Properties

Label 3467.2.a.b.1.7
Level $3467$
Weight $2$
Character 3467.1
Self dual yes
Analytic conductor $27.684$
Analytic rank $1$
Dimension $126$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3467,2,Mod(1,3467)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3467, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3467.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3467 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3467.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.6841343808\)
Analytic rank: \(1\)
Dimension: \(126\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 3467.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.57298 q^{2} -0.267298 q^{3} +4.62023 q^{4} -2.52986 q^{5} +0.687753 q^{6} -4.69728 q^{7} -6.74181 q^{8} -2.92855 q^{9} +6.50927 q^{10} +2.79951 q^{11} -1.23498 q^{12} -0.845941 q^{13} +12.0860 q^{14} +0.676226 q^{15} +8.10608 q^{16} +1.31976 q^{17} +7.53511 q^{18} +1.33224 q^{19} -11.6885 q^{20} +1.25557 q^{21} -7.20309 q^{22} -3.57006 q^{23} +1.80207 q^{24} +1.40017 q^{25} +2.17659 q^{26} +1.58469 q^{27} -21.7025 q^{28} +1.37347 q^{29} -1.73992 q^{30} +1.03261 q^{31} -7.37317 q^{32} -0.748304 q^{33} -3.39573 q^{34} +11.8834 q^{35} -13.5306 q^{36} -0.724634 q^{37} -3.42783 q^{38} +0.226118 q^{39} +17.0558 q^{40} +5.41760 q^{41} -3.23057 q^{42} -0.534970 q^{43} +12.9344 q^{44} +7.40881 q^{45} +9.18571 q^{46} -1.25775 q^{47} -2.16674 q^{48} +15.0645 q^{49} -3.60262 q^{50} -0.352771 q^{51} -3.90845 q^{52} -0.284928 q^{53} -4.07738 q^{54} -7.08236 q^{55} +31.6682 q^{56} -0.356105 q^{57} -3.53390 q^{58} +7.91289 q^{59} +3.12432 q^{60} +0.836999 q^{61} -2.65687 q^{62} +13.7562 q^{63} +2.75888 q^{64} +2.14011 q^{65} +1.92537 q^{66} +5.21884 q^{67} +6.09762 q^{68} +0.954271 q^{69} -30.5759 q^{70} +3.40604 q^{71} +19.7437 q^{72} +3.28626 q^{73} +1.86447 q^{74} -0.374263 q^{75} +6.15526 q^{76} -13.1501 q^{77} -0.581799 q^{78} +10.5036 q^{79} -20.5072 q^{80} +8.36207 q^{81} -13.9394 q^{82} +4.21855 q^{83} +5.80104 q^{84} -3.33881 q^{85} +1.37647 q^{86} -0.367125 q^{87} -18.8738 q^{88} +8.09001 q^{89} -19.0627 q^{90} +3.97362 q^{91} -16.4945 q^{92} -0.276014 q^{93} +3.23617 q^{94} -3.37038 q^{95} +1.97083 q^{96} -9.95203 q^{97} -38.7605 q^{98} -8.19852 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 126 q - 11 q^{2} - 25 q^{3} + 99 q^{4} - 32 q^{5} - 15 q^{6} - 27 q^{7} - 27 q^{8} + 93 q^{9} - 46 q^{10} - 6 q^{11} - 67 q^{12} - 137 q^{13} - 17 q^{14} - 15 q^{15} + 49 q^{16} - 30 q^{17} - 37 q^{18}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.57298 −1.81937 −0.909686 0.415296i \(-0.863678\pi\)
−0.909686 + 0.415296i \(0.863678\pi\)
\(3\) −0.267298 −0.154325 −0.0771623 0.997019i \(-0.524586\pi\)
−0.0771623 + 0.997019i \(0.524586\pi\)
\(4\) 4.62023 2.31012
\(5\) −2.52986 −1.13139 −0.565693 0.824616i \(-0.691391\pi\)
−0.565693 + 0.824616i \(0.691391\pi\)
\(6\) 0.687753 0.280774
\(7\) −4.69728 −1.77541 −0.887703 0.460417i \(-0.847700\pi\)
−0.887703 + 0.460417i \(0.847700\pi\)
\(8\) −6.74181 −2.38359
\(9\) −2.92855 −0.976184
\(10\) 6.50927 2.05841
\(11\) 2.79951 0.844085 0.422042 0.906576i \(-0.361313\pi\)
0.422042 + 0.906576i \(0.361313\pi\)
\(12\) −1.23498 −0.356508
\(13\) −0.845941 −0.234622 −0.117311 0.993095i \(-0.537427\pi\)
−0.117311 + 0.993095i \(0.537427\pi\)
\(14\) 12.0860 3.23012
\(15\) 0.676226 0.174601
\(16\) 8.10608 2.02652
\(17\) 1.31976 0.320090 0.160045 0.987110i \(-0.448836\pi\)
0.160045 + 0.987110i \(0.448836\pi\)
\(18\) 7.53511 1.77604
\(19\) 1.33224 0.305637 0.152818 0.988254i \(-0.451165\pi\)
0.152818 + 0.988254i \(0.451165\pi\)
\(20\) −11.6885 −2.61363
\(21\) 1.25557 0.273989
\(22\) −7.20309 −1.53570
\(23\) −3.57006 −0.744410 −0.372205 0.928151i \(-0.621398\pi\)
−0.372205 + 0.928151i \(0.621398\pi\)
\(24\) 1.80207 0.367846
\(25\) 1.40017 0.280034
\(26\) 2.17659 0.426865
\(27\) 1.58469 0.304974
\(28\) −21.7025 −4.10139
\(29\) 1.37347 0.255046 0.127523 0.991836i \(-0.459297\pi\)
0.127523 + 0.991836i \(0.459297\pi\)
\(30\) −1.73992 −0.317664
\(31\) 1.03261 0.185461 0.0927307 0.995691i \(-0.470440\pi\)
0.0927307 + 0.995691i \(0.470440\pi\)
\(32\) −7.37317 −1.30340
\(33\) −0.748304 −0.130263
\(34\) −3.39573 −0.582363
\(35\) 11.8834 2.00867
\(36\) −13.5306 −2.25510
\(37\) −0.724634 −0.119129 −0.0595646 0.998224i \(-0.518971\pi\)
−0.0595646 + 0.998224i \(0.518971\pi\)
\(38\) −3.42783 −0.556067
\(39\) 0.226118 0.0362079
\(40\) 17.0558 2.69676
\(41\) 5.41760 0.846087 0.423044 0.906109i \(-0.360962\pi\)
0.423044 + 0.906109i \(0.360962\pi\)
\(42\) −3.23057 −0.498488
\(43\) −0.534970 −0.0815822 −0.0407911 0.999168i \(-0.512988\pi\)
−0.0407911 + 0.999168i \(0.512988\pi\)
\(44\) 12.9344 1.94993
\(45\) 7.40881 1.10444
\(46\) 9.18571 1.35436
\(47\) −1.25775 −0.183462 −0.0917308 0.995784i \(-0.529240\pi\)
−0.0917308 + 0.995784i \(0.529240\pi\)
\(48\) −2.16674 −0.312742
\(49\) 15.0645 2.15206
\(50\) −3.60262 −0.509487
\(51\) −0.352771 −0.0493978
\(52\) −3.90845 −0.542004
\(53\) −0.284928 −0.0391379 −0.0195690 0.999809i \(-0.506229\pi\)
−0.0195690 + 0.999809i \(0.506229\pi\)
\(54\) −4.07738 −0.554861
\(55\) −7.08236 −0.954986
\(56\) 31.6682 4.23184
\(57\) −0.356105 −0.0471673
