 1.13051
\(552\) 0 0
\(553\) 5.04677 0.214611
\(554\) −56.3066 −2.39224
\(555\) 0 0
\(556\) 4.23410 0.179566
\(557\) 13.2531 0.561551 0.280776 0.959773i \(-0.409408\pi\)
0.280776 + 0.959773i \(0.409408\pi\)
\(558\) 0 0
\(559\) 29.3733 1.24236
\(560\) 1.54771 0.0654026
\(561\) 0 0
\(562\) 24.1872 1.02028
\(563\) 1.13349 0.0477710 0.0238855 0.999715i \(-0.492396\pi\)
0.0238855 + 0.999715i \(0.492396\pi\)
\(564\) 0 0
\(565\) 0.841276 0.0353927
\(566\) 26.3584 1.10793
\(567\) 0 0
\(568\) −76.7803 −3.22163
\(569\) −29.6200 −1.24173 −0.620867 0.783916i \(-0.713219\pi\)
−0.620867 + 0.783916i \(0.713219\pi\)
\(570\) 0 0
\(571\) −26.4317 −1.10613 −0.553065 0.833138i \(-0.686542\pi\)
−0.553065 + 0.833138i \(0.686542\pi\)
\(572\) 110.027 4.60048
\(573\) 0 0
\(574\) 9.72625 0.405966
\(575\) 18.2365 0.760514
\(576\) 0 0
\(577\) 31.8889 1.32755 0.663776 0.747931i \(-0.268953\pi\)
0.663776 + 0.747931i \(0.268953\pi\)
\(578\) 35.0904 1.45957
\(579\) 0 0
\(580\) 7.59555 0.315388
\(581\) 6.99916 0.290374
\(582\) 0 0
\(583\) 38.7428 1.60456
\(584\) −98.2968 −4.06755
\(585\) 0 0
\(586\) −67.0114 −2.76821
\(587\) 23.5267 0.971050 0.485525 0.874223i \(-0.338629\pi\)
0.485525 + 0.874223i \(0.338629\pi\)
\(588\) 0 0
\(589\) 14.2349 0.586540
\(590\) 1.80905 0.0744773
\(591\) 0 0
\(592\) 6.95414 0.285814
\(593\) 21.3096 0.875078 0.437539 0.899199i \(-0.355850\pi\)
0.437539 + 0.899199i \(0.355850\pi\)
\(594\) 0 0
\(595\) 0.363588 0.0149056
\(596\) −7.52570 −0.308265
\(597\) 0 0
\(598\) −36.9333 −1.51031
\(599\) −17.4219 −0.711841 −0.355920 0.934516i \(-0.615833\pi\)
−0.355920 + 0.934516i \(0.615833\pi\)
\(600\) 0 0
\(601\) 35.7937 1.46006 0.730028 0.683417i \(-0.239507\pi\)
0.730028 + 0.683417i \(0.239507\pi\)
\(602\) −14.0192 −0.571382
\(603\) 0 0
\(604\) −9.53395 −0.387931
\(605\) −7.53071 −0.306167
\(606\) 0 0
\(607\) 33.2173 1.34825 0.674124 0.738618i \(-0.264521\pi\)
0.674124 + 0.738618i \(0.264521\pi\)
\(608\) 29.4043 1.19250
\(609\) 0 0
\(610\) 10.8592 0.439674
\(611\) 9.36212 0.378751
\(612\) 0 0
\(613\) −38.1375 −1.54036 −0.770180 0.637826i \(-0.779834\pi\)
−0.770180 + 0.637826i \(0.779834\pi\)
\(614\) −19.7989 −0.799017
\(615\) 0 0
\(616\) −29.5313 −1.18985
\(617\) −12.9584 −0.521687 −0.260844 0.965381i \(-0.584001\pi\)
−0.260844 + 0.965381i \(0.584001\pi\)
\(618\) 0 0
\(619\) −18.7069 −0.751892 −0.375946 0.926641i \(-0.622682\pi\)
−0.375946 + 0.926641i \(0.622682\pi\)
\(620\) 4.07440 0.163632
\(621\) 0 0
\(622\) −77.8422 −3.12119
