Properties

Label 350.3.p.e.193.2
Level $350$
Weight $3$
Character 350.193
Analytic conductor $9.537$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,3,Mod(93,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.93");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.p (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 8 x^{13} - 722 x^{12} + 1354 x^{11} - 1232 x^{10} + 9306 x^{9} + \cdots + 52200625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.2
Root \(-0.707100 + 2.63893i\) of defining polynomial
Character \(\chi\) \(=\) 350.193
Dual form 350.3.p.e.107.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-2.63893 + 0.707100i) q^{3} +(1.73205 + 1.00000i) q^{4} -3.86367 q^{6} +(-6.78261 - 1.73096i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.33025 + 0.768021i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-2.63893 + 0.707100i) q^{3} +(1.73205 + 1.00000i) q^{4} -3.86367 q^{6} +(-6.78261 - 1.73096i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.33025 + 0.768021i) q^{9} +(10.0230 - 17.3604i) q^{11} +(-5.27787 - 1.41420i) q^{12} +(-2.21546 - 2.21546i) q^{13} +(-8.63164 - 4.84715i) q^{14} +(2.00000 + 3.46410i) q^{16} +(-3.19722 - 11.9322i) q^{17} +(-2.09827 + 0.562230i) q^{18} +(-15.7940 + 9.11869i) q^{19} +(19.1228 - 0.228089i) q^{21} +(20.0461 - 20.0461i) q^{22} +(10.6451 - 39.7282i) q^{23} +(-6.69207 - 3.86367i) q^{24} +(-2.21546 - 3.83729i) q^{26} +(20.3539 - 20.3539i) q^{27} +(-10.0169 - 9.78072i) q^{28} -19.0242i q^{29} +(-3.14077 + 5.43998i) q^{31} +(1.46410 + 5.46410i) q^{32} +(-14.1746 + 52.9003i) q^{33} -17.4700i q^{34} -3.07208 q^{36} +(-36.6587 - 9.82266i) q^{37} +(-24.9127 + 6.67534i) q^{38} +(7.41300 + 4.27990i) q^{39} -16.3689 q^{41} +(26.2057 + 6.68786i) q^{42} +(4.26669 + 4.26669i) q^{43} +(34.7208 - 20.0461i) q^{44} +(29.0830 - 50.3733i) q^{46} +(11.9322 + 3.19722i) q^{47} +(-7.72733 - 7.72733i) q^{48} +(43.0075 + 23.4809i) q^{49} +(16.8745 + 29.2275i) q^{51} +(-1.62183 - 6.05274i) q^{52} +(-51.7180 + 13.8578i) q^{53} +(35.2539 - 20.3539i) q^{54} +(-10.1033 - 17.0271i) q^{56} +(35.2316 - 35.2316i) q^{57} +(6.96333 - 25.9875i) q^{58} +(-82.3873 - 47.5663i) q^{59} +(-4.22958 - 7.32586i) q^{61} +(-6.28154 + 6.28154i) q^{62} +(10.3520 - 2.90657i) q^{63} +8.00000i q^{64} +(-38.7257 + 67.0749i) q^{66} +(-2.94188 - 10.9793i) q^{67} +(6.39445 - 23.8644i) q^{68} +112.367i q^{69} +94.8180 q^{71} +(-4.19654 - 1.12446i) q^{72} +(-7.87869 + 2.11109i) q^{73} +(-46.4813 - 26.8360i) q^{74} -36.4747 q^{76} +(-98.0326 + 100.399i) q^{77} +(8.55979 + 8.55979i) q^{78} +(15.1049 - 8.72081i) q^{79} +(-32.4081 + 56.1325i) q^{81} +(-22.3604 - 5.99144i) q^{82} +(63.0967 + 63.0967i) q^{83} +(33.3498 + 18.7278i) q^{84} +(4.26669 + 7.39012i) q^{86} +(13.4520 + 50.2035i) q^{87} +(54.7669 - 14.6748i) q^{88} +(-67.0808 + 38.7291i) q^{89} +(11.1917 + 18.8615i) q^{91} +(58.1661 - 58.1661i) q^{92} +(4.44168 - 16.5766i) q^{93} +(15.1294 + 8.73498i) q^{94} +(-7.72733 - 13.3841i) q^{96} +(-105.134 + 105.134i) q^{97} +(50.1548 + 47.8173i) q^{98} +30.7916i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 2 q^{3} - 8 q^{6} - 12 q^{7} + 32 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{2} - 2 q^{3} - 8 q^{6} - 12 q^{7} + 32 q^{8} + 40 q^{11} - 4 q^{12} - 16 q^{13} + 32 q^{16} - 46 q^{17} + 52 q^{18} - 20 q^{21} + 80 q^{22} - 54 q^{23} - 16 q^{26} + 52 q^{27} + 36 q^{28} - 208 q^{31} - 32 q^{32} + 22 q^{33} + 208 q^{36} + 38 q^{37} - 36 q^{38} - 72 q^{41} - 184 q^{42} - 144 q^{43} + 108 q^{46} - 46 q^{47} - 16 q^{48} - 136 q^{51} + 16 q^{52} - 30 q^{53} - 48 q^{56} + 492 q^{57} - 132 q^{58} - 120 q^{61} - 416 q^{62} + 292 q^{63} - 44 q^{66} + 74 q^{67} + 92 q^{68} + 16 q^{71} + 104 q^{72} + 54 q^{73} - 144 q^{76} - 570 q^{77} - 168 q^{78} + 244 q^{81} - 36 q^{82} - 64 q^{83} - 144 q^{86} + 236 q^{87} + 80 q^{88} + 336 q^{91} + 216 q^{92} - 142 q^{93} - 16 q^{96} - 136 q^{97} + 268 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −2.63893 + 0.707100i −0.879644 + 0.235700i −0.670254 0.742132i \(-0.733815\pi\)
−0.209391 + 0.977832i \(0.567148\pi\)
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 0 0
\(6\) −3.86367 −0.643944
\(7\) −6.78261 1.73096i −0.968944 0.247280i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −1.33025 + 0.768021i −0.147806 + 0.0853356i
\(10\) 0 0
\(11\) 10.0230 17.3604i 0.911186 1.57822i 0.0987936 0.995108i \(-0.468502\pi\)
0.812392 0.583112i \(-0.198165\pi\)
\(12\) −5.27787 1.41420i −0.439822 0.117850i
\(13\) −2.21546 2.21546i −0.170420 0.170420i 0.616744 0.787164i \(-0.288451\pi\)
−0.787164 + 0.616744i \(0.788451\pi\)
\(14\) −8.63164 4.84715i −0.616546 0.346225i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −3.19722 11.9322i −0.188072 0.701894i −0.993952 0.109815i \(-0.964974\pi\)
0.805880 0.592079i \(-0.201693\pi\)
\(18\) −2.09827 + 0.562230i −0.116571 + 0.0312350i
\(19\) −15.7940 + 9.11869i −0.831265 + 0.479931i −0.854285 0.519804i \(-0.826005\pi\)
0.0230208 + 0.999735i \(0.492672\pi\)
\(20\) 0 0
\(21\) 19.1228 0.228089i 0.910610 0.0108614i
\(22\) 20.0461 20.0461i 0.911186 0.911186i
\(23\) 10.6451 39.7282i 0.462832 1.72731i −0.201148 0.979561i \(-0.564467\pi\)
0.663979 0.747751i \(-0.268866\pi\)
\(24\) −6.69207 3.86367i −0.278836 0.160986i
\(25\) 0 0
\(26\) −2.21546 3.83729i −0.0852099 0.147588i
\(27\) 20.3539 20.3539i 0.753847 0.753847i
\(28\) −10.0169 9.78072i −0.357745 0.349312i
\(29\) 19.0242i 0.656006i −0.944677 0.328003i \(-0.893624\pi\)
0.944677 0.328003i \(-0.106376\pi\)
\(30\) 0 0
\(31\) −3.14077 + 5.43998i −0.101315 + 0.175483i −0.912227 0.409686i \(-0.865638\pi\)
0.810912 + 0.585169i \(0.198972\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) −14.1746 + 52.9003i −0.429533 + 1.60304i