\(58\) −3.53390 −0.464024
\(59\) 7.91289 1.03017 0.515085 0.857139i \(-0.327760\pi\)
0.515085 + 0.857139i \(0.327760\pi\)
\(60\) 3.12432 0.403348
\(61\) 0.836999 0.107167 0.0535834 0.998563i \(-0.482936\pi\)
0.0535834 + 0.998563i \(0.482936\pi\)
\(62\) −2.65687 −0.337423
\(63\) 13.7562 1.73312
\(64\) 2.75888 0.344859
\(65\) 2.14011 0.265448
\(66\) 1.92537 0.236997
\(67\) 5.21884 0.637582 0.318791 0.947825i \(-0.396723\pi\)
0.318791 + 0.947825i \(0.396723\pi\)
\(68\) 6.09762 0.739445
\(69\) 0.954271 0.114881
\(70\) −30.5759 −3.65452
\(71\) 3.40604 0.404222 0.202111 0.979363i \(-0.435220\pi\)
0.202111 + 0.979363i \(0.435220\pi\)
\(72\) 19.7437 2.32682
\(73\) 3.28626 0.384628 0.192314 0.981333i \(-0.438401\pi\)
0.192314 + 0.981333i \(0.438401\pi\)
\(74\) 1.86447 0.216740
\(75\) −0.374263 −0.0432162
\(76\) 6.15526 0.706056
\(77\) −13.1501 −1.49859
\(78\) −0.581799 −0.0658757
\(79\) 10.5036 1.18175 0.590876 0.806763i \(-0.298782\pi\)
0.590876 + 0.806763i \(0.298782\pi\)
\(80\) −20.5072 −2.29278
\(81\) 8.36207 0.929119
\(82\) −13.9394 −1.53935
\(83\) 4.21855 0.463046 0.231523 0.972829i \(-0.425629\pi\)
0.231523 + 0.972829i \(0.425629\pi\)
\(84\) 5.80104 0.632946
\(85\) −3.33881 −0.362145
\(86\) 1.37647 0.148428
\(87\) −0.367125 −0.0393599
\(88\) −18.8738 −2.01195
\(89\) 8.09001 0.857540 0.428770 0.903414i \(-0.358947\pi\)
0.428770 + 0.903414i \(0.358947\pi\)
\(90\) −19.0627 −2.00939
\(91\) 3.97362 0.416549
\(92\) −16.4945 −1.71967
\(93\) −0.276014 −0.0286213
\(94\) 3.23617 0.333785
\(95\) −3.37038 −0.345793
\(96\) 1.97083 0.201147
\(97\) −9.95203 −1.01048 −0.505238 0.862980i \(-0.668595\pi\)
−0.505238 + 0.862980i \(0.668595\pi\)
\(98\) −38.7605 −3.91541
\(99\) −8.19852 −0.823982
\(100\) 6.46912 0.646912
\(101\) 6.67004 0.663694 0.331847 0.943333i \(-0.392328\pi\)
0.331847 + 0.943333i \(0.392328\pi\)
\(102\) 0.907672 0.0898729
\(103\) −11.5692 −1.13995 −0.569975 0.821662i \(-0.693047\pi\)
−0.569975 + 0.821662i \(0.693047\pi\)
\(104\) 5.70317 0.559242
\(105\) −3.17642 −0.309987
\(106\) 0.733115 0.0712065
\(107\) −5.77135 −0.557937 −0.278969 0.960300i \(-0.589993\pi\)
−0.278969 + 0.960300i \(0.589993\pi\)
\(108\) 7.32164 0.704525
\(109\) −19.2901 −1.84766 −0.923828 0.382808i \(-0.874957\pi\)
−0.923828 + 0.382808i \(0.874957\pi\)
\(110\) 18.2228 1.73747
\(111\) 0.193693 0.0183846
\(112\) −38.0765 −3.59789
\(113\) 2.42982 0.228578 0.114289 0.993448i \(-0.463541\pi\)
0.114289 + 0.993448i \(0.463541\pi\)
\(114\) 0.916252 0.0858148
\(115\) 9.03175 0.842215
\(116\) 6.34573 0.589186
\(117\) 2.47738 0.229034
\(118\) −20.3597 −1.87426
\(119\) −6.19931 −0.568289
\(120\) −4.55898 −0.416176
\(121\) −3.16273 −0.287521
\(122\) −2.15358 −0.194976
\(123\) −1.44811 −0.130572
\(124\) 4.77088 0.428437
\(125\) 9.10705 0.814559
\(126\) −35.3945 −3.15319
\(127\) −13.0228 −1.15559 −0.577795 0.816182i \(-0.696087\pi\)
−0.577795 + 0.816182i \(0.696087\pi\)
\(128\) 7.64781 0.675977
\(129\) 0.142996 0.0125901
\(130\) −5.50646 −0.482949
\(131\) −5.60575 −0.489777 −0.244888 0.969551i \(-0.578751\pi\)
−0.244888 + 0.969551i \(0.578751\pi\)
\(132\) −3.45734 −0.300923
\(133\) −6.25791 −0.542629
\(134\) −13.4280 −1.16000
\(135\) −4.00904 −0.345043
\(136\) −8.89760 −0.762963
\(137\) 12.7239 1.08707 0.543537 0.839385i \(-0.317085\pi\)
0.543537 + 0.839385i \(0.317085\pi\)
\(138\) −2.45532 −0.209011
\(139\) −10.7613 −0.912760 −0.456380 0.889785i \(-0.650854\pi\)
−0.456380 + 0.889785i \(0.650854\pi\)
\(140\) 54.9043 4.64026
\(141\) 0.336194 0.0283126
\(142\) −8.76367 −0.735431
\(143\) −2.36822 −0.198041
\(144\) −23.7391 −1.97826
\(145\) −3.47467 −0.288556
\(146\) −8.45549 −0.699782
\(147\) −4.02670 −0.332117
\(148\) −3.34798 −0.275202
\(149\) −14.4679 −1.18526 −0.592629 0.805475i \(-0.701910\pi\)
−0.592629 + 0.805475i \(0.701910\pi\)
\(150\) 0.962972 0.0786263
\(151\) 2.88090 0.234444 0.117222 0.993106i \(-0.462601\pi\)
0.117222 + 0.993106i \(0.462601\pi\)
\(152\) −8.98170 −0.728512
\(153\) −3.86500 −0.312467
\(154\) 33.8350 2.72650
\(155\) −2.61234 −0.209828
\(156\) 1.04472 0.0836445
\(157\) 23.5441 1.87903 0.939513 0.342514i \(-0.111278\pi\)
0.939513 + 0.342514i \(0.111278\pi\)
\(158\) −27.0257 −2.15005
\(159\) 0.0761608 0.00603995
\(160\) 18.6531 1.47465
\(161\) 16.7696 1.32163
\(162\) −21.5154 −1.69041
\(163\) 7.95112 0.622780 0.311390 0.950282i \(-0.399206\pi\)
0.311390 + 0.950282i \(0.399206\pi\)
\(164\) 25.0306 1.95456
\(165\) 1.89310 0.147378
\(166\) −10.8543 −0.842454
\(167\) 14.3539 1.11074 0.555368 0.831605i \(-0.312577\pi\)
0.555368 + 0.831605i \(0.312577\pi\)
\(168\) −8.46484 −0.653077
\(169\) −12.2844 −0.944953
\(170\) 8.59071 0.658877
\(171\) −3.90153 −0.298358
\(172\) −2.47169 −0.188464
\(173\) 19.3322 1.46980 0.734899 0.678177i \(-0.237230\pi\)
0.734899 + 0.678177i \(0.237230\pi\)
\(174\) 0.944605 0.0716103
\(175\) −6.57700 −0.497174
\(176\) 22.6931 1.71055
\(177\) −2.11510 −0.158981
\(178\) −20.8155 −1.56018
\(179\) 6.61842 0.494684 0.247342 0.968928i \(-0.420443\pi\)
0.247342 + 0.968928i \(0.420443\pi\)
\(180\) 34.2304 2.55139
\(181\) −10.3000 −0.765590 −0.382795 0.923833i \(-0.625038\pi\)
−0.382795 + 0.923833i \(0.625038\pi\)
\(182\) −10.2241 −0.757858
