Properties

Label 3467.2.a.b.1.4
Level $3467$
Weight $2$
Character 3467.1
Self dual yes
Analytic conductor $27.684$
Analytic rank $1$
Dimension $126$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3467,2,Mod(1,3467)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3467, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3467.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3467 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3467.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.6841343808\)
Analytic rank: \(1\)
Dimension: \(126\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 3467.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.59942 q^{2} -0.00337391 q^{3} +4.75700 q^{4} +0.594552 q^{5} +0.00877021 q^{6} -0.0975981 q^{7} -7.16662 q^{8} -2.99999 q^{9} -1.54549 q^{10} +4.55690 q^{11} -0.0160497 q^{12} +3.60741 q^{13} +0.253699 q^{14} -0.00200596 q^{15} +9.11506 q^{16} -3.11202 q^{17} +7.79824 q^{18} -1.74604 q^{19} +2.82828 q^{20} +0.000329287 q^{21} -11.8453 q^{22} +3.14176 q^{23} +0.0241795 q^{24} -4.64651 q^{25} -9.37717 q^{26} +0.0202434 q^{27} -0.464274 q^{28} -5.90318 q^{29} +0.00521435 q^{30} -2.60737 q^{31} -9.36068 q^{32} -0.0153746 q^{33} +8.08947 q^{34} -0.0580272 q^{35} -14.2710 q^{36} -2.47317 q^{37} +4.53870 q^{38} -0.0121710 q^{39} -4.26093 q^{40} +7.21754 q^{41} -0.000855956 q^{42} -2.24710 q^{43} +21.6772 q^{44} -1.78365 q^{45} -8.16675 q^{46} +2.39854 q^{47} -0.0307534 q^{48} -6.99047 q^{49} +12.0782 q^{50} +0.0104997 q^{51} +17.1604 q^{52} +8.95802 q^{53} -0.0526212 q^{54} +2.70931 q^{55} +0.699448 q^{56} +0.00589098 q^{57} +15.3449 q^{58} -9.66529 q^{59} -0.00954237 q^{60} -1.27977 q^{61} +6.77766 q^{62} +0.292793 q^{63} +6.10224 q^{64} +2.14479 q^{65} +0.0399650 q^{66} -5.70467 q^{67} -14.8039 q^{68} -0.0106000 q^{69} +0.150837 q^{70} +3.41814 q^{71} +21.4998 q^{72} -7.75648 q^{73} +6.42882 q^{74} +0.0156769 q^{75} -8.30592 q^{76} -0.444745 q^{77} +0.0316377 q^{78} -6.52354 q^{79} +5.41938 q^{80} +8.99990 q^{81} -18.7614 q^{82} -16.2411 q^{83} +0.00156642 q^{84} -1.85026 q^{85} +5.84116 q^{86} +0.0199168 q^{87} -32.6576 q^{88} +1.79443 q^{89} +4.63646 q^{90} -0.352076 q^{91} +14.9453 q^{92} +0.00879703 q^{93} -6.23482 q^{94} -1.03811 q^{95} +0.0315821 q^{96} -9.50388 q^{97} +18.1712 q^{98} -13.6706 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 126 q - 11 q^{2} - 25 q^{3} + 99 q^{4} - 32 q^{5} - 15 q^{6} - 27 q^{7} - 27 q^{8} + 93 q^{9} - 46 q^{10} - 6 q^{11} - 67 q^{12} - 137 q^{13} - 17 q^{14} - 15 q^{15} + 49 q^{16} - 30 q^{17} - 37 q^{18}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.59942 −1.83807 −0.919035 0.394176i \(-0.871030\pi\)
−0.919035 + 0.394176i \(0.871030\pi\)
\(3\) −0.00337391 −0.00194793 −0.000973963 1.00000i \(-0.500310\pi\)
−0.000973963 1.00000i \(0.500310\pi\)
\(4\) 4.75700 2.37850
\(5\) 0.594552 0.265892 0.132946 0.991123i \(-0.457556\pi\)
0.132946 + 0.991123i \(0.457556\pi\)
\(6\) 0.00877021 0.00358042
\(7\) −0.0975981 −0.0368886 −0.0184443 0.999830i \(-0.505871\pi\)
−0.0184443 + 0.999830i \(0.505871\pi\)
\(8\) −7.16662 −2.53378
\(9\) −2.99999 −0.999996
\(10\) −1.54549 −0.488728
\(11\) 4.55690 1.37396 0.686979 0.726678i \(-0.258937\pi\)
0.686979 + 0.726678i \(0.258937\pi\)
\(12\) −0.0160497 −0.00463314
\(13\) 3.60741 1.00051 0.500257 0.865877i \(-0.333239\pi\)
0.500257 + 0.865877i \(0.333239\pi\)
\(14\) 0.253699 0.0678039
\(15\) −0.00200596 −0.000517937 0
\(16\) 9.11506 2.27877
\(17\) −3.11202 −0.754777 −0.377388 0.926055i \(-0.623178\pi\)
−0.377388 + 0.926055i \(0.623178\pi\)
\(18\) 7.79824 1.83806
\(19\) −1.74604 −0.400569 −0.200285 0.979738i \(-0.564187\pi\)
−0.200285 + 0.979738i \(0.564187\pi\)
\(20\) 2.82828 0.632424
\(21\) 0.000329287 0 7.18563e−5 0
\(22\) −11.8453 −2.52543
\(23\) 3.14176 0.655101 0.327551 0.944834i \(-0.393777\pi\)
0.327551 + 0.944834i \(0.393777\pi\)
\(24\) 0.0241795 0.00493562
\(25\) −4.64651 −0.929302
\(26\) −9.37717 −1.83901
\(27\) 0.0202434 0.00389584
\(28\) −0.464274 −0.0877396
\(29\) −5.90318 −1.09619 −0.548096 0.836415i \(-0.684647\pi\)
−0.548096 + 0.836415i \(0.684647\pi\)
\(30\) 0.00521435 0.000952005 0
\(31\) −2.60737 −0.468298 −0.234149 0.972201i \(-0.575230\pi\)
−0.234149 + 0.972201i \(0.575230\pi\)
\(32\) −9.36068 −1.65475
\(33\) −0.0153746 −0.00267637
\(34\) 8.08947 1.38733
\(35\) −0.0580272 −0.00980838
\(36\) −14.2710 −2.37849
\(37\) −2.47317 −0.406587 −0.203294 0.979118i \(-0.565165\pi\)
−0.203294 + 0.979118i \(0.565165\pi\)
\(38\) 4.53870 0.736274
\(39\) −0.0121710 −0.00194893
\(40\) −4.26093 −0.673711
\(41\) 7.21754 1.12719 0.563595 0.826051i \(-0.309418\pi\)
0.563595 + 0.826051i \(0.309418\pi\)
\(42\) −0.000855956 0 −0.000132077 0
\(43\) −2.24710 −0.342679 −0.171340 0.985212i \(-0.554810\pi\)
−0.171340 + 0.985212i \(0.554810\pi\)
\(44\) 21.6772 3.26796
\(45\) −1.78365 −0.265891
\(46\) −8.16675 −1.20412
\(47\) 2.39854 0.349863 0.174931 0.984581i \(-0.444030\pi\)
0.174931 + 0.984581i \(0.444030\pi\)
\(48\) −0.0307534 −0.00443887
\(49\) −6.99047 −0.998639
\(50\) 12.0782 1.70812
\(51\) 0.0104997 0.00147025
\(52\) 17.1604 2.37972
\(53\) 8.95802 1.23048 0.615240 0.788340i \(-0.289059\pi\)
0.615240 + 0.788340i \(0.289059\pi\)
\(54\) −0.0526212 −0.00716083
\(55\) 2.70931 0.365324
\(56\) 0.699448 0.0934677
\(57\) 0.00589098 0.000780279 0
\(58\) 15.3449 2.01488
