Properties

Label 35.10.a.e.1.6
Level $35$
Weight $10$
Character 35.1
Self dual yes
Analytic conductor $18.026$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,10,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.0262542657\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3018x^{4} + 3368x^{3} + 2066979x^{2} - 6329061x - 14714266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-39.7818\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+42.7818 q^{2} -260.219 q^{3} +1318.28 q^{4} +625.000 q^{5} -11132.6 q^{6} -2401.00 q^{7} +34494.1 q^{8} +48030.7 q^{9} +26738.6 q^{10} +41568.7 q^{11} -343041. q^{12} +103859. q^{13} -102719. q^{14} -162637. q^{15} +800760. q^{16} +355256. q^{17} +2.05484e6 q^{18} -349126. q^{19} +823925. q^{20} +624785. q^{21} +1.77838e6 q^{22} +228204. q^{23} -8.97601e6 q^{24} +390625. q^{25} +4.44327e6 q^{26} -7.37660e6 q^{27} -3.16519e6 q^{28} +4.02216e6 q^{29} -6.95788e6 q^{30} -3.29476e6 q^{31} +1.65969e7 q^{32} -1.08169e7 q^{33} +1.51985e7 q^{34} -1.50062e6 q^{35} +6.33179e7 q^{36} -2.13083e7 q^{37} -1.49362e7 q^{38} -2.70260e7 q^{39} +2.15588e7 q^{40} +1.05289e7 q^{41} +2.67294e7 q^{42} +3.89712e6 q^{43} +5.47991e7 q^{44} +3.00192e7 q^{45} +9.76296e6 q^{46} -3.31846e7 q^{47} -2.08373e8 q^{48} +5.76480e6 q^{49} +1.67116e7 q^{50} -9.24443e7 q^{51} +1.36915e8 q^{52} -6.31880e7 q^{53} -3.15584e8 q^{54} +2.59804e7 q^{55} -8.28203e7 q^{56} +9.08490e7 q^{57} +1.72075e8 q^{58} +5.86733e7 q^{59} -2.14401e8 q^{60} +1.37845e8 q^{61} -1.40956e8 q^{62} -1.15322e8 q^{63} +3.00057e8 q^{64} +6.49118e7 q^{65} -4.62768e8 q^{66} +8.36796e7 q^{67} +4.68327e8 q^{68} -5.93829e7 q^{69} -6.41994e7 q^{70} +1.50169e8 q^{71} +1.65678e9 q^{72} -2.74817e8 q^{73} -9.11609e8 q^{74} -1.01648e8 q^{75} -4.60246e8 q^{76} -9.98063e7 q^{77} -1.15622e9 q^{78} -2.75964e8 q^{79} +5.00475e8 q^{80} +9.74140e8 q^{81} +4.50444e8 q^{82} +2.32312e8 q^{83} +8.23642e8 q^{84} +2.22035e8 q^{85} +1.66726e8 q^{86} -1.04664e9 q^{87} +1.43387e9 q^{88} +2.71482e8 q^{89} +1.28427e9 q^{90} -2.49365e8 q^{91} +3.00837e8 q^{92} +8.57358e8 q^{93} -1.41969e9 q^{94} -2.18204e8 q^{95} -4.31883e9 q^{96} -9.76607e8 q^{97} +2.46628e8 q^{98} +1.99657e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 15 q^{2} - 124 q^{3} + 3009 q^{4} + 3750 q^{5} + 4888 q^{6} - 14406 q^{7} + 22041 q^{8} + 111090 q^{9} + 9375 q^{10} - 47796 q^{11} - 541656 q^{12} + 102168 q^{13} - 36015 q^{14} - 77500 q^{15} + 2371065 q^{16}+ \cdots + 3571968784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 42.7818 1.89071 0.945353 0.326050i \(-0.105718\pi\)
0.945353 + 0.326050i \(0.105718\pi\)
\(3\) −260.219 −1.85478 −0.927391 0.374095i \(-0.877954\pi\)
−0.927391 + 0.374095i \(0.877954\pi\)
\(4\) 1318.28 2.57477
\(5\) 625.000 0.447214
\(6\) −11132.6 −3.50684
\(7\) −2401.00 −0.377964
\(8\) 34494.1 2.97742
\(9\) 48030.7 2.44021
\(10\) 26738.6 0.845549
\(11\) 41568.7 0.856050 0.428025 0.903767i \(-0.359210\pi\)
0.428025 + 0.903767i \(0.359210\pi\)
\(12\) −343041. −4.77563
\(13\) 103859. 1.00855 0.504277 0.863542i \(-0.331759\pi\)
0.504277 + 0.863542i \(0.331759\pi\)
\(14\) −102719. −0.714619
\(15\) −162637. −0.829483
\(16\) 800760. 3.05466
\(17\) 355256. 1.03162 0.515812 0.856702i \(-0.327490\pi\)
0.515812 + 0.856702i \(0.327490\pi\)
\(18\) 2.05484e6 4.61372
\(19\) −349126. −0.614597 −0.307299 0.951613i \(-0.599425\pi\)
−0.307299 + 0.951613i \(0.599425\pi\)
\(20\) 823925. 1.15147
\(21\) 624785. 0.701041
\(22\) 1.77838e6 1.61854
\(23\) 228204. 0.170039 0.0850193 0.996379i \(-0.472905\pi\)
0.0850193 + 0.996379i \(0.472905\pi\)
\(24\) −8.97601e6 −5.52246
\(25\) 390625. 0.200000
\(26\) 4.44327e6 1.90688
\(27\) −7.37660e6 −2.67128
\(28\) −3.16519e6 −0.973170
\(29\) 4.02216e6 1.05601 0.528005 0.849241i \(-0.322940\pi\)
0.528005 + 0.849241i \(0.322940\pi\)
\(30\) −6.95788e6 −1.56831
\(31\) −3.29476e6 −0.640761 −0.320381 0.947289i \(-0.603811\pi\)
−0.320381 + 0.947289i \(0.603811\pi\)
\(32\) 1.65969e7 2.79803
\(33\) −1.08169e7 −1.58778
\(34\) 1.51985e7 1.95050
\(35\) −1.50062e6 −0.169031
\(36\) 6.33179e7 6.28298
\(37\) −2.13083e7 −1.86914 −0.934570 0.355778i \(-0.884216\pi\)
−0.934570 + 0.355778i \(0.884216\pi\)
\(38\) −1.49362e7 −1.16202
\(39\) −2.70260e7 −1.87065
\(40\) 2.15588e7 1.33154
\(41\) 1.05289e7 0.581909 0.290954 0.956737i \(-0.406027\pi\)
0.290954 + 0.956737i \(0.406027\pi\)
\(42\) 2.67294e7 1.32546
\(43\) 3.89712e6 0.173835 0.0869173 0.996216i \(-0.472298\pi\)
0.0869173 + 0.996216i \(0.472298\pi\)
\(44\) 5.47991e7 2.20413
\(45\) 3.00192e7 1.09130
\(46\) 9.76296e6 0.321493
\(47\) −3.31846e7 −0.991964 −0.495982 0.868333i \(-0.665192\pi\)
−0.495982 + 0.868333i \(0.665192\pi\)
\(48\) −2.08373e8 −5.66572
\(49\) 5.76480e6 0.142857
\(50\) 1.67116e7 0.378141
\(51\) −9.24443e7 −1.91344
\(52\) 1.36915e8 2.59679
\(53\) −6.31880e7 −1.10000 −0.550001 0.835164i \(-0.685373\pi\)
−0.550001 + 0.835164i \(0.685373\pi\)
\(54\) −3.15584e8 −5.05060
\(55\) 2.59804e7 0.382837
\(56\) −8.28203e7 −1.12536
\(57\) 9.08490e7 1.13994
\(58\) 1.72075e8 1.99660
\(59\) 5.86733e7 0.630386 0.315193 0.949028i \(-0.397931\pi\)
0.315193 + 0.949028i \(0.397931\pi\)
\(60\) −2.14401e8 −2.13573
\(61\) 1.37845e8 1.27470 0.637348 0.770576i \(-0.280032\pi\)
0.637348 + 0.770576i \(0.280032\pi\)
\(62\) −1.40956e8 −1.21149
\(63\) −1.15322e8 −0.922314
\(64\) 3.00057e8 2.23560
\(65\) 6.49118e7 0.451039
\(66\) −4.62768e8 −3.00203
\(67\) 8.36796e7 0.507321 0.253660 0.967293i \(-0.418365\pi\)
0.253660 + 0.967293i \(0.418365\pi\)
