Properties

Label 3467.2.a.c.1.4
Level $3467$
Weight $2$
Character 3467.1
Self dual yes
Analytic conductor $27.684$
Analytic rank $0$
Dimension $162$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3467,2,Mod(1,3467)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3467, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3467.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3467 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3467.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.6841343808\)
Analytic rank: \(0\)
Dimension: \(162\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 3467.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.74906 q^{2} -0.534947 q^{3} +5.55732 q^{4} +1.27817 q^{5} +1.47060 q^{6} +0.611481 q^{7} -9.77929 q^{8} -2.71383 q^{9} -3.51376 q^{10} -3.27630 q^{11} -2.97287 q^{12} +2.00815 q^{13} -1.68100 q^{14} -0.683753 q^{15} +15.7692 q^{16} +4.18042 q^{17} +7.46048 q^{18} +6.77567 q^{19} +7.10320 q^{20} -0.327110 q^{21} +9.00674 q^{22} -8.49423 q^{23} +5.23140 q^{24} -3.36628 q^{25} -5.52051 q^{26} +3.05660 q^{27} +3.39820 q^{28} -4.01552 q^{29} +1.87968 q^{30} +6.29765 q^{31} -23.7919 q^{32} +1.75265 q^{33} -11.4922 q^{34} +0.781576 q^{35} -15.0816 q^{36} +8.31408 q^{37} -18.6267 q^{38} -1.07425 q^{39} -12.4996 q^{40} -5.08677 q^{41} +0.899244 q^{42} -5.26383 q^{43} -18.2075 q^{44} -3.46874 q^{45} +23.3511 q^{46} +8.83759 q^{47} -8.43569 q^{48} -6.62609 q^{49} +9.25411 q^{50} -2.23630 q^{51} +11.1599 q^{52} +0.906076 q^{53} -8.40276 q^{54} -4.18767 q^{55} -5.97985 q^{56} -3.62463 q^{57} +11.0389 q^{58} -4.95028 q^{59} -3.79984 q^{60} -0.282836 q^{61} -17.3126 q^{62} -1.65946 q^{63} +33.8669 q^{64} +2.56675 q^{65} -4.81813 q^{66} -8.95059 q^{67} +23.2319 q^{68} +4.54396 q^{69} -2.14860 q^{70} +6.48975 q^{71} +26.5394 q^{72} +11.2387 q^{73} -22.8559 q^{74} +1.80078 q^{75} +37.6546 q^{76} -2.00340 q^{77} +2.95318 q^{78} -5.50432 q^{79} +20.1557 q^{80} +6.50638 q^{81} +13.9838 q^{82} +13.2287 q^{83} -1.81786 q^{84} +5.34328 q^{85} +14.4706 q^{86} +2.14809 q^{87} +32.0399 q^{88} +3.76833 q^{89} +9.53576 q^{90} +1.22794 q^{91} -47.2052 q^{92} -3.36891 q^{93} -24.2950 q^{94} +8.66046 q^{95} +12.7274 q^{96} +7.72574 q^{97} +18.2155 q^{98} +8.89133 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 162 q + 9 q^{2} + 24 q^{3} + 189 q^{4} + 32 q^{5} + 9 q^{6} + 23 q^{7} + 27 q^{8} + 196 q^{9} + 50 q^{10} + 12 q^{11} + 69 q^{12} + 144 q^{13} + 11 q^{14} + 17 q^{15} + 223 q^{16} + 33 q^{17} + 39 q^{18}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.74906 −1.94388 −0.971939 0.235233i \(-0.924415\pi\)
−0.971939 + 0.235233i \(0.924415\pi\)
\(3\) −0.534947 −0.308852 −0.154426 0.988004i \(-0.549353\pi\)
−0.154426 + 0.988004i \(0.549353\pi\)
\(4\) 5.55732 2.77866
\(5\) 1.27817 0.571615 0.285807 0.958287i \(-0.407738\pi\)
0.285807 + 0.958287i \(0.407738\pi\)
\(6\) 1.47060 0.600370
\(7\) 0.611481 0.231118 0.115559 0.993301i \(-0.463134\pi\)
0.115559 + 0.993301i \(0.463134\pi\)
\(8\) −9.77929 −3.45750
\(9\) −2.71383 −0.904611
\(10\) −3.51376 −1.11115
\(11\) −3.27630 −0.987842 −0.493921 0.869507i \(-0.664437\pi\)
−0.493921 + 0.869507i \(0.664437\pi\)
\(12\) −2.97287 −0.858195
\(13\) 2.00815 0.556960 0.278480 0.960442i \(-0.410169\pi\)
0.278480 + 0.960442i \(0.410169\pi\)
\(14\) −1.68100 −0.449265
\(15\) −0.683753 −0.176544
\(16\) 15.7692 3.94230
\(17\) 4.18042 1.01390 0.506950 0.861975i \(-0.330773\pi\)
0.506950 + 0.861975i \(0.330773\pi\)
\(18\) 7.46048 1.75845
\(19\) 6.77567 1.55445 0.777223 0.629225i \(-0.216628\pi\)
0.777223 + 0.629225i \(0.216628\pi\)
\(20\) 7.10320 1.58832
\(21\) −0.327110 −0.0713812
\(22\) 9.00674 1.92024
\(23\) −8.49423 −1.77117 −0.885584 0.464479i \(-0.846242\pi\)
−0.885584 + 0.464479i \(0.846242\pi\)
\(24\) 5.23140 1.06786
\(25\) −3.36628 −0.673257
\(26\) −5.52051 −1.08266
\(27\) 3.05660 0.588242
\(28\) 3.39820 0.642199
\(29\) −4.01552 −0.745663 −0.372831 0.927899i \(-0.621613\pi\)
−0.372831 + 0.927899i \(0.621613\pi\)
\(30\) 1.87968 0.343180
\(31\) 6.29765 1.13109 0.565546 0.824717i \(-0.308665\pi\)
0.565546 + 0.824717i \(0.308665\pi\)
\(32\) −23.7919 −4.20585
\(33\) 1.75265 0.305097
\(34\) −11.4922 −1.97090
\(35\) 0.781576 0.132111
\(36\) −15.0816 −2.51361
\(37\) 8.31408 1.36683 0.683413 0.730032i \(-0.260495\pi\)
0.683413 + 0.730032i \(0.260495\pi\)
\(38\) −18.6267 −3.02165
\(39\) −1.07425 −0.172018
\(40\) −12.4996 −1.97636
\(41\) −5.08677 −0.794421 −0.397210 0.917728i \(-0.630022\pi\)
−0.397210 + 0.917728i \(0.630022\pi\)
\(42\) 0.899244 0.138756
\(43\) −5.26383 −0.802727 −0.401364 0.915919i \(-0.631464\pi\)
−0.401364 + 0.915919i \(0.631464\pi\)
\(44\) −18.2075 −2.74488
\(45\) −3.46874 −0.517089
\(46\) 23.3511 3.44294
\(47\) 8.83759 1.28909 0.644547 0.764564i \(-0.277046\pi\)
0.644547 + 0.764564i \(0.277046\pi\)
\(48\) −8.43569 −1.21759
\(49\) −6.62609 −0.946584
\(50\) 9.25411 1.30873
\(51\) −2.23630 −0.313145
\(52\) 11.1599 1.54760
\(53\) 0.906076 0.124459 0.0622296 0.998062i \(-0.480179\pi\)
0.0622296 + 0.998062i \(0.480179\pi\)
\(54\) −8.40276 −1.14347
\(55\) −4.18767 −0.564665
\(56\) −5.97985 −0.799091
\(57\) −3.62463 −0.480093