\(59\) −9.66529 −1.25831 −0.629157 0.777279i \(-0.716600\pi\)
−0.629157 + 0.777279i \(0.716600\pi\)
\(60\) −0.00954237 −0.00123191
\(61\) −1.27977 −0.163857 −0.0819287 0.996638i \(-0.526108\pi\)
−0.0819287 + 0.996638i \(0.526108\pi\)
\(62\) 6.77766 0.860764
\(63\) 0.292793 0.0368885
\(64\) 6.10224 0.762780
\(65\) 2.14479 0.266028
\(66\) 0.0399650 0.00491935
\(67\) −5.70467 −0.696937 −0.348468 0.937321i \(-0.613298\pi\)
−0.348468 + 0.937321i \(0.613298\pi\)
\(68\) −14.8039 −1.79524
\(69\) −0.0106000 −0.00127609
\(70\) 0.150837 0.0180285
\(71\) 3.41814 0.405658 0.202829 0.979214i \(-0.434986\pi\)
0.202829 + 0.979214i \(0.434986\pi\)
\(72\) 21.4998 2.53377
\(73\) −7.75648 −0.907828 −0.453914 0.891046i \(-0.649973\pi\)
−0.453914 + 0.891046i \(0.649973\pi\)
\(74\) 6.42882 0.747335
\(75\) 0.0156769 0.00181021
\(76\) −8.30592 −0.952754
\(77\) −0.444745 −0.0506834
\(78\) 0.0316377 0.00358226
\(79\) −6.52354 −0.733956 −0.366978 0.930230i \(-0.619607\pi\)
−0.366978 + 0.930230i \(0.619607\pi\)
\(80\) 5.41938 0.605905
\(81\) 8.99990 0.999989
\(82\) −18.7614 −2.07185
\(83\) −16.2411 −1.78269 −0.891347 0.453321i \(-0.850239\pi\)
−0.891347 + 0.453321i \(0.850239\pi\)
\(84\) 0.00156642 0.000170910 0
\(85\) −1.85026 −0.200689
\(86\) 5.84116 0.629869
\(87\) 0.0199168 0.00213530
\(88\) −32.6576 −3.48131
\(89\) 1.79443 0.190209 0.0951047 0.995467i \(-0.469681\pi\)
0.0951047 + 0.995467i \(0.469681\pi\)
\(90\) 4.63646 0.488726
\(91\) −0.352076 −0.0369076
\(92\) 14.9453 1.55816
\(93\) 0.00879703 0.000912209 0
\(94\) −6.23482 −0.643072
\(95\) −1.03811 −0.106508
\(96\) 0.0315821 0.00322333
\(97\) −9.50388 −0.964973 −0.482486 0.875903i \(-0.660266\pi\)
−0.482486 + 0.875903i \(0.660266\pi\)
\(98\) 18.1712 1.83557
\(99\) −13.6706 −1.37395
\(100\) −22.1034 −2.21034
\(101\) 16.6283 1.65458 0.827291 0.561774i \(-0.189881\pi\)
0.827291 + 0.561774i \(0.189881\pi\)
\(102\) −0.0272931 −0.00270242
\(103\) −0.578842 −0.0570350 −0.0285175 0.999593i \(-0.509079\pi\)
−0.0285175 + 0.999593i \(0.509079\pi\)
\(104\) −25.8529 −2.53508
\(105\) 0.000195778 0 1.91060e−5 0
\(106\) −23.2857 −2.26171
\(107\) −9.19023 −0.888454 −0.444227 0.895914i \(-0.646522\pi\)
−0.444227 + 0.895914i \(0.646522\pi\)
\(108\) 0.0962979 0.00926627
\(109\) 6.95353 0.666027 0.333014 0.942922i \(-0.391934\pi\)
0.333014 + 0.942922i \(0.391934\pi\)
\(110\) −7.04265 −0.671491
\(111\) 0.00834425 0.000792001 0
\(112\) −0.889613 −0.0840605
\(113\) 4.55475 0.428475 0.214237 0.976782i \(-0.431273\pi\)
0.214237 + 0.976782i \(0.431273\pi\)
\(114\) −0.0153131 −0.00143421
\(115\) 1.86794 0.174186
\(116\) −28.0814 −2.60730
\(117\) −10.8222 −1.00051
\(118\) 25.1242 2.31287
\(119\) 0.303728 0.0278427
\(120\) 0.0143760 0.00131234
\(121\) 9.76534 0.887758
\(122\) 3.32666 0.301181
\(123\) −0.0243513 −0.00219568
\(124\) −12.4033 −1.11385
\(125\) −5.73535 −0.512985
\(126\) −0.761094 −0.0678036
\(127\) −10.6898 −0.948565 −0.474283 0.880373i \(-0.657293\pi\)
−0.474283 + 0.880373i \(0.657293\pi\)
\(128\) 2.85905 0.252706
\(129\) 0.00758150 0.000667514 0
\(130\) −5.57522 −0.488979
\(131\) −15.6199 −1.36472 −0.682358 0.731018i \(-0.739045\pi\)
−0.682358 + 0.731018i \(0.739045\pi\)
\(132\) −0.0731368 −0.00636574
\(133\) 0.170410 0.0147764
\(134\) 14.8289 1.28102
\(135\) 0.0120358 0.00103587
\(136\) 22.3027 1.91244
\(137\) −9.94478 −0.849640 −0.424820 0.905278i \(-0.639663\pi\)
−0.424820 + 0.905278i \(0.639663\pi\)
\(138\) 0.0275539 0.00234554
\(139\) 18.8168 1.59602 0.798010 0.602644i \(-0.205886\pi\)
0.798010 + 0.602644i \(0.205886\pi\)
\(140\) −0.276035 −0.0233292
\(141\) −0.00809245 −0.000681507 0
\(142\) −8.88519 −0.745629
\(143\) 16.4386 1.37466
\(144\) −27.3451 −2.27876
\(145\) −3.50975 −0.291469
\(146\) 20.1624 1.66865
\(147\) 0.0235852 0.00194528
\(148\) −11.7649 −0.967068
\(149\) 21.7885 1.78498 0.892490 0.451067i \(-0.148956\pi\)
0.892490 + 0.451067i \(0.148956\pi\)
\(150\) −0.0407509 −0.00332729
\(151\) 0.356425 0.0290055 0.0145027 0.999895i \(-0.495383\pi\)
0.0145027 + 0.999895i \(0.495383\pi\)
\(152\) 12.5132 1.01495
\(153\) 9.33604 0.754774
\(154\) 1.15608 0.0931596
\(155\) −1.55022 −0.124517
\(156\) −0.0578977 −0.00463553
\(157\) −6.93986 −0.553861 −0.276931 0.960890i \(-0.589317\pi\)
−0.276931 + 0.960890i \(0.589317\pi\)
\(158\) 16.9574 1.34906
\(159\) −0.0302235 −0.00239688
\(160\) −5.56541 −0.439984
\(161\) −0.306629 −0.0241658
\(162\) −23.3945 −1.83805
\(163\) −13.7829 −1.07956 −0.539782 0.841805i \(-0.681493\pi\)
−0.539782 + 0.841805i \(0.681493\pi\)
\(164\) 34.3338 2.68102
\(165\) −0.00914097 −0.000711624 0
\(166\) 42.2175 3.27672
\(167\) −1.00201 −0.0775382 −0.0387691 0.999248i \(-0.512344\pi\)
−0.0387691 + 0.999248i \(0.512344\pi\)
\(168\) −0.00235987 −0.000182068 0
\(169\) 0.0133713 0.00102856
\(170\) 4.80961 0.368880
\(171\) 5.23810 0.400568
\(172\) −10.6895 −0.815063
\(173\) −8.63961 −0.656858 −0.328429 0.944529i \(-0.606519\pi\)
−0.328429 + 0.944529i \(0.606519\pi\)
\(174\) −0.0517721 −0.00392483
\(175\) 0.453490 0.0342807
\(176\) 41.5364 3.13093
\(177\) 0.0326098 0.00245110
\(178\) −4.66449 −0.349618
\(179\) 5.57031 0.416345 0.208172 0.978092i \(-0.433248\pi\)
0.208172 + 0.978092i \(0.433248\pi\)
\(180\) −8.48482 −0.632421
\(181\) 24.1935 1.79829 0.899145 0.437651i \(-0.144189\pi\)
0.899145 + 0.437651i \(0.144189\pi\)
\(182\) 0.915195 0.0678387
\(183\) 0.00431781 0.000319182 0