\(623\) −1.37215 −0.0549742
\(624\) 0 0
\(625\) 23.8642 0.954568
\(626\) −45.4969 −1.81842
\(627\) 0 0
\(628\) 43.1236 1.72082
\(629\) 1.63367 0.0651386
\(630\) 0 0
\(631\) −38.4480 −1.53059 −0.765296 0.643679i \(-0.777407\pi\)
−0.765296 + 0.643679i \(0.777407\pi\)
\(632\) 45.8898 1.82540
\(633\) 0 0
\(634\) −59.9461 −2.38076
\(635\) −3.52191 −0.139763
\(636\) 0 0
\(637\) 25.1918 0.998135
\(638\) −95.5672 −3.78354
\(639\) 0 0
\(640\) −2.53597 −0.100243
\(641\) −4.47012 −0.176559 −0.0882795 0.996096i \(-0.528137\pi\)
−0.0882795 + 0.996096i \(0.528137\pi\)
\(642\) 0 0
\(643\) 14.7760 0.582707 0.291354 0.956615i \(-0.405894\pi\)
0.291354 + 0.956615i \(0.405894\pi\)
\(644\) 12.2613 0.483164
\(645\) 0 0
\(646\) 20.5396 0.808121
\(647\) −40.7337 −1.60141 −0.800703 0.599061i \(-0.795541\pi\)
−0.800703 + 0.599061i \(0.795541\pi\)
\(648\) 0 0
\(649\) −15.8324 −0.621478
\(650\) −49.1015 −1.92592
\(651\) 0 0
\(652\) 52.1464 2.04221
\(653\) −25.4310 −0.995191 −0.497595 0.867409i \(-0.665784\pi\)
−0.497595 + 0.867409i \(0.665784\pi\)
\(654\) 0 0
\(655\) 3.58161 0.139945
\(656\) 40.5650 1.58380
\(657\) 0 0
\(658\) −4.46833 −0.174194
\(659\) −16.2534 −0.633141 −0.316571 0.948569i \(-0.602531\pi\)
−0.316571 + 0.948569i \(0.602531\pi\)
\(660\) 0 0
\(661\) 1.45508 0.0565959 0.0282980 0.999600i \(-0.490991\pi\)
0.0282980 + 0.999600i \(0.490991\pi\)
\(662\) 72.8197 2.83022
\(663\) 0 0
\(664\) 63.6426 2.46981
\(665\) −0.880269 −0.0341354
\(666\) 0 0
\(667\) 22.3138 0.863995
\(668\) 65.4150 2.53098
\(669\) 0 0
\(670\) 6.43198 0.248489
\(671\) −95.0374 −3.66888
\(672\) 0 0
\(673\) 36.4263 1.40413 0.702066 0.712112i \(-0.252261\pi\)
0.702066 + 0.712112i \(0.252261\pi\)
\(674\) 88.6399 3.41428
\(675\) 0 0
\(676\) 9.76143 0.375439
\(677\) −30.9540 −1.18966 −0.594829 0.803852i \(-0.702780\pi\)
−0.594829 + 0.803852i \(0.702780\pi\)
\(678\) 0 0
\(679\) −8.17013 −0.313541
\(680\) 3.30606 0.126782
\(681\) 0 0
\(682\) −51.2641 −1.96300
\(683\) −9.50895 −0.363850 −0.181925 0.983312i \(-0.558233\pi\)
−0.181925 + 0.983312i \(0.558233\pi\)
\(684\) 0 0
\(685\) 6.06193 0.231615
\(686\) −25.0214 −0.955323
\(687\) 0 0
\(688\) −58.4697 −2.22913
\(689\) 24.3562 0.927899
\(690\) 0 0
\(691\) −7.73998 −0.294443 −0.147221 0.989104i \(-0.547033\pi\)
−0.147221 + 0.989104i \(0.547033\pi\)
\(692\) −30.5172 −1.16009
\(693\) 0 0
\(694\) −21.7323 −0.824946
\(695\) −0.255600 −0.00969546
\(696\) 0 0
\(697\) 9.52954 0.360957
\(698\) 53.6526 2.03078
\(699\) 0 0
\(700\) 16.3010 0.616120