\(183\) −0.223728 −0.0165385
\(184\) 24.0687 1.77437
\(185\) 1.83322 0.134781
\(186\) 0.710178 0.0520727
\(187\) 3.69470 0.270183
\(188\) −5.81109 −0.423818
\(189\) −7.44374 −0.541452
\(190\) 8.67191 0.629127
\(191\) 12.0209 0.869802 0.434901 0.900478i \(-0.356783\pi\)
0.434901 + 0.900478i \(0.356783\pi\)
\(192\) −0.737442 −0.0532203
\(193\) 6.45540 0.464670 0.232335 0.972636i \(-0.425363\pi\)
0.232335 + 0.972636i \(0.425363\pi\)
\(194\) 25.6064 1.83843
\(195\) −0.572047 −0.0409652
\(196\) 69.6013 4.97152
\(197\) −7.83932 −0.558529 −0.279264 0.960214i \(-0.590091\pi\)
−0.279264 + 0.960214i \(0.590091\pi\)
\(198\) 21.0946 1.49913
\(199\) −8.40486 −0.595805 −0.297902 0.954596i \(-0.596287\pi\)
−0.297902 + 0.954596i \(0.596287\pi\)
\(200\) −9.43969 −0.667487
\(201\) −1.39498 −0.0983946
\(202\) −17.1619 −1.20751
\(203\) −6.45156 −0.452810
\(204\) −1.62988 −0.114115
\(205\) −13.7058 −0.957251
\(206\) 29.7674 2.07399
\(207\) 10.4551 0.726681
\(208\) −6.85727 −0.475466
\(209\) 3.72962 0.257983
\(210\) 8.17287 0.563982
\(211\) 14.9324 1.02799 0.513995 0.857793i \(-0.328165\pi\)
0.513995 + 0.857793i \(0.328165\pi\)
\(212\) −1.31644 −0.0904132
\(213\) −0.910427 −0.0623814
\(214\) 14.8496 1.01510
\(215\) 1.35340 0.0923009
\(216\) −10.6837 −0.726932
\(217\) −4.85044 −0.329269
\(218\) 49.6331 3.36157
\(219\) −0.878412 −0.0593576
\(220\) −32.7222 −2.20613
\(221\) −1.11644 −0.0751001
\(222\) −0.498369 −0.0334484
\(223\) −24.0638 −1.61143 −0.805717 0.592301i \(-0.798220\pi\)
−0.805717 + 0.592301i \(0.798220\pi\)
\(224\) 34.6339 2.31407
\(225\) −4.10048 −0.273365
\(226\) −6.25187 −0.415868
\(227\) 21.5212 1.42841 0.714205 0.699937i \(-0.246788\pi\)
0.714205 + 0.699937i \(0.246788\pi\)
\(228\) −1.64529 −0.108962
\(229\) −0.0944420 −0.00624091 −0.00312045 0.999995i \(-0.500993\pi\)
−0.00312045 + 0.999995i \(0.500993\pi\)
\(230\) −23.2385 −1.53230
\(231\) 3.51500 0.231270
\(232\) −9.25964 −0.607925
\(233\) −10.3362 −0.677147 −0.338574 0.940940i \(-0.609944\pi\)
−0.338574 + 0.940940i \(0.609944\pi\)
\(234\) −6.37426 −0.416698
\(235\) 3.18193 0.207566
\(236\) 36.5594 2.37981
\(237\) −2.80760 −0.182373
\(238\) 15.9507 1.03393
\(239\) −12.5888 −0.814302 −0.407151 0.913361i \(-0.633478\pi\)
−0.407151 + 0.913361i \(0.633478\pi\)
\(240\) 5.48154 0.353832
\(241\) −13.0254 −0.839043 −0.419521 0.907745i \(-0.637802\pi\)
−0.419521 + 0.907745i \(0.637802\pi\)
\(242\) 8.13764 0.523107
\(243\) −6.98924 −0.448360
\(244\) 3.86713 0.247568
\(245\) −38.1109 −2.43482
\(246\) 3.72597 0.237559
\(247\) −1.12700 −0.0717091
\(248\) −6.96163 −0.442064
\(249\) −1.12761 −0.0714594
\(250\) −23.4323 −1.48199
\(251\) −3.12325 −0.197138 −0.0985689 0.995130i \(-0.531426\pi\)
−0.0985689 + 0.995130i \(0.531426\pi\)
\(252\) 63.5570 4.00371
\(253\) −9.99444 −0.628345
\(254\) 33.5075 2.10245
\(255\) 0.892459 0.0558879
\(256\) −25.1954 −1.57471
\(257\) −22.5085 −1.40404 −0.702019 0.712158i \(-0.747718\pi\)
−0.702019 + 0.712158i \(0.747718\pi\)
\(258\) −0.367927 −0.0229061
\(259\) 3.40381 0.211503
\(260\) 9.88780 0.613216
\(261\) −4.02227 −0.248972
\(262\) 14.4235 0.891086
\(263\) −1.87846 −0.115831 −0.0579153 0.998322i \(-0.518445\pi\)
−0.0579153 + 0.998322i \(0.518445\pi\)
\(264\) 5.04492 0.310494
\(265\) 0.720828 0.0442801
\(266\) 16.1015 0.987245
\(267\) −2.16245 −0.132340
\(268\) 24.1122 1.47289
\(269\) 12.3945 0.755704 0.377852 0.925866i \(-0.376663\pi\)
0.377852 + 0.925866i \(0.376663\pi\)
\(270\) 10.3152 0.627762
\(271\) −13.2452 −0.804586 −0.402293 0.915511i \(-0.631787\pi\)
−0.402293 + 0.915511i \(0.631787\pi\)
\(272\) 10.6981 0.648668
\(273\) −1.06214 −0.0642838
\(274\) −32.7383 −1.97779
\(275\) 3.91980 0.236373
\(276\) 4.40896 0.265388
\(277\) −24.8771 −1.49472 −0.747361 0.664418i \(-0.768680\pi\)
−0.747361 + 0.664418i \(0.768680\pi\)
\(278\) 27.6886 1.66065
\(279\) −3.02404 −0.181044
\(280\) −80.1159 −4.78784
\(281\) 21.4496 1.27958 0.639789 0.768551i \(-0.279022\pi\)
0.639789 + 0.768551i \(0.279022\pi\)
\(282\) −0.865021 −0.0515112
\(283\) 0.524168 0.0311586 0.0155793 0.999879i \(-0.495041\pi\)
0.0155793 + 0.999879i \(0.495041\pi\)
\(284\) 15.7367 0.933800
\(285\) 0.900895 0.0533644
\(286\) 6.09339 0.360310
\(287\) −25.4480 −1.50215
\(288\) 21.5927 1.27236
\(289\) −15.2582 −0.897542
\(290\) 8.94026 0.524990
\(291\) 2.66016 0.155941
\(292\) 15.1833 0.888535
\(293\) −6.44780 −0.376684 −0.188342 0.982103i \(-0.560311\pi\)
−0.188342 + 0.982103i \(0.560311\pi\)
\(294\) 10.3606 0.604244
\(295\) −20.0185 −1.16552
\(296\) 4.88534 0.283955
\(297\) 4.43636 0.257424
\(298\) 37.2257 2.15643
\(299\) 3.02007 0.174655
\(300\) −1.72918 −0.0998344
\(301\) 2.51291 0.144841
\(302\) −7.41250 −0.426541
\(303\) −1.78289 −0.102424
\(304\) 10.7992 0.619379
\(305\) −2.11749 −0.121247
\(306\) 9.94457 0.568493
\(307\) −8.24294 −0.470449 −0.235225 0.971941i \(-0.575583\pi\)
−0.235225 + 0.971941i \(0.575583\pi\)
\(308\) −60.7565 −3.46192
\(309\) 3.09243 0.175922
\(310\) 6.72151 0.381756
\(311\) −15.3960 −0.873026 −0.436513 0.899698i \(-0.643787\pi\)
−0.436513 + 0.899698i \(0.643787\pi\)
\(312\) −1.52445 −0.0863048
\(313\) 7.06827 0.399522 0.199761 0.979845i \(-0.435983\pi\)
0.199761 + 0.979845i \(0.435983\pi\)