\(184\) −22.5158 −1.65988
\(185\) −1.47043 −0.108108
\(186\) −0.0228672 −0.00167670
\(187\) −14.1812 −1.03703
\(188\) 11.4099 0.832149
\(189\) −0.00197572 −0.000143712 0
\(190\) 2.69849 0.195769
\(191\) 26.8851 1.94534 0.972670 0.232192i \(-0.0745896\pi\)
0.972670 + 0.232192i \(0.0745896\pi\)
\(192\) −0.0205884 −0.00148584
\(193\) 10.6855 0.769156 0.384578 0.923092i \(-0.374347\pi\)
0.384578 + 0.923092i \(0.374347\pi\)
\(194\) 24.7046 1.77369
\(195\) −0.00723632 −0.000518204 0
\(196\) −33.2537 −2.37526
\(197\) −18.6151 −1.32627 −0.663136 0.748499i \(-0.730775\pi\)
−0.663136 + 0.748499i \(0.730775\pi\)
\(198\) 35.5358 2.52542
\(199\) −2.33027 −0.165189 −0.0825943 0.996583i \(-0.526321\pi\)
−0.0825943 + 0.996583i \(0.526321\pi\)
\(200\) 33.2997 2.35465
\(201\) 0.0192470 0.00135758
\(202\) −43.2241 −3.04124
\(203\) 0.576139 0.0404370
\(204\) 0.0499470 0.00349699
\(205\) 4.29120 0.299710
\(206\) 1.50466 0.104834
\(207\) −9.42523 −0.655099
\(208\) 32.8817 2.27994
\(209\) −7.95653 −0.550365
\(210\) −0.000508910 0 −3.51182e−5 0
\(211\) 2.67107 0.183884 0.0919419 0.995764i \(-0.470693\pi\)
0.0919419 + 0.995764i \(0.470693\pi\)
\(212\) 42.6133 2.92670
\(213\) −0.0115325 −0.000790193 0
\(214\) 23.8893 1.63304
\(215\) −1.33602 −0.0911156
\(216\) −0.145077 −0.00987122
\(217\) 0.254475 0.0172749
\(218\) −18.0752 −1.22420
\(219\) 0.0261697 0.00176838
\(220\) 12.8882 0.868923
\(221\) −11.2263 −0.755165
\(222\) −0.0216902 −0.00145575
\(223\) −20.0392 −1.34192 −0.670962 0.741492i \(-0.734118\pi\)
−0.670962 + 0.741492i \(0.734118\pi\)
\(224\) 0.913585 0.0610415
\(225\) 13.9395 0.929298
\(226\) −11.8397 −0.787566
\(227\) 1.76167 0.116926 0.0584629 0.998290i \(-0.481380\pi\)
0.0584629 + 0.998290i \(0.481380\pi\)
\(228\) 0.0280234 0.00185589
\(229\) 3.08910 0.204134 0.102067 0.994778i \(-0.467454\pi\)
0.102067 + 0.994778i \(0.467454\pi\)
\(230\) −4.85556 −0.320166
\(231\) 0.00150053 9.87275e−5 0
\(232\) 42.3058 2.77751
\(233\) 18.4145 1.20637 0.603187 0.797600i \(-0.293897\pi\)
0.603187 + 0.797600i \(0.293897\pi\)
\(234\) 28.1314 1.83901
\(235\) 1.42606 0.0930256
\(236\) −45.9778 −2.99290
\(237\) 0.0220098 0.00142969
\(238\) −0.789517 −0.0511768
\(239\) 3.14369 0.203348 0.101674 0.994818i \(-0.467580\pi\)
0.101674 + 0.994818i \(0.467580\pi\)
\(240\) −0.0182845 −0.00118026
\(241\) −20.6320 −1.32903 −0.664513 0.747276i \(-0.731361\pi\)
−0.664513 + 0.747276i \(0.731361\pi\)
\(242\) −25.3843 −1.63176
\(243\) −0.0910950 −0.00584375
\(244\) −6.08785 −0.389735
\(245\) −4.15620 −0.265530
\(246\) 0.0632993 0.00403582
\(247\) −6.29868 −0.400775
\(248\) 18.6860 1.18656
\(249\) 0.0547960 0.00347256
\(250\) 14.9086 0.942903
\(251\) −21.2346 −1.34032 −0.670159 0.742218i \(-0.733774\pi\)
−0.670159 + 0.742218i \(0.733774\pi\)
\(252\) 1.39282 0.0877393
\(253\) 14.3167 0.900081
\(254\) 27.7873 1.74353
\(255\) 0.00624260 0.000390927 0
\(256\) −19.6364 −1.22727
\(257\) −9.15601 −0.571137 −0.285568 0.958358i \(-0.592182\pi\)
−0.285568 + 0.958358i \(0.592182\pi\)
\(258\) −0.0197075 −0.00122694
\(259\) 0.241377 0.0149984
\(260\) 10.2028 0.632749
\(261\) 17.7095 1.09619
\(262\) 40.6027 2.50844
\(263\) −18.2169 −1.12330 −0.561652 0.827373i \(-0.689834\pi\)
−0.561652 + 0.827373i \(0.689834\pi\)
\(264\) 0.110184 0.00678133
\(265\) 5.32601 0.327174
\(266\) −0.442969 −0.0271601
\(267\) −0.00605425 −0.000370514 0
\(268\) −27.1371 −1.65766
\(269\) 9.87796 0.602270 0.301135 0.953582i \(-0.402635\pi\)
0.301135 + 0.953582i \(0.402635\pi\)
\(270\) −0.0312860 −0.00190401
\(271\) −8.09704 −0.491860 −0.245930 0.969288i \(-0.579093\pi\)
−0.245930 + 0.969288i \(0.579093\pi\)
\(272\) −28.3663 −1.71996
\(273\) 0.00118787 7.18932e−5 0
\(274\) 25.8507 1.56170
\(275\) −21.1737 −1.27682
\(276\) −0.0504242 −0.00303518
\(277\) −0.0749800 −0.00450511 −0.00225256 0.999997i \(-0.500717\pi\)
−0.00225256 + 0.999997i \(0.500717\pi\)
\(278\) −48.9128 −2.93360
\(279\) 7.82209 0.468296
\(280\) 0.415858 0.0248523
\(281\) −21.1108 −1.25936 −0.629681 0.776854i \(-0.716814\pi\)
−0.629681 + 0.776854i \(0.716814\pi\)
\(282\) 0.0210357 0.00125266
\(283\) 18.0289 1.07171 0.535854 0.844311i \(-0.319990\pi\)
0.535854 + 0.844311i \(0.319990\pi\)
\(284\) 16.2601 0.964859
\(285\) 0.00350249 0.000207470 0
\(286\) −42.7308 −2.52673
\(287\) −0.704418 −0.0415805
\(288\) 28.0819 1.65474
\(289\) −7.31531 −0.430312
\(290\) 9.12332 0.535740
\(291\) 0.0320652 0.00187970
\(292\) −36.8976 −2.15927
\(293\) −1.70230 −0.0994493 −0.0497247 0.998763i \(-0.515834\pi\)
−0.0497247 + 0.998763i \(0.515834\pi\)
\(294\) −0.0613079 −0.00357555
\(295\) −5.74652 −0.334575
\(296\) 17.7243 1.03020
\(297\) 0.0922472 0.00535272
\(298\) −56.6374 −3.28092
\(299\) 11.3336 0.655438
\(300\) 0.0745750 0.00430559
\(301\) 0.219313 0.0126410
\(302\) −0.926500 −0.0533141
\(303\) −0.0561024 −0.00322300
\(304\) −15.9153 −0.912804
\(305\) −0.760888 −0.0435683
\(306\) −24.2683 −1.38733
\(307\) −1.70918 −0.0975479 −0.0487740 0.998810i \(-0.515531\pi\)
−0.0487740 + 0.998810i \(0.515531\pi\)
\(308\) −2.11565 −0.120550
\(309\) 0.00195296 0.000111100 0
\(310\) 4.02967 0.228870
\(311\) 23.8812 1.35418 0.677089 0.735901i \(-0.263241\pi\)
0.677089 + 0.735901i \(0.263241\pi\)
\(312\) 0.0872252 0.00493816
\(313\) −18.9816 −1.07290 −0.536451 0.843932i \(-0.680235\pi\)
−0.536451 + 0.843932i \(0.680235\pi\)
\(314\) 18.0396 1.01804