\(68\) 4.68327e8 2.65619
\(69\) −5.93829e7 −0.315384
\(70\) −6.41994e7 −0.319588
\(71\) 1.50169e8 0.701322 0.350661 0.936503i \(-0.385957\pi\)
0.350661 + 0.936503i \(0.385957\pi\)
\(72\) 1.65678e9 7.26554
\(73\) −2.74817e8 −1.13264 −0.566318 0.824187i \(-0.691633\pi\)
−0.566318 + 0.824187i \(0.691633\pi\)
\(74\) −9.11609e8 −3.53399
\(75\) −1.01648e8 −0.370956
\(76\) −4.60246e8 −1.58244
\(77\) −9.98063e7 −0.323556
\(78\) −1.15622e9 −3.53684
\(79\) −2.75964e8 −0.797133 −0.398566 0.917139i \(-0.630492\pi\)
−0.398566 + 0.917139i \(0.630492\pi\)
\(80\) 5.00475e8 1.36608
\(81\) 9.74140e8 2.51443
\(82\) 4.50444e8 1.10022
\(83\) 2.32312e8 0.537304 0.268652 0.963237i \(-0.413422\pi\)
0.268652 + 0.963237i \(0.413422\pi\)
\(84\) 8.23642e8 1.80502
\(85\) 2.22035e8 0.461356
\(86\) 1.66726e8 0.328670
\(87\) −1.04664e9 −1.95867
\(88\) 1.43387e9 2.54882
\(89\) 2.71482e8 0.458654 0.229327 0.973349i \(-0.426347\pi\)
0.229327 + 0.973349i \(0.426347\pi\)
\(90\) 1.28427e9 2.06332
\(91\) −2.49365e8 −0.381197
\(92\) 3.00837e8 0.437810
\(93\) 8.57358e8 1.18847
\(94\) −1.41969e9 −1.87551
\(95\) −2.18204e8 −0.274856
\(96\) −4.31883e9 −5.18974
\(97\) −9.76607e8 −1.12007 −0.560037 0.828467i \(-0.689213\pi\)
−0.560037 + 0.828467i \(0.689213\pi\)
\(98\) 2.46628e8 0.270101
\(99\) 1.99657e9 2.08894
\(100\) 5.14953e8 0.514953
\(101\) 1.11904e9 1.07004 0.535019 0.844840i \(-0.320304\pi\)
0.535019 + 0.844840i \(0.320304\pi\)
\(102\) −3.95493e9 −3.61775
\(103\) 1.01154e9 0.885559 0.442779 0.896631i \(-0.353993\pi\)
0.442779 + 0.896631i \(0.353993\pi\)
\(104\) 3.58252e9 3.00289
\(105\) 3.90490e8 0.313515
\(106\) −2.70329e9 −2.07978
\(107\) −1.47411e9 −1.08719 −0.543593 0.839349i \(-0.682936\pi\)
−0.543593 + 0.839349i \(0.682936\pi\)
\(108\) −9.72443e9 −6.87792
\(109\) −1.79852e9 −1.22038 −0.610190 0.792255i \(-0.708907\pi\)
−0.610190 + 0.792255i \(0.708907\pi\)
\(110\) 1.11149e9 0.723832
\(111\) 5.54483e9 3.46685
\(112\) −1.92262e9 −1.15455
\(113\) 1.09680e9 0.632812 0.316406 0.948624i \(-0.397524\pi\)
0.316406 + 0.948624i \(0.397524\pi\)
\(114\) 3.88668e9 2.15530
\(115\) 1.42627e8 0.0760436
\(116\) 5.30233e9 2.71898
\(117\) 4.98842e9 2.46108
\(118\) 2.51015e9 1.19187
\(119\) −8.52970e8 −0.389917
\(120\) −5.61000e9 −2.46972
\(121\) −6.29995e8 −0.267179
\(122\) 5.89725e9 2.41007
\(123\) −2.73981e9 −1.07931
\(124\) −4.34342e9 −1.64981
\(125\) 2.44141e8 0.0894427
\(126\) −4.93367e9 −1.74382
\(127\) −3.23678e8 −0.110407 −0.0552035 0.998475i \(-0.517581\pi\)
−0.0552035 + 0.998475i \(0.517581\pi\)
\(128\) 4.33936e9 1.42883
\(129\) −1.01410e9 −0.322425
\(130\) 2.77704e9 0.852781
\(131\) −4.60246e9 −1.36543 −0.682714 0.730686i \(-0.739200\pi\)
−0.682714 + 0.730686i \(0.739200\pi\)
\(132\) −1.42598e10 −4.08817
\(133\) 8.38251e8 0.232296
\(134\) 3.57996e9 0.959194
\(135\) −4.61037e9 −1.19463
\(136\) 1.22542e10 3.07158
\(137\) −3.07931e9 −0.746812 −0.373406 0.927668i \(-0.621810\pi\)
−0.373406 + 0.927668i \(0.621810\pi\)
\(138\) −2.54050e9 −0.596299
\(139\) −6.80655e9 −1.54654 −0.773268 0.634079i \(-0.781379\pi\)
−0.773268 + 0.634079i \(0.781379\pi\)
\(140\) −1.97824e9 −0.435215
\(141\) 8.63524e9 1.83988
\(142\) 6.42449e9 1.32599
\(143\) 4.31728e9 0.863371
\(144\) 3.84610e10 7.45401
\(145\) 2.51385e9 0.472262
\(146\) −1.17572e10 −2.14148
\(147\) −1.50011e9 −0.264969
\(148\) −2.80904e10 −4.81260
\(149\) 1.11783e10 1.85796 0.928981 0.370127i \(-0.120686\pi\)
0.928981 + 0.370127i \(0.120686\pi\)
\(150\) −4.34868e9 −0.701369
\(151\) −4.87685e9 −0.763384 −0.381692 0.924290i \(-0.624658\pi\)
−0.381692 + 0.924290i \(0.624658\pi\)
\(152\) −1.20428e10 −1.82991
\(153\) 1.70632e10 2.51738
\(154\) −4.26989e9 −0.611750
\(155\) −2.05923e9 −0.286557
\(156\) −3.56279e10 −4.81647
\(157\) −5.01169e9 −0.658318 −0.329159 0.944274i \(-0.606765\pi\)
−0.329159 + 0.944274i \(0.606765\pi\)
\(158\) −1.18062e10 −1.50714
\(159\) 1.64427e10 2.04026
\(160\) 1.03731e10 1.25132
\(161\) −5.47917e8 −0.0642686
\(162\) 4.16754e10 4.75404
\(163\) −1.45416e10 −1.61349 −0.806746 0.590899i \(-0.798773\pi\)
−0.806746 + 0.590899i \(0.798773\pi\)
\(164\) 1.38800e10 1.49828
\(165\) −6.76058e9 −0.710079
\(166\) 9.93872e9 1.01588
\(167\) −4.62247e8 −0.0459886 −0.0229943 0.999736i \(-0.507320\pi\)
−0.0229943 + 0.999736i \(0.507320\pi\)
\(168\) 2.15514e10 2.08729
\(169\) 1.82180e8 0.0171795
\(170\) 9.49906e9 0.872289
\(171\) −1.67688e10 −1.49975
\(172\) 5.13750e9 0.447583
\(173\) 1.02318e9 0.0868449 0.0434224 0.999057i \(-0.486174\pi\)
0.0434224 + 0.999057i \(0.486174\pi\)
\(174\) −4.47771e10 −3.70326
\(175\) −9.37891e8 −0.0755929
\(176\) 3.32865e10 2.61494
\(177\) −1.52679e10 −1.16923
\(178\) 1.16145e10 0.867180
\(179\) 1.42460e10 1.03718 0.518590 0.855023i \(-0.326457\pi\)
0.518590 + 0.855023i \(0.326457\pi\)
\(180\) 3.95737e10 2.80983
\(181\) 1.83877e10 1.27343 0.636714 0.771100i \(-0.280293\pi\)
0.636714 + 0.771100i \(0.280293\pi\)
\(182\) −1.06683e10 −0.720732
\(183\) −3.58698e10 −2.36428
\(184\) 7.87168e9 0.506276
\(185\) −1.33177e10 −0.835905
\(186\) 3.66793e10 2.24705
\(187\) 1.47675e10 0.883121
\(188\) −4.37466e10 −2.55408
\(189\) 1.77112e10 1.00965
\(190\) −9.33514e9 −0.519672
\(191\) −2.65507e10 −1.44353 −0.721766 0.692137i \(-0.756669\pi\)
−0.721766 + 0.692137i \(0.756669\pi\)
\(192\) −7.80805e10 −4.14655
\(193\) 5.84127e9 0.303040 0.151520 0.988454i \(-0.451583\pi\)
0.151520 + 0.988454i \(0.451583\pi\)
\(194\) −4.17810e10 −2.11773
\(195\) −1.68913e10 −0.836578
\(196\) 7.59962e9 0.367824