\(58\) 11.0389 1.44948
\(59\) −4.95028 −0.644472 −0.322236 0.946659i \(-0.604434\pi\)
−0.322236 + 0.946659i \(0.604434\pi\)
\(60\) −3.79984 −0.490557
\(61\) −0.282836 −0.0362134 −0.0181067 0.999836i \(-0.505764\pi\)
−0.0181067 + 0.999836i \(0.505764\pi\)
\(62\) −17.3126 −2.19871
\(63\) −1.65946 −0.209072
\(64\) 33.8669 4.23336
\(65\) 2.56675 0.318366
\(66\) −4.81813 −0.593071
\(67\) −8.95059 −1.09349 −0.546744 0.837300i \(-0.684133\pi\)
−0.546744 + 0.837300i \(0.684133\pi\)
\(68\) 23.2319 2.81729
\(69\) 4.54396 0.547029
\(70\) −2.14860 −0.256807
\(71\) 6.48975 0.770191 0.385096 0.922877i \(-0.374168\pi\)
0.385096 + 0.922877i \(0.374168\pi\)
\(72\) 26.5394 3.12769
\(73\) 11.2387 1.31539 0.657694 0.753286i \(-0.271532\pi\)
0.657694 + 0.753286i \(0.271532\pi\)
\(74\) −22.8559 −2.65694
\(75\) 1.80078 0.207936
\(76\) 37.6546 4.31928
\(77\) −2.00340 −0.228308
\(78\) 2.95318 0.334382
\(79\) −5.50432 −0.619284 −0.309642 0.950853i \(-0.600209\pi\)
−0.309642 + 0.950853i \(0.600209\pi\)
\(80\) 20.1557 2.25348
\(81\) 6.50638 0.722931
\(82\) 13.9838 1.54426
\(83\) 13.2287 1.45204 0.726020 0.687674i \(-0.241368\pi\)
0.726020 + 0.687674i \(0.241368\pi\)
\(84\) −1.81786 −0.198344
\(85\) 5.34328 0.579560
\(86\) 14.4706 1.56040
\(87\) 2.14809 0.230299
\(88\) 32.0399 3.41547
\(89\) 3.76833 0.399443 0.199721 0.979853i \(-0.435996\pi\)
0.199721 + 0.979853i \(0.435996\pi\)
\(90\) 9.53576 1.00516
\(91\) 1.22794 0.128724
\(92\) −47.2052 −4.92148
\(93\) −3.36891 −0.349340
\(94\) −24.2950 −2.50584
\(95\) 8.66046 0.888544
\(96\) 12.7274 1.29898
\(97\) 7.72574 0.784430 0.392215 0.919874i \(-0.371709\pi\)
0.392215 + 0.919874i \(0.371709\pi\)
\(98\) 18.2155 1.84004
\(99\) 8.89133 0.893612
\(100\) −18.7075 −1.87075
\(101\) 9.49961 0.945246 0.472623 0.881265i \(-0.343307\pi\)
0.472623 + 0.881265i \(0.343307\pi\)
\(102\) 6.14772 0.608715
\(103\) −4.39266 −0.432821 −0.216411 0.976302i \(-0.569435\pi\)
−0.216411 + 0.976302i \(0.569435\pi\)
\(104\) −19.6383 −1.92569
\(105\) −0.418102 −0.0408026
\(106\) −2.49086 −0.241933
\(107\) 7.85495 0.759367 0.379683 0.925117i \(-0.376033\pi\)
0.379683 + 0.925117i \(0.376033\pi\)
\(108\) 16.9865 1.63453
\(109\) −17.1501 −1.64268 −0.821339 0.570441i \(-0.806773\pi\)
−0.821339 + 0.570441i \(0.806773\pi\)
\(110\) 11.5121 1.09764
\(111\) −4.44759 −0.422146
\(112\) 9.64257 0.911137
\(113\) 0.863879 0.0812669 0.0406335 0.999174i \(-0.487062\pi\)
0.0406335 + 0.999174i \(0.487062\pi\)
\(114\) 9.96431 0.933243
\(115\) −10.8571 −1.01243
\(116\) −22.3155 −2.07194
\(117\) −5.44977 −0.503832
\(118\) 13.6086 1.25277
\(119\) 2.55625 0.234331
\(120\) 6.68662 0.610402
\(121\) −0.265854 −0.0241685
\(122\) 0.777532 0.0703944
\(123\) 2.72115 0.245358
\(124\) 34.9981 3.14292
\(125\) −10.6935 −0.956458
\(126\) 4.56194 0.406410
\(127\) −6.61958 −0.587393 −0.293696 0.955899i \(-0.594885\pi\)
−0.293696 + 0.955899i \(0.594885\pi\)
\(128\) −45.5183 −4.02329
\(129\) 2.81587 0.247924
\(130\) −7.05615 −0.618866
\(131\) 4.92568 0.430359 0.215180 0.976575i \(-0.430966\pi\)
0.215180 + 0.976575i \(0.430966\pi\)
\(132\) 9.74003 0.847761
\(133\) 4.14320 0.359261
\(134\) 24.6057 2.12561
\(135\) 3.90685 0.336248
\(136\) −40.8815 −3.50556
\(137\) 18.3221 1.56536 0.782681 0.622423i \(-0.213852\pi\)
0.782681 + 0.622423i \(0.213852\pi\)
\(138\) −12.4916 −1.06336
\(139\) 7.90228 0.670263 0.335131 0.942171i \(-0.391219\pi\)
0.335131 + 0.942171i \(0.391219\pi\)
\(140\) 4.34347 0.367091
\(141\) −4.72764 −0.398139
\(142\) −17.8407 −1.49716
\(143\) −6.57929 −0.550188
\(144\) −42.7950 −3.56625
\(145\) −5.13251 −0.426232
\(146\) −30.8958 −2.55695
\(147\) 3.54461 0.292354
\(148\) 46.2040 3.79795
\(149\) 6.33697 0.519145 0.259572 0.965724i \(-0.416418\pi\)
0.259572 + 0.965724i \(0.416418\pi\)
\(150\) −4.95046 −0.404203
\(151\) 4.01667 0.326872 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(152\) −66.2613 −5.37450
\(153\) −11.3449 −0.917185
\(154\) 5.50745 0.443803
\(155\) 8.04947 0.646549
\(156\) −5.96997 −0.477980
\(157\) 4.00217 0.319408 0.159704 0.987165i \(-0.448946\pi\)
0.159704 + 0.987165i \(0.448946\pi\)
\(158\) 15.1317 1.20381
\(159\) −0.484703 −0.0384394
\(160\) −30.4101 −2.40413
\(161\) −5.19406 −0.409349
\(162\) −17.8864 −1.40529
\(163\) −9.44401 −0.739712 −0.369856 0.929089i \(-0.620593\pi\)
−0.369856 + 0.929089i \(0.620593\pi\)
\(164\) −28.2688 −2.20743
\(165\) 2.24018 0.174398
\(166\) −36.3665 −2.82259
\(167\) −15.0973 −1.16827 −0.584134 0.811657i \(-0.698566\pi\)
−0.584134 + 0.811657i \(0.698566\pi\)
\(168\) 3.19890 0.246801
\(169\) −8.96734 −0.689796
\(170\) −14.6890 −1.12659
\(171\) −18.3880 −1.40617
\(172\) −29.2528 −2.23051
\(173\) 2.13264 0.162142 0.0810708 0.996708i \(-0.474166\pi\)
0.0810708 + 0.996708i \(0.474166\pi\)
\(174\) −5.90522 −0.447674
\(175\) −2.05842 −0.155602
\(176\) −51.6647 −3.89437
\(177\) 2.64814 0.199046
\(178\) −10.3594 −0.776468
\(179\) −19.1743 −1.43316 −0.716579 0.697506i \(-0.754293\pi\)
−0.716579 + 0.697506i \(0.754293\pi\)
\(180\) −19.2769 −1.43682
\(181\) 23.1023 1.71718 0.858589 0.512664i \(-0.171341\pi\)
0.858589 + 0.512664i \(0.171341\pi\)
\(182\) −3.37569 −0.250223