\(315\) 0.174081 0.00980834
\(316\) −31.0325 −1.74571
\(317\) −22.1688 −1.24512 −0.622562 0.782571i \(-0.713908\pi\)
−0.622562 + 0.782571i \(0.713908\pi\)
\(318\) 0.0785638 0.00440564
\(319\) −26.9002 −1.50612
\(320\) 3.62810 0.202817
\(321\) 0.0310070 0.00173064
\(322\) 0.797060 0.0444184
\(323\) 5.43372 0.302340
\(324\) 42.8125 2.37847
\(325\) −16.7618 −0.929779
\(326\) 35.8277 1.98431
\(327\) −0.0234606 −0.00129737
\(328\) −51.7253 −2.85605
\(329\) −0.234093 −0.0129060
\(330\) 0.0237613 0.00130801
\(331\) 30.3310 1.66714 0.833570 0.552413i \(-0.186293\pi\)
0.833570 + 0.552413i \(0.186293\pi\)
\(332\) −77.2590 −4.24014
\(333\) 7.41949 0.406585
\(334\) 2.60466 0.142521
\(335\) −3.39172 −0.185310
\(336\) 0.00300147 0.000163744 0
\(337\) −31.9713 −1.74159 −0.870793 0.491649i \(-0.836394\pi\)
−0.870793 + 0.491649i \(0.836394\pi\)
\(338\) −0.0347576 −0.00189057
\(339\) −0.0153673 −0.000834637 0
\(340\) −8.80169 −0.477339
\(341\) −11.8815 −0.643421
\(342\) −13.6160 −0.736271
\(343\) 1.36544 0.0737270
\(344\) 16.1041 0.868275
\(345\) −0.00630224 −0.000339301 0
\(346\) 22.4580 1.20735
\(347\) 19.5498 1.04949 0.524744 0.851260i \(-0.324161\pi\)
0.524744 + 0.851260i \(0.324161\pi\)
\(348\) 0.0947441 0.00507882
\(349\) −32.7279 −1.75188 −0.875942 0.482417i \(-0.839759\pi\)
−0.875942 + 0.482417i \(0.839759\pi\)
\(350\) −1.17881 −0.0630102
\(351\) 0.0730261 0.00389785
\(352\) −42.6557 −2.27356
\(353\) −36.7941 −1.95835 −0.979175 0.203017i \(-0.934925\pi\)
−0.979175 + 0.203017i \(0.934925\pi\)
\(354\) −0.0847666 −0.00450529
\(355\) 2.03226 0.107861
\(356\) 8.53612 0.452413
\(357\) −0.00102475 −5.42355e−5 0
\(358\) −14.4796 −0.765271
\(359\) 11.8696 0.626452 0.313226 0.949679i \(-0.398590\pi\)
0.313226 + 0.949679i \(0.398590\pi\)
\(360\) 12.7827 0.673709
\(361\) −15.9513 −0.839544
\(362\) −62.8892 −3.30538
\(363\) −0.0329473 −0.00172929
\(364\) −1.67483 −0.0877847
\(365\) −4.61163 −0.241384
\(366\) −0.0112238 −0.000586679 0
\(367\) −12.0078 −0.626800 −0.313400 0.949621i \(-0.601468\pi\)
−0.313400 + 0.949621i \(0.601468\pi\)
\(368\) 28.6373 1.49282
\(369\) −21.6525 −1.12719
\(370\) 3.82227 0.198710
\(371\) −0.874286 −0.0453907
\(372\) 0.0418475 0.00216969
\(373\) −1.25304 −0.0648800 −0.0324400 0.999474i \(-0.510328\pi\)
−0.0324400 + 0.999474i \(0.510328\pi\)
\(374\) 36.8629 1.90614
\(375\) 0.0193505 0.000999257 0
\(376\) −17.1894 −0.886476
\(377\) −21.2952 −1.09676
\(378\) 0.00513573 0.000264153 0
\(379\) −8.79057 −0.451541 −0.225771 0.974180i \(-0.572490\pi\)
−0.225771 + 0.974180i \(0.572490\pi\)
\(380\) −4.93830 −0.253329
\(381\) 0.0360663 0.00184773
\(382\) −69.8859 −3.57567
\(383\) 18.9606 0.968839 0.484420 0.874836i \(-0.339031\pi\)
0.484420 + 0.874836i \(0.339031\pi\)
\(384\) −0.00964615 −0.000492253 0
\(385\) −0.264424 −0.0134763
\(386\) −27.7760 −1.41376
\(387\) 6.74127 0.342678
\(388\) −45.2100 −2.29519
\(389\) 7.98679 0.404947 0.202473 0.979288i \(-0.435102\pi\)
0.202473 + 0.979288i \(0.435102\pi\)
\(390\) 0.0188103 0.000952494 0
\(391\) −9.77722 −0.494455
\(392\) 50.0980 2.53033
\(393\) 0.0527000 0.00265836
\(394\) 48.3886 2.43778
\(395\) −3.87858 −0.195153
\(396\) −65.0313 −3.26795
\(397\) −1.65075 −0.0828490 −0.0414245 0.999142i \(-0.513190\pi\)
−0.0414245 + 0.999142i \(0.513190\pi\)
\(398\) 6.05737 0.303628
\(399\) −0.000574948 0 −2.87834e−5 0
\(400\) −42.3532 −2.11766
\(401\) 14.7174 0.734954 0.367477 0.930033i \(-0.380222\pi\)
0.367477 + 0.930033i \(0.380222\pi\)
\(402\) −0.0500312 −0.00249533
\(403\) −9.40585 −0.468539
\(404\) 79.1010 3.93542
\(405\) 5.35091 0.265889
\(406\) −1.49763 −0.0743261
\(407\) −11.2700 −0.558633
\(408\) −0.0752472 −0.00372529
\(409\) 20.4796 1.01265 0.506325 0.862343i \(-0.331004\pi\)
0.506325 + 0.862343i \(0.331004\pi\)
\(410\) −11.1546 −0.550889
\(411\) 0.0335528 0.00165504
\(412\) −2.75355 −0.135658
\(413\) 0.943314 0.0464174
\(414\) 24.5002 1.20412
\(415\) −9.65619 −0.474004
\(416\) −33.7678 −1.65560
\(417\) −0.0634861 −0.00310893
\(418\) 20.6824 1.01161
\(419\) −26.9833 −1.31822 −0.659111 0.752046i \(-0.729067\pi\)
−0.659111 + 0.752046i \(0.729067\pi\)
\(420\) 0.000931317 0 4.54436e−5 0
\(421\) −13.3818 −0.652188 −0.326094 0.945337i \(-0.605733\pi\)
−0.326094 + 0.945337i \(0.605733\pi\)
\(422\) −6.94323 −0.337991
\(423\) −7.19559 −0.349862
\(424\) −64.1987 −3.11776
\(425\) 14.4600 0.701415
\(426\) 0.0299778 0.00145243
\(427\) 0.124903 0.00604447
\(428\) −43.7180 −2.11319
\(429\) −0.0554622 −0.00267774
\(430\) 3.47287 0.167477
\(431\) 2.04708 0.0986042 0.0493021 0.998784i \(-0.484300\pi\)
0.0493021 + 0.998784i \(0.484300\pi\)
\(432\) 0.184520 0.00887772
\(433\) −2.04669 −0.0983576 −0.0491788 0.998790i \(-0.515660\pi\)
−0.0491788 + 0.998790i \(0.515660\pi\)
\(434\) −0.661487 −0.0317524
\(435\) 0.0118416 0.000567759 0
\(436\) 33.0779 1.58415
\(437\) −5.48563 −0.262413
\(438\) −0.0680260 −0.00325041
\(439\) −2.67226 −0.127540 −0.0637699 0.997965i \(-0.520312\pi\)
−0.0637699 + 0.997965i \(0.520312\pi\)
\(440\) −19.4166 −0.925651
\(441\) 20.9713 0.998635
\(442\) 29.1820 1.38805
\(443\) −35.7597 −1.69899 −0.849496 0.527595i \(-0.823094\pi\)
−0.849496 + 0.527595i \(0.823094\pi\)
\(444\) 0.0396936 0.00188378
\(445\) 1.06688 0.0505751
\(446\) 52.0903 2.46655
\(447\) −0.0735122 −0.00347701
\(448\) −0.595568 −0.0281379
\(449\) −15.7928 −0.745306 −0.372653 0.927971i \(-0.621552\pi\)
