Properties

Label 35.10.a.c
Level $35$
Weight $10$
Character orbit 35.a
Self dual yes
Analytic conductor $18.026$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,10,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.0262542657\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 648x^{2} + 6926x - 8308 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 5) q^{2} + (\beta_{2} - 4) q^{3} + (\beta_{3} + \beta_{2} + 9 \beta_1 + 435) q^{4} - 625 q^{5} + ( - 7 \beta_{3} - 19 \beta_{2} + \cdots - 48) q^{6} - 2401 q^{7} + ( - 7 \beta_{3} - 95 \beta_{2} + \cdots - 7725) q^{8}+ \cdots + ( - 249624 \beta_{3} + \cdots + 303476508) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 19 q^{2} - 18 q^{3} + 1729 q^{4} - 2500 q^{5} - 144 q^{6} - 9604 q^{7} - 30495 q^{8} + 5382 q^{9} + 11875 q^{10} + 82438 q^{11} + 41328 q^{12} - 72962 q^{13} + 45619 q^{14} + 11250 q^{15} + 64257 q^{16}+ \cdots + 1222369524 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 648x^{2} + 6926x - 8308 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -3\nu^{3} - 47\nu^{2} + 1318\nu + 756 ) / 118 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -15\nu^{3} - 117\nu^{2} + 7770\nu - 34688 ) / 118 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{3} + 71\nu^{2} + 6038\nu - 38656 ) / 118 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} + 4\beta _1 + 8 ) / 30 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 4\beta_{2} - 19\beta _1 + 970 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 298\beta_{3} - 533\beta_{2} + 1777\beta _1 - 70446 ) / 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
12.2380
1.37673
−29.3917
16.7769
−41.8466 126.383 1239.14 −625.000 −5288.71 −2401.00 −30428.4 −3710.28 26154.1
1.2 −25.9629 −209.523 162.070 −625.000 5439.82 −2401.00 9085.18 24216.9 16226.8
1.3 15.4436 137.736 −273.496 −625.000 2127.13 −2401.00 −12130.9 −711.820 −9652.23
1.4 33.3659 −72.5961 601.285 −625.000 −2422.24 −2401.00 2979.08 −14412.8 −20853.7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.10.a.c 4
3.b odd 2 1 315.10.a.g 4
5.b even 2 1 175.10.a.e 4
5.c odd 4 2 175.10.b.e 8
7.b odd 2 1 245.10.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.a.c 4 1.a even 1 1 trivial
175.10.a.e 4 5.b even 2 1
175.10.b.e 8 5.c odd 4 2
245.10.a.e 4 7.b odd 2 1
315.10.a.g 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 19T_{2}^{3} - 1708T_{2}^{2} - 18088T_{2} + 559840 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(35))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 19 T^{3} + \cdots + 559840 \) Copy content Toggle raw display
$3$ \( T^{4} + 18 T^{3} + \cdots + 264777984 \) Copy content Toggle raw display
$5$ \( (T + 625)^{4} \) Copy content Toggle raw display
$7$ \( (T + 2401)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 86\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 43\!\cdots\!80 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 20\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 30\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 10\!\cdots\!72 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 32\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 36\!\cdots\!60 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 21\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 36\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 15\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 66\!\cdots\!12 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 10\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 27\!\cdots\!68 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 20\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 31\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 36\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 23\!\cdots\!68 \) Copy content Toggle raw display
show more
show less