\(197\) −2.06491e10 −0.976793 −0.488397 0.872622i \(-0.662418\pi\)
−0.488397 + 0.872622i \(0.662418\pi\)
\(198\) 8.54169e10 3.94958
\(199\) −2.66301e10 −1.20374 −0.601871 0.798593i \(-0.705578\pi\)
−0.601871 + 0.798593i \(0.705578\pi\)
\(200\) 1.34743e10 0.595484
\(201\) −2.17750e10 −0.940969
\(202\) 4.78745e10 2.02313
\(203\) −9.65720e9 −0.399134
\(204\) −1.21867e11 −4.92665
\(205\) 6.58055e9 0.260238
\(206\) 4.32756e10 1.67433
\(207\) 1.09608e10 0.414930
\(208\) 8.31660e10 3.08078
\(209\) −1.45127e10 −0.526126
\(210\) 1.67059e10 0.592765
\(211\) 1.35165e10 0.469454 0.234727 0.972061i \(-0.424580\pi\)
0.234727 + 0.972061i \(0.424580\pi\)
\(212\) −8.32995e10 −2.83225
\(213\) −3.90767e10 −1.30080
\(214\) −6.30652e10 −2.05555
\(215\) 2.43570e9 0.0777412
\(216\) −2.54449e11 −7.95352
\(217\) 7.91072e9 0.242185
\(218\) −7.69437e10 −2.30738
\(219\) 7.15125e10 2.10079
\(220\) 3.42495e10 0.985716
\(221\) 3.68965e10 1.04045
\(222\) 2.37218e11 6.55479
\(223\) 4.47296e10 1.21122 0.605610 0.795762i \(-0.292929\pi\)
0.605610 + 0.795762i \(0.292929\pi\)
\(224\) −3.98492e10 −1.05756
\(225\) 1.87620e10 0.488043
\(226\) 4.69231e10 1.19646
\(227\) 2.46775e10 0.616858 0.308429 0.951247i \(-0.400197\pi\)
0.308429 + 0.951247i \(0.400197\pi\)
\(228\) 1.19764e11 2.93509
\(229\) −5.44437e10 −1.30824 −0.654121 0.756390i \(-0.726961\pi\)
−0.654121 + 0.756390i \(0.726961\pi\)
\(230\) 6.10185e9 0.143776
\(231\) 2.59715e10 0.600126
\(232\) 1.38741e11 3.14418
\(233\) −5.82731e10 −1.29529 −0.647644 0.761943i \(-0.724246\pi\)
−0.647644 + 0.761943i \(0.724246\pi\)
\(234\) 2.13413e11 4.65318
\(235\) −2.07404e10 −0.443620
\(236\) 7.73478e10 1.62310
\(237\) 7.18110e10 1.47851
\(238\) −3.64916e10 −0.737219
\(239\) 5.53754e10 1.09781 0.548904 0.835885i \(-0.315045\pi\)
0.548904 + 0.835885i \(0.315045\pi\)
\(240\) −1.30233e11 −2.53379
\(241\) 6.01280e10 1.14815 0.574077 0.818802i \(-0.305361\pi\)
0.574077 + 0.818802i \(0.305361\pi\)
\(242\) −2.69523e10 −0.505157
\(243\) −1.08296e11 −1.99243
\(244\) 1.81718e11 3.28204
\(245\) 3.60300e9 0.0638877
\(246\) −1.17214e11 −2.04066
\(247\) −3.62598e10 −0.619854
\(248\) −1.13650e11 −1.90781
\(249\) −6.04519e10 −0.996582
\(250\) 1.04448e10 0.169110
\(251\) 1.01611e9 0.0161588 0.00807938 0.999967i \(-0.497428\pi\)
0.00807938 + 0.999967i \(0.497428\pi\)
\(252\) −1.52026e11 −2.37474
\(253\) 9.48612e9 0.145561
\(254\) −1.38475e10 −0.208747
\(255\) −5.77777e10 −0.855715
\(256\) 3.20161e10 0.465895
\(257\) −1.10965e11 −1.58667 −0.793334 0.608787i \(-0.791657\pi\)
−0.793334 + 0.608787i \(0.791657\pi\)
\(258\) −4.33852e10 −0.609611
\(259\) 5.11613e10 0.706469
\(260\) 8.55720e10 1.16132
\(261\) 1.93187e11 2.57689
\(262\) −1.96901e11 −2.58162
\(263\) 1.21172e11 1.56171 0.780856 0.624711i \(-0.214783\pi\)
0.780856 + 0.624711i \(0.214783\pi\)
\(264\) −3.73121e11 −4.72750
\(265\) −3.94925e10 −0.491936
\(266\) 3.58619e10 0.439203
\(267\) −7.06446e10 −0.850704
\(268\) 1.10313e11 1.30623
\(269\) 5.16654e10 0.601609 0.300805 0.953686i \(-0.402745\pi\)
0.300805 + 0.953686i \(0.402745\pi\)
\(270\) −1.97240e11 −2.25870
\(271\) −2.49166e10 −0.280626 −0.140313 0.990107i \(-0.544811\pi\)
−0.140313 + 0.990107i \(0.544811\pi\)
\(272\) 2.84475e11 3.15126
\(273\) 6.48895e10 0.707037
\(274\) −1.31738e11 −1.41200
\(275\) 1.62378e10 0.171210
\(276\) −7.82833e10 −0.812041
\(277\) −2.22882e10 −0.227466 −0.113733 0.993511i \(-0.536281\pi\)
−0.113733 + 0.993511i \(0.536281\pi\)
\(278\) −2.91196e11 −2.92404
\(279\) −1.58250e11 −1.56359
\(280\) −5.17627e10 −0.503276
\(281\) 9.03151e10 0.864135 0.432068 0.901841i \(-0.357784\pi\)
0.432068 + 0.901841i \(0.357784\pi\)
\(282\) 3.69431e11 3.47866
\(283\) −9.63268e10 −0.892706 −0.446353 0.894857i \(-0.647277\pi\)
−0.446353 + 0.894857i \(0.647277\pi\)
\(284\) 1.97965e11 1.80574
\(285\) 5.67806e10 0.509798
\(286\) 1.84701e11 1.63238
\(287\) −2.52798e10 −0.219941
\(288\) 7.97162e11 6.82780
\(289\) 7.61912e9 0.0642487
\(290\) 1.07547e11 0.892908
\(291\) 2.54131e11 2.07749
\(292\) −3.62286e11 −2.91627
\(293\) −4.21047e10 −0.333754 −0.166877 0.985978i \(-0.553368\pi\)
−0.166877 + 0.985978i \(0.553368\pi\)
\(294\) −6.41773e10 −0.500978
\(295\) 3.66708e10 0.281917
\(296\) −7.35012e11 −5.56521
\(297\) −3.06635e11 −2.28675
\(298\) 4.78227e11 3.51286
\(299\) 2.37010e10 0.171493
\(300\) −1.34000e11 −0.955126
\(301\) −9.35700e9 −0.0657033
\(302\) −2.08640e11 −1.44333
\(303\) −2.91195e11 −1.98469
\(304\) −2.79566e11 −1.87738
\(305\) 8.61531e10 0.570061
\(306\) 7.29994e11 4.75963
\(307\) 9.28980e10 0.596875 0.298438 0.954429i \(-0.403534\pi\)
0.298438 + 0.954429i \(0.403534\pi\)
\(308\) −1.31573e11 −0.833082
\(309\) −2.63223e11 −1.64252
\(310\) −8.80973e10 −0.541795
\(311\) −1.56495e11 −0.948588 −0.474294 0.880366i \(-0.657297\pi\)
−0.474294 + 0.880366i \(0.657297\pi\)
\(312\) −9.32239e11 −5.56969
\(313\) 8.88488e10 0.523242 0.261621 0.965171i \(-0.415743\pi\)
0.261621 + 0.965171i \(0.415743\pi\)
\(314\) −2.14409e11 −1.24469
\(315\) −7.20761e10 −0.412471
\(316\) −3.63798e11 −2.05243
\(317\) 6.19880e10 0.344779 0.172389 0.985029i \(-0.444851\pi\)
0.172389 + 0.985029i \(0.444851\pi\)
\(318\) 7.03448e11 3.85753
\(319\) 1.67196e11 0.903997
\(320\) 1.87536e11 0.999791
\(321\) 3.83591e11 2.01649
\(322\) −2.34409e10 −0.121513
\(323\) −1.24029e11 −0.634034
\(324\) 1.28419e12 6.47406
\(325\) 4.05699e10 0.201711
\(326\) −6.22114e11 −3.05064
\(327\) 4.68007e11 2.26354
\(328\) 3.63184e11 1.73259
\(329\) 7.96762e10 0.374927