\(34\) 17.4700i 0.513822i
\(35\) 0 0
\(36\) −3.07208 −0.0853356
\(37\) −36.6587 9.82266i −0.990775 0.265477i −0.273199 0.961958i \(-0.588082\pi\)
−0.717576 + 0.696480i \(0.754748\pi\)
\(38\) −24.9127 + 6.67534i −0.655598 + 0.175667i
\(39\) 7.41300 + 4.27990i 0.190077 + 0.109741i
\(40\) 0 0
\(41\) −16.3689 −0.399242 −0.199621 0.979873i \(-0.563971\pi\)
−0.199621 + 0.979873i \(0.563971\pi\)
\(42\) 26.2057 + 6.68786i 0.623946 + 0.159235i
\(43\) 4.26669 + 4.26669i 0.0992252 + 0.0992252i 0.754977 0.655752i \(-0.227648\pi\)
−0.655752 + 0.754977i \(0.727648\pi\)
\(44\) 34.7208 20.0461i 0.789110 0.455593i
\(45\) 0 0
\(46\) 29.0830 50.3733i 0.632240 1.09507i
\(47\) 11.9322 + 3.19722i 0.253877 + 0.0680260i 0.383513 0.923536i \(-0.374714\pi\)
−0.129636 + 0.991562i \(0.541381\pi\)
\(48\) −7.72733 7.72733i −0.160986 0.160986i
\(49\) 43.0075 + 23.4809i 0.877705 + 0.479202i
\(50\) 0 0
\(51\) 16.8745 + 29.2275i 0.330873 + 0.573089i
\(52\) −1.62183 6.05274i −0.0311890 0.116399i
\(53\) −51.7180 + 13.8578i −0.975811 + 0.261468i −0.711279 0.702909i \(-0.751884\pi\)
−0.264531 + 0.964377i \(0.585217\pi\)
\(54\) 35.2539 20.3539i 0.652851 0.376924i
\(55\) 0 0
\(56\) −10.1033 17.0271i −0.180416 0.304056i
\(57\) 35.2316 35.2316i 0.618098 0.618098i
\(58\) 6.96333 25.9875i 0.120057 0.448060i
\(59\) −82.3873 47.5663i −1.39639 0.806209i −0.402382 0.915472i \(-0.631817\pi\)
−0.994013 + 0.109263i \(0.965151\pi\)
\(60\) 0 0
\(61\) −4.22958 7.32586i −0.0693375 0.120096i 0.829272 0.558845i \(-0.188755\pi\)
−0.898610 + 0.438749i \(0.855422\pi\)
\(62\) −6.28154 + 6.28154i −0.101315 + 0.101315i
\(63\) 10.3520 2.90657i 0.164317 0.0461360i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −38.7257 + 67.0749i −0.586753 + 1.01629i
\(67\) −2.94188 10.9793i −0.0439087 0.163870i 0.940490 0.339821i \(-0.110366\pi\)
−0.984399 + 0.175951i \(0.943700\pi\)
\(68\) 6.39445 23.8644i 0.0940360 0.350947i
\(69\) 112.367i 1.62851i
\(70\) 0 0
\(71\) 94.8180 1.33547 0.667733 0.744401i \(-0.267265\pi\)
0.667733 + 0.744401i \(0.267265\pi\)
\(72\) −4.19654 1.12446i −0.0582853 0.0156175i
\(73\) −7.87869 + 2.11109i −0.107927 + 0.0289190i −0.312378 0.949958i \(-0.601126\pi\)
0.204451 + 0.978877i \(0.434459\pi\)
\(74\) −46.4813 26.8360i −0.628126 0.362649i
\(75\) 0 0
\(76\) −36.4747 −0.479931
\(77\) −98.0326 + 100.399i −1.27315 + 1.30389i
\(78\) 8.55979 + 8.55979i 0.109741 + 0.109741i
\(79\) 15.1049 8.72081i 0.191201 0.110390i −0.401344 0.915928i \(-0.631457\pi\)
0.592545 + 0.805538i \(0.298123\pi\)
\(80\) 0 0
\(81\) −32.4081 + 56.1325i −0.400100 + 0.692994i
\(82\) −22.3604 5.99144i −0.272687 0.0730663i
\(83\) 63.0967 + 63.0967i 0.760201 + 0.760201i 0.976359 0.216157i \(-0.0693525\pi\)
−0.216157 + 0.976359i \(0.569352\pi\)
\(84\) 33.3498 + 18.7278i 0.397021 + 0.222949i
\(85\) 0 0
\(86\) 4.26669 + 7.39012i 0.0496126 + 0.0859316i
\(87\) 13.4520 + 50.2035i 0.154621 + 0.577052i
\(88\) 54.7669 14.6748i 0.622351 0.166759i
\(89\) −67.0808 + 38.7291i −0.753717 + 0.435158i −0.827035 0.562150i \(-0.809974\pi\)
0.0733187 + 0.997309i \(0.476641\pi\)
\(90\) 0 0
\(91\) 11.1917 + 18.8615i 0.122986 + 0.207269i
\(92\) 58.1661 58.1661i 0.632240 0.632240i
\(93\) 4.44168 16.5766i 0.0477600 0.178243i
\(94\) 15.1294 + 8.73498i 0.160951 + 0.0929253i
\(95\) 0 0
\(96\) −7.72733 13.3841i −0.0804930 0.139418i
\(97\) −105.134 + 105.134i −1.08385 + 1.08385i −0.0877043 + 0.996147i \(0.527953\pi\)
−0.996147 + 0.0877043i \(0.972047\pi\)
\(98\) 50.1548 + 47.8173i 0.511784 + 0.487932i
\(99\) 30.7916i 0.311026i
\(100\) 0 0
\(101\) −63.7196 + 110.366i −0.630887 + 1.09273i 0.356483 + 0.934302i \(0.383976\pi\)
−0.987371 + 0.158427i \(0.949358\pi\)
\(102\) 12.3530 + 46.1020i 0.121108 + 0.451981i
\(103\) −1.94384 + 7.25451i −0.0188722 + 0.0704321i −0.974720 0.223431i \(-0.928274\pi\)
0.955848 + 0.293863i \(0.0949410\pi\)
\(104\) 8.86183i 0.0852099i
\(105\) 0 0
\(106\) −75.7204 −0.714343
\(107\) 111.524 + 29.8828i 1.04228 + 0.279279i 0.739059 0.673641i \(-0.235270\pi\)
0.303224 + 0.952919i \(0.401937\pi\)
\(108\) 55.6078 14.9001i 0.514887 0.137964i
\(109\) 36.9108 + 21.3104i 0.338631 + 0.195509i 0.659666 0.751559i \(-0.270698\pi\)
−0.321036 + 0.947067i \(0.604031\pi\)
\(110\) 0 0
\(111\) 103.685 0.934103
\(112\) −7.56899 26.9576i −0.0675802 0.240693i
\(113\) 13.6000 + 13.6000i 0.120354 + 0.120354i 0.764718 0.644365i \(-0.222878\pi\)
−0.644365 + 0.764718i \(0.722878\pi\)
\(114\) 61.0229 35.2316i 0.535288 0.309049i
\(115\) 0 0
\(116\) 19.0242 32.9508i 0.164001 0.284059i
\(117\) 4.64863 + 1.24560i 0.0397319 + 0.0106461i
\(118\) −95.1326 95.1326i −0.806209 0.806209i
\(119\) 1.03133 + 86.4657i 0.00866660 + 0.726603i
\(120\) 0 0
\(121\) −140.423 243.219i −1.16052 2.01008i
\(122\) −3.09627 11.5554i −0.0253793 0.0947167i
\(123\) 43.1965 11.5745i 0.351191 0.0941013i
\(124\) −10.8800 + 6.28154i −0.0877415 + 0.0506576i
\(125\) 0 0
\(126\) 15.2050 0.181358i 0.120674 0.00143935i
\(127\) −24.7683 + 24.7683i −0.195026 + 0.195026i −0.797864 0.602838i \(-0.794037\pi\)
0.602838 + 0.797864i \(0.294037\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −14.2765 8.24252i −0.110670 0.0638955i
\(130\) 0 0
\(131\) −72.3622 125.335i −0.552383 0.956756i −0.998102 0.0615830i \(-0.980385\pi\)
0.445719 0.895173i \(-0.352948\pi\)
\(132\) −77.4514 + 77.4514i −0.586753 + 0.586753i
\(133\) 122.909 34.5096i 0.924126 0.259471i
\(134\) 16.0748i 0.119961i
\(135\) 0 0
\(136\) 17.4700 30.2589i 0.128456 0.222492i
\(137\) −12.2152 45.5877i −0.0891619 0.332757i 0.906908 0.421329i \(-0.138436\pi\)
−0.996070 + 0.0885724i \(0.971770\pi\)
\(138\) −41.1292 + 153.496i −0.298038 + 1.11229i
\(139\) 121.473i 0.873910i −0.899483 0.436955i \(-0.856057\pi\)
0.899483 0.436955i \(-0.143943\pi\)
\(140\) 0 0
