Properties

Label 345.2.b.c
Level $345$
Weight $2$
Character orbit 345.b
Analytic conductor $2.755$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [345,2,Mod(139,345)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(345, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("345.139");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 345 = 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 345.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.75483886973\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} - \beta_{3} q^{3} + ( - \beta_{2} + \beta_1 - 1) q^{4} + (\beta_{4} - \beta_1) q^{5} + \beta_1 q^{6} + (2 \beta_{4} - \beta_{3}) q^{7} + 2 \beta_{3} q^{8} - q^{9} + ( - \beta_{5} + \beta_{4} - 3 \beta_{3} + \cdots + 1) q^{10}+ \cdots + ( - \beta_1 + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{4} - 6 q^{9} + 4 q^{10} - 24 q^{11} + 8 q^{14} + 2 q^{15} - 8 q^{16} + 28 q^{19} - 12 q^{20} - 2 q^{21} + 12 q^{24} + 2 q^{25} - 20 q^{26} + 26 q^{29} - 16 q^{30} + 18 q^{31} + 28 q^{34} - 26 q^{35}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 8\nu^{4} - 4\nu^{3} - \nu^{2} + 2\nu + 38 ) / 23 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{5} + 17\nu^{4} - 20\nu^{3} - 5\nu^{2} + 10\nu + 29 ) / 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{5} - 10\nu^{4} + 5\nu^{3} + 30\nu^{2} + 32\nu - 13 ) / 23 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -11\nu^{5} + 19\nu^{4} - 21\nu^{3} - 11\nu^{2} - 70\nu + 27 ) / 23 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -14\nu^{5} + 20\nu^{4} - 10\nu^{3} - 37\nu^{2} - 64\nu + 26 ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} - \beta_{4} + 2\beta_{3} - \beta_{2} + 2\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{2} + 5\beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{5} + 3\beta_{4} - 9\beta_{3} - 3\beta_{2} + 8\beta _1 - 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/345\mathbb{Z}\right)^\times\).

\(n\) \(116\) \(166\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
139.1
1.45161 + 1.45161i
0.403032 0.403032i
−0.854638 + 0.854638i
−0.854638 0.854638i
0.403032 + 0.403032i
1.45161 1.45161i
2.21432i 1.00000i −2.90321 2.21432 + 0.311108i −2.21432 0.377784i 2.00000i −1.00000 0.688892 4.90321i
139.2 1.67513i 1.00000i −0.806063 −1.67513 + 1.48119i 1.67513 3.96239i 2.00000i −1.00000 2.48119 + 2.80606i
139.3 0.539189i 1.00000i 1.70928 −0.539189 2.17009i 0.539189 3.34017i 2.00000i −1.00000 −1.17009 + 0.290725i
139.4 0.539189i 1.00000i 1.70928 −0.539189 + 2.17009i 0.539189 3.34017i 2.00000i −1.00000 −1.17009 0.290725i
139.5 1.67513i 1.00000i −0.806063 −1.67513 1.48119i 1.67513 3.96239i 2.00000i −1.00000 2.48119 2.80606i
139.6 2.21432i 1.00000i −2.90321 2.21432 0.311108i −2.21432 0.377784i 2.00000i −1.00000 0.688892 + 4.90321i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 139.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 345.2.b.c 6
3.b odd 2 1 1035.2.b.d 6
5.b even 2 1 inner 345.2.b.c 6
5.c odd 4 1 1725.2.a.bg 3
5.c odd 4 1 1725.2.a.bh 3
15.d odd 2 1 1035.2.b.d 6
15.e even 4 1 5175.2.a.bs 3
15.e even 4 1 5175.2.a.bt 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
345.2.b.c 6 1.a even 1 1 trivial
345.2.b.c 6 5.b even 2 1 inner
1035.2.b.d 6 3.b odd 2 1
1035.2.b.d 6 15.d odd 2 1
1725.2.a.bg 3 5.c odd 4 1
1725.2.a.bh 3 5.c odd 4 1
5175.2.a.bs 3 15.e even 4 1
5175.2.a.bt 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(345, [\chi])\):

\( T_{2}^{6} + 8T_{2}^{4} + 16T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{6} + 27T_{7}^{4} + 179T_{7}^{2} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 8 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} - T^{4} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( T^{6} + 27 T^{4} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( (T^{3} + 12 T^{2} + \cdots + 50)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 80 T^{4} + \cdots + 14884 \) Copy content Toggle raw display
$17$ \( T^{6} + 87 T^{4} + \cdots + 25 \) Copy content Toggle raw display
$19$ \( (T^{3} - 14 T^{2} + \cdots - 86)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$29$ \( (T^{3} - 13 T^{2} + \cdots - 67)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 9 T^{2} + \cdots + 169)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 83 T^{4} + \cdots + 13225 \) Copy content Toggle raw display
$41$ \( (T^{3} - 7 T^{2} + 3 T + 37)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 192 T^{4} + \cdots + 204304 \) Copy content Toggle raw display
$47$ \( T^{6} + 84 T^{4} + \cdots + 100 \) Copy content Toggle raw display
$53$ \( T^{6} + 163 T^{4} + \cdots + 24025 \) Copy content Toggle raw display
$59$ \( (T^{3} - 9 T^{2} - 7 T + 13)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 8 T^{2} - 58 T + 74)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 323 T^{4} + \cdots + 344569 \) Copy content Toggle raw display
$71$ \( (T^{3} + 5 T^{2} - 105 T - 59)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 208 T^{4} + \cdots + 42436 \) Copy content Toggle raw display
$79$ \( (T^{3} - 28 T^{2} + \cdots - 608)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 159 T^{4} + \cdots + 21025 \) Copy content Toggle raw display
$89$ \( (T^{3} + 10 T^{2} + \cdots - 136)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 260 T^{4} + \cdots + 300304 \) Copy content Toggle raw display
show more
show less