−0.372653 + 0.927971i \(0.621552\pi\)
\(450\) −36.2346 −1.70811
\(451\) 32.8896 1.54871
\(452\) 21.6669 1.01913
\(453\) −0.00120254 −5.65005e−5 0
\(454\) −4.57932 −0.214918
\(455\) −0.209327 −0.00981342
\(456\) −0.0422184 −0.00197706
\(457\) 19.6235 0.917946 0.458973 0.888450i \(-0.348217\pi\)
0.458973 + 0.888450i \(0.348217\pi\)
\(458\) −8.02988 −0.375212
\(459\) −0.0629980 −0.00294049
\(460\) 8.88578 0.414302
\(461\) −3.78192 −0.176141 −0.0880707 0.996114i \(-0.528070\pi\)
−0.0880707 + 0.996114i \(0.528070\pi\)
\(462\) −0.00390051 −0.000181468 0
\(463\) −21.3665 −0.992986 −0.496493 0.868041i \(-0.665379\pi\)
−0.496493 + 0.868041i \(0.665379\pi\)
\(464\) −53.8078 −2.49797
\(465\) 0.00523029 0.000242549 0
\(466\) −47.8671 −2.21740
\(467\) 24.3214 1.12546 0.562730 0.826641i \(-0.309751\pi\)
0.562730 + 0.826641i \(0.309751\pi\)
\(468\) −51.4811 −2.37971
\(469\) 0.556765 0.0257090
\(470\) −3.70692 −0.170988
\(471\) 0.0234144 0.00107888
\(472\) 69.2674 3.18829
\(473\) −10.2398 −0.470827
\(474\) −0.0572128 −0.00262787
\(475\) 8.11299 0.372250
\(476\) 1.44483 0.0662238
\(477\) −26.8740 −1.23047
\(478\) −8.17178 −0.373769
\(479\) −23.5372 −1.07544 −0.537722 0.843123i \(-0.680715\pi\)
−0.537722 + 0.843123i \(0.680715\pi\)
\(480\) 0.0187772 0.000857057 0
\(481\) −8.92173 −0.406796
\(482\) 53.6314 2.44284
\(483\) 0.00103454 4.70732e−5 0
\(484\) 46.4537 2.11153
\(485\) −5.65055 −0.256578
\(486\) 0.236795 0.0107412
\(487\) −37.4391 −1.69653 −0.848264 0.529574i \(-0.822352\pi\)
−0.848264 + 0.529574i \(0.822352\pi\)
\(488\) 9.17160 0.415179
\(489\) 0.0465024 0.00210291
\(490\) 10.8037 0.488063
\(491\) 13.6906 0.617850 0.308925 0.951086i \(-0.400031\pi\)
0.308925 + 0.951086i \(0.400031\pi\)
\(492\) −0.115839 −0.00522243
\(493\) 18.3708 0.827381
\(494\) 16.3729 0.736653
\(495\) −8.12791 −0.365322
\(496\) −23.7664 −1.06714
\(497\) −0.333604 −0.0149642
\(498\) −0.142438 −0.00638280
\(499\) −29.2075 −1.30751 −0.653754 0.756707i \(-0.726807\pi\)
−0.653754 + 0.756707i \(0.726807\pi\)
\(500\) −27.2831 −1.22014
\(501\) 0.00338070 0.000151039 0
\(502\) 55.1978 2.46360
\(503\) 12.2304 0.545325 0.272663 0.962110i \(-0.412096\pi\)
0.272663 + 0.962110i \(0.412096\pi\)
\(504\) −2.09834 −0.0934673
\(505\) 9.88641 0.439939
\(506\) −37.2151 −1.65441
\(507\) −4.51135e−5 0 −2.00356e−6 0
\(508\) −50.8513 −2.25616
\(509\) −2.58517 −0.114586 −0.0572929 0.998357i \(-0.518247\pi\)
−0.0572929 + 0.998357i \(0.518247\pi\)
\(510\) −0.0162272 −0.000718551 0
\(511\) 0.757018 0.0334885
\(512\) 45.3251 2.00311
\(513\) −0.0353458 −0.00156056
\(514\) 23.8004 1.04979
\(515\) −0.344152 −0.0151651
\(516\) 0.0360652 0.00158768
\(517\) 10.9299 0.480697
\(518\) −0.627441 −0.0275682
\(519\) 0.0291492 0.00127951
\(520\) −15.3709 −0.674058
\(521\) −37.0958 −1.62520 −0.812598 0.582825i \(-0.801947\pi\)
−0.812598 + 0.582825i \(0.801947\pi\)
\(522\) −46.0344 −2.01487
\(523\) −17.0542 −0.745729 −0.372864 0.927886i \(-0.621624\pi\)
−0.372864 + 0.927886i \(0.621624\pi\)
\(524\) −74.3038 −3.24598
\(525\) −0.00153003 −6.67762e−5 0
\(526\) 47.3535 2.06471
\(527\) 8.11420 0.353460
\(528\) −0.140140 −0.00609881
\(529\) −13.1294 −0.570842
\(530\) −13.8446 −0.601369
\(531\) 28.9958 1.25831
\(532\) 0.810642 0.0351458
\(533\) 26.0366 1.12777
\(534\) 0.0157376 0.000681030 0
\(535\) −5.46407 −0.236232
\(536\) 40.8832 1.76588
\(537\) −0.0187937 −0.000811009 0
\(538\) −25.6770 −1.10701
\(539\) −31.8549 −1.37209
\(540\) 0.0572541 0.00246382
\(541\) 1.90887 0.0820687 0.0410344 0.999158i \(-0.486935\pi\)
0.0410344 + 0.999158i \(0.486935\pi\)
\(542\) 21.0476 0.904073
\(543\) −0.0816267 −0.00350293
\(544\) 29.1307 1.24897
\(545\) 4.13423 0.177091
\(546\) −0.00308778 −0.000132145 0
\(547\) 10.6285 0.454442 0.227221 0.973843i \(-0.427036\pi\)
0.227221 + 0.973843i \(0.427036\pi\)
\(548\) −47.3073 −2.02087
\(549\) 3.83929 0.163857
\(550\) 55.0393 2.34689
\(551\) 10.3072 0.439101
\(552\) 0.0759660 0.00323333
\(553\) 0.636685 0.0270746
\(554\) 0.194905 0.00828071
\(555\) 0.00496109 0.000210587 0
\(556\) 89.5115 3.79613
\(557\) 11.6690 0.494430 0.247215 0.968961i \(-0.420485\pi\)
0.247215 + 0.968961i \(0.420485\pi\)
\(558\) −20.3329 −0.860761
\(559\) −8.10620 −0.342856
\(560\) −0.528921 −0.0223510
\(561\) 0.0478460 0.00202006
\(562\) 54.8758 2.31480
\(563\) 24.2388 1.02154 0.510771 0.859717i \(-0.329360\pi\)
0.510771 + 0.859717i \(0.329360\pi\)
\(564\) −0.0384958 −0.00162096
\(565\) 2.70803 0.113928
\(566\) −46.8648 −1.96987
\(567\) −0.878373 −0.0368882
\(568\) −24.4965 −1.02785
\(569\) −18.6664 −0.782538 −0.391269 0.920276i \(-0.627964\pi\)
−0.391269 + 0.920276i \(0.627964\pi\)
\(570\) −0.00910446 −0.000381344 0
\(571\) −6.80786 −0.284900 −0.142450 0.989802i \(-0.545498\pi\)
−0.142450 + 0.989802i \(0.545498\pi\)
\(572\) 78.1984 3.26964
\(573\) −0.0907079 −0.00378938
\(574\) 1.83108 0.0764278
\(575\) −14.5982 −0.608787
\(576\) −18.3067 −0.762778
\(577\) −2.81089 −0.117019 −0.0585095 0.998287i \(-0.518635\pi\)
−0.0585095 + 0.998287i \(0.518635\pi\)
\(578\) 19.0156 0.790944
\(579\) −0.0360518 −0.00149826
\(580\) −16.6959 −0.693258
\(581\) 1.58510 0.0657611
\(582\) −0.0833511 −0.00345501
\(583\) 40.8208 1.69063
\(584\) 55.5877 2.30024
\(585\) −6.43434 −0.266027
\(586\) 4.42499 0.182795
\(587\) 7.55722 0.311920 0.155960 0.987763i \(-0.450153\pi\)
0.155960 + 0.987763i \(0.450153\pi\)