\(141\) −33.7490 −0.239355
\(142\) 129.524 + 34.7058i 0.912140 + 0.244407i
\(143\) −60.6669 + 16.2556i −0.424244 + 0.113676i
\(144\) −5.32100 3.07208i −0.0369514 0.0213339i
\(145\) 0 0
\(146\) −11.5352 −0.0790083
\(147\) −130.097 31.5538i −0.885016 0.214652i
\(148\) −53.6720 53.6720i −0.362649 0.362649i
\(149\) 117.569 67.8784i 0.789053 0.455560i −0.0505763 0.998720i \(-0.516106\pi\)
0.839629 + 0.543160i \(0.182772\pi\)
\(150\) 0 0
\(151\) −41.3618 + 71.6408i −0.273919 + 0.474442i −0.969862 0.243655i \(-0.921653\pi\)
0.695943 + 0.718097i \(0.254987\pi\)
\(152\) −49.8254 13.3507i −0.327799 0.0878334i
\(153\) 13.4173 + 13.4173i 0.0876947 + 0.0876947i
\(154\) −170.664 + 101.266i −1.10821 + 0.657570i
\(155\) 0 0
\(156\) 8.55979 + 14.8260i 0.0548705 + 0.0950384i
\(157\) 10.1511 + 37.8843i 0.0646565 + 0.241301i 0.990689 0.136142i \(-0.0434702\pi\)
−0.926033 + 0.377443i \(0.876804\pi\)
\(158\) 23.8257 6.38408i 0.150796 0.0404056i
\(159\) 126.681 73.1396i 0.796739 0.459997i
\(160\) 0 0
\(161\) −140.970 + 251.034i −0.875588 + 1.55922i
\(162\) −64.8162 + 64.8162i −0.400100 + 0.400100i
\(163\) 31.9864 119.375i 0.196236 0.732361i −0.795708 0.605680i \(-0.792901\pi\)
0.991944 0.126681i \(-0.0404324\pi\)
\(164\) −28.3518 16.3689i −0.172877 0.0998105i
\(165\) 0 0
\(166\) 63.0967 + 109.287i 0.380101 + 0.658353i
\(167\) 173.339 173.339i 1.03796 1.03796i 0.0387094 0.999251i \(-0.487675\pi\)
0.999251 0.0387094i \(-0.0123247\pi\)
\(168\) 38.7018 + 37.7894i 0.230368 + 0.224937i
\(169\) 159.183i 0.941914i
\(170\) 0 0
\(171\) 14.0067 24.2603i 0.0819104 0.141873i
\(172\) 3.12343 + 11.6568i 0.0181595 + 0.0677721i
\(173\) 62.6900 233.962i 0.362370 1.35238i −0.508582 0.861014i \(-0.669830\pi\)
0.870952 0.491369i \(-0.163503\pi\)
\(174\) 73.5030i 0.422431i
\(175\) 0 0
\(176\) 80.1843 0.455593
\(177\) 251.049 + 67.2683i 1.41835 + 0.380047i
\(178\) −105.810 + 28.3517i −0.594438 + 0.159279i
\(179\) 150.152 + 86.6905i 0.838840 + 0.484304i 0.856870 0.515533i \(-0.172406\pi\)
−0.0180301 + 0.999837i \(0.505739\pi\)
\(180\) 0 0
\(181\) 237.263 1.31085 0.655424 0.755262i \(-0.272490\pi\)
0.655424 + 0.755262i \(0.272490\pi\)
\(182\) 8.38439 + 29.8617i 0.0460681 + 0.164075i
\(183\) 16.3417 + 16.3417i 0.0892989 + 0.0892989i
\(184\) 100.747 58.1661i 0.547536 0.316120i
\(185\) 0 0
\(186\) 12.1349 21.0182i 0.0652414 0.113001i
\(187\) −239.194 64.0918i −1.27911 0.342737i
\(188\) 17.4700 + 17.4700i 0.0929253 + 0.0929253i
\(189\) −173.284 + 102.821i −0.916847 + 0.544024i
\(190\) 0 0
\(191\) −10.4921 18.1728i −0.0549324 0.0951457i 0.837252 0.546818i \(-0.184161\pi\)
−0.892184 + 0.451672i \(0.850828\pi\)
\(192\) −5.65680 21.1115i −0.0294625 0.109956i
\(193\) −48.3460 + 12.9543i −0.250497 + 0.0671206i −0.381883 0.924211i \(-0.624724\pi\)
0.131385 + 0.991331i \(0.458057\pi\)
\(194\) −182.097 + 105.134i −0.938642 + 0.541925i
\(195\) 0 0
\(196\) 51.0104 + 83.6776i 0.260257 + 0.426927i
\(197\) 85.5963 85.5963i 0.434499 0.434499i −0.455657 0.890156i \(-0.650596\pi\)
0.890156 + 0.455657i \(0.150596\pi\)
\(198\) −11.2705 + 42.0621i −0.0569218 + 0.212435i
\(199\) −266.269 153.731i −1.33804 0.772515i −0.351520 0.936180i \(-0.614335\pi\)
−0.986516 + 0.163665i \(0.947668\pi\)
\(200\) 0 0
\(201\) 15.5269 + 26.8933i 0.0772481 + 0.133798i
\(202\) −127.439 + 127.439i −0.630887 + 0.630887i
\(203\) −32.9301 + 129.033i −0.162217 + 0.635633i
\(204\) 67.4981i 0.330873i
\(205\) 0 0
\(206\) −5.31067 + 9.19835i −0.0257799 + 0.0446522i
\(207\) 16.3514 + 61.0241i 0.0789921 + 0.294803i
\(208\) 3.24366 12.1055i 0.0155945 0.0581995i
\(209\) 365.588i 1.74922i
\(210\) 0 0
\(211\) −116.585 −0.552533 −0.276267 0.961081i \(-0.589097\pi\)
−0.276267 + 0.961081i \(0.589097\pi\)
\(212\) −103.436 27.7156i −0.487905 0.130734i
\(213\) −250.218 + 67.0458i −1.17473 + 0.314769i
\(214\) 141.407 + 81.6414i 0.660781 + 0.381502i
\(215\) 0 0
\(216\) 81.4155 0.376924
\(217\) 30.7190 31.4607i 0.141562 0.144980i
\(218\) 42.6209 + 42.6209i 0.195509 + 0.195509i
\(219\) 19.2986 11.1420i 0.0881214 0.0508769i
\(220\) 0 0
\(221\) −19.3520 + 33.5186i −0.0875655 + 0.151668i
\(222\) 141.637 + 37.9515i 0.638004 + 0.170953i
\(223\) 93.2689 + 93.2689i 0.418246 + 0.418246i 0.884599 0.466353i \(-0.154432\pi\)
−0.466353 + 0.884599i \(0.654432\pi\)
\(224\) −0.472274 39.5952i −0.00210837 0.176764i
\(225\) 0 0
\(226\) 13.6000 + 23.5558i 0.0601768 + 0.104229i
\(227\) −87.2238 325.524i −0.384246 1.43403i −0.839352 0.543588i \(-0.817065\pi\)
0.455106 0.890437i \(-0.349601\pi\)
\(228\) 96.2544 25.7913i 0.422168 0.113120i
\(229\) 330.729 190.946i 1.44423 0.833827i 0.446102 0.894982i \(-0.352812\pi\)
0.998128 + 0.0611552i \(0.0194785\pi\)
\(230\) 0 0
\(231\) 187.709 334.266i 0.812593 1.44704i
\(232\) 38.0483 38.0483i 0.164001 0.164001i
\(233\) −86.3892 + 322.409i −0.370769 + 1.38373i 0.488660 + 0.872474i \(0.337486\pi\)
−0.859429 + 0.511255i \(0.829181\pi\)
\(234\) 5.89423 + 3.40304i 0.0251890 + 0.0145429i
\(235\) 0 0
\(236\) −95.1326 164.775i −0.403104 0.698197i
\(237\) −33.6943 + 33.6943i −0.142170 + 0.142170i
\(238\) −30.2398 + 118.492i −0.127058 + 0.497865i
\(239\) 437.169i 1.82916i −0.404406 0.914579i \(-0.632522\pi\)
0.404406 0.914579i \(-0.367478\pi\)
\(240\) 0 0
\(241\) 1.94620 3.37093i 0.00807554 0.0139872i −0.861959 0.506977i \(-0.830763\pi\)
0.870035 + 0.492990i \(0.164096\pi\)
\(242\) −102.797 383.642i −0.424779 1.58530i
\(243\) −21.2188 + 79.1896i −0.0873201 + 0.325883i
\(244\) 16.9183i 0.0693375i
\(245\) 0 0
\(246\) 63.2440 0.257090
\(247\) 55.1931 + 14.7889i 0.223454 + 0.0598742i
\(248\) −17.1615 + 4.59841i −0.0691996 + 0.0185420i
\(249\) −211.124 121.892i −0.847886 0.489527i
\(250\) 0 0
\(251\) 368.235 1.46707 0.733535 0.679651i \(-0.237869\pi\)