\(701\) 25.3947 0.959146 0.479573 0.877502i \(-0.340792\pi\)
0.479573 + 0.877502i \(0.340792\pi\)
\(702\) 0 0
\(703\) −3.95521 −0.149174
\(704\) −10.0414 −0.378451
\(705\) 0 0
\(706\) −70.0169 −2.63512
\(707\) −5.36587 −0.201804
\(708\) 0 0
\(709\) −9.84224 −0.369633 −0.184816 0.982773i \(-0.559169\pi\)
−0.184816 + 0.982773i \(0.559169\pi\)
\(710\) 8.24212 0.309321
\(711\) 0 0
\(712\) −12.4768 −0.467590
\(713\) 11.9696 0.448264
\(714\) 0 0
\(715\) −6.64204 −0.248398
\(716\) 6.14585 0.229681
\(717\) 0 0
\(718\) 26.9089 1.00423
\(719\) −7.06619 −0.263524 −0.131762 0.991281i \(-0.542064\pi\)
−0.131762 + 0.991281i \(0.542064\pi\)
\(720\) 0 0
\(721\) 7.02863 0.261760
\(722\) −1.02725 −0.0382304
\(723\) 0 0
\(724\) −66.6273 −2.47618
\(725\) 29.6654 1.10175
\(726\) 0 0
\(727\) 49.6710 1.84220 0.921098 0.389331i \(-0.127294\pi\)
0.921098 + 0.389331i \(0.127294\pi\)
\(728\) −18.5653 −0.688076
\(729\) 0 0
\(730\) 10.5519 0.390542
\(731\) −13.7357 −0.508033
\(732\) 0 0
\(733\) −31.9212 −1.17904 −0.589519 0.807755i \(-0.700683\pi\)
−0.589519 + 0.807755i \(0.700683\pi\)
\(734\) 57.6926 2.12947
\(735\) 0 0
\(736\) 24.7248 0.911369
\(737\) −56.2916 −2.07353
\(738\) 0 0
\(739\) −21.1540 −0.778161 −0.389081 0.921204i \(-0.627207\pi\)
−0.389081 + 0.921204i \(0.627207\pi\)
\(740\) −1.13208 −0.0416161
\(741\) 0 0
\(742\) −11.6247 −0.426756
\(743\) 16.7999 0.616328 0.308164 0.951333i \(-0.400285\pi\)
0.308164 + 0.951333i \(0.400285\pi\)
\(744\) 0 0
\(745\) 0.454305 0.0166444
\(746\) 44.2754 1.62104
\(747\) 0 0
\(748\) −51.4516 −1.88126
\(749\) −8.74110 −0.319393
\(750\) 0 0
\(751\) 41.0779 1.49895 0.749477 0.662030i \(-0.230305\pi\)
0.749477 + 0.662030i \(0.230305\pi\)
\(752\) −18.6359 −0.679583
\(753\) 0 0
\(754\) −60.0797 −2.18797
\(755\) 0.575537 0.0209459
\(756\) 0 0
\(757\) −22.9744 −0.835019 −0.417509 0.908673i \(-0.637097\pi\)
−0.417509 + 0.908673i \(0.637097\pi\)
\(758\) 89.2325 3.24107
\(759\) 0 0
\(760\) −8.00419 −0.290343
\(761\) 29.1691 1.05738 0.528690 0.848815i \(-0.322683\pi\)
0.528690 + 0.848815i \(0.322683\pi\)
\(762\) 0 0
\(763\) 4.66880 0.169022
\(764\) −97.7970 −3.53817
\(765\) 0 0
\(766\) 2.56319 0.0926116
\(767\) −9.95330 −0.359393
\(768\) 0 0
\(769\) 41.5608 1.49872 0.749361 0.662162i \(-0.230361\pi\)
0.749361 + 0.662162i \(0.230361\pi\)
\(770\) 3.17010 0.114242
\(771\) 0 0
\(772\) −12.6072 −0.453742
\(773\) −23.7462 −0.854091 −0.427046 0.904230i \(-0.640446\pi\)
−0.427046 + 0.904230i \(0.640446\pi\)
\(774\) 0 0