\(330\) −2.89230e11 −1.34255
\(331\) 3.65322e11 1.67282 0.836410 0.548104i \(-0.184650\pi\)
0.836410 + 0.548104i \(0.184650\pi\)
\(332\) 3.06252e11 1.38343
\(333\) −1.02345e12 −4.56110
\(334\) −1.97757e10 −0.0869508
\(335\) 5.22997e10 0.226881
\(336\) 5.00302e11 2.14144
\(337\) 1.45738e11 0.615514 0.307757 0.951465i \(-0.400422\pi\)
0.307757 + 0.951465i \(0.400422\pi\)
\(338\) 7.79400e9 0.0324815
\(339\) −2.85408e11 −1.17373
\(340\) 2.92705e11 1.18788
\(341\) −1.36959e11 −0.548523
\(342\) −7.17397e11 −2.83558
\(343\) −1.38413e10 −0.0539949
\(344\) 1.34428e11 0.517578
\(345\) −3.71143e10 −0.141044
\(346\) 4.37734e10 0.164198
\(347\) 2.96112e11 1.09641 0.548206 0.836343i \(-0.315311\pi\)
0.548206 + 0.836343i \(0.315311\pi\)
\(348\) −1.37976e12 −5.04311
\(349\) 3.01854e11 1.08914 0.544569 0.838716i \(-0.316693\pi\)
0.544569 + 0.838716i \(0.316693\pi\)
\(350\) −4.01246e10 −0.142924
\(351\) −7.66126e11 −2.69413
\(352\) 6.89912e11 2.39526
\(353\) −1.99229e11 −0.682916 −0.341458 0.939897i \(-0.610921\pi\)
−0.341458 + 0.939897i \(0.610921\pi\)
\(354\) −6.53187e11 −2.21066
\(355\) 9.38555e10 0.313641
\(356\) 3.57889e11 1.18093
\(357\) 2.21959e11 0.723211
\(358\) 6.09469e11 1.96100
\(359\) −6.48945e10 −0.206197 −0.103099 0.994671i \(-0.532876\pi\)
−0.103099 + 0.994671i \(0.532876\pi\)
\(360\) 1.03549e12 3.24925
\(361\) −2.00799e11 −0.622270
\(362\) 7.86660e11 2.40768
\(363\) 1.63936e11 0.495559
\(364\) −3.28733e11 −0.981494
\(365\) −1.71761e11 −0.506530
\(366\) −1.53457e12 −4.47016
\(367\) −4.27450e10 −0.122995 −0.0614976 0.998107i \(-0.519588\pi\)
−0.0614976 + 0.998107i \(0.519588\pi\)
\(368\) 1.82736e11 0.519409
\(369\) 5.05710e11 1.41998
\(370\) −5.69756e11 −1.58045
\(371\) 1.51714e11 0.415761
\(372\) 1.13024e12 3.06004
\(373\) 5.72742e11 1.53204 0.766018 0.642819i \(-0.222235\pi\)
0.766018 + 0.642819i \(0.222235\pi\)
\(374\) 6.31781e11 1.66972
\(375\) −6.35299e10 −0.165897
\(376\) −1.14467e12 −2.95349
\(377\) 4.17737e11 1.06504
\(378\) 7.57717e11 1.90895
\(379\) −2.28088e11 −0.567840 −0.283920 0.958848i \(-0.591635\pi\)
−0.283920 + 0.958848i \(0.591635\pi\)
\(380\) −2.87654e11 −0.707691
\(381\) 8.42271e10 0.204781
\(382\) −1.13589e12 −2.72929
\(383\) 8.33542e11 1.97940 0.989699 0.143162i \(-0.0457271\pi\)
0.989699 + 0.143162i \(0.0457271\pi\)
\(384\) −1.12918e12 −2.65017
\(385\) −6.23790e10 −0.144699
\(386\) 2.49900e11 0.572959
\(387\) 1.87182e11 0.424193
\(388\) −1.28744e12 −2.88393
\(389\) −3.47070e11 −0.768501 −0.384251 0.923229i \(-0.625540\pi\)
−0.384251 + 0.923229i \(0.625540\pi\)
\(390\) −7.22638e11 −1.58172
\(391\) 8.10708e10 0.175416
\(392\) 1.98852e11 0.425346
\(393\) 1.19764e12 2.53257
\(394\) −8.83404e11 −1.84683
\(395\) −1.72478e11 −0.356489
\(396\) 2.63204e12 5.37854
\(397\) 5.31999e11 1.07486 0.537432 0.843307i \(-0.319394\pi\)
0.537432 + 0.843307i \(0.319394\pi\)
\(398\) −1.13928e12 −2.27592
\(399\) −2.18129e11 −0.430858
\(400\) 3.12797e11 0.610931
\(401\) −1.10007e11 −0.212456 −0.106228 0.994342i \(-0.533877\pi\)
−0.106228 + 0.994342i \(0.533877\pi\)
\(402\) −9.31572e11 −1.77910
\(403\) −3.42190e11 −0.646242
\(404\) 1.47521e12 2.75510
\(405\) 6.08837e11 1.12449
\(406\) −4.13152e11 −0.754645
\(407\) −8.85759e11 −1.60008
\(408\) −3.18878e12 −5.69710
\(409\) 5.36319e11 0.947694 0.473847 0.880607i \(-0.342865\pi\)
0.473847 + 0.880607i \(0.342865\pi\)
\(410\) 2.81528e11 0.492032
\(411\) 8.01294e11 1.38517
\(412\) 1.33350e12 2.28011
\(413\) −1.40875e11 −0.238263
\(414\) 4.68922e11 0.784511
\(415\) 1.45195e11 0.240290
\(416\) 1.72374e12 2.82197
\(417\) 1.77119e12 2.86849
\(418\) −6.20879e11 −0.994749
\(419\) 2.77847e11 0.440395 0.220198 0.975455i \(-0.429330\pi\)
0.220198 + 0.975455i \(0.429330\pi\)
\(420\) 5.14776e11 0.807228
\(421\) 5.42301e11 0.841339 0.420670 0.907214i \(-0.361795\pi\)
0.420670 + 0.907214i \(0.361795\pi\)
\(422\) 5.78260e11 0.887599
\(423\) −1.59388e12 −2.42060
\(424\) −2.17961e12 −3.27516
\(425\) 1.38772e11 0.206325
\(426\) −1.67177e12 −2.45943
\(427\) −3.30966e11 −0.481790
\(428\) −1.94329e12 −2.79925
\(429\) −1.12344e12 −1.60137
\(430\) 1.04204e11 0.146986
\(431\) −5.57666e11 −0.778442 −0.389221 0.921144i \(-0.627256\pi\)
−0.389221 + 0.921144i \(0.627256\pi\)
\(432\) −5.90688e12 −8.15984
\(433\) 2.13337e11 0.291656 0.145828 0.989310i \(-0.453415\pi\)
0.145828 + 0.989310i \(0.453415\pi\)
\(434\) 3.38435e11 0.457900
\(435\) −6.54150e11 −0.875942
\(436\) −2.37095e12 −3.14219
\(437\) −7.96718e10 −0.104505
\(438\) 3.05943e12 3.97198
\(439\) −1.05316e12 −1.35334 −0.676668 0.736289i \(-0.736577\pi\)
−0.676668 + 0.736289i \(0.736577\pi\)
\(440\) 8.96171e11 1.13987
\(441\) 2.76887e11 0.348602
\(442\) 1.57850e12 1.96718
\(443\) −7.98551e11 −0.985113 −0.492556 0.870281i \(-0.663937\pi\)
−0.492556 + 0.870281i \(0.663937\pi\)
\(444\) 7.30964e12 8.92632
\(445\) 1.69676e11 0.205117
\(446\) 1.91361e12 2.29006
\(447\) −2.90880e12 −3.44611
\(448\) −7.20438e11 −0.844978
\(449\) −9.80369e11 −1.13836 −0.569182 0.822211i \(-0.692740\pi\)
−0.569182 + 0.822211i \(0.692740\pi\)
\(450\) 8.02671e11 0.922745
\(451\) 4.37671e11 0.498143
\(452\) 1.44589e12 1.62934
\(453\) 1.26905e12 1.41591
\(454\) 1.05575e12 1.16630
\(455\) −1.55853e11 −0.170477
\(456\) 3.13376e12 3.39409
\(457\) 7.38737e11 0.792259 0.396130 0.918195i \(-0.370353\pi\)
0.396130 + 0.918195i \(0.370353\pi\)
\(458\) −2.32920e12 −2.47350
\(459\) −2.62058e12 −2.75576
\(460\) 1.88023e11 0.195794
\(461\) −8.57026e11 −0.883771 −0.441885 0.897072i \(-0.645690\pi\)