\(314\) −60.5786 −3.41865
\(315\) −34.8013 −1.96083
\(316\) 48.5292 2.72998
\(317\) 3.85503 0.216520 0.108260 0.994123i \(-0.465472\pi\)
0.108260 + 0.994123i \(0.465472\pi\)
\(318\) −0.195960 −0.0109889
\(319\) 3.84504 0.215281
\(320\) −6.97956 −0.390169
\(321\) 1.54267 0.0861035
\(322\) −43.1479 −2.40454
\(323\) 1.75824 0.0978313
\(324\) 38.6347 2.14637
\(325\) −1.18446 −0.0657022
\(326\) −20.4581 −1.13307
\(327\) 5.15621 0.285139
\(328\) −36.5244 −2.01672
\(329\) 5.90800 0.325719
\(330\) −4.87092 −0.268135
\(331\) 22.2558 1.22329 0.611646 0.791132i \(-0.290508\pi\)
0.611646 + 0.791132i \(0.290508\pi\)
\(332\) 19.4907 1.06969
\(333\) 2.12213 0.116292
\(334\) −36.9323 −2.02084
\(335\) −13.2029 −0.721352
\(336\) 10.1778 0.555244
\(337\) −6.44302 −0.350973 −0.175487 0.984482i \(-0.556150\pi\)
−0.175487 + 0.984482i \(0.556150\pi\)
\(338\) 31.6075 1.71922
\(339\) −0.649485 −0.0352752
\(340\) −15.4261 −0.836598
\(341\) 2.89079 0.156545
\(342\) 10.0386 0.542824
\(343\) −37.8810 −2.04538
\(344\) 3.60667 0.194458
\(345\) −2.41417 −0.129975
\(346\) −49.7413 −2.67411
\(347\) −18.0765 −0.970395 −0.485198 0.874404i \(-0.661252\pi\)
−0.485198 + 0.874404i \(0.661252\pi\)
\(348\) −1.69620 −0.0909260
\(349\) 29.3099 1.56892 0.784462 0.620176i \(-0.212939\pi\)
0.784462 + 0.620176i \(0.212939\pi\)
\(350\) 16.9225 0.904546
\(351\) −1.34056 −0.0715535
\(352\) −20.6413 −1.10018
\(353\) 0.370212 0.0197044 0.00985221 0.999951i \(-0.496864\pi\)
0.00985221 + 0.999951i \(0.496864\pi\)
\(354\) 5.44211 0.289245
\(355\) −8.61678 −0.457331
\(356\) 37.3777 1.98102
\(357\) 1.65706 0.0877010
\(358\) −17.0291 −0.900015
\(359\) −16.6909 −0.880910 −0.440455 0.897775i \(-0.645183\pi\)
−0.440455 + 0.897775i \(0.645183\pi\)
\(360\) −49.9488 −2.63253
\(361\) −17.2251 −0.906586
\(362\) 26.5016 1.39289
\(363\) 0.845391 0.0443715
\(364\) 18.3591 0.962277
\(365\) −8.31377 −0.435163
\(366\) 0.575648 0.0300896
\(367\) −26.9194 −1.40518 −0.702591 0.711594i \(-0.747974\pi\)
−0.702591 + 0.711594i \(0.747974\pi\)
\(368\) −28.9392 −1.50856
\(369\) −15.8657 −0.825937
\(370\) −4.71684 −0.245217
\(371\) 1.33839 0.0694857
\(372\) −1.27525 −0.0661184
\(373\) 4.49431 0.232706 0.116353 0.993208i \(-0.462880\pi\)
0.116353 + 0.993208i \(0.462880\pi\)
\(374\) −9.50639 −0.491564
\(375\) −2.43430 −0.125707
\(376\) 8.47950 0.437297
\(377\) −1.16187 −0.0598394
\(378\) 19.1526 0.985103
\(379\) 0.409629 0.0210412 0.0105206 0.999945i \(-0.496651\pi\)
0.0105206 + 0.999945i \(0.496651\pi\)
\(380\) −15.5719 −0.798822
\(381\) 3.48098 0.178336
\(382\) −30.9296 −1.58249
\(383\) −18.8474 −0.963057 −0.481529 0.876430i \(-0.659918\pi\)
−0.481529 + 0.876430i \(0.659918\pi\)
\(384\) −2.04424 −0.104320
\(385\) 33.2679 1.69549
\(386\) −16.6096 −0.845407
\(387\) 1.56669 0.0796392
\(388\) −45.9807 −2.33431
\(389\) −3.55161 −0.180074 −0.0900369 0.995938i \(-0.528698\pi\)
−0.0900369 + 0.995938i \(0.528698\pi\)
\(390\) 1.47187 0.0745309
\(391\) −4.71165 −0.238278
\(392\) −101.562 −5.12964
\(393\) 1.49841 0.0755846
\(394\) 20.1704 1.01617
\(395\) −26.5727 −1.33702
\(396\) −37.8791 −1.90349
\(397\) 25.2533 1.26743 0.633714 0.773568i \(-0.281530\pi\)
0.633714 + 0.773568i \(0.281530\pi\)
\(398\) 21.6256 1.08399
\(399\) 1.67273 0.0837410
\(400\) 11.3499 0.567495
\(401\) −4.56437 −0.227934 −0.113967 0.993485i \(-0.536356\pi\)
−0.113967 + 0.993485i \(0.536356\pi\)
\(402\) 3.58927 0.179016
\(403\) −0.873524 −0.0435133
\(404\) 30.8171 1.53321
\(405\) −21.1548 −1.05119
\(406\) 16.5997 0.823831
\(407\) −2.02862 −0.100555
\(408\) 2.37831 0.117744
\(409\) 21.7957 1.07773 0.538864 0.842393i \(-0.318854\pi\)
0.538864 + 0.842393i \(0.318854\pi\)
\(410\) 35.2646 1.74160
\(411\) −3.40107 −0.167762
\(412\) −53.4525 −2.63341
\(413\) −37.1690 −1.82897
\(414\) −26.9008 −1.32210
\(415\) −10.6723 −0.523884
\(416\) 6.23727 0.305807
\(417\) 2.87647 0.140861
\(418\) −9.59625 −0.469368
\(419\) −3.73732 −0.182580 −0.0912900 0.995824i \(-0.529099\pi\)
−0.0912900 + 0.995824i \(0.529099\pi\)
\(420\) −14.6758 −0.716106
\(421\) −9.02554 −0.439878 −0.219939 0.975514i \(-0.570586\pi\)
−0.219939 + 0.975514i \(0.570586\pi\)
\(422\) −38.4208 −1.87030
\(423\) 3.68338 0.179092
\(424\) 1.92093 0.0932887
\(425\) 1.84790 0.0896362
\(426\) 2.34251 0.113495
\(427\) −3.93162 −0.190264
\(428\) −26.6650 −1.28890
\(429\) 0.633022 0.0305626
\(430\) −3.48227 −0.167930
\(431\) 5.76457 0.277669 0.138835 0.990316i \(-0.455664\pi\)
0.138835 + 0.990316i \(0.455664\pi\)
\(432\) 12.8456 0.618035
\(433\) −3.87037 −0.185998 −0.0929991 0.995666i \(-0.529645\pi\)
−0.0929991 + 0.995666i \(0.529645\pi\)
\(434\) 12.4801 0.599063
\(435\) 0.928773 0.0445313
\(436\) −89.1247 −4.26830
\(437\) −4.75618 −0.227519
\(438\) 2.26014 0.107994
\(439\) −3.96639 −0.189305 −0.0946527 0.995510i \(-0.530174\pi\)
−0.0946527 + 0.995510i \(0.530174\pi\)
\(440\) 47.7479 2.27629
\(441\) −44.1170 −2.10081
\(442\) 2.87259 0.136635
\(443\) 34.0826 1.61931 0.809657 0.586903i \(-0.199653\pi\)
0.809657 + 0.586903i \(0.199653\pi\)
\(444\) 0.894908 0.0424705
\(445\) −20.4666 −0.970209
\(446\) 61.9158 2.93180
\(447\) 3.86725 0.182915
\(448\) −12.9592 −0.612265
\(449\) −12.6231 −0.595719 −0.297860 0.954610i \(-0.596273\pi\)