0.733535 + 0.679651i \(0.237869\pi\)
\(252\) 20.8367 + 5.31766i 0.0826855 + 0.0211018i
\(253\) −583.001 583.001i −2.30435 2.30435i
\(254\) −42.8999 + 24.7683i −0.168897 + 0.0975129i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 255.790 + 68.5388i 0.995294 + 0.266688i 0.719473 0.694521i \(-0.244384\pi\)
0.275821 + 0.961209i \(0.411050\pi\)
\(258\) −16.4850 16.4850i −0.0638955 0.0638955i
\(259\) 231.639 + 130.078i 0.894358 + 0.502232i
\(260\) 0 0
\(261\) 14.6110 + 25.3069i 0.0559807 + 0.0969614i
\(262\) −52.9728 197.697i −0.202186 0.754570i
\(263\) −265.172 + 71.0526i −1.00826 + 0.270162i −0.724902 0.688852i \(-0.758115\pi\)
−0.283357 + 0.959014i \(0.591448\pi\)
\(264\) −134.150 + 77.4514i −0.508143 + 0.293376i
\(265\) 0 0
\(266\) 180.528 2.15326i 0.678676 0.00809496i
\(267\) 149.636 149.636i 0.560436 0.560436i
\(268\) 5.88377 21.9585i 0.0219544 0.0819348i
\(269\) −120.599 69.6276i −0.448322 0.258839i 0.258799 0.965931i \(-0.416673\pi\)
−0.707121 + 0.707092i \(0.750006\pi\)
\(270\) 0 0
\(271\) −31.0329 53.7505i −0.114512 0.198341i 0.803072 0.595882i \(-0.203197\pi\)
−0.917585 + 0.397540i \(0.869864\pi\)
\(272\) 34.9399 34.9399i 0.128456 0.128456i
\(273\) −42.8711 41.8605i −0.157037 0.153335i
\(274\) 66.7450i 0.243595i
\(275\) 0 0
\(276\) −112.367 + 194.626i −0.407127 + 0.705165i
\(277\) 107.661 + 401.798i 0.388669 + 1.45053i 0.832301 + 0.554324i \(0.187023\pi\)
−0.443632 + 0.896209i \(0.646310\pi\)
\(278\) 44.4624 165.936i 0.159937 0.596891i
\(279\) 9.64871i 0.0345832i
\(280\) 0 0
\(281\) −370.599 −1.31886 −0.659428 0.751767i \(-0.729202\pi\)
−0.659428 + 0.751767i \(0.729202\pi\)
\(282\) −46.1020 12.3530i −0.163482 0.0438050i
\(283\) 466.250 124.931i 1.64753 0.441453i 0.688607 0.725135i \(-0.258222\pi\)
0.958919 + 0.283681i \(0.0915558\pi\)
\(284\) 164.230 + 94.8180i 0.578273 + 0.333866i
\(285\) 0 0
\(286\) −88.8225 −0.310568
\(287\) 111.024 + 28.3340i 0.386843 + 0.0987247i
\(288\) −6.14417 6.14417i −0.0213339 0.0213339i
\(289\) 118.126 68.2002i 0.408741 0.235987i
\(290\) 0 0
\(291\) 203.100 351.780i 0.697940 1.20887i
\(292\) −15.7574 4.22218i −0.0539636 0.0144595i
\(293\) 203.433 + 203.433i 0.694312 + 0.694312i 0.963178 0.268866i \(-0.0866489\pi\)
−0.268866 + 0.963178i \(0.586649\pi\)
\(294\) −166.167 90.7223i −0.565193 0.308579i
\(295\) 0 0
\(296\) −53.6720 92.9627i −0.181324 0.314063i
\(297\) −149.344 557.359i −0.502842 1.87663i
\(298\) 185.447 49.6904i 0.622306 0.166746i
\(299\) −111.600 + 64.4323i −0.373244 + 0.215492i
\(300\) 0 0
\(301\) −21.5538 36.3247i −0.0716073 0.120680i
\(302\) −82.7236 + 82.7236i −0.273919 + 0.273919i
\(303\) 90.1123 336.304i 0.297400 1.10991i
\(304\) −63.1761 36.4747i −0.207816 0.119983i
\(305\) 0 0
\(306\) 13.4173 + 23.2394i 0.0438474 + 0.0759458i
\(307\) −0.207402 + 0.207402i −0.000675578 + 0.000675578i −0.707444 0.706769i \(-0.750152\pi\)
0.706769 + 0.707444i \(0.250152\pi\)
\(308\) −270.197 + 75.8643i −0.877262 + 0.246313i
\(309\) 20.5187i 0.0664034i
\(310\) 0 0
\(311\) −178.011 + 308.324i −0.572382 + 0.991394i 0.423939 + 0.905691i \(0.360647\pi\)
−0.996321 + 0.0857033i \(0.972686\pi\)
\(312\) 6.26620 + 23.3858i 0.0200840 + 0.0749544i
\(313\) 67.4119 251.585i 0.215373 0.803784i −0.770661 0.637245i \(-0.780074\pi\)
0.986035 0.166540i \(-0.0532593\pi\)
\(314\) 55.4664i 0.176645i
\(315\) 0 0
\(316\) 34.8833 0.110390
\(317\) −74.7155 20.0199i −0.235695 0.0631544i 0.139038 0.990287i \(-0.455599\pi\)
−0.374733 + 0.927133i \(0.622266\pi\)
\(318\) 199.821 53.5419i 0.628368 0.168371i
\(319\) −330.267 190.680i −1.03532 0.597743i
\(320\) 0 0
\(321\) −315.435 −0.982664
\(322\) −284.453 + 291.321i −0.883395 + 0.904723i
\(323\) 159.303 + 159.303i 0.493198 + 0.493198i
\(324\) −112.265 + 64.8162i −0.346497 + 0.200050i
\(325\) 0 0
\(326\) 87.3885 151.361i 0.268063 0.464298i
\(327\) −112.474 30.1372i −0.343956 0.0921627i
\(328\) −32.7378 32.7378i −0.0998105 0.0998105i
\(329\) −75.3972 42.3397i −0.229171 0.128692i
\(330\) 0 0
\(331\) −43.1415 74.7232i −0.130337 0.225750i 0.793470 0.608610i \(-0.208273\pi\)
−0.923806 + 0.382860i \(0.874939\pi\)
\(332\) 46.1900 + 172.383i 0.139126 + 0.519227i
\(333\) 56.3093 15.0880i 0.169097 0.0453094i
\(334\) 300.232 173.339i 0.898900 0.518980i
\(335\) 0 0
\(336\) 39.0357 + 65.7872i 0.116178 + 0.195795i
\(337\) −92.8454 + 92.8454i −0.275506 + 0.275506i −0.831312 0.555806i \(-0.812410\pi\)
0.555806 + 0.831312i \(0.312410\pi\)
\(338\) 58.2652 217.449i 0.172382 0.643339i
\(339\) −45.5059 26.2728i −0.134236 0.0775010i
\(340\) 0 0
\(341\) 62.9602 + 109.050i 0.184634 + 0.319795i
\(342\) 28.0134 28.0134i 0.0819104 0.0819104i
\(343\) −251.059 233.706i −0.731950 0.681359i
\(344\) 17.0667i 0.0496126i
\(345\) 0 0
\(346\) 171.272 296.652i 0.495006 0.857376i
\(347\) 103.674 + 386.918i 0.298773 + 1.11504i 0.938174 + 0.346164i \(0.112516\pi\)
−0.639401 + 0.768874i \(0.720817\pi\)
\(348\) −26.9040 + 100.407i −0.0773103 + 0.288526i
\(349\) 202.323i 0.579723i 0.957069 + 0.289862i \(0.0936093\pi\)
−0.957069 + 0.289862i \(0.906391\pi\)
\(350\) 0 0
\(351\) −90.1863 −0.256941
\(352\) 109.534 + 29.3495i 0.311176 + 0.0833793i
\(353\) −318.934 + 85.4581i −0.903496 + 0.242091i −0.680517 0.732732i \(-0.738245\pi\)
−0.222979 + 0.974823i \(0.571578\pi\)
\(354\) 318.317 + 183.780i 0.899200 + 0.519154i
\(355\) 0 0
\(356\) −154.916 −0.435158
\(357\) −63.8615 227.448i −0.178884 0.637109i
\(358\) 173.381 + 173.381i 0.484304 + 0.484304i
\(359\) −27.1220 + 15.6589i −0.0755487 + 0.0436181i −0.537298 0.843392i \(-0.680555\pi\)
0.461750 + 0.887010i \(0.347222\pi\)
\(360\) 0 0
\(361\) −14.1991 + 24.5936i −0.0393327 + 0.0681263i
\(362\) 324.108 + 86.8444i 0.895325 + 0.239902i
\(363\) 542.546 + 542.546i 1.49462 + 1.49462i
\(364\) 0.523152 + 43.8607i 0.00143723 + 0.120496i