\(183\) 0.151302 0.0111846
\(184\) 83.0675 6.12382
\(185\) 10.6268 0.781298
\(186\) 9.26133 0.679074
\(187\) −13.6963 −1.00157
\(188\) 49.1133 3.58196
\(189\) 1.86905 0.135953
\(190\) −23.8081 −1.72722
\(191\) −2.95039 −0.213483 −0.106742 0.994287i \(-0.534042\pi\)
−0.106742 + 0.994287i \(0.534042\pi\)
\(192\) −18.1170 −1.30748
\(193\) 2.35167 0.169277 0.0846384 0.996412i \(-0.473027\pi\)
0.0846384 + 0.996412i \(0.473027\pi\)
\(194\) −21.2385 −1.52484
\(195\) −1.37308 −0.0983280
\(196\) −36.8233 −2.63024
\(197\) 3.13703 0.223504 0.111752 0.993736i \(-0.464354\pi\)
0.111752 + 0.993736i \(0.464354\pi\)
\(198\) −24.4428 −1.73707
\(199\) 3.92409 0.278172 0.139086 0.990280i \(-0.455584\pi\)
0.139086 + 0.990280i \(0.455584\pi\)
\(200\) 32.9199 2.32779
\(201\) 4.78809 0.337726
\(202\) −26.1150 −1.83744
\(203\) −2.45541 −0.172336
\(204\) −12.4279 −0.870124
\(205\) −6.50176 −0.454103
\(206\) 12.0757 0.841352
\(207\) 23.0519 1.60222
\(208\) 31.6669 2.19570
\(209\) −22.1991 −1.53555
\(210\) 1.14939 0.0793152
\(211\) 18.4769 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(212\) 5.03536 0.345830
\(213\) −3.47167 −0.237875
\(214\) −21.5937 −1.47612
\(215\) −6.72807 −0.458851
\(216\) −29.8914 −2.03385
\(217\) 3.85090 0.261416
\(218\) 47.1465 3.19317
\(219\) −6.01209 −0.406260
\(220\) −23.2722 −1.56901
\(221\) 8.39489 0.564702
\(222\) 12.2267 0.820601
\(223\) 12.8486 0.860405 0.430202 0.902732i \(-0.358442\pi\)
0.430202 + 0.902732i \(0.358442\pi\)
\(224\) −14.5483 −0.972048
\(225\) 9.13552 0.609035
\(226\) −2.37485 −0.157973
\(227\) 8.00705 0.531447 0.265723 0.964049i \(-0.414389\pi\)
0.265723 + 0.964049i \(0.414389\pi\)
\(228\) −20.1432 −1.33402
\(229\) 3.75266 0.247983 0.123992 0.992283i \(-0.460430\pi\)
0.123992 + 0.992283i \(0.460430\pi\)
\(230\) 29.8467 1.96803
\(231\) 1.07171 0.0705134
\(232\) 39.2689 2.57813
\(233\) 9.34020 0.611897 0.305948 0.952048i \(-0.401027\pi\)
0.305948 + 0.952048i \(0.401027\pi\)
\(234\) 14.9817 0.979388
\(235\) 11.2959 0.736866
\(236\) −27.5103 −1.79077
\(237\) 2.94452 0.191267
\(238\) −7.02727 −0.455510
\(239\) 19.4564 1.25853 0.629266 0.777190i \(-0.283356\pi\)
0.629266 + 0.777190i \(0.283356\pi\)
\(240\) −10.7822 −0.695991
\(241\) 8.59519 0.553665 0.276832 0.960918i \(-0.410715\pi\)
0.276832 + 0.960918i \(0.410715\pi\)
\(242\) 0.730848 0.0469807
\(243\) −12.6504 −0.811521
\(244\) −1.57181 −0.100625
\(245\) −8.46927 −0.541082
\(246\) −7.48061 −0.476946
\(247\) 13.6066 0.865764
\(248\) −61.5866 −3.91075
\(249\) −7.07666 −0.448465
\(250\) 29.3971 1.85924
\(251\) −12.4945 −0.788648 −0.394324 0.918972i \(-0.629021\pi\)
−0.394324 + 0.918972i \(0.629021\pi\)
\(252\) −9.22214 −0.580940
\(253\) 27.8296 1.74963
\(254\) 18.1976 1.14182
\(255\) −2.85837 −0.178998
\(256\) 57.3987 3.58742
\(257\) 6.80937 0.424757 0.212379 0.977187i \(-0.431879\pi\)
0.212379 + 0.977187i \(0.431879\pi\)
\(258\) −7.74100 −0.481933
\(259\) 5.08390 0.315898
\(260\) 14.2643 0.884633
\(261\) 10.8974 0.674534
\(262\) −13.5410 −0.836566
\(263\) 19.2459 1.18675 0.593376 0.804925i \(-0.297795\pi\)
0.593376 + 0.804925i \(0.297795\pi\)
\(264\) −17.1396 −1.05487
\(265\) 1.15812 0.0711427
\(266\) −11.3899 −0.698359
\(267\) −2.01586 −0.123369
\(268\) −49.7413 −3.03844
\(269\) −18.2925 −1.11531 −0.557656 0.830072i \(-0.688299\pi\)
−0.557656 + 0.830072i \(0.688299\pi\)
\(270\) −10.7402 −0.653625
\(271\) 6.70707 0.407425 0.203713 0.979031i \(-0.434699\pi\)
0.203713 + 0.979031i \(0.434699\pi\)
\(272\) 65.9219 3.99710
\(273\) −0.656885 −0.0397565
\(274\) −50.3685 −3.04287
\(275\) 11.0290 0.665071
\(276\) 25.2523 1.52001
\(277\) 28.9801 1.74125 0.870624 0.491950i \(-0.163716\pi\)
0.870624 + 0.491950i \(0.163716\pi\)
\(278\) −21.7238 −1.30291
\(279\) −17.0908 −1.02320
\(280\) −7.64327 −0.456772
\(281\) −5.25573 −0.313531 −0.156765 0.987636i \(-0.550107\pi\)
−0.156765 + 0.987636i \(0.550107\pi\)
\(282\) 12.9966 0.773934
\(283\) 2.88046 0.171226 0.0856128 0.996328i \(-0.472715\pi\)
0.0856128 + 0.996328i \(0.472715\pi\)
\(284\) 36.0656 2.14010
\(285\) −4.63289 −0.274429
\(286\) 18.0869 1.06950
\(287\) −3.11047 −0.183605
\(288\) 64.5672 3.80466
\(289\) 0.475886 0.0279933
\(290\) 14.1096 0.828543
\(291\) −4.13286 −0.242273
\(292\) 62.4569 3.65502
\(293\) −3.54115 −0.206876 −0.103438 0.994636i \(-0.532984\pi\)
−0.103438 + 0.994636i \(0.532984\pi\)
\(294\) −9.74433 −0.568301
\(295\) −6.32730 −0.368390
\(296\) −81.3058 −4.72580
\(297\) −10.0143 −0.581090
\(298\) −17.4207 −1.00915
\(299\) −17.0577 −0.986470
\(300\) 10.0075 0.577785
\(301\) −3.21873 −0.185525
\(302\) −11.0421 −0.635400
\(303\) −5.08179 −0.291941
\(304\) 106.847 6.12810
\(305\) −0.361512 −0.0207001
\(306\) 31.1879 1.78290
\(307\) 24.8310 1.41718 0.708589 0.705622i \(-0.249332\pi\)
0.708589 + 0.705622i \(0.249332\pi\)
\(308\) −11.1335 −0.634391
\(309\) 2.34984 0.133678
\(310\) −22.1285 −1.25681
\(311\) −24.1200 −1.36772 −0.683859 0.729614i \(-0.739700\pi\)
−0.683859 + 0.729614i \(0.739700\pi\)
\(312\) 10.5054 0.594753
\(313\) 27.2418 1.53980 0.769900 0.638164i \(-0.220306\pi\)
0.769900 + 0.638164i \(0.220306\pi\)
\(314\) −11.0022 −0.620889
\(315\) −2.12107 −0.119509