−0.297860 + 0.954610i \(0.596273\pi\)
\(450\) 10.5504 0.497353
\(451\) 15.1666 0.714169
\(452\) 11.2263 0.528041
\(453\) −0.770059 −0.0361805
\(454\) −55.3736 −2.59881
\(455\) −10.0527 −0.471278
\(456\) 2.40079 0.112427
\(457\) 0.184920 0.00865021 0.00432510 0.999991i \(-0.498623\pi\)
0.00432510 + 0.999991i \(0.498623\pi\)
\(458\) 0.242998 0.0113545
\(459\) 2.09142 0.0976191
\(460\) 41.7288 1.94561
\(461\) −22.5469 −1.05011 −0.525057 0.851067i \(-0.675956\pi\)
−0.525057 + 0.851067i \(0.675956\pi\)
\(462\) −9.04402 −0.420766
\(463\) −9.45723 −0.439515 −0.219757 0.975555i \(-0.570527\pi\)
−0.219757 + 0.975555i \(0.570527\pi\)
\(464\) 11.1334 0.516856
\(465\) 0.698274 0.0323817
\(466\) 26.5949 1.23198
\(467\) −24.0534 −1.11306 −0.556529 0.830828i \(-0.687867\pi\)
−0.556529 + 0.830828i \(0.687867\pi\)
\(468\) 11.4461 0.529095
\(469\) −24.5143 −1.13197
\(470\) −8.18703 −0.377640
\(471\) −6.29330 −0.289980
\(472\) −53.3471 −2.45550
\(473\) −1.49766 −0.0688623
\(474\) 7.22391 0.331805
\(475\) 1.86536 0.0855888
\(476\) −28.6422 −1.31281
\(477\) 0.834428 0.0382058
\(478\) 32.3908 1.48152
\(479\) −0.307276 −0.0140398 −0.00701990 0.999975i \(-0.502235\pi\)
−0.00701990 + 0.999975i \(0.502235\pi\)
\(480\) −4.98593 −0.227575
\(481\) 0.612998 0.0279503
\(482\) 33.5142 1.52653
\(483\) −4.48248 −0.203960
\(484\) −14.6125 −0.664206
\(485\) 25.1772 1.14324
\(486\) 17.9832 0.815733
\(487\) 18.5161 0.839045 0.419523 0.907745i \(-0.362198\pi\)
0.419523 + 0.907745i \(0.362198\pi\)
\(488\) −5.64288 −0.255441
\(489\) −2.12532 −0.0961102
\(490\) 98.0586 4.42984
\(491\) 9.04023 0.407980 0.203990 0.978973i \(-0.434609\pi\)
0.203990 + 0.978973i \(0.434609\pi\)
\(492\) −6.69063 −0.301637
\(493\) 1.81265 0.0816377
\(494\) 2.89974 0.130466
\(495\) 20.7411 0.932242
\(496\) 8.37038 0.375841
\(497\) −15.9991 −0.717658
\(498\) 2.90132 0.130011
\(499\) 1.51577 0.0678552 0.0339276 0.999424i \(-0.489198\pi\)
0.0339276 + 0.999424i \(0.489198\pi\)
\(500\) 42.0767 1.88173
\(501\) −3.83676 −0.171414
\(502\) 8.03606 0.358667
\(503\) −3.11024 −0.138679 −0.0693395 0.997593i \(-0.522089\pi\)
−0.0693395 + 0.997593i \(0.522089\pi\)
\(504\) −92.7419 −4.13105
\(505\) −16.8742 −0.750894
\(506\) 25.7155 1.14319
\(507\) 3.28359 0.145829
\(508\) −60.1686 −2.66955
\(509\) 32.7834 1.45310 0.726549 0.687115i \(-0.241123\pi\)
0.726549 + 0.687115i \(0.241123\pi\)
\(510\) −2.29628 −0.101681
\(511\) −15.4365 −0.682871
\(512\) 49.5317 2.18901
\(513\) 2.11119 0.0932112
\(514\) 57.9138 2.55447
\(515\) 29.2685 1.28972
\(516\) 0.660677 0.0290847
\(517\) −3.52109 −0.154857
\(518\) −8.75794 −0.384802
\(519\) −5.16745 −0.226826
\(520\) −14.4282 −0.632719
\(521\) 9.94376 0.435644 0.217822 0.975989i \(-0.430105\pi\)
0.217822 + 0.975989i \(0.430105\pi\)
\(522\) 10.3492 0.452973
\(523\) 24.4641 1.06974 0.534871 0.844934i \(-0.320360\pi\)
0.534871 + 0.844934i \(0.320360\pi\)
\(524\) −25.8999 −1.13144
\(525\) 1.75802 0.0767263
\(526\) 4.83323 0.210739
\(527\) 1.36280 0.0593643
\(528\) −6.06581 −0.263981
\(529\) −10.2546 −0.445854
\(530\) −1.85468 −0.0805620
\(531\) −23.1733 −1.00564
\(532\) −28.9130 −1.25354
\(533\) −4.58297 −0.198511
\(534\) 5.56393 0.240775
\(535\) 14.6007 0.631243
\(536\) −35.1844 −1.51973
\(537\) −1.76909 −0.0763420
\(538\) −31.8907 −1.37491
\(539\) 42.1731 1.81653
\(540\) −18.5227 −0.797090
\(541\) 31.4615 1.35264 0.676319 0.736609i \(-0.263574\pi\)
0.676319 + 0.736609i \(0.263574\pi\)
\(542\) 34.0795 1.46384
\(543\) 2.75316 0.118149
\(544\) −9.73085 −0.417207
\(545\) 48.8012 2.09041
\(546\) 2.73287 0.116956
\(547\) 0.198099 0.00847011 0.00423506 0.999991i \(-0.498652\pi\)
0.00423506 + 0.999991i \(0.498652\pi\)
\(548\) 58.7873 2.51127
\(549\) −2.45119 −0.104614
\(550\) −10.0856 −0.430050
\(551\) 1.82979 0.0779515
\(552\) −6.43351 −0.273829
\(553\) −49.3385 −2.09809
\(554\) 64.0084 2.71946
\(555\) −0.490016 −0.0208000
\(556\) −49.7196 −2.10858
\(557\) −40.8865 −1.73242 −0.866209 0.499682i \(-0.833450\pi\)
−0.866209 + 0.499682i \(0.833450\pi\)
\(558\) 7.78080 0.329387
\(559\) 0.452553 0.0191410
\(560\) 96.3281 4.07061
\(561\) −0.987586 −0.0416959
\(562\) −55.1895 −2.32803
\(563\) −6.04687 −0.254845 −0.127423 0.991849i \(-0.540670\pi\)
−0.127423 + 0.991849i \(0.540670\pi\)
\(564\) 1.55329 0.0654055
\(565\) −6.14708 −0.258610
\(566\) −1.34867 −0.0566890
\(567\) −39.2790 −1.64956
\(568\) −22.9628 −0.963499
\(569\) 19.5894 0.821231 0.410615 0.911809i \(-0.365314\pi\)
0.410615 + 0.911809i \(0.365314\pi\)
\(570\) −2.31799 −0.0970897
\(571\) 22.7557 0.952298 0.476149 0.879365i \(-0.342032\pi\)
0.476149 + 0.879365i \(0.342032\pi\)
\(572\) −10.9417 −0.457497
\(573\) −3.21316 −0.134232
\(574\) 65.4772 2.73297
\(575\) −4.99870 −0.208460
\(576\) −8.07951 −0.336646
\(577\) −34.5065 −1.43653 −0.718263 0.695772i \(-0.755062\pi\)
−0.718263 + 0.695772i \(0.755062\pi\)
\(578\) 39.2591 1.63296
\(579\) −1.72552 −0.0717100
\(580\) −16.0538 −0.666597
\(581\) −19.8157 −0.822095
\(582\) −6.84453 −0.283715
\(583\) −0.797661 −0.0330357
\(584\) −22.1554 −0.916795
\(585\) −6.26742 −0.259126
\(586\) 16.5901 0.685329
\(587\) −21.0558 −0.869066 −0.434533 0.900656i \(-0.643086\pi\)
−0.434533 + 0.900656i \(0.643086\pi\)