\(365\) 0 0
\(366\) 16.3417 + 28.3047i 0.0446495 + 0.0773351i
\(367\) −45.4250 169.529i −0.123774 0.461931i 0.876019 0.482276i \(-0.160190\pi\)
−0.999793 + 0.0203459i \(0.993523\pi\)
\(368\) 158.913 42.5805i 0.431828 0.115708i
\(369\) 21.7748 12.5717i 0.0590102 0.0340696i
\(370\) 0 0
\(371\) 374.770 4.47010i 1.01016 0.0120488i
\(372\) 24.2698 24.2698i 0.0652414 0.0652414i
\(373\) −27.9749 + 104.404i −0.0749997 + 0.279903i −0.993233 0.116137i \(-0.962949\pi\)
0.918234 + 0.396039i \(0.129616\pi\)
\(374\) −303.286 175.102i −0.810924 0.468187i
\(375\) 0 0
\(376\) 17.4700 + 30.2589i 0.0464627 + 0.0804757i
\(377\) −42.1472 + 42.1472i −0.111796 + 0.111796i
\(378\) −274.345 + 77.0291i −0.725782 + 0.203781i
\(379\) 370.389i 0.977279i 0.872486 + 0.488639i \(0.162507\pi\)
−0.872486 + 0.488639i \(0.837493\pi\)
\(380\) 0 0
\(381\) 47.8482 82.8755i 0.125586 0.217521i
\(382\) −7.68074 28.6649i −0.0201066 0.0750390i
\(383\) −0.910761 + 3.39901i −0.00237797 + 0.00887469i −0.967105 0.254379i \(-0.918129\pi\)
0.964727 + 0.263254i \(0.0847956\pi\)
\(384\) 30.9093i 0.0804930i
\(385\) 0 0
\(386\) −70.7834 −0.183377
\(387\) −8.95267 2.39886i −0.0231335 0.00619860i
\(388\) −287.230 + 76.9631i −0.740284 + 0.198358i
\(389\) 628.167 + 362.672i 1.61482 + 0.932319i 0.988230 + 0.152973i \(0.0488847\pi\)
0.626594 + 0.779346i \(0.284449\pi\)
\(390\) 0 0
\(391\) −508.079 −1.29944
\(392\) 39.0533 + 132.977i 0.0996258 + 0.339227i
\(393\) 279.583 + 279.583i 0.711408 + 0.711408i
\(394\) 148.257 85.5963i 0.376287 0.217249i
\(395\) 0 0
\(396\) −30.7916 + 53.3326i −0.0777566 + 0.134678i
\(397\) −123.753 33.1595i −0.311721 0.0835253i 0.0995671 0.995031i \(-0.468254\pi\)
−0.411288 + 0.911506i \(0.634921\pi\)
\(398\) −307.461 307.461i −0.772515 0.772515i
\(399\) −299.946 + 177.977i −0.751745 + 0.446059i
\(400\) 0 0
\(401\) 350.482 + 607.052i 0.874019 + 1.51384i 0.857804 + 0.513976i \(0.171828\pi\)
0.0162143 + 0.999869i \(0.494839\pi\)
\(402\) 11.3665 + 42.4202i 0.0282748 + 0.105523i
\(403\) 19.0103 5.09379i 0.0471719 0.0126397i
\(404\) −220.731 + 127.439i −0.546364 + 0.315444i
\(405\) 0 0
\(406\) −92.2129 + 164.210i −0.227125 + 0.404457i
\(407\) −537.957 + 537.957i −1.32176 + 1.32176i
\(408\) −24.7060 + 92.2041i −0.0605540 + 0.225990i
\(409\) 391.838 + 226.228i 0.958039 + 0.553124i 0.895569 0.444923i \(-0.146769\pi\)
0.0624701 + 0.998047i \(0.480102\pi\)
\(410\) 0 0
\(411\) 64.4701 + 111.665i 0.156861 + 0.271692i
\(412\) −10.6213 + 10.6213i −0.0257799 + 0.0257799i
\(413\) 476.465 + 465.233i 1.15367 + 1.12647i
\(414\) 89.3455i 0.215810i
\(415\) 0 0
\(416\) 8.86183 15.3491i 0.0213025 0.0368970i
\(417\) 85.8939 + 320.560i 0.205981 + 0.768730i
\(418\) −133.814 + 499.402i −0.320130 + 1.19474i
\(419\) 248.174i 0.592302i 0.955141 + 0.296151i \(0.0957031\pi\)
−0.955141 + 0.296151i \(0.904297\pi\)
\(420\) 0 0
\(421\) −238.992 −0.567676 −0.283838 0.958872i \(-0.591608\pi\)
−0.283838 + 0.958872i \(0.591608\pi\)
\(422\) −159.257 42.6729i −0.377387 0.101121i
\(423\) −18.3284 + 4.91107i −0.0433295 + 0.0116101i
\(424\) −131.152 75.7204i −0.309320 0.178586i
\(425\) 0 0
\(426\) −366.345 −0.859965
\(427\) 16.0068 + 57.0097i 0.0374867 + 0.133512i
\(428\) 163.283 + 163.283i 0.381502 + 0.381502i
\(429\) 148.602 85.7951i 0.346391 0.199989i
\(430\) 0 0
\(431\) 65.3730 113.229i 0.151677 0.262713i −0.780167 0.625572i \(-0.784866\pi\)
0.931844 + 0.362858i \(0.118199\pi\)
\(432\) 111.216 + 29.8001i 0.257444 + 0.0689818i
\(433\) −456.850 456.850i −1.05508 1.05508i −0.998392 0.0566898i \(-0.981945\pi\)
−0.0566898 0.998392i \(-0.518055\pi\)
\(434\) 53.4784 31.7321i 0.123222 0.0731155i
\(435\) 0 0
\(436\) 42.6209 + 73.8215i 0.0977543 + 0.169315i
\(437\) 194.139 + 724.537i 0.444255 + 1.65798i
\(438\) 30.4406 8.15654i 0.0694992 0.0186222i
\(439\) 187.891 108.479i 0.427998 0.247105i −0.270495 0.962721i \(-0.587188\pi\)
0.698493 + 0.715617i \(0.253854\pi\)
\(440\) 0 0
\(441\) −75.2446 + 1.79523i −0.170623 + 0.00407081i
\(442\) −38.7040 + 38.7040i −0.0875655 + 0.0875655i
\(443\) 11.2087 41.8315i 0.0253018 0.0944277i −0.952120 0.305724i \(-0.901102\pi\)
0.977422 + 0.211296i \(0.0677683\pi\)
\(444\) 179.588 + 103.685i 0.404478 + 0.233526i
\(445\) 0 0
\(446\) 93.2689 + 161.547i 0.209123 + 0.362212i
\(447\) −262.259 + 262.259i −0.586710 + 0.586710i
\(448\) 13.8477 54.2609i 0.0309100 0.121118i
\(449\) 48.2524i 0.107466i 0.998555 + 0.0537332i \(0.0171120\pi\)
−0.998555 + 0.0537332i \(0.982888\pi\)
\(450\) 0 0
\(451\) −164.066 + 284.171i −0.363783 + 0.630091i
\(452\) 9.95586 + 37.1558i 0.0220262 + 0.0822030i
\(453\) 58.4939 218.302i 0.129126 0.481903i
\(454\) 476.600i 1.04978i
\(455\) 0 0
\(456\) 140.926 0.309049
\(457\) −279.910 75.0016i −0.612494 0.164117i −0.0607809 0.998151i \(-0.519359\pi\)
−0.551713 + 0.834034i \(0.686026\pi\)
\(458\) 521.675 139.782i 1.13903 0.305202i
\(459\) −307.942 177.791i −0.670899 0.387343i
\(460\) 0 0
\(461\) 348.242 0.755407 0.377703 0.925927i \(-0.376714\pi\)
0.377703 + 0.925927i \(0.376714\pi\)
\(462\) 378.765 387.910i 0.819838 0.839631i
\(463\) 268.097 + 268.097i 0.579044 + 0.579044i 0.934640 0.355596i \(-0.115722\pi\)
−0.355596 + 0.934640i \(0.615722\pi\)
\(464\) 65.9016 38.0483i 0.142029 0.0820007i
\(465\) 0 0
\(466\) −236.020 + 408.798i −0.506480 + 0.877249i
\(467\) 481.652 + 129.058i 1.03137 + 0.276356i 0.734535 0.678571i \(-0.237400\pi\)
0.296840 + 0.954927i \(0.404067\pi\)
\(468\) 6.80607 + 6.80607i 0.0145429 + 0.0145429i
\(469\) 0.948961 + 79.5603i 0.00202337 + 0.169638i
\(470\) 0 0
\(471\) −53.5760 92.7963i −0.113749 0.197020i
\(472\) −69.6419 259.907i −0.147546 0.550651i
\(473\) 116.837 31.3063i 0.247012 0.0661866i
\(474\) −58.3603 + 33.6943i −0.123123 + 0.0710850i
\(475\) 0 0