\(775\) 15.9131 0.571615
\(776\) −74.2902 −2.66686
\(777\) 0 0
\(778\) −45.9261 −1.64653
\(779\) −23.0716 −0.826627
\(780\) 0 0
\(781\) −72.1335 −2.58114
\(782\) 17.2709 0.617607
\(783\) 0 0
\(784\) −50.1460 −1.79093
\(785\) −2.60325 −0.0929138
\(786\) 0 0
\(787\) −41.5434 −1.48086 −0.740431 0.672132i \(-0.765379\pi\)
−0.740431 + 0.672132i \(0.765379\pi\)
\(788\) −14.4117 −0.513394
\(789\) 0 0
\(790\) −4.92612 −0.175264
\(791\) 2.20916 0.0785486
\(792\) 0 0
\(793\) −59.7466 −2.12166
\(794\) −78.4546 −2.78425
\(795\) 0 0
\(796\) −102.412 −3.62990
\(797\) −10.1496 −0.359518 −0.179759 0.983711i \(-0.557532\pi\)
−0.179759 + 0.983711i \(0.557532\pi\)
\(798\) 0 0
\(799\) −4.37796 −0.154881
\(800\) 32.8708 1.16216
\(801\) 0 0
\(802\) 5.08186 0.179447
\(803\) −92.3479 −3.25889
\(804\) 0 0
\(805\) −0.740181 −0.0260880
\(806\) −32.2279 −1.13518
\(807\) 0 0
\(808\) −48.7913 −1.71647
\(809\) −53.7807 −1.89083 −0.945414 0.325872i \(-0.894342\pi\)
−0.945414 + 0.325872i \(0.894342\pi\)
\(810\) 0 0
\(811\) 17.0106 0.597323 0.298661 0.954359i \(-0.403460\pi\)
0.298661 + 0.954359i \(0.403460\pi\)
\(812\) 19.9456 0.699954
\(813\) 0 0
\(814\) 14.2438 0.499247
\(815\) −3.14793 −0.110267
\(816\) 0 0
\(817\) 33.2550 1.16345
\(818\) −76.9517 −2.69055
\(819\) 0 0
\(820\) −6.60367 −0.230610
\(821\) 17.4774 0.609967 0.304983 0.952358i \(-0.401349\pi\)
0.304983 + 0.952358i \(0.401349\pi\)
\(822\) 0 0
\(823\) −1.53419 −0.0534783 −0.0267392 0.999642i \(-0.508512\pi\)
−0.0267392 + 0.999642i \(0.508512\pi\)
\(824\) 63.9106 2.22643
\(825\) 0 0
\(826\) 4.75049 0.165291
\(827\) −53.8676 −1.87316 −0.936579 0.350455i \(-0.886027\pi\)
−0.936579 + 0.350455i \(0.886027\pi\)
\(828\) 0 0
\(829\) −41.7587 −1.45034 −0.725170 0.688570i \(-0.758239\pi\)
−0.725170 + 0.688570i \(0.758239\pi\)
\(830\) −6.83183 −0.237136
\(831\) 0 0
\(832\) −6.31269 −0.218853
\(833\) −11.7803 −0.408163
\(834\) 0 0
\(835\) −3.94891 −0.136658
\(836\) 124.568 4.30826
\(837\) 0 0
\(838\) 28.1240 0.971527
\(839\) 20.3586 0.702857 0.351429 0.936215i \(-0.385696\pi\)
0.351429 + 0.936215i \(0.385696\pi\)
\(840\) 0 0
\(841\) 7.29810 0.251659
\(842\) 24.4379 0.842184
\(843\) 0 0
\(844\) 32.4090 1.11556
\(845\) −0.589269 −0.0202715
\(846\) 0 0
\(847\) −19.7754 −0.679490
\(848\) −48.4828 −1.66491
\(849\) 0 0
\(850\) 22.9611 0.787558
\(851\) −3.32577 −0.114006
\(852\) 0 0
\(853\) −0.434982 −0.0148935 −0.00744675 0.999972i \(-0.502370\pi\)
−0.00744675 + 0.999972i \(0.502370\pi\)
\(854\) 28.5157 0.975788