\(588\) 0.112195 0.00462684
\(589\) 4.55258 0.187586
\(590\) 14.9376 0.614972
\(591\) 0.0628057 0.00258348
\(592\) −22.5431 −0.926517
\(593\) −9.15299 −0.375868 −0.187934 0.982182i \(-0.560179\pi\)
−0.187934 + 0.982182i \(0.560179\pi\)
\(594\) −0.239789 −0.00983868
\(595\) 0.180582 0.00740314
\(596\) 103.648 4.24558
\(597\) 0.00786212 0.000321775 0
\(598\) −29.4608 −1.20474
\(599\) −36.5296 −1.49256 −0.746279 0.665634i \(-0.768161\pi\)
−0.746279 + 0.665634i \(0.768161\pi\)
\(600\) −0.112350 −0.00458668
\(601\) −31.4479 −1.28279 −0.641394 0.767212i \(-0.721644\pi\)
−0.641394 + 0.767212i \(0.721644\pi\)
\(602\) −0.570086 −0.0232350
\(603\) 17.1139 0.696934
\(604\) 1.69551 0.0689895
\(605\) 5.80600 0.236048
\(606\) 0.145834 0.00592410
\(607\) 4.40403 0.178754 0.0893771 0.995998i \(-0.471512\pi\)
0.0893771 + 0.995998i \(0.471512\pi\)
\(608\) 16.3441 0.662842
\(609\) −0.00194384 −7.87683e−5 0
\(610\) 1.97787 0.0800816
\(611\) 8.65250 0.350043
\(612\) 44.4115 1.79523
\(613\) −19.2007 −0.775508 −0.387754 0.921763i \(-0.626749\pi\)
−0.387754 + 0.921763i \(0.626749\pi\)
\(614\) 4.44288 0.179300
\(615\) −0.0144781 −0.000583814 0
\(616\) 3.18732 0.128421
\(617\) 10.8097 0.435181 0.217590 0.976040i \(-0.430180\pi\)
0.217590 + 0.976040i \(0.430180\pi\)
\(618\) −0.00507657 −0.000204210 0
\(619\) 10.5278 0.423147 0.211574 0.977362i \(-0.432141\pi\)
0.211574 + 0.977362i \(0.432141\pi\)
\(620\) −7.37439 −0.296163
\(621\) 0.0635998 0.00255217
\(622\) −62.0773 −2.48907
\(623\) −0.175133 −0.00701657
\(624\) −0.110940 −0.00444115
\(625\) 19.8226 0.792903
\(626\) 49.3411 1.97207
\(627\) 0.0268446 0.00107207
\(628\) −33.0129 −1.31736
\(629\) 7.69657 0.306882
\(630\) −0.452510 −0.0180284
\(631\) 9.90341 0.394249 0.197124 0.980379i \(-0.436840\pi\)
0.197124 + 0.980379i \(0.436840\pi\)
\(632\) 46.7517 1.85968
\(633\) −0.00901193 −0.000358192 0
\(634\) 57.6261 2.28862
\(635\) −6.35563 −0.252216
\(636\) −0.143773 −0.00570099
\(637\) −25.2175 −0.999153
\(638\) 69.9250 2.76836
\(639\) −10.2544 −0.405657
\(640\) 1.69985 0.0671925
\(641\) 1.01904 0.0402498 0.0201249 0.999797i \(-0.493594\pi\)
0.0201249 + 0.999797i \(0.493594\pi\)
\(642\) −0.0806003 −0.00318104
\(643\) 8.08554 0.318863 0.159431 0.987209i \(-0.449034\pi\)
0.159431 + 0.987209i \(0.449034\pi\)
\(644\) −1.45864 −0.0574783
\(645\) 0.00450760 0.000177486 0
\(646\) −14.1245 −0.555723
\(647\) 34.0661 1.33928 0.669639 0.742687i \(-0.266449\pi\)
0.669639 + 0.742687i \(0.266449\pi\)
\(648\) −64.4988 −2.53375
\(649\) −44.0437 −1.72887
\(650\) 43.5711 1.70900
\(651\) −0.000858573 0 −3.36501e−5 0
\(652\) −65.5655 −2.56774
\(653\) −29.9821 −1.17329 −0.586644 0.809845i \(-0.699551\pi\)
−0.586644 + 0.809845i \(0.699551\pi\)
\(654\) 0.0609839 0.00238466
\(655\) −9.28683 −0.362867
\(656\) 65.7883 2.56860
\(657\) 23.2694 0.907824
\(658\) 0.608507 0.0237221
\(659\) −46.2245 −1.80065 −0.900326 0.435217i \(-0.856672\pi\)
−0.900326 + 0.435217i \(0.856672\pi\)
\(660\) −0.0434836 −0.00169260
\(661\) −17.1271 −0.666167 −0.333084 0.942897i \(-0.608089\pi\)
−0.333084 + 0.942897i \(0.608089\pi\)
\(662\) −78.8430 −3.06432
\(663\) 0.0378766 0.00147100
\(664\) 116.394 4.51696
\(665\) 0.101318 0.00392893
\(666\) −19.2864 −0.747333
\(667\) −18.5463 −0.718117
\(668\) −4.76659 −0.184425
\(669\) 0.0676103 0.00261397
\(670\) 8.81653 0.340612
\(671\) −5.83177 −0.225133
\(672\) −0.00308235 −0.000118904 0
\(673\) −35.8342 −1.38131 −0.690653 0.723186i \(-0.742677\pi\)
−0.690653 + 0.723186i \(0.742677\pi\)
\(674\) 83.1069 3.20116
\(675\) −0.0940611 −0.00362041
\(676\) 0.0636072 0.00244643
\(677\) −1.95792 −0.0752490 −0.0376245 0.999292i \(-0.511979\pi\)
−0.0376245 + 0.999292i \(0.511979\pi\)
\(678\) 0.0399461 0.00153412
\(679\) 0.927561 0.0355965
\(680\) 13.2601 0.508502
\(681\) −0.00594370 −0.000227763 0
\(682\) 30.8851 1.18265
\(683\) 42.5099 1.62660 0.813298 0.581847i \(-0.197670\pi\)
0.813298 + 0.581847i \(0.197670\pi\)
\(684\) 24.9177 0.952751
\(685\) −5.91269 −0.225912
\(686\) −3.54937 −0.135515
\(687\) −0.0104223 −0.000397637 0
\(688\) −20.4825 −0.780886
\(689\) 32.3152 1.23111
\(690\) 0.0163822 0.000623660 0
\(691\) 40.5428 1.54232 0.771161 0.636641i \(-0.219677\pi\)
0.771161 + 0.636641i \(0.219677\pi\)
\(692\) −41.0987 −1.56234
\(693\) 1.33423 0.0506832
\(694\) −50.8182 −1.92903
\(695\) 11.1876 0.424368
\(696\) −0.142736 −0.00541039
\(697\) −22.4611 −0.850777
\(698\) 85.0736 3.22009
\(699\) −0.0621288 −0.00234993
\(700\) 2.15726 0.0815366
\(701\) −9.72840 −0.367437 −0.183718 0.982979i \(-0.558813\pi\)
−0.183718 + 0.982979i \(0.558813\pi\)
\(702\) −0.189826 −0.00716452
\(703\) 4.31826 0.162866
\(704\) 27.8073 1.04803
\(705\) −0.00481138 −0.000181207 0
\(706\) 95.6433 3.59958
\(707\) −1.62289 −0.0610352
\(708\) 0.155125 0.00582995
\(709\) 10.2256 0.384031 0.192016 0.981392i \(-0.438498\pi\)
0.192016 + 0.981392i \(0.438498\pi\)
\(710\) −5.28271 −0.198256
\(711\) 19.5705 0.733953
\(712\) −12.8600 −0.481949
\(713\) −8.19172 −0.306782
\(714\) 0.00266376 9.96886e−5 0
\(715\) 9.77359 0.365512
\(716\) 26.4980 0.990277
\(717\) −0.0106065 −0.000396108 0
\(718\) −30.8541 −1.15146
\(719\) 19.6013 0.731005 0.365502 0.930810i \(-0.380897\pi\)
0.365502 + 0.930810i \(0.380897\pi\)
\(720\) −16.2581 −0.605903
\(721\) 0.0564939 0.00210394
\(722\) 41.4643 1.54314
\(723\) 0.0696106 0.00258885
\(724\) 115.089 4.27723