\(588\) −18.6043 −0.767228
\(589\) 1.37568 0.0566838
\(590\) 51.5071 2.12051
\(591\) 2.09544 0.0861947
\(592\) −5.87394 −0.241418
\(593\) −21.4973 −0.882788 −0.441394 0.897313i \(-0.645516\pi\)
−0.441394 + 0.897313i \(0.645516\pi\)
\(594\) −11.4147 −0.468350
\(595\) 15.6834 0.642955
\(596\) −66.8451 −2.73808
\(597\) 2.24660 0.0919474
\(598\) −7.77057 −0.317762
\(599\) −25.2689 −1.03246 −0.516230 0.856450i \(-0.672665\pi\)
−0.516230 + 0.856450i \(0.672665\pi\)
\(600\) 2.52321 0.103010
\(601\) −13.1092 −0.534735 −0.267367 0.963595i \(-0.586154\pi\)
−0.267367 + 0.963595i \(0.586154\pi\)
\(602\) −6.46566 −0.263521
\(603\) −15.2836 −0.622398
\(604\) 13.3104 0.541593
\(605\) 8.00125 0.325297
\(606\) 4.58734 0.186348
\(607\) 19.4556 0.789678 0.394839 0.918750i \(-0.370800\pi\)
0.394839 + 0.918750i \(0.370800\pi\)
\(608\) −9.82283 −0.398368
\(609\) 1.72449 0.0698798
\(610\) 5.44825 0.220593
\(611\) 1.06398 0.0430441
\(612\) −17.8572 −0.721834
\(613\) −24.8842 −1.00506 −0.502532 0.864559i \(-0.667598\pi\)
−0.502532 + 0.864559i \(0.667598\pi\)
\(614\) 21.2089 0.855922
\(615\) 3.66352 0.147727
\(616\) 88.6554 3.57203
\(617\) −15.9052 −0.640318 −0.320159 0.947364i \(-0.603736\pi\)
−0.320159 + 0.947364i \(0.603736\pi\)
\(618\) −7.95676 −0.320068
\(619\) 2.42098 0.0973074 0.0486537 0.998816i \(-0.484507\pi\)
0.0486537 + 0.998816i \(0.484507\pi\)
\(620\) −12.0696 −0.484728
\(621\) −5.65745 −0.227026
\(622\) 39.6136 1.58836
\(623\) −38.0011 −1.52248
\(624\) 1.83293 0.0733761
\(625\) −30.0404 −1.20162
\(626\) −18.1865 −0.726880
\(627\) −0.996921 −0.0398132
\(628\) 108.779 4.34077
\(629\) −0.956347 −0.0381320
\(630\) 89.5430 3.56748
\(631\) 31.9022 1.27001 0.635003 0.772510i \(-0.280999\pi\)
0.635003 + 0.772510i \(0.280999\pi\)
\(632\) −70.8135 −2.81681
\(633\) −3.99141 −0.158644
\(634\) −9.91893 −0.393931
\(635\) 32.9459 1.30742
\(636\) 0.351881 0.0139530
\(637\) −12.7436 −0.504922
\(638\) −9.89320 −0.391676
\(639\) −9.97475 −0.394595
\(640\) −19.3479 −0.764791
\(641\) −7.73367 −0.305461 −0.152731 0.988268i \(-0.548807\pi\)
−0.152731 + 0.988268i \(0.548807\pi\)
\(642\) −3.96926 −0.156654
\(643\) 21.8973 0.863545 0.431773 0.901982i \(-0.357888\pi\)
0.431773 + 0.901982i \(0.357888\pi\)
\(644\) 77.4794 3.05312
\(645\) −0.361761 −0.0142443
\(646\) −4.52393 −0.177991
\(647\) 15.8153 0.621765 0.310883 0.950448i \(-0.399375\pi\)
0.310883 + 0.950448i \(0.399375\pi\)
\(648\) −56.3755 −2.21464
\(649\) 22.1522 0.869551
\(650\) 3.04760 0.119537
\(651\) 1.29651 0.0508144
\(652\) 36.7360 1.43869
\(653\) 29.8603 1.16853 0.584263 0.811565i \(-0.301384\pi\)
0.584263 + 0.811565i \(0.301384\pi\)
\(654\) −13.2668 −0.518774
\(655\) 14.1817 0.554127
\(656\) 43.9155 1.71461
\(657\) −9.62399 −0.375468
\(658\) −15.2012 −0.592604
\(659\) 3.39858 0.132390 0.0661950 0.997807i \(-0.478914\pi\)
0.0661950 + 0.997807i \(0.478914\pi\)
\(660\) 8.74657 0.340460
\(661\) 25.5485 0.993722 0.496861 0.867830i \(-0.334486\pi\)
0.496861 + 0.867830i \(0.334486\pi\)
\(662\) −57.2638 −2.22562
\(663\) 0.298423 0.0115898
\(664\) −28.4407 −1.10371
\(665\) 15.8316 0.613923
\(666\) −5.46020 −0.211578
\(667\) −4.90336 −0.189859
\(668\) 66.3182 2.56593
\(669\) 6.43222 0.248684
\(670\) 33.9708 1.31241
\(671\) 2.34319 0.0904578
\(672\) −9.25756 −0.357118
\(673\) −7.17539 −0.276591 −0.138296 0.990391i \(-0.544162\pi\)
−0.138296 + 0.990391i \(0.544162\pi\)
\(674\) 16.5778 0.638551
\(675\) 2.21884 0.0854031
\(676\) −56.7567 −2.18295
\(677\) −21.0547 −0.809199 −0.404600 0.914494i \(-0.632589\pi\)
−0.404600 + 0.914494i \(0.632589\pi\)
\(678\) 1.67111 0.0641787
\(679\) 46.7475 1.79400
\(680\) 22.5096 0.863205
\(681\) −5.75257 −0.220439
\(682\) −7.43795 −0.284814
\(683\) −49.9962 −1.91305 −0.956526 0.291648i \(-0.905796\pi\)
−0.956526 + 0.291648i \(0.905796\pi\)
\(684\) −18.0260 −0.689241
\(685\) −32.1896 −1.22990
\(686\) 97.4671 3.72131
\(687\) 0.0252442 0.000963125 0
\(688\) −4.33651 −0.165328
\(689\) 0.241033 0.00918262
\(690\) 6.21161 0.236472
\(691\) −9.82064 −0.373595 −0.186797 0.982398i \(-0.559811\pi\)
−0.186797 + 0.982398i \(0.559811\pi\)
\(692\) 89.3191 3.39540
\(693\) 38.5107 1.46290
\(694\) 46.5104 1.76551
\(695\) 27.2245 1.03268
\(696\) 2.47508 0.0938178
\(697\) 7.14996 0.270824
\(698\) −75.4139 −2.85446
\(699\) 2.76285 0.104500
\(700\) −30.3873 −1.14853
\(701\) −2.51625 −0.0950374 −0.0475187 0.998870i \(-0.515131\pi\)
−0.0475187 + 0.998870i \(0.515131\pi\)
\(702\) 3.44922 0.130183
\(703\) −0.965387 −0.0364102
\(704\) 7.72351 0.291091
\(705\) −0.850523 −0.0320325
\(706\) −0.952550 −0.0358497
\(707\) −31.3310 −1.17833
\(708\) −9.77225 −0.367264
\(709\) 14.9029 0.559690 0.279845 0.960045i \(-0.409717\pi\)
0.279845 + 0.960045i \(0.409717\pi\)
\(710\) 22.1708 0.832056
\(711\) −30.7604 −1.15361
\(712\) −54.5413 −2.04402
\(713\) −3.68647 −0.138059
\(714\) −4.26359 −0.159561
\(715\) 5.99126 0.224061
\(716\) 30.5787 1.14278
\(717\) 3.36496 0.125667
\(718\) 42.9453 1.60270
\(719\) −47.4673 −1.77023 −0.885117 0.465369i \(-0.845922\pi\)
−0.885117 + 0.465369i \(0.845922\pi\)
\(720\) 60.0564 2.23817
\(721\) 54.3439 2.02387
\(722\) 44.3200 1.64942
\(723\) 3.48168 0.129485
\(724\) −47.5882 −1.76860
\(725\) 1.92309 0.0714217