\(316\) −30.5893 −1.72078
\(317\) 8.70754 0.489064 0.244532 0.969641i \(-0.421366\pi\)
0.244532 + 0.969641i \(0.421366\pi\)
\(318\) 1.33248 0.0747215
\(319\) 13.1560 0.736597
\(320\) 43.2876 2.41985
\(321\) −4.20198 −0.234532
\(322\) 14.2788 0.795725
\(323\) 28.3251 1.57605
\(324\) 36.1581 2.00878
\(325\) −6.75999 −0.374977
\(326\) 25.9621 1.43791
\(327\) 9.17437 0.507344
\(328\) 49.7451 2.74671
\(329\) 5.40402 0.297933
\(330\) −6.15839 −0.339008
\(331\) −4.81864 −0.264856 −0.132428 0.991193i \(-0.542277\pi\)
−0.132428 + 0.991193i \(0.542277\pi\)
\(332\) 73.5162 4.03473
\(333\) −22.5630 −1.23644
\(334\) 41.5035 2.27097
\(335\) −11.4404 −0.625054
\(336\) −5.15826 −0.281406
\(337\) −3.98157 −0.216890 −0.108445 0.994102i \(-0.534587\pi\)
−0.108445 + 0.994102i \(0.534587\pi\)
\(338\) 24.6518 1.34088
\(339\) −0.462130 −0.0250994
\(340\) 29.6943 1.61040
\(341\) −20.6330 −1.11734
\(342\) 50.5498 2.73342
\(343\) −8.33210 −0.449891
\(344\) 51.4766 2.77543
\(345\) 5.80795 0.312690
\(346\) −5.86275 −0.315183
\(347\) −28.6313 −1.53701 −0.768504 0.639846i \(-0.778998\pi\)
−0.768504 + 0.639846i \(0.778998\pi\)
\(348\) 11.9376 0.639924
\(349\) −25.5238 −1.36626 −0.683128 0.730299i \(-0.739381\pi\)
−0.683128 + 0.730299i \(0.739381\pi\)
\(350\) 5.65871 0.302471
\(351\) 6.13810 0.327627
\(352\) 77.9494 4.15472
\(353\) 8.90855 0.474154 0.237077 0.971491i \(-0.423811\pi\)
0.237077 + 0.971491i \(0.423811\pi\)
\(354\) −7.27989 −0.386922
\(355\) 8.29499 0.440253
\(356\) 20.9419 1.10992
\(357\) −1.36746 −0.0723734
\(358\) 52.7114 2.78588
\(359\) −24.6966 −1.30344 −0.651718 0.758461i \(-0.725951\pi\)
−0.651718 + 0.758461i \(0.725951\pi\)
\(360\) 33.9218 1.78784
\(361\) 26.9098 1.41630
\(362\) −63.5095 −3.33799
\(363\) 0.142218 0.00746449
\(364\) 6.82408 0.357679
\(365\) 14.3649 0.751895
\(366\) −0.415938 −0.0217414
\(367\) −7.12977 −0.372171 −0.186085 0.982534i \(-0.559580\pi\)
−0.186085 + 0.982534i \(0.559580\pi\)
\(368\) −133.947 −6.98248
\(369\) 13.8046 0.718641
\(370\) −29.2137 −1.51875
\(371\) 0.554048 0.0287648
\(372\) −18.7221 −0.970697
\(373\) −0.188695 −0.00977027 −0.00488513 0.999988i \(-0.501555\pi\)
−0.00488513 + 0.999988i \(0.501555\pi\)
\(374\) 37.6519 1.94694
\(375\) 5.72047 0.295404
\(376\) −86.4254 −4.45705
\(377\) −8.06375 −0.415304
\(378\) −5.13813 −0.264277
\(379\) −12.6440 −0.649480 −0.324740 0.945803i \(-0.605277\pi\)
−0.324740 + 0.945803i \(0.605277\pi\)
\(380\) 48.1290 2.46896
\(381\) 3.54112 0.181417
\(382\) 8.11081 0.414985
\(383\) 37.3971 1.91090 0.955450 0.295153i \(-0.0953705\pi\)
0.955450 + 0.295153i \(0.0953705\pi\)
\(384\) 24.3499 1.24260
\(385\) −2.56068 −0.130504
\(386\) −6.46487 −0.329053
\(387\) 14.2852 0.726156
\(388\) 42.9344 2.17967
\(389\) 36.3405 1.84253 0.921267 0.388930i \(-0.127155\pi\)
0.921267 + 0.388930i \(0.127155\pi\)
\(390\) 3.77467 0.191138
\(391\) −35.5094 −1.79579
\(392\) 64.7985 3.27282
\(393\) −2.63498 −0.132917
\(394\) −8.62389 −0.434465
\(395\) −7.03545 −0.353992
\(396\) 49.4120 2.48305
\(397\) 22.3383 1.12113 0.560563 0.828112i \(-0.310585\pi\)
0.560563 + 0.828112i \(0.310585\pi\)
\(398\) −10.7876 −0.540732
\(399\) −2.21639 −0.110958
\(400\) −53.0836 −2.65418
\(401\) 19.7816 0.987847 0.493923 0.869505i \(-0.335562\pi\)
0.493923 + 0.869505i \(0.335562\pi\)
\(402\) −13.1627 −0.656498
\(403\) 12.6466 0.629973
\(404\) 52.7924 2.62652
\(405\) 8.31625 0.413238
\(406\) 6.75007 0.335000
\(407\) −27.2394 −1.35021
\(408\) 21.8694 1.08270
\(409\) −10.0692 −0.497890 −0.248945 0.968518i \(-0.580084\pi\)
−0.248945 + 0.968518i \(0.580084\pi\)
\(410\) 17.8737 0.882720
\(411\) −9.80134 −0.483465
\(412\) −24.4114 −1.20266
\(413\) −3.02700 −0.148949
\(414\) −63.3710 −3.11452
\(415\) 16.9085 0.830007
\(416\) −47.7776 −2.34249
\(417\) −4.22730 −0.207012
\(418\) 61.0268 2.98492
\(419\) −6.84703 −0.334499 −0.167250 0.985915i \(-0.553489\pi\)
−0.167250 + 0.985915i \(0.553489\pi\)
\(420\) −2.32353 −0.113377
\(421\) −2.61183 −0.127293 −0.0636463 0.997973i \(-0.520273\pi\)
−0.0636463 + 0.997973i \(0.520273\pi\)
\(422\) −50.7939 −2.47261
\(423\) −23.9837 −1.16613
\(424\) −8.86078 −0.430318
\(425\) −14.0725 −0.682615
\(426\) 9.54382 0.462400
\(427\) −0.172949 −0.00836957
\(428\) 43.6525 2.11002
\(429\) 3.51957 0.169927
\(430\) 18.4959 0.891950
\(431\) 25.9093 1.24801 0.624004 0.781421i \(-0.285505\pi\)
0.624004 + 0.781421i \(0.285505\pi\)
\(432\) 48.2001 2.31903
\(433\) 39.1389 1.88090 0.940448 0.339937i \(-0.110406\pi\)
0.940448 + 0.339937i \(0.110406\pi\)
\(434\) −10.5863 −0.508161
\(435\) 2.74562 0.131642
\(436\) −95.3084 −4.56445
\(437\) −57.5541 −2.75319
\(438\) 16.5276 0.789719
\(439\) −27.3560 −1.30563 −0.652815 0.757517i \(-0.726412\pi\)
−0.652815 + 0.757517i \(0.726412\pi\)
\(440\) 40.9524 1.95233
\(441\) 17.9821 0.856290
\(442\) −23.0781 −1.09771
\(443\) −22.8535 −1.08580 −0.542902 0.839796i \(-0.682674\pi\)
−0.542902 + 0.839796i \(0.682674\pi\)
\(444\) −24.7167 −1.17300
\(445\) 4.81657 0.228327
\(446\) −35.3215 −1.67252
\(447\) −3.38994 −0.160339
\(448\) 20.7090 0.978406
\(449\) 6.81630 0.321681 0.160841 0.986980i \(-0.448579\pi\)
0.160841 + 0.986980i \(0.448579\pi\)