\(725\) 27.4292 1.01869
\(726\) 0.0856441 0.00317855
\(727\) −22.8302 −0.846726 −0.423363 0.905960i \(-0.639150\pi\)
−0.423363 + 0.905960i \(0.639150\pi\)
\(728\) 2.52319 0.0935158
\(729\) −26.9994 −0.999977
\(730\) 11.9876 0.443680
\(731\) 6.99303 0.258646
\(732\) 0.0205398 0.000759175 0
\(733\) −5.30960 −0.196115 −0.0980573 0.995181i \(-0.531263\pi\)
−0.0980573 + 0.995181i \(0.531263\pi\)
\(734\) 31.2132 1.15210
\(735\) 0.0140226 0.000517233 0
\(736\) −29.4090 −1.08403
\(737\) −25.9956 −0.957561
\(738\) 56.2841 2.07185
\(739\) 14.3102 0.526408 0.263204 0.964740i \(-0.415221\pi\)
0.263204 + 0.964740i \(0.415221\pi\)
\(740\) −6.99484 −0.257135
\(741\) 0.0212511 0.000780680 0
\(742\) 2.27264 0.0834312
\(743\) 42.0472 1.54256 0.771282 0.636494i \(-0.219616\pi\)
0.771282 + 0.636494i \(0.219616\pi\)
\(744\) −0.0630449 −0.00231134
\(745\) 12.9544 0.474612
\(746\) 3.25718 0.119254
\(747\) 48.7232 1.78269
\(748\) −67.4599 −2.46658
\(749\) 0.896950 0.0327738
\(750\) −0.0503002 −0.00183670
\(751\) −18.3173 −0.668407 −0.334203 0.942501i \(-0.608467\pi\)
−0.334203 + 0.942501i \(0.608467\pi\)
\(752\) 21.8628 0.797256
\(753\) 0.0716436 0.00261084
\(754\) 55.3551 2.01591
\(755\) 0.211913 0.00771231
\(756\) −0.00939849 −0.000341820 0
\(757\) 17.0316 0.619025 0.309513 0.950895i \(-0.399834\pi\)
0.309513 + 0.950895i \(0.399834\pi\)
\(758\) 22.8504 0.829964
\(759\) −0.0483031 −0.00175329
\(760\) 7.43975 0.269868
\(761\) 49.9088 1.80919 0.904595 0.426271i \(-0.140173\pi\)
0.904595 + 0.426271i \(0.140173\pi\)
\(762\) −0.0937517 −0.00339627
\(763\) −0.678651 −0.0245688
\(764\) 127.893 4.62699
\(765\) 5.55076 0.200688
\(766\) −49.2865 −1.78079
\(767\) −34.8666 −1.25896
\(768\) 0.0662512 0.00239064
\(769\) 26.2141 0.945306 0.472653 0.881249i \(-0.343296\pi\)
0.472653 + 0.881249i \(0.343296\pi\)
\(770\) 0.687350 0.0247704
\(771\) 0.0308915 0.00111253
\(772\) 50.8308 1.82944
\(773\) −15.4280 −0.554906 −0.277453 0.960739i \(-0.589490\pi\)
−0.277453 + 0.960739i \(0.589490\pi\)
\(774\) −17.5234 −0.629866
\(775\) 12.1152 0.435190
\(776\) 68.1107 2.44503
\(777\) −0.000814383 0 −2.92158e−5 0
\(778\) −20.7611 −0.744320
\(779\) −12.6021 −0.451518
\(780\) −0.0344232 −0.00123255
\(781\) 15.5761 0.557357
\(782\) 25.4151 0.908843
\(783\) −0.119500 −0.00427060
\(784\) −63.7186 −2.27567
\(785\) −4.12611 −0.147267
\(786\) −0.136990 −0.00488626
\(787\) 15.0905 0.537917 0.268959 0.963152i \(-0.413321\pi\)
0.268959 + 0.963152i \(0.413321\pi\)
\(788\) −88.5522 −3.15454
\(789\) 0.0614623 0.00218811
\(790\) 10.0821 0.358704
\(791\) −0.444535 −0.0158058
\(792\) 97.9723 3.48129
\(793\) −4.61664 −0.163942
\(794\) 4.29101 0.152282
\(795\) −0.0179695 −0.000637311 0
\(796\) −11.0851 −0.392901
\(797\) −27.6386 −0.979009 −0.489505 0.872001i \(-0.662822\pi\)
−0.489505 + 0.872001i \(0.662822\pi\)
\(798\) 0.00149453 5.29059e−5 0
\(799\) −7.46431 −0.264068
\(800\) 43.4945 1.53776
\(801\) −5.38328 −0.190209
\(802\) −38.2569 −1.35090
\(803\) −35.3455 −1.24732
\(804\) 0.0915581 0.00322901
\(805\) −0.182307 −0.00642548
\(806\) 24.4498 0.861207
\(807\) −0.0333273 −0.00117318
\(808\) −119.169 −4.19235
\(809\) 16.1486 0.567754 0.283877 0.958861i \(-0.408379\pi\)
0.283877 + 0.958861i \(0.408379\pi\)
\(810\) −13.9093 −0.488722
\(811\) −10.4318 −0.366309 −0.183155 0.983084i \(-0.558631\pi\)
−0.183155 + 0.983084i \(0.558631\pi\)
\(812\) 2.74069 0.0961795
\(813\) 0.0273186 0.000958107 0
\(814\) 29.2955 1.02681
\(815\) −8.19468 −0.287047
\(816\) 0.0957052 0.00335035
\(817\) 3.92353 0.137267
\(818\) −53.2351 −1.86132
\(819\) 1.05622 0.0369074
\(820\) 20.4132 0.712862
\(821\) 17.4476 0.608924 0.304462 0.952525i \(-0.401523\pi\)
0.304462 + 0.952525i \(0.401523\pi\)
\(822\) −0.0872178 −0.00304207
\(823\) −36.4490 −1.27053 −0.635266 0.772293i \(-0.719110\pi\)
−0.635266 + 0.772293i \(0.719110\pi\)
\(824\) 4.14834 0.144514
\(825\) 0.0714380 0.00248715
\(826\) −2.45207 −0.0853185
\(827\) −13.9293 −0.484368 −0.242184 0.970230i \(-0.577864\pi\)
−0.242184 + 0.970230i \(0.577864\pi\)
\(828\) −44.8358 −1.55815
\(829\) −40.4902 −1.40628 −0.703142 0.711049i \(-0.748220\pi\)
−0.703142 + 0.711049i \(0.748220\pi\)
\(830\) 25.1005 0.871252
\(831\) 0.000252976 0 8.77563e−6 0
\(832\) 22.0133 0.763173
\(833\) 21.7545 0.753750
\(834\) 0.165027 0.00571443
\(835\) −0.595750 −0.0206168
\(836\) −37.8492 −1.30904
\(837\) −0.0527821 −0.00182442
\(838\) 70.1411 2.42298
\(839\) −29.5202 −1.01915 −0.509575 0.860426i \(-0.670198\pi\)
−0.509575 + 0.860426i \(0.670198\pi\)
\(840\) −0.00140307 −4.84104e−5 0
\(841\) 5.84751 0.201638
\(842\) 34.7849 1.19877
\(843\) 0.0712257 0.00245314
\(844\) 12.7063 0.437368
\(845\) 0.00794992 0.000273486 0
\(846\) 18.7044 0.643070
\(847\) −0.953079 −0.0327482
\(848\) 81.6530 2.80397
\(849\) −0.0608279 −0.00208761
\(850\) −37.5878 −1.28925
\(851\) −7.77010 −0.266356
\(852\) −0.0548600 −0.00187947
\(853\) 43.9395 1.50446 0.752230 0.658901i \(-0.228978\pi\)
0.752230 + 0.658901i \(0.228978\pi\)
\(854\) −0.324675 −0.0111102
\(855\) 3.11432 0.106508
\(856\) 65.8629 2.25115
\(857\) −32.9429 −1.12531 −0.562655 0.826692i \(-0.690220\pi\)
−0.562655 + 0.826692i \(0.690220\pi\)
\(858\) 0.144170 0.00492188
\(859\) −14.9390 −0.509711 −0.254855 0.966979i \(-0.582028\pi\)
−0.254855 + 0.966979i \(0.582028\pi\)
\(860\) −6.35544 −0.216719
\(861\) 0.00237664 8.09957e−5 0
\(862\) −5.32122 −0.181241