\(476\) −84.6794 + 150.794i −0.177898 + 0.316795i
\(477\) 58.1548 58.1548i 0.121918 0.121918i
\(478\) 160.015 597.184i 0.334759 1.24934i
\(479\) −324.591 187.403i −0.677643 0.391238i 0.121323 0.992613i \(-0.461286\pi\)
−0.798967 + 0.601376i \(0.794620\pi\)
\(480\) 0 0
\(481\) 59.4541 + 102.977i 0.123605 + 0.214090i
\(482\) 3.89241 3.89241i 0.00807554 0.00807554i
\(483\) 194.503 762.142i 0.402698 1.57793i
\(484\) 561.691i 1.16052i
\(485\) 0 0
\(486\) −57.9708 + 100.408i −0.119281 + 0.206602i
\(487\) −101.575 379.084i −0.208573 0.778406i −0.988331 0.152324i \(-0.951324\pi\)
0.779757 0.626082i \(-0.215342\pi\)
\(488\) 6.19254 23.1109i 0.0126896 0.0473584i
\(489\) 337.640i 0.690470i
\(490\) 0 0
\(491\) 100.451 0.204585 0.102293 0.994754i \(-0.467382\pi\)
0.102293 + 0.994754i \(0.467382\pi\)
\(492\) 86.3930 + 23.1489i 0.175595 + 0.0470507i
\(493\) −227.000 + 60.8245i −0.460447 + 0.123376i
\(494\) 69.9820 + 40.4041i 0.141664 + 0.0817897i
\(495\) 0 0
\(496\) −25.1262 −0.0506576
\(497\) −643.114 164.126i −1.29399 0.330234i
\(498\) −243.785 243.785i −0.489527 0.489527i
\(499\) −341.907 + 197.400i −0.685184 + 0.395591i −0.801805 0.597585i \(-0.796127\pi\)
0.116621 + 0.993176i \(0.462794\pi\)
\(500\) 0 0
\(501\) −334.863 + 579.999i −0.668388 + 1.15768i
\(502\) 503.018 + 134.783i 1.00203 + 0.268493i
\(503\) 38.4894 + 38.4894i 0.0765197 + 0.0765197i 0.744331 0.667811i \(-0.232769\pi\)
−0.667811 + 0.744331i \(0.732769\pi\)
\(504\) 26.5171 + 14.8908i 0.0526133 + 0.0295453i
\(505\) 0 0
\(506\) −583.001 1009.79i −1.15218 1.99563i
\(507\) 112.559 + 420.075i 0.222009 + 0.828549i
\(508\) −67.6682 + 18.1316i −0.133205 + 0.0356922i
\(509\) 442.330 255.380i 0.869019 0.501728i 0.00199662 0.999998i \(-0.499364\pi\)
0.867022 + 0.498270i \(0.166031\pi\)
\(510\) 0 0
\(511\) 57.0923 0.680972i 0.111727 0.00133263i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −135.869 + 507.070i −0.264852 + 0.988441i
\(514\) 324.329 + 187.252i 0.630991 + 0.364303i
\(515\) 0 0
\(516\) −16.4850 28.5529i −0.0319478 0.0553352i
\(517\) 175.102 175.102i 0.338689 0.338689i
\(518\) 268.813 + 262.476i 0.518943 + 0.506710i
\(519\) 661.738i 1.27503i
\(520\) 0 0
\(521\) 392.549 679.914i 0.753452 1.30502i −0.192688 0.981260i \(-0.561720\pi\)
0.946140 0.323758i \(-0.104946\pi\)
\(522\) 10.6960 + 39.9179i 0.0204903 + 0.0764710i
\(523\) 79.2957 295.936i 0.151617 0.565843i −0.847754 0.530389i \(-0.822046\pi\)
0.999371 0.0354535i \(-0.0112876\pi\)
\(524\) 289.449i 0.552383i
\(525\) 0 0
\(526\) −388.239 −0.738097
\(527\) 74.9526 + 20.0835i 0.142225 + 0.0381091i
\(528\) −211.601 + 56.6983i −0.400760 + 0.107383i
\(529\) −1006.88 581.323i −1.90337 1.09891i
\(530\) 0 0
\(531\) 146.128 0.275193
\(532\) 247.394 + 63.1364i 0.465026 + 0.118677i
\(533\) 36.2647 + 36.2647i 0.0680387 + 0.0680387i
\(534\) 259.178 149.636i 0.485352 0.280218i
\(535\) 0 0
\(536\) 16.0748 27.8423i 0.0299902 0.0519446i
\(537\) −457.541 122.598i −0.852031 0.228301i
\(538\) −139.255 139.255i −0.258839 0.258839i
\(539\) 838.704 511.279i 1.55604 0.948570i
\(540\) 0 0
\(541\) −264.805 458.656i −0.489474 0.847793i 0.510453 0.859906i \(-0.329478\pi\)
−0.999927 + 0.0121125i \(0.996144\pi\)
\(542\) −22.7176 84.7834i −0.0419145 0.156427i
\(543\) −626.122 + 167.769i −1.15308 + 0.308967i
\(544\) 60.5177 34.9399i 0.111246 0.0642278i
\(545\) 0 0
\(546\) −43.2410 72.8744i −0.0791960 0.133470i
\(547\) 343.777 343.777i 0.628477 0.628477i −0.319207 0.947685i \(-0.603417\pi\)
0.947685 + 0.319207i \(0.103417\pi\)
\(548\) 24.4303 91.1753i 0.0445809 0.166378i
\(549\) 11.2528 + 6.49682i 0.0204969 + 0.0118339i
\(550\) 0 0
\(551\) 173.475 + 300.468i 0.314837 + 0.545314i
\(552\) −224.734 + 224.734i −0.407127 + 0.407127i
\(553\) −117.546 + 33.0039i −0.212560 + 0.0596815i
\(554\) 588.273i 1.06186i
\(555\) 0 0
\(556\) 121.473 210.398i 0.218477 0.378414i
\(557\) −96.2937 359.373i −0.172879 0.645194i −0.996903 0.0786389i \(-0.974943\pi\)
0.824024 0.566555i \(-0.191724\pi\)
\(558\) 3.53167 13.1804i 0.00632916 0.0236208i
\(559\) 18.9053i 0.0338199i
\(560\) 0 0
\(561\) 676.536 1.20595
\(562\) −506.247 135.649i −0.900796 0.241368i
\(563\) −927.276 + 248.463i −1.64703 + 0.441319i −0.958778 0.284156i \(-0.908287\pi\)
−0.688248 + 0.725476i \(0.741620\pi\)
\(564\) −58.4551 33.7490i −0.103644 0.0598387i
\(565\) 0 0
\(566\) 682.637 1.20607
\(567\) 316.975 324.627i 0.559038 0.572535i
\(568\) 189.636 + 189.636i 0.333866 + 0.333866i
\(569\) −579.317 + 334.469i −1.01813 + 0.587818i −0.913562 0.406699i \(-0.866680\pi\)
−0.104569 + 0.994518i \(0.533346\pi\)
\(570\) 0 0
\(571\) 136.393 236.240i 0.238868 0.413731i −0.721522 0.692391i \(-0.756557\pi\)
0.960390 + 0.278661i \(0.0898905\pi\)
\(572\) −121.334 32.5113i −0.212122 0.0568379i
\(573\) 40.5379 + 40.5379i 0.0707468 + 0.0707468i
\(574\) 141.291 + 79.3425i 0.246151 + 0.138227i
\(575\) 0 0
\(576\) −6.14417 10.6420i −0.0106670 0.0184757i
\(577\) −56.0052 209.014i −0.0970627 0.362243i 0.900261 0.435350i \(-0.143375\pi\)
−0.997324 + 0.0731068i \(0.976709\pi\)
\(578\) 186.326 49.9260i 0.322364 0.0863771i
\(579\) 118.422 68.3709i 0.204528 0.118084i
\(580\) 0 0
\(581\) −318.742 537.178i −0.548609 0.924575i
\(582\) 406.201 406.201i 0.697940 0.697940i
\(583\) −277.794 + 1036.74i −0.476491 + 1.77829i
\(584\) −19.9796 11.5352i −0.0342116 0.0197521i
\(585\) 0 0
\(586\) 203.433 + 352.357i 0.347156 + 0.601292i
\(587\) 193.451 193.451i 0.329559 0.329559i −0.522860 0.852419i \(-0.675135\pi\)
0.852419 + 0.522860i \(0.175135\pi\)
\(588\) −193.781 184.750i −0.329560 0.314201i
\(589\) 114.559i 0.194497i
\(590\) 0 0
\(591\) −165.358 + 286.408i −0.279793 + 0.484616i
\(592\) −39.2907 146.635i −0.0663694 0.247694i
\(593\) 37.6975 140.689i 0.0635708 0.237249i −0.926829 0.375485i \(-0.877476\pi\)