\(855\) 0 0
\(856\) −79.4819 −2.71664
\(857\) 10.4022 0.355331 0.177666 0.984091i \(-0.443145\pi\)
0.177666 + 0.984091i \(0.443145\pi\)
\(858\) 0 0
\(859\) −17.3006 −0.590290 −0.295145 0.955452i \(-0.595368\pi\)
−0.295145 + 0.955452i \(0.595368\pi\)
\(860\) 9.51841 0.324575
\(861\) 0 0
\(862\) −38.0390 −1.29561
\(863\) 34.0045 1.15752 0.578762 0.815496i \(-0.303536\pi\)
0.578762 + 0.815496i \(0.303536\pi\)
\(864\) 0 0
\(865\) 1.84223 0.0626378
\(866\) −91.2104 −3.09945
\(867\) 0 0
\(868\) 10.6992 0.363155
\(869\) 43.1125 1.46249
\(870\) 0 0
\(871\) −35.3885 −1.19909
\(872\) 42.4529 1.43764
\(873\) 0 0
\(874\) −41.8140 −1.41438
\(875\) −1.98330 −0.0670477
\(876\) 0 0
\(877\) 6.36395 0.214895 0.107448 0.994211i \(-0.465732\pi\)
0.107448 + 0.994211i \(0.465732\pi\)
\(878\) −91.8413 −3.09949
\(879\) 0 0
\(880\) 13.2214 0.445695
\(881\) −24.5237 −0.826226 −0.413113 0.910680i \(-0.635559\pi\)
−0.413113 + 0.910680i \(0.635559\pi\)
\(882\) 0 0
\(883\) 11.6868 0.393294 0.196647 0.980474i \(-0.436995\pi\)
0.196647 + 0.980474i \(0.436995\pi\)
\(884\) −32.3458 −1.08791
\(885\) 0 0
\(886\) −1.96033 −0.0658586
\(887\) −40.5816 −1.36260 −0.681298 0.732006i \(-0.738584\pi\)
−0.681298 + 0.732006i \(0.738584\pi\)
\(888\) 0 0
\(889\) −9.24840 −0.310181
\(890\) 1.33935 0.0448951
\(891\) 0 0
\(892\) −18.7576 −0.628052
\(893\) 10.5993 0.354692
\(894\) 0 0
\(895\) −0.371007 −0.0124014
\(896\) −6.65936 −0.222474
\(897\) 0 0
\(898\) 23.1424 0.772272
\(899\) 19.4710 0.649394
\(900\) 0 0
\(901\) −11.3896 −0.379442
\(902\) 83.0874 2.76651
\(903\) 0 0
\(904\) 20.0876 0.668105
\(905\) 4.02209 0.133699
\(906\) 0 0
\(907\) −43.4327 −1.44216 −0.721079 0.692853i \(-0.756354\pi\)
−0.721079 + 0.692853i \(0.756354\pi\)
\(908\) −71.9528 −2.38784
\(909\) 0 0
\(910\) 1.99293 0.0660649
\(911\) 31.0767 1.02962 0.514809 0.857305i \(-0.327863\pi\)
0.514809 + 0.857305i \(0.327863\pi\)
\(912\) 0 0
\(913\) 59.7909 1.97879
\(914\) −53.4572 −1.76821
\(915\) 0 0
\(916\) −85.7530 −2.83336
\(917\) 9.40518 0.310586
\(918\) 0 0
\(919\) 23.1418 0.763377 0.381688 0.924291i \(-0.375343\pi\)
0.381688 + 0.924291i \(0.375343\pi\)
\(920\) −6.73039 −0.221894
\(921\) 0 0
\(922\) 71.4807 2.35409
\(923\) −45.3478 −1.49264
\(924\) 0 0
\(925\) −4.42150 −0.145378
\(926\) 38.9327 1.27941
\(927\) 0 0
\(928\) 40.2201 1.32029
\(929\) −5.69579 −0.186873 −0.0934364 0.995625i \(-0.529785\pi\)
−0.0934364 + 0.995625i \(0.529785\pi\)
\(930\) 0 0
\(931\) 28.5209 0.934734
\(932\) 8.82325 0.289015