\(450\) −25.1141 −1.18389
\(451\) 16.6658 0.784762
\(452\) 4.80086 0.225813
\(453\) −2.14871 −0.100955
\(454\) −22.0119 −1.03307
\(455\) 1.56952 0.0735803
\(456\) 35.4463 1.65992
\(457\) 13.4206 0.627790 0.313895 0.949458i \(-0.398366\pi\)
0.313895 + 0.949458i \(0.398366\pi\)
\(458\) −10.3163 −0.482049
\(459\) 12.7778 0.596419
\(460\) −60.3362 −2.81319
\(461\) 34.9762 1.62900 0.814501 0.580162i \(-0.197011\pi\)
0.814501 + 0.580162i \(0.197011\pi\)
\(462\) −2.94619 −0.137069
\(463\) 7.45912 0.346655 0.173327 0.984864i \(-0.444548\pi\)
0.173327 + 0.984864i \(0.444548\pi\)
\(464\) −63.3215 −2.93963
\(465\) −4.30604 −0.199688
\(466\) −25.6768 −1.18945
\(467\) 10.6323 0.492005 0.246003 0.969269i \(-0.420883\pi\)
0.246003 + 0.969269i \(0.420883\pi\)
\(468\) −30.2862 −1.39998
\(469\) −5.47312 −0.252725
\(470\) −31.0532 −1.43238
\(471\) −2.14095 −0.0986496
\(472\) 48.4103 2.22826
\(473\) 17.2459 0.792967
\(474\) −8.09465 −0.371800
\(475\) −22.8088 −1.04654
\(476\) 14.2059 0.651126
\(477\) −2.45894 −0.112587
\(478\) −53.4869 −2.44643
\(479\) −18.4779 −0.844275 −0.422137 0.906532i \(-0.638720\pi\)
−0.422137 + 0.906532i \(0.638720\pi\)
\(480\) 16.2678 0.742519
\(481\) 16.6959 0.761267
\(482\) −23.6287 −1.07626
\(483\) 2.77855 0.126428
\(484\) −1.47744 −0.0671562
\(485\) 9.87481 0.448392
\(486\) 34.7766 1.57750
\(487\) 39.7717 1.80223 0.901114 0.433582i \(-0.142751\pi\)
0.901114 + 0.433582i \(0.142751\pi\)
\(488\) 2.76593 0.125208
\(489\) 5.05205 0.228461
\(490\) 23.2825 1.05180
\(491\) −8.88859 −0.401137 −0.200568 0.979680i \(-0.564279\pi\)
−0.200568 + 0.979680i \(0.564279\pi\)
\(492\) 15.1223 0.681767
\(493\) −16.7865 −0.756027
\(494\) −37.4052 −1.68294
\(495\) 11.3646 0.510802
\(496\) 99.3090 4.45911
\(497\) 3.96836 0.178005
\(498\) 19.4542 0.871761
\(499\) −36.8625 −1.65019 −0.825096 0.564993i \(-0.808879\pi\)
−0.825096 + 0.564993i \(0.808879\pi\)
\(500\) −59.4274 −2.65767
\(501\) 8.07628 0.360822
\(502\) 34.3482 1.53304
\(503\) 14.4473 0.644171 0.322086 0.946711i \(-0.395616\pi\)
0.322086 + 0.946711i \(0.395616\pi\)
\(504\) 16.2283 0.722867
\(505\) 12.1421 0.540317
\(506\) −76.5053 −3.40108
\(507\) 4.79705 0.213045
\(508\) −36.7871 −1.63217
\(509\) 40.0077 1.77331 0.886654 0.462433i \(-0.153023\pi\)
0.886654 + 0.462433i \(0.153023\pi\)
\(510\) 7.85783 0.347951
\(511\) 6.87223 0.304010
\(512\) −66.7557 −2.95021
\(513\) 20.7105 0.914391
\(514\) −18.7194 −0.825676
\(515\) −5.61456 −0.247407
\(516\) 15.6487 0.688896
\(517\) −28.9546 −1.27342
\(518\) −13.9759 −0.614067
\(519\) −1.14085 −0.0500777
\(520\) −25.1010 −1.10075
\(521\) 27.6917 1.21319 0.606597 0.795009i \(-0.292534\pi\)
0.606597 + 0.795009i \(0.292534\pi\)
\(522\) −29.9577 −1.31121
\(523\) 42.3477 1.85174 0.925868 0.377848i \(-0.123336\pi\)
0.925868 + 0.377848i \(0.123336\pi\)
\(524\) 27.3736 1.19582
\(525\) 1.10114 0.0480579
\(526\) −52.9081 −2.30690
\(527\) 26.3268 1.14681
\(528\) 27.6378 1.20278
\(529\) 49.1519 2.13704
\(530\) −3.18374 −0.138293
\(531\) 13.4342 0.582996
\(532\) 23.0251 0.998264
\(533\) −10.2150 −0.442460
\(534\) 5.54171 0.239813
\(535\) 10.0400 0.434065
\(536\) 87.5305 3.78074
\(537\) 10.2573 0.442633
\(538\) 50.2871 2.16803
\(539\) 21.7091 0.935076
\(540\) 21.7116 0.934320
\(541\) 10.3399 0.444549 0.222275 0.974984i \(-0.428652\pi\)
0.222275 + 0.974984i \(0.428652\pi\)
\(542\) −18.4381 −0.791985
\(543\) −12.3585 −0.530354
\(544\) −99.4600 −4.26431
\(545\) −21.9207 −0.938979
\(546\) 1.80582 0.0772818
\(547\) −28.7591 −1.22965 −0.614824 0.788664i \(-0.710773\pi\)
−0.614824 + 0.788664i \(0.710773\pi\)
\(548\) 101.822 4.34961
\(549\) 0.767569 0.0327590
\(550\) −30.3192 −1.29282
\(551\) −27.2078 −1.15909
\(552\) −44.4367 −1.89135
\(553\) −3.36578 −0.143128
\(554\) −79.6681 −3.38477
\(555\) −5.68477 −0.241305
\(556\) 43.9155 1.86243
\(557\) −17.8903 −0.758036 −0.379018 0.925389i \(-0.623738\pi\)
−0.379018 + 0.925389i \(0.623738\pi\)
\(558\) 46.9835 1.98897
\(559\) −10.5706 −0.447087
\(560\) 12.3248 0.520820
\(561\) 7.32680 0.309338
\(562\) 14.4483 0.609465
\(563\) −12.0247 −0.506782 −0.253391 0.967364i \(-0.581546\pi\)
−0.253391 + 0.967364i \(0.581546\pi\)
\(564\) −26.2730 −1.10629
\(565\) 1.10418 0.0464534
\(566\) −7.91856 −0.332842
\(567\) 3.97853 0.167082
\(568\) −63.4651 −2.66294
\(569\) −17.4460 −0.731375 −0.365688 0.930738i \(-0.619166\pi\)
−0.365688 + 0.930738i \(0.619166\pi\)
\(570\) 12.7361 0.533456
\(571\) 8.52546 0.356780 0.178390 0.983960i \(-0.442911\pi\)
0.178390 + 0.983960i \(0.442911\pi\)
\(572\) −36.5633 −1.52879
\(573\) 1.57830 0.0659346
\(574\) 8.55085 0.356906
\(575\) 28.5940 1.19245
\(576\) −91.9090 −3.82954
\(577\) −8.61347 −0.358584 −0.179292 0.983796i \(-0.557381\pi\)
−0.179292 + 0.983796i \(0.557381\pi\)
\(578\) −1.30824 −0.0544155
\(579\) −1.25802 −0.0522814
\(580\) −28.5230 −1.18435
\(581\) 8.08911 0.335593
\(582\) 11.3615 0.470948
\(583\) −2.96858 −0.122946
\(584\) −109.906 −4.54795
\(585\) −6.96573 −0.287998
\(586\) 9.73482 0.402142
\(587\) 38.7122 1.59783 0.798913 0.601447i \(-0.205409\pi\)
0.798913 + 0.601447i \(0.205409\pi\)
\(588\) 19.6985 0.812354
\(589\) 42.6709 1.75822
\(590\) 17.3941 0.716104