0.990399 + 0.138235i \(0.0441430\pi\)
\(594\) 816.031i 1.37379i
\(595\) 0 0
\(596\) 271.514 0.455560
\(597\) 811.369 + 217.406i 1.35908 + 0.364164i
\(598\) −176.032 + 47.1677i −0.294368 + 0.0788757i
\(599\) 396.026 + 228.645i 0.661144 + 0.381712i 0.792713 0.609595i \(-0.208668\pi\)
−0.131568 + 0.991307i \(0.542001\pi\)
\(600\) 0 0
\(601\) 369.587 0.614953 0.307477 0.951556i \(-0.400515\pi\)
0.307477 + 0.951556i \(0.400515\pi\)
\(602\) −16.1472 57.5097i −0.0268227 0.0955311i
\(603\) 12.3457 + 12.3457i 0.0204739 + 0.0204739i
\(604\) −143.282 + 82.7236i −0.237221 + 0.136960i
\(605\) 0 0
\(606\) 246.191 426.416i 0.406256 0.703657i
\(607\) −225.915 60.5336i −0.372182 0.0997259i 0.0678794 0.997694i \(-0.478377\pi\)
−0.440062 + 0.897968i \(0.645043\pi\)
\(608\) −72.9495 72.9495i −0.119983 0.119983i
\(609\) −4.33920 363.796i −0.00712512 0.597365i
\(610\) 0 0
\(611\) −19.3520 33.5186i −0.0316726 0.0548586i
\(612\) 9.82214 + 36.6567i 0.0160492 + 0.0598966i
\(613\) 927.194 248.441i 1.51255 0.405287i 0.595270 0.803526i \(-0.297045\pi\)
0.917282 + 0.398239i \(0.130378\pi\)
\(614\) −0.359231 + 0.207402i −0.000585067 + 0.000337789i
\(615\) 0 0
\(616\) −396.864 + 4.73362i −0.644260 + 0.00768445i
\(617\) −22.6455 + 22.6455i −0.0367026 + 0.0367026i −0.725220 0.688517i \(-0.758262\pi\)
0.688517 + 0.725220i \(0.258262\pi\)
\(618\) 7.51035 28.0290i 0.0121527 0.0453544i
\(619\) −430.611 248.613i −0.695655 0.401637i 0.110072 0.993924i \(-0.464892\pi\)
−0.805727 + 0.592287i \(0.798225\pi\)
\(620\) 0 0
\(621\) −591.953 1025.29i −0.953225 1.65103i
\(622\) −356.021 + 356.021i −0.572382 + 0.572382i
\(623\) 522.021 146.570i 0.837915 0.235265i
\(624\) 34.2392i 0.0548705i
\(625\) 0 0
\(626\) 184.173 318.996i 0.294205 0.509579i
\(627\) −258.507 964.762i −0.412292 1.53870i
\(628\) −20.3021 + 75.7686i −0.0323282 + 0.120651i
\(629\) 468.824i 0.745348i
\(630\) 0 0
\(631\) 965.780 1.53056 0.765278 0.643700i \(-0.222602\pi\)
0.765278 + 0.643700i \(0.222602\pi\)
\(632\) 47.6514 + 12.7682i 0.0753978 + 0.0202028i
\(633\) 307.659 82.4369i 0.486033 0.130232i
\(634\) −94.7354 54.6955i −0.149425 0.0862705i
\(635\) 0 0
\(636\) 292.558 0.459997
\(637\) −43.2605 147.302i −0.0679129 0.231244i
\(638\) −381.360 381.360i −0.597743 0.597743i
\(639\) −126.132 + 72.8222i −0.197389 + 0.113963i
\(640\) 0 0
\(641\) −599.981 + 1039.20i −0.936008 + 1.62121i −0.163183 + 0.986596i \(0.552176\pi\)
−0.772826 + 0.634618i \(0.781157\pi\)
\(642\) −430.892 115.457i −0.671172 0.179840i
\(643\) −405.030 405.030i −0.629906 0.629906i 0.318138 0.948044i \(-0.396942\pi\)
−0.948044 + 0.318138i \(0.896942\pi\)
\(644\) −495.201 + 293.834i −0.768946 + 0.456265i
\(645\) 0 0
\(646\) 159.303 + 275.921i 0.246599 + 0.427122i
\(647\) 21.8446 + 81.5250i 0.0337628 + 0.126005i 0.980750 0.195266i \(-0.0625569\pi\)
−0.946988 + 0.321270i \(0.895890\pi\)
\(648\) −177.081 + 47.4488i −0.273273 + 0.0732234i
\(649\) −1651.54 + 953.518i −2.54475 + 1.46921i
\(650\) 0 0
\(651\) −58.8196 + 104.744i −0.0903527 + 0.160897i
\(652\) 174.777 174.777i 0.268063 0.268063i
\(653\) 124.189 463.478i 0.190182 0.709767i −0.803280 0.595601i \(-0.796914\pi\)
0.993462 0.114166i \(-0.0364195\pi\)
\(654\) −142.611 82.3364i −0.218059 0.125897i
\(655\) 0 0
\(656\) −32.7378 56.7036i −0.0499052 0.0864384i
\(657\) 8.85928 8.85928i 0.0134844 0.0134844i
\(658\) −87.4971 85.4344i −0.132974 0.129840i
\(659\) 168.872i 0.256255i 0.991758 + 0.128127i \(0.0408966\pi\)
−0.991758 + 0.128127i \(0.959103\pi\)
\(660\) 0 0
\(661\) 251.775 436.087i 0.380900 0.659738i −0.610291 0.792177i \(-0.708948\pi\)
0.991191 + 0.132439i \(0.0422810\pi\)
\(662\) −31.5818 117.865i −0.0477066 0.178043i
\(663\) 27.3676 102.137i 0.0412784 0.154053i
\(664\) 252.387i 0.380101i
\(665\) 0 0
\(666\) 82.4425 0.123788
\(667\) −755.795 202.515i −1.13313 0.303620i
\(668\) 473.572 126.893i 0.708940 0.189960i
\(669\) −312.081 180.180i −0.466489 0.269327i
\(670\) 0 0
\(671\) −169.573 −0.252717
\(672\) 29.2440 + 104.155i 0.0435179 + 0.154993i
\(673\) −143.862 143.862i −0.213763 0.213763i 0.592101 0.805864i \(-0.298299\pi\)
−0.805864 + 0.592101i \(0.798299\pi\)
\(674\) −160.813 + 92.8454i −0.238595 + 0.137753i
\(675\) 0 0
\(676\) 159.183 275.714i 0.235479 0.407861i
\(677\) 117.369 + 31.4489i 0.173366 + 0.0464533i 0.344458 0.938802i \(-0.388063\pi\)
−0.171092 + 0.985255i \(0.554729\pi\)
\(678\) −52.5457 52.5457i −0.0775010 0.0775010i
\(679\) 895.062 531.097i 1.31821 0.782176i
\(680\) 0 0
\(681\) 460.356 + 797.360i 0.676000 + 1.17087i
\(682\) 46.0900 + 172.010i 0.0675807 + 0.252215i
\(683\) −783.543 + 209.950i −1.14721 + 0.307393i −0.781845 0.623472i \(-0.785721\pi\)
−0.365362 + 0.930866i \(0.619055\pi\)
\(684\) 48.5206 28.0134i 0.0709365 0.0409552i
\(685\) 0 0
\(686\) −257.410 411.142i −0.375234 0.599333i
\(687\) −737.753 + 737.753i −1.07388 + 1.07388i
\(688\) −6.24686 + 23.3136i −0.00907974 + 0.0338861i
\(689\) 145.280 + 83.8777i 0.210857 + 0.121738i
\(690\) 0 0
\(691\) 16.3168 + 28.2615i 0.0236133 + 0.0408994i 0.877591 0.479411i \(-0.159150\pi\)
−0.853977 + 0.520310i \(0.825816\pi\)
\(692\) 342.544 342.544i 0.495006 0.495006i
\(693\) 53.2991 208.847i 0.0769107 0.301367i
\(694\) 566.487i 0.816264i
\(695\) 0 0
\(696\) −73.5030 + 127.311i −0.105608 + 0.182918i
\(697\) 52.3351 + 195.317i 0.0750862 + 0.280226i
\(698\) −74.0555 + 276.379i −0.106097 + 0.395958i
\(699\) 911.901i 1.30458i
\(700\) 0 0
\(701\) −311.596 −0.444503 −0.222251 0.974989i \(-0.571341\pi\)
−0.222251 + 0.974989i \(0.571341\pi\)
\(702\) −123.197 33.0105i −0.175494 0.0470235i
\(703\) 668.558 179.140i 0.951007 0.254822i
\(704\) 138.883 + 80.1843i 0.197277 + 0.113898i
\(705\) 0 0
\(706\) −466.952 −0.661405
\(707\) 623.224 638.270i 0.881505 0.902787i