\(726\) −2.17518 −0.0807284
\(727\) −6.61402 −0.245300 −0.122650 0.992450i \(-0.539139\pi\)
−0.122650 + 0.992450i \(0.539139\pi\)
\(728\) −26.7894 −0.992882
\(729\) −23.2180 −0.859926
\(730\) 21.3912 0.791723
\(731\) −0.706035 −0.0261136
\(732\) −1.03368 −0.0382058
\(733\) −6.43009 −0.237501 −0.118750 0.992924i \(-0.537889\pi\)
−0.118750 + 0.992924i \(0.537889\pi\)
\(734\) 69.2631 2.55655
\(735\) 10.1870 0.375752
\(736\) 26.3227 0.970268
\(737\) 14.6102 0.538174
\(738\) 40.8222 1.50269
\(739\) 43.0339 1.58303 0.791514 0.611151i \(-0.209293\pi\)
0.791514 + 0.611151i \(0.209293\pi\)
\(740\) 8.46990 0.311360
\(741\) 0.301244 0.0110665
\(742\) −3.44365 −0.126420
\(743\) 33.2061 1.21821 0.609107 0.793088i \(-0.291528\pi\)
0.609107 + 0.793088i \(0.291528\pi\)
\(744\) 1.86083 0.0682213
\(745\) 36.6018 1.34098
\(746\) −11.5638 −0.423380
\(747\) −12.3542 −0.452018
\(748\) 17.0704 0.624154
\(749\) 27.1097 0.990565
\(750\) 6.26340 0.228707
\(751\) −5.23324 −0.190964 −0.0954818 0.995431i \(-0.530439\pi\)
−0.0954818 + 0.995431i \(0.530439\pi\)
\(752\) −10.1954 −0.371789
\(753\) 0.834839 0.0304232
\(754\) 2.98947 0.108870
\(755\) −7.28826 −0.265247
\(756\) −34.3918 −1.25082
\(757\) −49.1075 −1.78484 −0.892420 0.451205i \(-0.850994\pi\)
−0.892420 + 0.451205i \(0.850994\pi\)
\(758\) −1.05397 −0.0382818
\(759\) 2.67150 0.0969691
\(760\) 22.7224 0.824229
\(761\) 41.4278 1.50176 0.750879 0.660440i \(-0.229630\pi\)
0.750879 + 0.660440i \(0.229630\pi\)
\(762\) −8.95650 −0.324460
\(763\) 90.6110 3.28034
\(764\) 55.5394 2.00934
\(765\) 9.77789 0.353520
\(766\) 48.4940 1.75216
\(767\) −6.69384 −0.241700
\(768\) 6.73469 0.243017
\(769\) −42.8857 −1.54650 −0.773248 0.634103i \(-0.781369\pi\)
−0.773248 + 0.634103i \(0.781369\pi\)
\(770\) −85.5976 −3.08472
\(771\) 6.01647 0.216678
\(772\) 29.8254 1.07344
\(773\) 15.2446 0.548310 0.274155 0.961685i \(-0.411602\pi\)
0.274155 + 0.961685i \(0.411602\pi\)
\(774\) −4.03106 −0.144893
\(775\) 1.44583 0.0519356
\(776\) 67.0946 2.40856
\(777\) −0.909832 −0.0326400
\(778\) 9.13822 0.327621
\(779\) 7.21755 0.258595
\(780\) −2.64299 −0.0946343
\(781\) 9.53524 0.341198
\(782\) 12.1230 0.433517
\(783\) 2.17652 0.0777824
\(784\) 122.114 4.36120
\(785\) −59.5632 −2.12590
\(786\) −3.85537 −0.137517
\(787\) 30.3788 1.08289 0.541444 0.840737i \(-0.317878\pi\)
0.541444 + 0.840737i \(0.317878\pi\)
\(788\) −36.2195 −1.29027
\(789\) 0.502108 0.0178755
\(790\) 68.3710 2.43253
\(791\) −11.4135 −0.405818
\(792\) 55.2728 1.96403
\(793\) −0.708052 −0.0251437
\(794\) −64.9763 −2.30592
\(795\) −0.192676 −0.00683351
\(796\) −38.8324 −1.37638
\(797\) −16.1164 −0.570872 −0.285436 0.958398i \(-0.592138\pi\)
−0.285436 + 0.958398i \(0.592138\pi\)
\(798\) −4.30389 −0.152356
\(799\) −1.65993 −0.0587242
\(800\) −10.3237 −0.364998
\(801\) −23.6920 −0.837117
\(802\) 11.7440 0.414697
\(803\) 9.19994 0.324659
\(804\) −6.44515 −0.227303
\(805\) −42.4247 −1.49527
\(806\) 2.24756 0.0791669
\(807\) −3.31302 −0.116624
\(808\) −44.9681 −1.58197
\(809\) −4.04964 −0.142378 −0.0711889 0.997463i \(-0.522679\pi\)
−0.0711889 + 0.997463i \(0.522679\pi\)
\(810\) 54.4310 1.91251
\(811\) 45.3378 1.59202 0.796012 0.605281i \(-0.206939\pi\)
0.796012 + 0.605281i \(0.206939\pi\)
\(812\) −29.8077 −1.04604
\(813\) 3.54040 0.124167
\(814\) 5.21961 0.182947
\(815\) −20.1152 −0.704604
\(816\) −2.85959 −0.100106
\(817\) −0.712709 −0.0249345
\(818\) −56.0799 −1.96079
\(819\) −11.6370 −0.406628
\(820\) −63.3238 −2.21136
\(821\) −6.05568 −0.211345 −0.105672 0.994401i \(-0.533699\pi\)
−0.105672 + 0.994401i \(0.533699\pi\)
\(822\) 8.75088 0.305222
\(823\) 50.3726 1.75588 0.877940 0.478771i \(-0.158917\pi\)
0.877940 + 0.478771i \(0.158917\pi\)
\(824\) 77.9974 2.71717
\(825\) −1.04775 −0.0364781
\(826\) 95.6353 3.32758
\(827\) 4.48512 0.155963 0.0779815 0.996955i \(-0.475152\pi\)
0.0779815 + 0.996955i \(0.475152\pi\)
\(828\) 48.3051 1.67872
\(829\) −44.7396 −1.55387 −0.776935 0.629581i \(-0.783227\pi\)
−0.776935 + 0.629581i \(0.783227\pi\)
\(830\) 27.4597 0.953140
\(831\) 6.64961 0.230672
\(832\) −2.33385 −0.0809116
\(833\) 19.8815 0.688854
\(834\) −7.40111 −0.256279
\(835\) −36.3132 −1.25667
\(836\) 17.2317 0.595972
\(837\) 1.63636 0.0565609
\(838\) 9.61606 0.332181
\(839\) 11.9351 0.412045 0.206022 0.978547i \(-0.433948\pi\)
0.206022 + 0.978547i \(0.433948\pi\)
\(840\) 21.4148 0.738882
\(841\) −27.1136 −0.934951
\(842\) 23.2225 0.800301
\(843\) −5.73344 −0.197470
\(844\) 68.9912 2.37478
\(845\) 31.0777 1.06911
\(846\) −9.47728 −0.325836
\(847\) 14.8562 0.510466
\(848\) −2.30965 −0.0793138
\(849\) −0.140109 −0.00480853
\(850\) −4.75460 −0.163082
\(851\) 2.58699 0.0886809
\(852\) −4.20638 −0.144108
\(853\) −9.59589 −0.328557 −0.164278 0.986414i \(-0.552530\pi\)
−0.164278 + 0.986414i \(0.552530\pi\)
\(854\) 10.1160 0.346162
\(855\) 9.87032 0.337558
\(856\) 38.9093 1.32989
\(857\) 34.8563 1.19067 0.595335 0.803478i \(-0.297019\pi\)
0.595335 + 0.803478i \(0.297019\pi\)
\(858\) −1.62875 −0.0556047
\(859\) −36.9109 −1.25938 −0.629691 0.776845i \(-0.716819\pi\)
−0.629691 + 0.776845i \(0.716819\pi\)
\(860\) 6.25301 0.213226
\(861\) 6.80220 0.231818
\(862\) −14.8321 −0.505184