\(591\) −1.67815 −0.0690297
\(592\) 131.106 5.38844
\(593\) −11.9239 −0.489657 −0.244828 0.969566i \(-0.578732\pi\)
−0.244828 + 0.969566i \(0.578732\pi\)
\(594\) 27.5300 1.12957
\(595\) 3.26732 0.133947
\(596\) 35.2166 1.44253
\(597\) −2.09918 −0.0859138
\(598\) 46.8925 1.91758
\(599\) 25.2029 1.02976 0.514882 0.857261i \(-0.327836\pi\)
0.514882 + 0.857261i \(0.327836\pi\)
\(600\) −17.6104 −0.718941
\(601\) 36.7431 1.49878 0.749392 0.662126i \(-0.230346\pi\)
0.749392 + 0.662126i \(0.230346\pi\)
\(602\) 8.84849 0.360638
\(603\) 24.2904 0.989181
\(604\) 22.3220 0.908268
\(605\) −0.339806 −0.0138151
\(606\) 13.9701 0.567498
\(607\) 2.56573 0.104140 0.0520698 0.998643i \(-0.483418\pi\)
0.0520698 + 0.998643i \(0.483418\pi\)
\(608\) −161.206 −6.53777
\(609\) 1.31352 0.0532263
\(610\) 0.993818 0.0402385
\(611\) 17.7472 0.717974
\(612\) −63.0476 −2.54855
\(613\) −43.1288 −1.74196 −0.870978 0.491322i \(-0.836514\pi\)
−0.870978 + 0.491322i \(0.836514\pi\)
\(614\) −68.2618 −2.75482
\(615\) 3.47810 0.140250
\(616\) 19.5918 0.789376
\(617\) 20.1124 0.809693 0.404847 0.914385i \(-0.367325\pi\)
0.404847 + 0.914385i \(0.367325\pi\)
\(618\) −6.45984 −0.259853
\(619\) 1.03538 0.0416154 0.0208077 0.999783i \(-0.493376\pi\)
0.0208077 + 0.999783i \(0.493376\pi\)
\(620\) 44.7335 1.79654
\(621\) −25.9634 −1.04188
\(622\) 66.3072 2.65868
\(623\) 2.30426 0.0923184
\(624\) −16.9401 −0.678147
\(625\) 3.16327 0.126531
\(626\) −74.8894 −2.99318
\(627\) 11.8754 0.474256
\(628\) 22.2413 0.887526
\(629\) 34.7563 1.38582
\(630\) 5.83094 0.232310
\(631\) −18.7016 −0.744501 −0.372250 0.928132i \(-0.621414\pi\)
−0.372250 + 0.928132i \(0.621414\pi\)
\(632\) 53.8283 2.14118
\(633\) −9.88413 −0.392859
\(634\) −23.9375 −0.950681
\(635\) −8.46094 −0.335762
\(636\) −2.69365 −0.106810
\(637\) −13.3062 −0.527210
\(638\) −36.1667 −1.43185
\(639\) −17.6121 −0.696723
\(640\) −58.1801 −2.29977
\(641\) 21.4635 0.847759 0.423880 0.905719i \(-0.360668\pi\)
0.423880 + 0.905719i \(0.360668\pi\)
\(642\) 11.5515 0.455901
\(643\) −23.8594 −0.940923 −0.470461 0.882421i \(-0.655913\pi\)
−0.470461 + 0.882421i \(0.655913\pi\)
\(644\) −28.8651 −1.13744
\(645\) 3.59916 0.141717
\(646\) −77.8675 −3.06366
\(647\) −34.8561 −1.37034 −0.685168 0.728385i \(-0.740271\pi\)
−0.685168 + 0.728385i \(0.740271\pi\)
\(648\) −63.6278 −2.49954
\(649\) 16.2186 0.636636
\(650\) 18.5836 0.728909
\(651\) −2.06003 −0.0807388
\(652\) −52.4834 −2.05541
\(653\) 33.1057 1.29553 0.647763 0.761842i \(-0.275705\pi\)
0.647763 + 0.761842i \(0.275705\pi\)
\(654\) −25.2209 −0.986215
\(655\) 6.29586 0.246000
\(656\) −80.2144 −3.13185
\(657\) −30.4999 −1.18991
\(658\) −14.8560 −0.579146
\(659\) 29.5738 1.15203 0.576016 0.817439i \(-0.304607\pi\)
0.576016 + 0.817439i \(0.304607\pi\)
\(660\) 12.4494 0.484592
\(661\) 12.4349 0.483660 0.241830 0.970319i \(-0.422252\pi\)
0.241830 + 0.970319i \(0.422252\pi\)
\(662\) 13.2467 0.514848
\(663\) −4.49082 −0.174409
\(664\) −129.367 −5.02043
\(665\) 5.29571 0.205359
\(666\) 62.0270 2.40350
\(667\) 34.1087 1.32069
\(668\) −83.9009 −3.24622
\(669\) −6.87331 −0.265737
\(670\) 31.4503 1.21503
\(671\) 0.926655 0.0357731
\(672\) 7.78256 0.300219
\(673\) 27.5623 1.06245 0.531224 0.847231i \(-0.321732\pi\)
0.531224 + 0.847231i \(0.321732\pi\)
\(674\) 10.9456 0.421607
\(675\) −10.2894 −0.396038
\(676\) −49.8344 −1.91671
\(677\) −26.5274 −1.01953 −0.509765 0.860313i \(-0.670268\pi\)
−0.509765 + 0.860313i \(0.670268\pi\)
\(678\) 1.27042 0.0487902
\(679\) 4.72414 0.181296
\(680\) −52.2535 −2.00383
\(681\) −4.28335 −0.164138
\(682\) 56.7214 2.17197
\(683\) 38.7238 1.48173 0.740863 0.671657i \(-0.234417\pi\)
0.740863 + 0.671657i \(0.234417\pi\)
\(684\) −102.188 −3.90727
\(685\) 23.4187 0.894784
\(686\) 22.9054 0.874533
\(687\) −2.00748 −0.0765900
\(688\) −83.0065 −3.16459
\(689\) 1.81953 0.0693187
\(690\) −15.9664 −0.607830
\(691\) 4.67604 0.177885 0.0889424 0.996037i \(-0.471651\pi\)
0.0889424 + 0.996037i \(0.471651\pi\)
\(692\) 11.8518 0.450537
\(693\) 5.43688 0.206530
\(694\) 78.7090 2.98775
\(695\) 10.1005 0.383132
\(696\) −21.0068 −0.796260
\(697\) −21.2648 −0.805463
\(698\) 70.1663 2.65583
\(699\) −4.99651 −0.188985
\(700\) −11.4393 −0.432365
\(701\) −4.24831 −0.160456 −0.0802282 0.996777i \(-0.525565\pi\)
−0.0802282 + 0.996777i \(0.525565\pi\)
\(702\) −16.8740 −0.636868
\(703\) 56.3335 2.12466
\(704\) −110.958 −4.18189
\(705\) −6.04273 −0.227582
\(706\) −24.4901 −0.921698
\(707\) 5.80883 0.218464
\(708\) 14.7166 0.553082
\(709\) 0.687284 0.0258115 0.0129057 0.999917i \(-0.495892\pi\)
0.0129057 + 0.999917i \(0.495892\pi\)
\(710\) −22.8034 −0.855797
\(711\) 14.9378 0.560211
\(712\) −36.8516 −1.38107
\(713\) −53.4937 −2.00335
\(714\) 3.75922 0.140685
\(715\) −8.40945 −0.314496
\(716\) −106.558 −3.98226
\(717\) −10.4082 −0.388700
\(718\) 67.8924 2.53372
\(719\) 16.6589 0.621271 0.310636 0.950529i \(-0.399458\pi\)
0.310636 + 0.950529i \(0.399458\pi\)
\(720\) −54.6992 −2.03852
\(721\) −2.68603 −0.100033
\(722\) −73.9765 −2.75312
\(723\) −4.59797 −0.171000
\(724\) 128.387 4.77146
\(725\) 13.5174 0.502022
\(726\) −0.390965 −0.0145101