\(933\) 0 0
\(934\) −67.0433 −2.19372
\(935\) 3.10598 0.101576
\(936\) 0 0
\(937\) 51.4163 1.67970 0.839848 0.542822i \(-0.182644\pi\)
0.839848 + 0.542822i \(0.182644\pi\)
\(938\) 16.8901 0.551483
\(939\) 0 0
\(940\) 3.03379 0.0989513
\(941\) 29.2397 0.953186 0.476593 0.879124i \(-0.341872\pi\)
0.476593 + 0.879124i \(0.341872\pi\)
\(942\) 0 0
\(943\) −19.4000 −0.631750
\(944\) 19.8127 0.644849
\(945\) 0 0
\(946\) −119.761 −3.89376
\(947\) −8.37646 −0.272198 −0.136099 0.990695i \(-0.543457\pi\)
−0.136099 + 0.990695i \(0.543457\pi\)
\(948\) 0 0
\(949\) −58.0558 −1.88457
\(950\) −55.5902 −1.80358
\(951\) 0 0
\(952\) 8.68160 0.281372
\(953\) 24.8856 0.806124 0.403062 0.915173i \(-0.367946\pi\)
0.403062 + 0.915173i \(0.367946\pi\)
\(954\) 0 0
\(955\) 5.90372 0.191040
\(956\) 13.9260 0.450401
\(957\) 0 0
\(958\) −99.0242 −3.19933
\(959\) 15.9184 0.514032
\(960\) 0 0
\(961\) −20.5554 −0.663077
\(962\) 8.95460 0.288708
\(963\) 0 0
\(964\) 29.4008 0.946937
\(965\) 0.761058 0.0244993
\(966\) 0 0
\(967\) 38.4531 1.23657 0.618284 0.785955i \(-0.287828\pi\)
0.618284 + 0.785955i \(0.287828\pi\)
\(968\) −179.815 −5.77949
\(969\) 0 0
\(970\) 7.97482 0.256056
\(971\) 50.7811 1.62964 0.814822 0.579711i \(-0.196834\pi\)
0.814822 + 0.579711i \(0.196834\pi\)
\(972\) 0 0
\(973\) −0.671196 −0.0215176
\(974\) 57.1095 1.82991
\(975\) 0 0
\(976\) 118.930 3.80685
\(977\) −40.1821 −1.28554 −0.642770 0.766059i \(-0.722215\pi\)
−0.642770 + 0.766059i \(0.722215\pi\)
\(978\) 0 0
\(979\) −11.7217 −0.374629
\(980\) 8.16338 0.260770
\(981\) 0 0
\(982\) −11.6898 −0.373038
\(983\) 10.3943 0.331526 0.165763 0.986166i \(-0.446991\pi\)
0.165763 + 0.986166i \(0.446991\pi\)
\(984\) 0 0
\(985\) 0.869990 0.0277202
\(986\) 28.0948 0.894719
\(987\) 0 0
\(988\) 78.3112 2.49141
\(989\) 27.9627 0.889163
\(990\) 0 0
\(991\) −0.755443 −0.0239974 −0.0119987 0.999928i \(-0.503819\pi\)
−0.0119987 + 0.999928i \(0.503819\pi\)
\(992\) 21.5748 0.685001
\(993\) 0 0
\(994\) 21.6435 0.686490
\(995\) 6.18232 0.195993
\(996\) 0 0
\(997\) −11.6501 −0.368962 −0.184481 0.982836i \(-0.559060\pi\)
−0.184481 + 0.982836i \(0.559060\pi\)
\(998\) −100.886 −3.19349
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3447.2.a.j.1.3 24
3.2 odd 2 383.2.a.c.1.22 24
12.11 even 2 6128.2.a.p.1.14 24
15.14 odd 2 9575.2.a.e.1.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.2.a.c.1.22 24 3.2 odd 2
3447.2.a.j.1.3 24 1.1 even 1 trivial
6128.2.a.p.1.14 24 12.11 even 2
9575.2.a.e.1.3 24 15.14 odd 2