−0.441885 + 0.897072i \(0.645690\pi\)
\(462\) 1.11111e12 1.13466
\(463\) −8.66003e11 −0.875800 −0.437900 0.899024i \(-0.644278\pi\)
−0.437900 + 0.899024i \(0.644278\pi\)
\(464\) 3.22078e12 3.22575
\(465\) 5.35849e11 0.531501
\(466\) −2.49303e12 −2.44901
\(467\) −1.74446e12 −1.69721 −0.848606 0.529025i \(-0.822558\pi\)
−0.848606 + 0.529025i \(0.822558\pi\)
\(468\) 6.57613e12 6.33672
\(469\) −2.00915e11 −0.191749
\(470\) −8.87309e11 −0.838754
\(471\) 1.30414e12 1.22104
\(472\) 2.02388e12 1.87692
\(473\) 1.61998e11 0.148811
\(474\) 3.07220e12 2.79542
\(475\) −1.36377e11 −0.122919
\(476\) −1.12445e12 −1.00395
\(477\) −3.03496e12 −2.68424
\(478\) 2.36906e12 2.07563
\(479\) −6.51076e11 −0.565096 −0.282548 0.959253i \(-0.591180\pi\)
−0.282548 + 0.959253i \(0.591180\pi\)
\(480\) −2.69927e12 −2.32092
\(481\) −2.21306e12 −1.88513
\(482\) 2.57238e12 2.17082
\(483\) 1.42578e11 0.119204
\(484\) −8.30510e11 −0.687924
\(485\) −6.10379e11 −0.500913
\(486\) −4.63308e12 −3.76710
\(487\) 9.91101e8 0.000798432 0 0.000399216 1.00000i \(-0.499873\pi\)
0.000399216 1.00000i \(0.499873\pi\)
\(488\) 4.75484e12 3.79530
\(489\) 3.78398e12 2.99267
\(490\) 1.54143e11 0.120793
\(491\) 8.38408e11 0.651012 0.325506 0.945540i \(-0.394465\pi\)
0.325506 + 0.945540i \(0.394465\pi\)
\(492\) −3.61184e12 −2.77898
\(493\) 1.42890e12 1.08941
\(494\) −1.55126e12 −1.17196
\(495\) 1.24786e12 0.934204
\(496\) −2.63831e12 −1.95730
\(497\) −3.60555e11 −0.265075
\(498\) −2.58624e12 −1.88424
\(499\) 2.48735e12 1.79591 0.897955 0.440088i \(-0.145053\pi\)
0.897955 + 0.440088i \(0.145053\pi\)
\(500\) 3.21846e11 0.230294
\(501\) 1.20285e11 0.0852987
\(502\) 4.34709e10 0.0305515
\(503\) −1.40863e12 −0.981163 −0.490582 0.871395i \(-0.663216\pi\)
−0.490582 + 0.871395i \(0.663216\pi\)
\(504\) −3.97792e12 −2.74611
\(505\) 6.99400e11 0.478536
\(506\) 4.05833e11 0.275214
\(507\) −4.74067e10 −0.0318643
\(508\) −4.26699e11 −0.284272
\(509\) −8.28720e11 −0.547240 −0.273620 0.961838i \(-0.588221\pi\)
−0.273620 + 0.961838i \(0.588221\pi\)
\(510\) −2.47183e12 −1.61791
\(511\) 6.59835e11 0.428096
\(512\) −8.52047e11 −0.547960
\(513\) 2.57536e12 1.64176
\(514\) −4.74727e12 −2.99992
\(515\) 6.32215e11 0.396034
\(516\) −1.33687e12 −0.830169
\(517\) −1.37944e12 −0.849170
\(518\) 2.18877e12 1.33572
\(519\) −2.66250e11 −0.161078
\(520\) 2.23908e12 1.34293
\(521\) −8.58369e11 −0.510393 −0.255196 0.966889i \(-0.582140\pi\)
−0.255196 + 0.966889i \(0.582140\pi\)
\(522\) 8.26488e12 4.87214
\(523\) 1.43567e12 0.839069 0.419534 0.907739i \(-0.362193\pi\)
0.419534 + 0.907739i \(0.362193\pi\)
\(524\) −6.06733e12 −3.51566
\(525\) 2.44057e11 0.140208
\(526\) 5.18395e12 2.95274
\(527\) −1.17048e12 −0.661025
\(528\) −8.66176e12 −4.85013
\(529\) −1.74908e12 −0.971087
\(530\) −1.68956e12 −0.930105
\(531\) 2.81812e12 1.53827
\(532\) 1.10505e12 0.598108
\(533\) 1.09352e12 0.586886
\(534\) −3.02230e12 −1.60843
\(535\) −9.21320e11 −0.486204
\(536\) 2.88645e12 1.51051
\(537\) −3.70707e12 −1.92374
\(538\) 2.21034e12 1.13747
\(539\) 2.39635e11 0.122293
\(540\) −6.07777e12 −3.07590
\(541\) 3.25599e12 1.63416 0.817081 0.576523i \(-0.195591\pi\)
0.817081 + 0.576523i \(0.195591\pi\)
\(542\) −1.06598e12 −0.530581
\(543\) −4.78483e12 −2.36193
\(544\) 5.89616e12 2.88652
\(545\) −1.12407e12 −0.545770
\(546\) 2.77609e12 1.33680
\(547\) −1.31051e12 −0.625887 −0.312944 0.949772i \(-0.601315\pi\)
−0.312944 + 0.949772i \(0.601315\pi\)
\(548\) −4.05940e12 −1.92287
\(549\) 6.62079e12 3.11053
\(550\) 6.94680e11 0.323707
\(551\) −1.40424e12 −0.649021
\(552\) −2.04836e12 −0.939031
\(553\) 6.62590e11 0.301288
\(554\) −9.53528e11 −0.430070
\(555\) 3.46552e12 1.55042
\(556\) −8.97294e12 −3.98197
\(557\) 6.12448e11 0.269600 0.134800 0.990873i \(-0.456961\pi\)
0.134800 + 0.990873i \(0.456961\pi\)
\(558\) −6.77020e12 −2.95630
\(559\) 4.04751e11 0.175321
\(560\) −1.20164e12 −0.516331
\(561\) −3.84278e12 −1.63800
\(562\) 3.86384e12 1.63383
\(563\) 2.74733e12 1.15245 0.576227 0.817290i \(-0.304524\pi\)
0.576227 + 0.817290i \(0.304524\pi\)
\(564\) 1.13837e13 4.73725
\(565\) 6.85500e11 0.283002
\(566\) −4.12103e12 −1.68784
\(567\) −2.33891e12 −0.950363
\(568\) 5.17994e12 2.08813
\(569\) −7.10003e11 −0.283958 −0.141979 0.989870i \(-0.545347\pi\)
−0.141979 + 0.989870i \(0.545347\pi\)
\(570\) 2.42918e12 0.963878
\(571\) 2.87190e12 1.13060 0.565298 0.824887i \(-0.308761\pi\)
0.565298 + 0.824887i \(0.308761\pi\)
\(572\) 5.69138e12 2.22298
\(573\) 6.90899e12 2.67744
\(574\) −1.08152e12 −0.415843
\(575\) 8.91421e10 0.0340077
\(576\) 1.44120e13 5.45534
\(577\) −5.13479e12 −1.92855 −0.964277 0.264897i \(-0.914662\pi\)
−0.964277 + 0.264897i \(0.914662\pi\)
\(578\) 3.25959e11 0.121475
\(579\) −1.52001e12 −0.562072
\(580\) 3.31396e12 1.21596
\(581\) −5.57781e11 −0.203082
\(582\) 1.08722e13 3.92793
\(583\) −2.62664e12 −0.941656
\(584\) −9.47956e12 −3.37233
\(585\) 3.11776e12 1.10063
\(586\) −1.80131e12 −0.631030
\(587\) 2.46529e12 0.857031 0.428515 0.903535i \(-0.359037\pi\)
0.428515 + 0.903535i \(0.359037\pi\)
\(588\) −1.97756e12 −0.682233
\(589\) 1.15029e12 0.393810
\(590\) 1.56884e12 0.533022
\(591\) 5.37327e12 1.81174
\(592\) −1.70629e13 −5.70958
\(593\) −1.51279e12 −0.502379 −0.251189 0.967938i \(-0.580822\pi\)
−0.251189 + 0.967938i \(0.580822\pi\)
\(594\) −1.31184e13 −4.32356
\(595\) −5.33106e11 −0.174376
\(596\) 1.47361e13 4.78382
\(597\) 6.92964e12 2.23268
\(598\) 1.01397e12 0.324243
\(599\) −5.89069e12 −1.86959 −0.934794 0.355191i \(-0.884416\pi\)