\(727\) 35.4018 1.31298 0.656490 0.754335i \(-0.272041\pi\)
0.656490 + 0.754335i \(0.272041\pi\)
\(728\) −12.0084 −0.445062
\(729\) −12.7519 −0.472291
\(730\) −39.4900 −1.46159
\(731\) −22.0050 −0.813885
\(732\) 0.840835 0.0310781
\(733\) −40.1142 −1.48165 −0.740826 0.671697i \(-0.765566\pi\)
−0.740826 + 0.671697i \(0.765566\pi\)
\(734\) 19.6002 0.723455
\(735\) 4.53061 0.167114
\(736\) 202.094 7.44927
\(737\) 29.3248 1.08019
\(738\) −37.9498 −1.39695
\(739\) 45.1916 1.66240 0.831199 0.555975i \(-0.187655\pi\)
0.831199 + 0.555975i \(0.187655\pi\)
\(740\) 59.0566 2.17096
\(741\) −7.27878 −0.267393
\(742\) −1.52311 −0.0559152
\(743\) −7.41336 −0.271970 −0.135985 0.990711i \(-0.543420\pi\)
−0.135985 + 0.990711i \(0.543420\pi\)
\(744\) 32.9456 1.20784
\(745\) 8.09972 0.296751
\(746\) 0.518734 0.0189922
\(747\) −35.9005 −1.31353
\(748\) −76.1148 −2.78303
\(749\) 4.80315 0.175503
\(750\) −15.7259 −0.574229
\(751\) −40.1888 −1.46651 −0.733256 0.679953i \(-0.762000\pi\)
−0.733256 + 0.679953i \(0.762000\pi\)
\(752\) 139.362 5.08200
\(753\) 6.68391 0.243575
\(754\) 22.1677 0.807301
\(755\) 5.13399 0.186845
\(756\) 10.3869 0.377769
\(757\) 24.5439 0.892062 0.446031 0.895018i \(-0.352837\pi\)
0.446031 + 0.895018i \(0.352837\pi\)
\(758\) 34.7592 1.26251
\(759\) −14.8874 −0.540378
\(760\) −84.6932 −3.07214
\(761\) −13.5929 −0.492741 −0.246371 0.969176i \(-0.579238\pi\)
−0.246371 + 0.969176i \(0.579238\pi\)
\(762\) −9.73475 −0.352653
\(763\) −10.4869 −0.379653
\(764\) −16.3963 −0.593197
\(765\) −14.5008 −0.524276
\(766\) −102.807 −3.71456
\(767\) −9.94089 −0.358945
\(768\) −30.7052 −1.10798
\(769\) −21.4012 −0.771745 −0.385873 0.922552i \(-0.626100\pi\)
−0.385873 + 0.922552i \(0.626100\pi\)
\(770\) 7.03946 0.253684
\(771\) −3.64265 −0.131187
\(772\) 13.0690 0.470363
\(773\) 14.4541 0.519877 0.259938 0.965625i \(-0.416298\pi\)
0.259938 + 0.965625i \(0.416298\pi\)
\(774\) −39.2707 −1.41156
\(775\) −21.1997 −0.761515
\(776\) −75.5523 −2.71217
\(777\) −2.71962 −0.0975657
\(778\) −99.9021 −3.58166
\(779\) −34.4663 −1.23488
\(780\) −7.63063 −0.273220
\(781\) −21.2624 −0.760827
\(782\) 97.6174 3.49079
\(783\) −12.2738 −0.438630
\(784\) −104.488 −3.73172
\(785\) 5.11545 0.182578
\(786\) 7.24371 0.258375
\(787\) 20.6139 0.734805 0.367403 0.930062i \(-0.380247\pi\)
0.367403 + 0.930062i \(0.380247\pi\)
\(788\) 17.4335 0.621043
\(789\) −10.2955 −0.366531
\(790\) 19.3409 0.688117
\(791\) 0.528246 0.0187823
\(792\) −86.9509 −3.08967
\(793\) −0.567976 −0.0201694
\(794\) −61.4093 −2.17933
\(795\) −0.619532 −0.0219725
\(796\) 21.8075 0.772945
\(797\) 23.7941 0.842830 0.421415 0.906868i \(-0.361534\pi\)
0.421415 + 0.906868i \(0.361534\pi\)
\(798\) 6.09299 0.215689
\(799\) 36.9448 1.30701
\(800\) 80.0902 2.83162
\(801\) −10.2266 −0.361340
\(802\) −54.3808 −1.92025
\(803\) −36.8213 −1.29939
\(804\) 26.6090 0.938426
\(805\) −6.63889 −0.233990
\(806\) −34.7663 −1.22459
\(807\) 9.78550 0.344466
\(808\) −92.8995 −3.26819
\(809\) −36.9397 −1.29873 −0.649365 0.760477i \(-0.724965\pi\)
−0.649365 + 0.760477i \(0.724965\pi\)
\(810\) −22.8619 −0.803284
\(811\) −3.97391 −0.139543 −0.0697715 0.997563i \(-0.522227\pi\)
−0.0697715 + 0.997563i \(0.522227\pi\)
\(812\) −13.6455 −0.478864
\(813\) −3.58793 −0.125834
\(814\) 74.8827 2.62464
\(815\) −12.0710 −0.422830
\(816\) −35.2647 −1.23451
\(817\) −35.6660 −1.24780
\(818\) 27.6809 0.967838
\(819\) −3.33243 −0.116445
\(820\) −36.1324 −1.26180
\(821\) 11.3688 0.396773 0.198387 0.980124i \(-0.436430\pi\)
0.198387 + 0.980124i \(0.436430\pi\)
\(822\) 26.9445 0.939796
\(823\) 31.5527 1.09986 0.549929 0.835211i \(-0.314655\pi\)
0.549929 + 0.835211i \(0.314655\pi\)
\(824\) 42.9571 1.49648
\(825\) −5.89991 −0.205408
\(826\) 8.32141 0.289539
\(827\) −5.38102 −0.187116 −0.0935582 0.995614i \(-0.529824\pi\)
−0.0935582 + 0.995614i \(0.529824\pi\)
\(828\) 128.107 4.45202
\(829\) −39.4577 −1.37042 −0.685211 0.728344i \(-0.740290\pi\)
−0.685211 + 0.728344i \(0.740290\pi\)
\(830\) −46.4826 −1.61343
\(831\) −15.5028 −0.537787
\(832\) 68.0097 2.35781
\(833\) −27.6998 −0.959742
\(834\) 11.6211 0.402406
\(835\) −19.2970 −0.667799
\(836\) −123.368 −4.26677
\(837\) 19.2494 0.665356
\(838\) 18.8229 0.650226
\(839\) 35.4136 1.22261 0.611307 0.791394i \(-0.290644\pi\)
0.611307 + 0.791394i \(0.290644\pi\)
\(840\) 4.08874 0.141075
\(841\) −12.8756 −0.443987
\(842\) 7.18006 0.247441
\(843\) 2.81154 0.0968345
\(844\) 102.682 3.53446
\(845\) −11.4618 −0.394297
\(846\) 65.9327 2.26681
\(847\) −0.162565 −0.00558579
\(848\) 14.2881 0.490655
\(849\) −1.54089 −0.0528834
\(850\) 38.6860 1.32692
\(851\) −70.6216 −2.42088
\(852\) −19.2932 −0.660974
\(853\) −56.0832 −1.92025 −0.960126 0.279566i \(-0.909809\pi\)
−0.960126 + 0.279566i \(0.909809\pi\)
\(854\) 0.475446 0.0162694
\(855\) −23.5030 −0.803787
\(856\) −76.8158 −2.62551
\(857\) −10.2678 −0.350742 −0.175371 0.984502i \(-0.556112\pi\)
−0.175371 + 0.984502i \(0.556112\pi\)
\(858\) −9.67551 −0.330317
\(859\) −2.09877 −0.0716091 −0.0358045 0.999359i \(-0.511399\pi\)
−0.0358045 + 0.999359i \(0.511399\pi\)
\(860\) −37.3901 −1.27499
\(861\) 1.66393 0.0567067
\(862\) −71.2263 −2.42598