\(863\) 26.9297 0.916697 0.458349 0.888773i \(-0.348441\pi\)
0.458349 + 0.888773i \(0.348441\pi\)
\(864\) −11.6842 −0.397504
\(865\) −48.9076 −1.66291
\(866\) 9.95840 0.338400
\(867\) 4.07849 0.138513
\(868\) −22.4102 −0.760650
\(869\) 29.4051 0.997498
\(870\) −2.38972 −0.0810189
\(871\) −4.41483 −0.149591
\(872\) 130.050 4.40405
\(873\) 29.1450 0.986410
\(874\) 12.2376 0.413942
\(875\) −42.7784 −1.44617
\(876\) −4.05847 −0.137123
\(877\) 31.0035 1.04691 0.523457 0.852052i \(-0.324642\pi\)
0.523457 + 0.852052i \(0.324642\pi\)
\(878\) 10.2054 0.344417
\(879\) 1.72348 0.0581317
\(880\) −57.4102 −1.93530
\(881\) −51.2301 −1.72598 −0.862992 0.505217i \(-0.831412\pi\)
−0.862992 + 0.505217i \(0.831412\pi\)
\(882\) 113.512 3.82216
\(883\) −4.11038 −0.138325 −0.0691627 0.997605i \(-0.522033\pi\)
−0.0691627 + 0.997605i \(0.522033\pi\)
\(884\) −5.15823 −0.173490
\(885\) 5.35090 0.179868
\(886\) −87.6939 −2.94614
\(887\) 4.14975 0.139335 0.0696675 0.997570i \(-0.477806\pi\)
0.0696675 + 0.997570i \(0.477806\pi\)
\(888\) −1.30584 −0.0438212
\(889\) 61.1720 2.05164
\(890\) 52.6601 1.76517
\(891\) 23.4097 0.784255
\(892\) −111.180 −3.72260
\(893\) −1.67562 −0.0560726
\(894\) −9.95035 −0.332790
\(895\) −16.7437 −0.559679
\(896\) −35.9239 −1.20013
\(897\) −0.807258 −0.0269536
\(898\) 32.4789 1.08383
\(899\) 1.41825 0.0473012
\(900\) −18.9451 −0.631505
\(901\) −0.376038 −0.0125277
\(902\) −39.0235 −1.29934
\(903\) −0.671695 −0.0223526
\(904\) −16.3814 −0.544836
\(905\) 26.0574 0.866178
\(906\) 1.98135 0.0658258
\(907\) −25.8159 −0.857204 −0.428602 0.903493i \(-0.640994\pi\)
−0.428602 + 0.903493i \(0.640994\pi\)
\(908\) 99.4328 3.29979
\(909\) −19.5336 −0.647887
\(910\) 25.8654 0.857430
\(911\) 0.601945 0.0199433 0.00997166 0.999950i \(-0.496826\pi\)
0.00997166 + 0.999950i \(0.496826\pi\)
\(912\) −2.88662 −0.0955854
\(913\) 11.8099 0.390850
\(914\) −0.475797 −0.0157380
\(915\) 0.566000 0.0187114
\(916\) −0.436344 −0.0144172
\(917\) 26.3318 0.869552
\(918\) −5.38118 −0.177605
\(919\) 11.1047 0.366312 0.183156 0.983084i \(-0.441369\pi\)
0.183156 + 0.983084i \(0.441369\pi\)
\(920\) −60.8903 −2.00749
\(921\) 2.20332 0.0726019
\(922\) 58.0127 1.91055
\(923\) −2.88131 −0.0948394
\(924\) 16.2401 0.534260
\(925\) −1.01461 −0.0333602
\(926\) 24.3333 0.799641
\(927\) 33.8811 1.11280
\(928\) −10.1268 −0.332429
\(929\) −29.4207 −0.965261 −0.482630 0.875824i \(-0.660319\pi\)
−0.482630 + 0.875824i \(0.660319\pi\)
\(930\) −1.79665 −0.0589144
\(931\) 20.0695 0.657750
\(932\) −47.7557 −1.56429
\(933\) 4.11532 0.134729
\(934\) 61.8889 2.02507
\(935\) −9.34705 −0.305681
\(936\) −16.7020 −0.545923
\(937\) 22.2978 0.728437 0.364219 0.931314i \(-0.381336\pi\)
0.364219 + 0.931314i \(0.381336\pi\)
\(938\) 63.0749 2.05947
\(939\) −1.88933 −0.0616561
\(940\) 14.7012 0.479501
\(941\) 23.1099 0.753361 0.376680 0.926343i \(-0.377065\pi\)
0.376680 + 0.926343i \(0.377065\pi\)
\(942\) 16.1925 0.527581
\(943\) −19.3412 −0.629836
\(944\) 64.1425 2.08766
\(945\) 18.8316 0.612591
\(946\) 3.85344 0.125286
\(947\) 32.0189 1.04047 0.520237 0.854022i \(-0.325844\pi\)
0.520237 + 0.854022i \(0.325844\pi\)
\(948\) −12.9718 −0.421304
\(949\) −2.77999 −0.0902422
\(950\) −4.79955 −0.155718
\(951\) −1.03044 −0.0334144
\(952\) 41.7945 1.35457
\(953\) 31.3512 1.01557 0.507783 0.861485i \(-0.330465\pi\)
0.507783 + 0.861485i \(0.330465\pi\)
\(954\) −2.14697 −0.0695106
\(955\) −30.4112 −0.984082
\(956\) −58.1632 −1.88113
\(957\) −1.02777 −0.0332231
\(958\) 0.790616 0.0255436
\(959\) −59.7676 −1.93000
\(960\) 1.86562 0.0602127
\(961\) −29.9337 −0.965604
\(962\) −1.57723 −0.0508520
\(963\) 16.9017 0.544650
\(964\) −60.1806 −1.93829
\(965\) −16.3312 −0.525721
\(966\) 11.5333 0.371079
\(967\) −48.1343 −1.54790 −0.773948 0.633249i \(-0.781721\pi\)
−0.773948 + 0.633249i \(0.781721\pi\)
\(968\) 21.3225 0.685331
\(969\) −0.469975 −0.0150978
\(970\) −64.7804 −2.07997
\(971\) −26.5876 −0.853237 −0.426618 0.904432i \(-0.640295\pi\)
−0.426618 + 0.904432i \(0.640295\pi\)
\(972\) −32.2919 −1.03576
\(973\) 50.5488 1.62052
\(974\) −47.6416 −1.52654
\(975\) 0.316605 0.0101395
\(976\) 6.78478 0.217175
\(977\) 9.54244 0.305290 0.152645 0.988281i \(-0.451221\pi\)
0.152645 + 0.988281i \(0.451221\pi\)
\(978\) 5.46840 0.174860
\(979\) 22.6481 0.723836
\(980\) −176.081 −5.62471
\(981\) 56.4920 1.80365
\(982\) −23.2603 −0.742267
\(983\) 16.8963 0.538909 0.269454 0.963013i \(-0.413157\pi\)
0.269454 + 0.963013i \(0.413157\pi\)
\(984\) 9.76291 0.311230
\(985\) 19.8324 0.631912
\(986\) −4.66392 −0.148529
\(987\) −1.57920 −0.0502664
\(988\) −5.20699 −0.165656
\(989\) 1.90988 0.0607306
\(990\) −53.3664 −1.69609
\(991\) 3.44238 0.109351 0.0546754 0.998504i \(-0.482588\pi\)
0.0546754 + 0.998504i \(0.482588\pi\)
\(992\) −7.61358 −0.241731
\(993\) −5.94894 −0.188784
\(994\) 41.1654 1.30569
\(995\) 21.2631 0.674085
\(996\) −5.20982 −0.165080
\(997\) −15.6959 −0.497096 −0.248548 0.968620i \(-0.579953\pi\)
−0.248548 + 0.968620i \(0.579953\pi\)
\(998\) −3.90005 −0.123454
\(999\) −1.14832 −0.0363313
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3467.2.a.b.1.7 126
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3467.2.a.b.1.7 126 1.1 even 1 trivial