−0.934794 + 0.355191i \(0.884416\pi\)
\(600\) −3.50625e12 −1.10449
\(601\) −3.78551e12 −1.18356 −0.591779 0.806101i \(-0.701574\pi\)
−0.591779 + 0.806101i \(0.701574\pi\)
\(602\) −4.00309e11 −0.124226
\(603\) 4.01919e12 1.23797
\(604\) −6.42905e12 −1.96553
\(605\) −3.93747e11 −0.119486
\(606\) −1.24578e13 −3.75246
\(607\) 4.65336e12 1.39129 0.695645 0.718386i \(-0.255119\pi\)
0.695645 + 0.718386i \(0.255119\pi\)
\(608\) −5.79442e12 −1.71966
\(609\) 2.51298e12 0.740306
\(610\) 3.68578e12 1.07782
\(611\) −3.44651e12 −1.00045
\(612\) 2.24941e13 6.48167
\(613\) 5.65330e12 1.61707 0.808537 0.588445i \(-0.200260\pi\)
0.808537 + 0.588445i \(0.200260\pi\)
\(614\) 3.97434e12 1.12852
\(615\) −1.71238e12 −0.482684
\(616\) −3.44273e12 −0.963363
\(617\) −4.91335e12 −1.36488 −0.682441 0.730941i \(-0.739081\pi\)
−0.682441 + 0.730941i \(0.739081\pi\)
\(618\) −1.12611e13 −3.10552
\(619\) 1.31898e12 0.361101 0.180551 0.983566i \(-0.442212\pi\)
0.180551 + 0.983566i \(0.442212\pi\)
\(620\) −2.71464e12 −0.737818
\(621\) −1.68337e12 −0.454221
\(622\) −6.69512e12 −1.79350
\(623\) −6.51828e11 −0.173355
\(624\) −2.16413e13 −5.71418
\(625\) 1.52588e11 0.0400000
\(626\) 3.80111e12 0.989296
\(627\) 3.77647e12 0.975848
\(628\) −6.60681e12 −1.69502
\(629\) −7.56992e12 −1.92825
\(630\) −3.08354e12 −0.779862
\(631\) −1.26560e12 −0.317808 −0.158904 0.987294i \(-0.550796\pi\)
−0.158904 + 0.987294i \(0.550796\pi\)
\(632\) −9.51913e12 −2.37340
\(633\) −3.51724e12 −0.870735
\(634\) 2.65196e12 0.651875
\(635\) −2.02299e11 −0.0493755
\(636\) 2.16761e13 5.25320
\(637\) 5.98726e11 0.144079
\(638\) 7.15293e12 1.70919
\(639\) 7.21271e12 1.71137
\(640\) 2.71210e12 0.638992
\(641\) 7.10592e12 1.66249 0.831246 0.555905i \(-0.187628\pi\)
0.831246 + 0.555905i \(0.187628\pi\)
\(642\) 1.64107e13 3.81259
\(643\) 4.17010e12 0.962049 0.481024 0.876707i \(-0.340265\pi\)
0.481024 + 0.876707i \(0.340265\pi\)
\(644\) −7.22309e11 −0.165477
\(645\) −6.33815e11 −0.144193
\(646\) −5.30619e12 −1.19877
\(647\) −5.36916e12 −1.20458 −0.602292 0.798276i \(-0.705746\pi\)
−0.602292 + 0.798276i \(0.705746\pi\)
\(648\) 3.36021e13 7.48650
\(649\) 2.43897e12 0.539641
\(650\) 1.73565e12 0.381375
\(651\) −2.05852e12 −0.449200
\(652\) −1.91699e13 −4.15436
\(653\) 2.71691e12 0.584744 0.292372 0.956305i \(-0.405555\pi\)
0.292372 + 0.956305i \(0.405555\pi\)
\(654\) 2.00222e13 4.27968
\(655\) −2.87653e12 −0.610638
\(656\) 8.43110e12 1.77753
\(657\) −1.31996e13 −2.76387
\(658\) 3.40869e12 0.708877
\(659\) 6.36955e12 1.31560 0.657801 0.753192i \(-0.271487\pi\)
0.657801 + 0.753192i \(0.271487\pi\)
\(660\) −8.91235e12 −1.82829
\(661\) −5.58167e12 −1.13725 −0.568627 0.822596i \(-0.692525\pi\)
−0.568627 + 0.822596i \(0.692525\pi\)
\(662\) 1.56291e13 3.16281
\(663\) −9.60116e12 −1.92980
\(664\) 8.01340e12 1.59978
\(665\) 5.23907e11 0.103886
\(666\) −4.37852e13 −8.62370
\(667\) 9.17871e11 0.179562
\(668\) −6.09371e11 −0.118410
\(669\) −1.16395e13 −2.24655
\(670\) 2.23748e12 0.428965
\(671\) 5.73003e12 1.09120
\(672\) 1.03695e13 1.96154
\(673\) 4.49826e12 0.845234 0.422617 0.906308i \(-0.361112\pi\)
0.422617 + 0.906308i \(0.361112\pi\)
\(674\) 6.23492e12 1.16376
\(675\) −2.88148e12 −0.534256
\(676\) 2.40165e11 0.0442333
\(677\) 5.35625e12 0.979969 0.489984 0.871731i \(-0.337002\pi\)
0.489984 + 0.871731i \(0.337002\pi\)
\(678\) −1.22103e13 −2.21917
\(679\) 2.34483e12 0.423349
\(680\) 7.65890e12 1.37365
\(681\) −6.42155e12 −1.14414
\(682\) −5.85934e12 −1.03710
\(683\) −2.20240e12 −0.387261 −0.193630 0.981075i \(-0.562026\pi\)
−0.193630 + 0.981075i \(0.562026\pi\)
\(684\) −2.21059e13 −3.86150
\(685\) −1.92457e12 −0.333984
\(686\) −5.92155e11 −0.102088
\(687\) 1.41673e13 2.42650
\(688\) 3.12066e12 0.531005
\(689\) −6.56264e12 −1.10941
\(690\) −1.58782e12 −0.266673
\(691\) 4.30201e12 0.717827 0.358913 0.933371i \(-0.383147\pi\)
0.358913 + 0.933371i \(0.383147\pi\)
\(692\) 1.34884e12 0.223605
\(693\) −4.79377e12 −0.789546
\(694\) 1.26682e13 2.07299
\(695\) −4.25409e12 −0.691632
\(696\) −3.61029e13 −5.83177
\(697\) 3.74045e12 0.600311
\(698\) 1.29139e13 2.05924
\(699\) 1.51637e13 2.40248
\(700\) −1.23640e12 −0.194634
\(701\) 9.24701e12 1.44634 0.723170 0.690670i \(-0.242684\pi\)
0.723170 + 0.690670i \(0.242684\pi\)
\(702\) −3.27762e13 −5.09380
\(703\) 7.43929e12 1.14877
\(704\) 1.24730e13 1.91379
\(705\) 5.39703e12 0.822817
\(706\) −8.52339e12 −1.29119
\(707\) −2.68681e12 −0.404436
\(708\) −2.01273e13 −3.01049
\(709\) −1.08956e13 −1.61936 −0.809680 0.586872i \(-0.800359\pi\)
−0.809680 + 0.586872i \(0.800359\pi\)
\(710\) 4.01531e12 0.593002
\(711\) −1.32548e13 −1.94517
\(712\) 9.36452e12 1.36561
\(713\) −7.51877e11 −0.108954
\(714\) 9.49579e12 1.36738
\(715\) 2.69830e12 0.386111
\(716\) 1.87802e13 2.67050
\(717\) −1.44097e13 −2.03619
\(718\) −2.77630e12 −0.389858
\(719\) −6.34998e12 −0.886120 −0.443060 0.896492i \(-0.646107\pi\)
−0.443060 + 0.896492i \(0.646107\pi\)
\(720\) 2.40382e13 3.33353
\(721\) −2.42872e12 −0.334710
\(722\) −8.59053e12 −1.17653
\(723\) −1.56464e13 −2.12957
\(724\) 2.42402e13 3.27878
\(725\) 1.57115e12 0.211202
\(726\) 7.01349e12 0.936956
\(727\) 4.81017e12 0.638639 0.319319 0.947647i \(-0.396546\pi\)
0.319319 + 0.947647i \(0.396546\pi\)
\(728\) −8.60163e12 −1.13498
\(729\) 9.00655e12 1.18109
\(730\) −7.34822e12 −0.957700
\(731\) 1.38448e12 0.179332
\(732\) −4.72865e13 −6.08747
\(733\) −1.10839e13 −1.41816 −0.709082 0.705126i \(-0.750890\pi\)
−0.709082 + 0.705126i \(0.750890\pi\)