\(863\) −2.52654 −0.0860044 −0.0430022 0.999075i \(-0.513692\pi\)
−0.0430022 + 0.999075i \(0.513692\pi\)
\(864\) −0.189492 −0.00644665
\(865\) −5.13670 −0.174653
\(866\) 5.32021 0.180788
\(867\) 0.0246812 0.000838216 0
\(868\) 1.21054 0.0410883
\(869\) −29.7271 −1.00842
\(870\) −0.0307812 −0.00104358
\(871\) −20.5791 −0.697295
\(872\) −49.8333 −1.68757
\(873\) 28.5115 0.964969
\(874\) 14.2595 0.482334
\(875\) 0.559759 0.0189233
\(876\) 0.124489 0.00420610
\(877\) 51.1104 1.72588 0.862938 0.505309i \(-0.168622\pi\)
0.862938 + 0.505309i \(0.168622\pi\)
\(878\) 6.94633 0.234427
\(879\) 0.00574340 0.000193720 0
\(880\) 24.6956 0.832488
\(881\) 8.53838 0.287665 0.143833 0.989602i \(-0.454057\pi\)
0.143833 + 0.989602i \(0.454057\pi\)
\(882\) −54.5134 −1.83556
\(883\) −32.2224 −1.08437 −0.542185 0.840259i \(-0.682403\pi\)
−0.542185 + 0.840259i \(0.682403\pi\)
\(884\) −53.4037 −1.79616
\(885\) 0.0193882 0.000651727 0
\(886\) 92.9545 3.12287
\(887\) 5.45199 0.183060 0.0915299 0.995802i \(-0.470824\pi\)
0.0915299 + 0.995802i \(0.470824\pi\)
\(888\) −0.0598000 −0.00200676
\(889\) 1.04330 0.0349913
\(890\) −2.77328 −0.0929606
\(891\) 41.0116 1.37394
\(892\) −95.3265 −3.19177
\(893\) −4.18795 −0.140144
\(894\) 0.191089 0.00639099
\(895\) 3.31184 0.110703
\(896\) −0.279038 −0.00932199
\(897\) −0.0382385 −0.00127674
\(898\) 41.0521 1.36993
\(899\) 15.3918 0.513345
\(900\) 66.3101 2.21034
\(901\) −27.8776 −0.928737
\(902\) −85.4940 −2.84664
\(903\) −0.000739940 0 −2.46237e−5 0
\(904\) −32.6421 −1.08566
\(905\) 14.3843 0.478150
\(906\) 0.00312592 0.000103852 0
\(907\) 28.9496 0.961256 0.480628 0.876924i \(-0.340409\pi\)
0.480628 + 0.876924i \(0.340409\pi\)
\(908\) 8.38025 0.278108
\(909\) −49.8848 −1.65458
\(910\) 0.544131 0.0180378
\(911\) 16.5234 0.547443 0.273722 0.961809i \(-0.411745\pi\)
0.273722 + 0.961809i \(0.411745\pi\)
\(912\) 0.0536966 0.00177807
\(913\) −74.0092 −2.44935
\(914\) −51.0097 −1.68725
\(915\) 0.00256716 8.48678e−5 0
\(916\) 14.6949 0.485532
\(917\) 1.52447 0.0503425
\(918\) 0.163758 0.00540483
\(919\) 36.9864 1.22007 0.610034 0.792375i \(-0.291156\pi\)
0.610034 + 0.792375i \(0.291156\pi\)
\(920\) −13.3868 −0.441349
\(921\) 0.00576661 0.000190016 0
\(922\) 9.83081 0.323760
\(923\) 12.3306 0.405867
\(924\) 0.00713801 0.000234823 0
\(925\) 11.4916 0.377842
\(926\) 55.5406 1.82518
\(927\) 1.73652 0.0570348
\(928\) 55.2578 1.81392
\(929\) 51.7731 1.69862 0.849309 0.527895i \(-0.177019\pi\)
0.849309 + 0.527895i \(0.177019\pi\)
\(930\) −0.0135957 −0.000445822 0
\(931\) 12.2057 0.400024
\(932\) 87.5978 2.86936
\(933\) −0.0805729 −0.00263784
\(934\) −63.2216 −2.06867
\(935\) −8.43145 −0.275738
\(936\) 77.5584 2.53507
\(937\) −34.3503 −1.12218 −0.561088 0.827756i \(-0.689617\pi\)
−0.561088 + 0.827756i \(0.689617\pi\)
\(938\) −1.44727 −0.0472550
\(939\) 0.0640420 0.00208993
\(940\) 6.78375 0.221262
\(941\) −21.9208 −0.714597 −0.357298 0.933990i \(-0.616302\pi\)
−0.357298 + 0.933990i \(0.616302\pi\)
\(942\) −0.0608640 −0.00198306
\(943\) 22.6757 0.738423
\(944\) −88.0997 −2.86740
\(945\) −0.00117467 −3.82119e−5 0
\(946\) 26.6176 0.865412
\(947\) 13.6329 0.443009 0.221504 0.975159i \(-0.428903\pi\)
0.221504 + 0.975159i \(0.428903\pi\)
\(948\) 0.104701 0.00340052
\(949\) −27.9808 −0.908295
\(950\) −21.0891 −0.684221
\(951\) 0.0747955 0.00242541
\(952\) −2.17670 −0.0705472
\(953\) −52.4620 −1.69941 −0.849706 0.527257i \(-0.823220\pi\)
−0.849706 + 0.527257i \(0.823220\pi\)
\(954\) 69.8568 2.26170
\(955\) 15.9846 0.517250
\(956\) 14.9545 0.483665
\(957\) 0.0907587 0.00293381
\(958\) 61.1832 1.97674
\(959\) 0.970592 0.0313420
\(960\) −0.0122409 −0.000395072 0
\(961\) −24.2016 −0.780697
\(962\) 23.1914 0.747720
\(963\) 27.5706 0.888450
\(964\) −98.1467 −3.16109
\(965\) 6.35306 0.204512
\(966\) −0.00268920 −8.65237e−5 0
\(967\) 27.2886 0.877544 0.438772 0.898599i \(-0.355414\pi\)
0.438772 + 0.898599i \(0.355414\pi\)
\(968\) −69.9844 −2.24938
\(969\) −0.0183329 −0.000588937 0
\(970\) 14.6882 0.471609
\(971\) −29.3255 −0.941099 −0.470550 0.882374i \(-0.655944\pi\)
−0.470550 + 0.882374i \(0.655944\pi\)
\(972\) −0.433339 −0.0138994
\(973\) −1.83648 −0.0588750
\(974\) 97.3201 3.11834
\(975\) 0.0565529 0.00181114
\(976\) −11.6652 −0.373393
\(977\) −19.2756 −0.616680 −0.308340 0.951276i \(-0.599774\pi\)
−0.308340 + 0.951276i \(0.599774\pi\)
\(978\) −0.120879 −0.00386530
\(979\) 8.17705 0.261340
\(980\) −19.7711 −0.631563
\(981\) −20.8605 −0.666025
\(982\) −35.5878 −1.13565
\(983\) −32.5670 −1.03873 −0.519363 0.854554i \(-0.673831\pi\)
−0.519363 + 0.854554i \(0.673831\pi\)
\(984\) 0.174516 0.00556338
\(985\) −11.0677 −0.352645
\(986\) −47.7536 −1.52078
\(987\) 0.000789808 0 2.51399e−5 0
\(988\) −29.9628 −0.953244
\(989\) −7.05983 −0.224490
\(990\) 21.1279 0.671488
\(991\) 32.9676 1.04725 0.523625 0.851949i \(-0.324579\pi\)
0.523625 + 0.851949i \(0.324579\pi\)
\(992\) 24.4068 0.774916
\(993\) −0.102334 −0.00324747
\(994\) 0.867178 0.0275052
\(995\) −1.38547 −0.0439223
\(996\) 0.260665 0.00825948
\(997\) −18.3017 −0.579621 −0.289810 0.957084i \(-0.593592\pi\)
−0.289810 + 0.957084i \(0.593592\pi\)
\(998\) 75.9227 2.40329
\(999\) −0.0500654 −0.00158400
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3467.2.a.b.1.4 126
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3467.2.a.b.1.4 126 1.1 even 1 trivial