Properties

Label 5175.2.a.bs
Level $5175$
Weight $2$
Character orbit 5175.a
Self dual yes
Analytic conductor $41.323$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5175,2,Mod(1,5175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5175 = 3^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3225830460\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + ( - \beta_{2} - \beta_1 + 1) q^{4} + (2 \beta_1 - 1) q^{7} + 2 q^{8} + ( - \beta_{2} + 4) q^{11} + ( - 2 \beta_{2} - 3 \beta_1 + 3) q^{13} + (\beta_{2} - 2 \beta_1 + 2) q^{14} + (2 \beta_1 - 2) q^{16}+ \cdots + (2 \beta_{2} + 4 \beta_1 - 12) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{4} - q^{7} + 6 q^{8} + 12 q^{11} + 6 q^{13} + 4 q^{14} - 4 q^{16} + 13 q^{17} - 14 q^{19} + 8 q^{22} + 3 q^{23} + 10 q^{26} - 10 q^{28} + 13 q^{29} + 9 q^{31} - 8 q^{32} - 14 q^{34} - 3 q^{37}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
2.17009
0.311108
−1.67513 0 0.806063 0 0 −3.96239 2.00000 0 0
1.2 −0.539189 0 −1.70928 0 0 3.34017 2.00000 0 0
1.3 2.21432 0 2.90321 0 0 −0.377784 2.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5175.2.a.bs 3
3.b odd 2 1 1725.2.a.bh 3
5.b even 2 1 5175.2.a.bt 3
5.c odd 4 2 1035.2.b.d 6
15.d odd 2 1 1725.2.a.bg 3
15.e even 4 2 345.2.b.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
345.2.b.c 6 15.e even 4 2
1035.2.b.d 6 5.c odd 4 2
1725.2.a.bg 3 15.d odd 2 1
1725.2.a.bh 3 3.b odd 2 1
5175.2.a.bs 3 1.a even 1 1 trivial
5175.2.a.bt 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5175))\):

\( T_{2}^{3} - 4T_{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{3} + T_{7}^{2} - 13T_{7} - 5 \) Copy content Toggle raw display
\( T_{11}^{3} - 12T_{11}^{2} + 44T_{11} - 50 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 4T - 2 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + T^{2} - 13T - 5 \) Copy content Toggle raw display
$11$ \( T^{3} - 12 T^{2} + \cdots - 50 \) Copy content Toggle raw display
$13$ \( T^{3} - 6 T^{2} + \cdots + 122 \) Copy content Toggle raw display
$17$ \( T^{3} - 13 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$19$ \( T^{3} + 14 T^{2} + \cdots + 86 \) Copy content Toggle raw display
$23$ \( (T - 1)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 13 T^{2} + \cdots - 67 \) Copy content Toggle raw display
$31$ \( T^{3} - 9 T^{2} + \cdots + 169 \) Copy content Toggle raw display
$37$ \( T^{3} + 3 T^{2} + \cdots - 115 \) Copy content Toggle raw display
$41$ \( T^{3} + 7 T^{2} + \cdots - 37 \) Copy content Toggle raw display
$43$ \( T^{3} - 4 T^{2} + \cdots + 452 \) Copy content Toggle raw display
$47$ \( T^{3} - 6 T^{2} + \cdots + 10 \) Copy content Toggle raw display
$53$ \( T^{3} - 19 T^{2} + \cdots - 155 \) Copy content Toggle raw display
$59$ \( T^{3} - 9 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$61$ \( T^{3} + 8 T^{2} + \cdots + 74 \) Copy content Toggle raw display
$67$ \( T^{3} - 3 T^{2} + \cdots + 587 \) Copy content Toggle raw display
$71$ \( T^{3} - 5 T^{2} + \cdots + 59 \) Copy content Toggle raw display
$73$ \( T^{3} - 22 T^{2} + \cdots - 206 \) Copy content Toggle raw display
$79$ \( T^{3} + 28 T^{2} + \cdots + 608 \) Copy content Toggle raw display
$83$ \( T^{3} + 5 T^{2} + \cdots - 145 \) Copy content Toggle raw display
$89$ \( T^{3} + 10 T^{2} + \cdots - 136 \) Copy content Toggle raw display
$97$ \( T^{3} + 14 T^{2} + \cdots - 548 \) Copy content Toggle raw display
show more
show less