\(734\) −1.82871e12 −0.232548
\(735\) −9.37568e11 −0.118498
\(736\) 3.78748e12 0.475774
\(737\) 3.47845e12 0.434292
\(738\) 2.16352e13 2.68477
\(739\) −1.33603e13 −1.64784 −0.823922 0.566704i \(-0.808218\pi\)
−0.823922 + 0.566704i \(0.808218\pi\)
\(740\) −1.75565e13 −2.15226
\(741\) 9.43548e12 1.14969
\(742\) 6.49061e12 0.786082
\(743\) 2.12151e12 0.255384 0.127692 0.991814i \(-0.459243\pi\)
0.127692 + 0.991814i \(0.459243\pi\)
\(744\) 2.95738e13 3.53858
\(745\) 6.98643e12 0.830906
\(746\) 2.45029e13 2.89663
\(747\) 1.11581e13 1.31114
\(748\) 1.94677e13 2.27383
\(749\) 3.53934e12 0.410918
\(750\) −2.71792e12 −0.313662
\(751\) 2.36099e12 0.270841 0.135420 0.990788i \(-0.456762\pi\)
0.135420 + 0.990788i \(0.456762\pi\)
\(752\) −2.65729e13 −3.03011
\(753\) −2.64410e11 −0.0299710
\(754\) 1.78715e13 2.01368
\(755\) −3.04803e12 −0.341396
\(756\) 2.33483e13 2.59961
\(757\) 6.53431e12 0.723217 0.361608 0.932330i \(-0.382228\pi\)
0.361608 + 0.932330i \(0.382228\pi\)
\(758\) −9.75801e12 −1.07362
\(759\) −2.46847e12 −0.269985
\(760\) −7.52674e12 −0.818363
\(761\) −7.47260e12 −0.807682 −0.403841 0.914829i \(-0.632325\pi\)
−0.403841 + 0.914829i \(0.632325\pi\)
\(762\) 3.60339e12 0.387180
\(763\) 4.31824e12 0.461260
\(764\) −3.50013e13 −3.71676
\(765\) 1.06645e13 1.12581
\(766\) 3.56604e13 3.74246
\(767\) 6.09374e12 0.635777
\(768\) −8.33117e12 −0.864133
\(769\) 3.53111e12 0.364119 0.182059 0.983288i \(-0.441724\pi\)
0.182059 + 0.983288i \(0.441724\pi\)
\(770\) −2.66868e12 −0.273583
\(771\) 2.88751e13 2.94292
\(772\) 7.70043e12 0.780256
\(773\) 4.38854e12 0.442092 0.221046 0.975263i \(-0.429053\pi\)
0.221046 + 0.975263i \(0.429053\pi\)
\(774\) 8.00796e12 0.802025
\(775\) −1.28702e12 −0.128152
\(776\) −3.36872e13 −3.33493
\(777\) −1.33131e13 −1.31034
\(778\) −1.48483e13 −1.45301
\(779\) −3.67591e12 −0.357640
\(780\) −2.22674e13 −2.15399
\(781\) 6.24232e12 0.600366
\(782\) 3.46835e12 0.331660
\(783\) −2.96698e13 −2.82090
\(784\) 4.61622e12 0.436379
\(785\) −3.13231e12 −0.294409
\(786\) 5.12374e13 4.78834
\(787\) −8.78357e12 −0.816178 −0.408089 0.912942i \(-0.633805\pi\)
−0.408089 + 0.912942i \(0.633805\pi\)
\(788\) −2.72213e13 −2.51501
\(789\) −3.15312e13 −2.89663
\(790\) −7.37890e12 −0.674015
\(791\) −2.63342e12 −0.239180
\(792\) 6.88700e13 6.21966
\(793\) 1.43164e13 1.28560
\(794\) 2.27599e13 2.03225
\(795\) 1.02767e13 0.912433
\(796\) −3.51059e13 −3.09935
\(797\) −3.11376e12 −0.273352 −0.136676 0.990616i \(-0.543642\pi\)
−0.136676 + 0.990616i \(0.543642\pi\)
\(798\) −9.33193e12 −0.814626
\(799\) −1.17890e13 −1.02333
\(800\) 6.48318e12 0.559607
\(801\) 1.30395e13 1.11921
\(802\) −4.70628e12 −0.401692
\(803\) −1.14238e13 −0.969593
\(804\) −2.87055e13 −2.42278
\(805\) −3.42448e11 −0.0287418
\(806\) −1.46395e13 −1.22185
\(807\) −1.34443e13 −1.11585
\(808\) 3.86003e13 3.18595
\(809\) 2.27913e13 1.87068 0.935341 0.353747i \(-0.115093\pi\)
0.935341 + 0.353747i \(0.115093\pi\)
\(810\) 2.60471e13 2.12607
\(811\) 6.23133e12 0.505810 0.252905 0.967491i \(-0.418614\pi\)
0.252905 + 0.967491i \(0.418614\pi\)
\(812\) −1.27309e13 −1.02768
\(813\) 6.48377e12 0.520499
\(814\) −3.78944e13 −3.02527
\(815\) −9.08847e12 −0.721575
\(816\) −7.40256e13 −5.84489
\(817\) −1.36059e12 −0.106838
\(818\) 2.29447e13 1.79181
\(819\) −1.19772e13 −0.930202
\(820\) 8.67501e12 0.670051
\(821\) −6.34294e12 −0.487244 −0.243622 0.969870i \(-0.578336\pi\)
−0.243622 + 0.969870i \(0.578336\pi\)
\(822\) 3.42808e13 2.61895
\(823\) −1.01100e13 −0.768158 −0.384079 0.923300i \(-0.625481\pi\)
−0.384079 + 0.923300i \(0.625481\pi\)
\(824\) 3.48923e13 2.63668
\(825\) −4.22537e12 −0.317557
\(826\) −6.02686e12 −0.450486
\(827\) −2.09841e11 −0.0155997 −0.00779984 0.999970i \(-0.502483\pi\)
−0.00779984 + 0.999970i \(0.502483\pi\)
\(828\) 1.44494e13 1.06835
\(829\) −1.42099e13 −1.04495 −0.522474 0.852655i \(-0.674991\pi\)
−0.522474 + 0.852655i \(0.674991\pi\)
\(830\) 6.21170e12 0.454317
\(831\) 5.79980e12 0.421899
\(832\) 3.11636e13 2.25472
\(833\) 2.04798e12 0.147375
\(834\) 7.57746e13 5.42346
\(835\) −2.88904e11 −0.0205667
\(836\) −1.91318e13 −1.35465
\(837\) 2.43041e13 1.71165
\(838\) 1.18868e13 0.832658
\(839\) 6.20295e12 0.432185 0.216092 0.976373i \(-0.430669\pi\)
0.216092 + 0.976373i \(0.430669\pi\)
\(840\) 1.34696e13 0.933466
\(841\) 1.67059e12 0.115157
\(842\) 2.32006e13 1.59072
\(843\) −2.35017e13 −1.60278
\(844\) 1.78185e13 1.20873
\(845\) 1.13863e11 0.00768292
\(846\) −6.81890e13 −4.57665
\(847\) 1.51262e12 0.100984
\(848\) −5.05984e13 −3.36012
\(849\) 2.50660e13 1.65577
\(850\) 5.93691e12 0.390099
\(851\) −4.86265e12 −0.317826
\(852\) −5.15141e13 −3.34925
\(853\) −3.60370e12 −0.233066 −0.116533 0.993187i \(-0.537178\pi\)
−0.116533 + 0.993187i \(0.537178\pi\)
\(854\) −1.41593e13 −0.910922
\(855\) −1.04805e13 −0.670708
\(856\) −5.08482e13 −3.23701
\(857\) −4.01270e12 −0.254110 −0.127055 0.991896i \(-0.540553\pi\)
−0.127055 + 0.991896i \(0.540553\pi\)
\(858\) −4.80626e13 −3.02771
\(859\) 2.02534e13 1.26919 0.634597 0.772843i \(-0.281166\pi\)
0.634597 + 0.772843i \(0.281166\pi\)
\(860\) 3.21094e12 0.200165
\(861\) 6.57829e12 0.407942
\(862\) −2.38579e13 −1.47180
\(863\) 1.57831e13 0.968598 0.484299 0.874903i \(-0.339075\pi\)
0.484299 + 0.874903i \(0.339075\pi\)
\(864\) −1.22429e14 −7.47433
\(865\) 6.39487e11 0.0388382
\(866\) 9.12694e12 0.551435
\(867\) −1.98264e12 −0.119167
\(868\) 1.04285e13 0.623570
\(869\) −1.14715e13 −0.682385
\(870\) −2.79857e13 −1.65615