\(863\) −7.62428 −0.259534 −0.129767 0.991545i \(-0.541423\pi\)
−0.129767 + 0.991545i \(0.541423\pi\)
\(864\) −72.7222 −2.47406
\(865\) 2.72587 0.0926825
\(866\) −107.595 −3.65623
\(867\) −0.254574 −0.00864577
\(868\) 21.4007 0.726386
\(869\) 18.0338 0.611754
\(870\) −7.54787 −0.255897
\(871\) −17.9741 −0.609029
\(872\) 167.715 5.67956
\(873\) −20.9664 −0.709604
\(874\) 158.220 5.35186
\(875\) −6.53889 −0.221055
\(876\) −33.4112 −1.12886
\(877\) −45.5091 −1.53673 −0.768366 0.640010i \(-0.778930\pi\)
−0.768366 + 0.640010i \(0.778930\pi\)
\(878\) 75.2032 2.53799
\(879\) 1.89432 0.0638940
\(880\) −66.0362 −2.22608
\(881\) 35.2441 1.18740 0.593701 0.804685i \(-0.297666\pi\)
0.593701 + 0.804685i \(0.297666\pi\)
\(882\) −49.4338 −1.66452
\(883\) −11.5552 −0.388863 −0.194432 0.980916i \(-0.562286\pi\)
−0.194432 + 0.980916i \(0.562286\pi\)
\(884\) 46.6531 1.56911
\(885\) 3.38477 0.113778
\(886\) 62.8257 2.11067
\(887\) −46.7050 −1.56820 −0.784101 0.620633i \(-0.786876\pi\)
−0.784101 + 0.620633i \(0.786876\pi\)
\(888\) 43.4943 1.45957
\(889\) −4.04775 −0.135757
\(890\) −13.2410 −0.443840
\(891\) −21.3169 −0.714141
\(892\) 71.4037 2.39077
\(893\) 59.8806 2.00383
\(894\) 9.31915 0.311679
\(895\) −24.5081 −0.819214
\(896\) −27.8336 −0.929854
\(897\) 9.12494 0.304673
\(898\) −18.7384 −0.625309
\(899\) −25.2883 −0.843413
\(900\) 50.7691 1.69230
\(901\) 3.78778 0.126189
\(902\) −45.8153 −1.52548
\(903\) 1.72185 0.0572997
\(904\) −8.44813 −0.280981
\(905\) 29.5286 0.981565
\(906\) 5.90692 0.196244
\(907\) 42.6112 1.41488 0.707441 0.706773i \(-0.249850\pi\)
0.707441 + 0.706773i \(0.249850\pi\)
\(908\) 44.4978 1.47671
\(909\) −25.7803 −0.855080
\(910\) −4.31470 −0.143031
\(911\) 10.4250 0.345397 0.172698 0.984975i \(-0.444751\pi\)
0.172698 + 0.984975i \(0.444751\pi\)
\(912\) −57.1575 −1.89267
\(913\) −43.3412 −1.43439
\(914\) −36.8940 −1.22035
\(915\) 0.193390 0.00639327
\(916\) 20.8548 0.689061
\(917\) 3.01196 0.0994638
\(918\) −35.1271 −1.15937
\(919\) −21.2678 −0.701561 −0.350781 0.936458i \(-0.614084\pi\)
−0.350781 + 0.936458i \(0.614084\pi\)
\(920\) 106.174 3.50047
\(921\) −13.2832 −0.437698
\(922\) −96.1515 −3.16658
\(923\) 13.0324 0.428965
\(924\) 5.95584 0.195933
\(925\) −27.9875 −0.920224
\(926\) −20.5056 −0.673854
\(927\) 11.9209 0.391535
\(928\) 95.5367 3.13615
\(929\) −51.5682 −1.69190 −0.845949 0.533264i \(-0.820965\pi\)
−0.845949 + 0.533264i \(0.820965\pi\)
\(930\) 11.8376 0.388169
\(931\) −44.8962 −1.47141
\(932\) 51.9065 1.70025
\(933\) 12.9029 0.422422
\(934\) −29.2289 −0.956398
\(935\) −17.5062 −0.572514
\(936\) 53.2949 1.74200
\(937\) 60.2595 1.96859 0.984296 0.176529i \(-0.0564868\pi\)
0.984296 + 0.176529i \(0.0564868\pi\)
\(938\) 15.0459 0.491267
\(939\) −14.5729 −0.475570
\(940\) 62.7752 2.04750
\(941\) −0.450150 −0.0146745 −0.00733724 0.999973i \(-0.502336\pi\)
−0.00733724 + 0.999973i \(0.502336\pi\)
\(942\) 5.88559 0.191763
\(943\) 43.2082 1.40705
\(944\) −78.0620 −2.54070
\(945\) 2.38896 0.0777130
\(946\) −47.4100 −1.54143
\(947\) −30.5996 −0.994355 −0.497177 0.867649i \(-0.665630\pi\)
−0.497177 + 0.867649i \(0.665630\pi\)
\(948\) 16.3636 0.531466
\(949\) 22.5689 0.732618
\(950\) 62.7028 2.03435
\(951\) −4.65807 −0.151048
\(952\) −24.9983 −0.810199
\(953\) 22.1259 0.716727 0.358363 0.933582i \(-0.383335\pi\)
0.358363 + 0.933582i \(0.383335\pi\)
\(954\) 6.75977 0.218855
\(955\) −3.77110 −0.122030
\(956\) 108.126 3.49703
\(957\) −7.03778 −0.227499
\(958\) 50.7967 1.64117
\(959\) 11.2036 0.361783
\(960\) −23.1566 −0.747375
\(961\) 8.66045 0.279369
\(962\) −45.8980 −1.47981
\(963\) −21.3170 −0.686931
\(964\) 47.7662 1.53845
\(965\) 3.00583 0.0967611
\(966\) −7.63838 −0.245761
\(967\) 25.0969 0.807062 0.403531 0.914966i \(-0.367783\pi\)
0.403531 + 0.914966i \(0.367783\pi\)
\(968\) 2.59986 0.0835628
\(969\) −15.1524 −0.486767
\(970\) −27.1464 −0.871619
\(971\) −14.4303 −0.463090 −0.231545 0.972824i \(-0.574378\pi\)
−0.231545 + 0.972824i \(0.574378\pi\)
\(972\) −70.3021 −2.25494
\(973\) 4.83210 0.154910
\(974\) −109.335 −3.50331
\(975\) 3.61624 0.115812
\(976\) −4.46009 −0.142764
\(977\) 37.0337 1.18481 0.592407 0.805639i \(-0.298178\pi\)
0.592407 + 0.805639i \(0.298178\pi\)
\(978\) −13.8884 −0.444101
\(979\) −12.3462 −0.394586
\(980\) −47.0665 −1.50348
\(981\) 46.5424 1.48598
\(982\) 24.4353 0.779761
\(983\) −0.739109 −0.0235739 −0.0117870 0.999931i \(-0.503752\pi\)
−0.0117870 + 0.999931i \(0.503752\pi\)
\(984\) −26.6110 −0.848326
\(985\) 4.00966 0.127758
\(986\) 46.1472 1.46963
\(987\) −2.89086 −0.0920172
\(988\) 75.6160 2.40567
\(989\) 44.7122 1.42177
\(990\) −31.2420 −0.992937
\(991\) 50.9272 1.61776 0.808878 0.587976i \(-0.200075\pi\)
0.808878 + 0.587976i \(0.200075\pi\)
\(992\) −149.833 −4.75720
\(993\) 2.57772 0.0818014
\(994\) −10.9092 −0.346020
\(995\) 5.01566 0.159007
\(996\) −39.3273 −1.24613
\(997\) 17.6099 0.557710 0.278855 0.960333i \(-0.410045\pi\)
0.278855 + 0.960333i \(0.410045\pi\)
\(998\) 101.337 3.20777
\(999\) 25.4128 0.804025
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3467.2.a.c.1.4 162
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3467.2.a.c.1.4 162 1.1 even 1 trivial