\(871\) 8.69087e12 0.511660
\(872\) −6.20382e13 −3.63358
\(873\) −4.69071e13 −2.73322
\(874\) −3.40850e12 −0.197589
\(875\) −5.86182e11 −0.0338062
\(876\) 9.42735e13 5.40905
\(877\) −8.86665e12 −0.506129 −0.253065 0.967449i \(-0.581439\pi\)
−0.253065 + 0.967449i \(0.581439\pi\)
\(878\) −4.50562e13 −2.55876
\(879\) 1.09564e13 0.619040
\(880\) 2.08041e13 1.16943
\(881\) −1.22614e13 −0.685720 −0.342860 0.939387i \(-0.611396\pi\)
−0.342860 + 0.939387i \(0.611396\pi\)
\(882\) 1.18457e13 0.659103
\(883\) 1.90484e13 1.05447 0.527236 0.849719i \(-0.323228\pi\)
0.527236 + 0.849719i \(0.323228\pi\)
\(884\) 4.86400e13 2.67891
\(885\) −9.54242e12 −0.522894
\(886\) −3.41634e13 −1.86256
\(887\) 2.67439e13 1.45067 0.725335 0.688396i \(-0.241685\pi\)
0.725335 + 0.688396i \(0.241685\pi\)
\(888\) 1.91264e14 10.3223
\(889\) 7.77152e11 0.0417300
\(890\) 7.25904e12 0.387815
\(891\) 4.04937e13 2.15247
\(892\) 5.89661e13 3.11861
\(893\) 1.15856e13 0.609659
\(894\) −1.24443e14 −6.51558
\(895\) 8.90375e12 0.463841
\(896\) −1.04188e13 −0.540047
\(897\) −6.16744e12 −0.318082
\(898\) −4.19419e13 −2.15231
\(899\) −1.32520e13 −0.676650
\(900\) 2.47336e13 1.25660
\(901\) −2.24479e13 −1.13479
\(902\) 1.87244e13 0.941841
\(903\) 2.43486e12 0.121865
\(904\) 3.78332e13 1.88415
\(905\) 1.14923e13 0.569495
\(906\) 5.42920e13 2.67707
\(907\) 3.03949e13 1.49131 0.745655 0.666332i \(-0.232137\pi\)
0.745655 + 0.666332i \(0.232137\pi\)
\(908\) 3.25319e13 1.58827
\(909\) 5.37483e13 2.61112
\(910\) −6.66768e12 −0.322321
\(911\) 1.77272e13 0.852721 0.426361 0.904553i \(-0.359795\pi\)
0.426361 + 0.904553i \(0.359795\pi\)
\(912\) 7.27482e13 3.48214
\(913\) 9.65690e12 0.459959
\(914\) 3.16045e13 1.49793
\(915\) −2.24186e13 −1.05734
\(916\) −7.17721e13 −3.36842
\(917\) 1.10505e13 0.516083
\(918\) −1.12113e14 −5.21032
\(919\) −3.30500e13 −1.52845 −0.764226 0.644948i \(-0.776879\pi\)
−0.764226 + 0.644948i \(0.776879\pi\)
\(920\) 4.91980e12 0.226414
\(921\) −2.41738e13 −1.10707
\(922\) −3.66651e13 −1.67095
\(923\) 1.55964e13 0.707320
\(924\) 3.42377e13 1.54518
\(925\) −8.32357e12 −0.373828
\(926\) −3.70491e13 −1.65588
\(927\) 4.85852e13 2.16095
\(928\) 6.67555e13 2.95475
\(929\) −3.62767e13 −1.59793 −0.798963 0.601380i \(-0.794618\pi\)
−0.798963 + 0.601380i \(0.794618\pi\)
\(930\) 2.29246e13 1.00491
\(931\) −2.01264e12 −0.0877996
\(932\) −7.68203e13 −3.33506
\(933\) 4.07228e13 1.75942
\(934\) −7.46313e13 −3.20893
\(935\) 9.22970e12 0.394944
\(936\) 1.72071e14 7.32768
\(937\) 8.07643e11 0.0342288 0.0171144 0.999854i \(-0.494552\pi\)
0.0171144 + 0.999854i \(0.494552\pi\)
\(938\) −8.59548e12 −0.362541
\(939\) −2.31201e13 −0.970499
\(940\) −2.73416e13 −1.14222
\(941\) −2.62828e13 −1.09274 −0.546371 0.837543i \(-0.683991\pi\)
−0.546371 + 0.837543i \(0.683991\pi\)
\(942\) 5.57932e13 2.30862
\(943\) 2.40273e12 0.0989470
\(944\) 4.69832e13 1.92561
\(945\) 1.10695e13 0.451529
\(946\) 6.93057e12 0.281358
\(947\) 1.64435e13 0.664384 0.332192 0.943212i \(-0.392212\pi\)
0.332192 + 0.943212i \(0.392212\pi\)
\(948\) 9.46670e13 3.80681
\(949\) −2.85422e13 −1.14232
\(950\) −5.83446e12 −0.232405
\(951\) −1.61304e13 −0.639489
\(952\) −2.94224e13 −1.16095
\(953\) −1.18588e13 −0.465717 −0.232859 0.972511i \(-0.574808\pi\)
−0.232859 + 0.972511i \(0.574808\pi\)
\(954\) −1.29841e14 −5.07510
\(955\) −1.65942e13 −0.645567
\(956\) 7.30003e13 2.82660
\(957\) −4.35074e13 −1.67672
\(958\) −2.78542e13 −1.06843
\(959\) 7.39343e12 0.282268
\(960\) −4.88003e13 −1.85439
\(961\) −1.55842e13 −0.589425
\(962\) −9.46787e13 −3.56422
\(963\) −7.08027e13 −2.65296
\(964\) 7.92655e13 2.95623
\(965\) 3.65079e12 0.135523
\(966\) 6.09975e12 0.225380
\(967\) 1.14207e13 0.420023 0.210011 0.977699i \(-0.432650\pi\)
0.210011 + 0.977699i \(0.432650\pi\)
\(968\) −2.17311e13 −0.795505
\(969\) 3.22747e13 1.17599
\(970\) −2.61131e13 −0.947078
\(971\) 8.26707e12 0.298446 0.149223 0.988804i \(-0.452323\pi\)
0.149223 + 0.988804i \(0.452323\pi\)
\(972\) −1.42764e14 −5.13004
\(973\) 1.63425e13 0.584536
\(974\) 4.24011e10 0.00150960
\(975\) −1.05570e13 −0.374129
\(976\) 1.10381e14 3.89375
\(977\) −5.06889e13 −1.77987 −0.889934 0.456090i \(-0.849250\pi\)
−0.889934 + 0.456090i \(0.849250\pi\)
\(978\) 1.61886e14 5.65826
\(979\) 1.12851e13 0.392631
\(980\) 4.74976e12 0.164496
\(981\) −8.63840e13 −2.97799
\(982\) 3.58686e13 1.23087
\(983\) 1.12786e13 0.385268 0.192634 0.981271i \(-0.438297\pi\)
0.192634 + 0.981271i \(0.438297\pi\)
\(984\) −9.45073e13 −3.21357
\(985\) −1.29057e13 −0.436835
\(986\) 6.11307e13 2.05974
\(987\) −2.07332e13 −0.695408
\(988\) −4.78006e13 −1.59598
\(989\) 8.89338e11 0.0295586
\(990\) 5.33856e13 1.76630
\(991\) 5.17189e13 1.70340 0.851702 0.524027i \(-0.175571\pi\)
0.851702 + 0.524027i \(0.175571\pi\)
\(992\) −5.46829e13 −1.79287
\(993\) −9.50635e13 −3.10272
\(994\) −1.54252e13 −0.501178
\(995\) −1.66438e13 −0.538330
\(996\) −7.96926e13 −2.56597
\(997\) 1.92951e13 0.618471 0.309235 0.950986i \(-0.399927\pi\)
0.309235 + 0.950986i \(0.399927\pi\)
\(998\) 1.06413e14 3.39554
\(999\) 1.57183e14 4.99300
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.10.a.e.1.6 6
3.2 odd 2 315.10.a.l.1.1 6
5.2 odd 4 175.10.b.g.99.11 12
5.3 odd 4 175.10.b.g.99.2 12
5.4 even 2 175.10.a.g.1.1 6
7.6 odd 2 245.10.a.g.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.e.1.6 6 1.1 even 1 trivial
175.10.a.g.1.1 6 5.4 even 2
175.10.b.g.99.2 12 5.3 odd 4
175.10.b.g.99.11 12 5.2 odd 4
245.10.a.g.1.6 6 7.6 odd 2
315.10.a.l.1.1 6 3.2 odd 2