\(708\) 367.561 + 367.561i 0.519154 + 0.519154i
\(709\) 622.782 359.564i 0.878396 0.507142i 0.00826649 0.999966i \(-0.497369\pi\)
0.870129 + 0.492824i \(0.164035\pi\)
\(710\) 0 0
\(711\) −13.3955 + 23.2017i −0.0188404 + 0.0326325i
\(712\) −211.620 56.7033i −0.297219 0.0796395i
\(713\) 182.686 + 182.686i 0.256222 + 0.256222i
\(714\) −3.98470 334.075i −0.00558081 0.467892i
\(715\) 0 0
\(716\) 173.381 + 300.305i 0.242152 + 0.419420i
\(717\) 309.122 + 1153.66i 0.431133 + 1.60901i
\(718\) −42.7809 + 11.4631i −0.0595834 + 0.0159653i
\(719\) −278.808 + 160.970i −0.387771 + 0.223880i −0.681194 0.732103i \(-0.738539\pi\)
0.293423 + 0.955983i \(0.405206\pi\)
\(720\) 0 0
\(721\) 25.7416 45.8398i 0.0357026 0.0635780i
\(722\) −28.3982 + 28.3982i −0.0393327 + 0.0393327i
\(723\) −2.75232 + 10.2718i −0.00380681 + 0.0142072i
\(724\) 410.952 + 237.263i 0.567613 + 0.327712i
\(725\) 0 0
\(726\) 542.546 + 939.718i 0.747309 + 1.29438i
\(727\) 905.157 905.157i 1.24506 1.24506i 0.287182 0.957876i \(-0.407282\pi\)
0.957876 0.287182i \(-0.0927184\pi\)
\(728\) −15.3395 + 60.1063i −0.0210707 + 0.0825636i
\(729\) 807.326i 1.10744i
\(730\) 0 0
\(731\) 37.2694 64.5525i 0.0509841 0.0883071i
\(732\) 11.9630 + 44.6464i 0.0163428 + 0.0609923i
\(733\) −238.712 + 890.884i −0.325664 + 1.21539i 0.587979 + 0.808876i \(0.299924\pi\)
−0.913643 + 0.406518i \(0.866743\pi\)
\(734\) 248.207i 0.338157i
\(735\) 0 0
\(736\) 232.664 0.316120
\(737\) −220.091 58.9733i −0.298631 0.0800180i
\(738\) 34.3464 9.20310i 0.0465399 0.0124703i
\(739\) 391.732 + 226.167i 0.530084 + 0.306044i 0.741051 0.671449i \(-0.234328\pi\)
−0.210967 + 0.977493i \(0.567661\pi\)
\(740\) 0 0
\(741\) −156.108 −0.210672
\(742\) 513.582 + 131.069i 0.692158 + 0.176643i
\(743\) −664.894 664.894i −0.894877 0.894877i 0.100100 0.994977i \(-0.468084\pi\)
−0.994977 + 0.100100i \(0.968084\pi\)
\(744\) 42.0365 24.2698i 0.0565007 0.0326207i
\(745\) 0 0
\(746\) −76.4288 + 132.379i −0.102452 + 0.177451i
\(747\) −132.394 35.4749i −0.177234 0.0474898i
\(748\) −350.204 350.204i −0.468187 0.468187i
\(749\) −704.699 395.728i −0.940853 0.528342i
\(750\) 0 0
\(751\) 112.885 + 195.522i 0.150312 + 0.260349i 0.931342 0.364145i \(-0.118639\pi\)
−0.781030 + 0.624494i \(0.785305\pi\)
\(752\) 12.7889 + 47.7288i 0.0170065 + 0.0634692i
\(753\) −971.747 + 260.379i −1.29050 + 0.345789i
\(754\) −73.0012 + 42.1472i −0.0968185 + 0.0558982i
\(755\) 0 0
\(756\) −402.957 + 4.80630i −0.533013 + 0.00635754i
\(757\) 445.497 445.497i 0.588503 0.588503i −0.348723 0.937226i \(-0.613385\pi\)
0.937226 + 0.348723i \(0.113385\pi\)
\(758\) −135.572 + 505.960i −0.178854 + 0.667494i
\(759\) 1950.74 + 1126.26i 2.57015 + 1.48387i
\(760\) 0 0
\(761\) 179.891 + 311.580i 0.236388 + 0.409436i 0.959675 0.281112i \(-0.0907031\pi\)
−0.723287 + 0.690547i \(0.757370\pi\)
\(762\) 95.6964 95.6964i 0.125586 0.125586i
\(763\) −213.464 208.431i −0.279769 0.273174i
\(764\) 41.9683i 0.0549324i
\(765\) 0 0
\(766\) −2.48825 + 4.30977i −0.00324836 + 0.00562633i
\(767\) 77.1444 + 287.907i 0.100579 + 0.375367i
\(768\) 11.3136 42.2229i 0.0147312 0.0549778i
\(769\) 1100.57i 1.43117i −0.698527 0.715584i \(-0.746161\pi\)
0.698527 0.715584i \(-0.253839\pi\)
\(770\) 0 0
\(771\) −723.478 −0.938363
\(772\) −96.6920 25.9085i −0.125249 0.0335603i
\(773\) −12.4850 + 3.34535i −0.0161514 + 0.00432775i −0.266886 0.963728i \(-0.585995\pi\)
0.250734 + 0.968056i \(0.419328\pi\)
\(774\) −11.3515 6.55381i −0.0146661 0.00846745i
\(775\) 0 0
\(776\) −420.534 −0.541925
\(777\) −703.258 179.476i −0.905093 0.230985i
\(778\) 725.344 + 725.344i 0.932319 + 0.932319i
\(779\) 258.531 149.263i 0.331876 0.191609i
\(780\) 0 0
\(781\) 950.365 1646.08i 1.21686 2.10766i
\(782\) −694.049 185.970i −0.887531 0.237813i
\(783\) −387.216 387.216i −0.494528 0.494528i
\(784\) 4.67494 + 195.944i 0.00596294 + 0.249929i
\(785\) 0 0
\(786\) 279.583 + 484.253i 0.355704 + 0.616098i
\(787\) 321.680 + 1200.53i 0.408742 + 1.52545i 0.797047 + 0.603917i \(0.206394\pi\)
−0.388305 + 0.921531i \(0.626939\pi\)
\(788\) 233.853 62.6608i 0.296768 0.0795188i
\(789\) 649.530 375.006i 0.823232 0.475293i
\(790\) 0 0
\(791\) −68.7021 115.784i −0.0868548 0.146377i
\(792\) −61.5832 + 61.5832i −0.0777566 + 0.0777566i
\(793\) −6.85966 + 25.6006i −0.00865026 + 0.0322832i
\(794\) −156.913 90.5936i −0.197623 0.114098i
\(795\) 0 0
\(796\) −307.461 532.538i −0.386258 0.669018i
\(797\) 658.639 658.639i 0.826398 0.826398i −0.160618 0.987017i \(-0.551349\pi\)
0.987017 + 0.160618i \(0.0513489\pi\)
\(798\) −474.879 + 133.334i −0.595086 + 0.167085i
\(799\) 152.600i 0.190988i
\(800\) 0 0
\(801\) 59.4895 103.039i 0.0742691 0.128638i
\(802\) 256.570 + 957.533i 0.319913 + 1.19393i
\(803\) −42.3191 + 157.937i −0.0527012 + 0.196684i
\(804\) 62.1075i 0.0772481i
\(805\) 0 0
\(806\) 27.8330 0.0345322
\(807\) 367.485 + 98.4674i 0.455372 + 0.122017i
\(808\) −348.170 + 93.2920i −0.430904 + 0.115460i
\(809\) 712.947 + 411.620i 0.881270 + 0.508802i 0.871077 0.491147i \(-0.163422\pi\)
0.0101931 + 0.999948i \(0.496755\pi\)
\(810\) 0 0
\(811\) −1415.46 −1.74533 −0.872666 0.488318i \(-0.837610\pi\)
−0.872666 + 0.488318i \(0.837610\pi\)
\(812\) −186.070 + 190.562i −0.229150 + 0.234683i
\(813\) 119.901 + 119.901i 0.147479 + 0.147479i
\(814\) −931.769 + 537.957i −1.14468 + 0.660881i
\(815\) 0 0
\(816\) −67.4981 + 116.910i −0.0827182 + 0.143272i
\(817\) −106.295 28.4816i −0.130104 0.0348612i
\(818\) 452.456 + 452.456i 0.553124 + 0.553124i
\(819\) −29.3738 16.4950i −0.0358654 0.0201404i
\(820\) 0 0
\(821\) −28.8421 49.9560i −0.0351305 0.0608478i 0.847926 0.530115i \(-0.177851\pi\)
−0.883056 + 0.469267i \(0.844518\pi\)
\(822\) 47.1954 + 176.135i 0.0574153 + 0.214277i
\(823\) 373.416 100.057i 0.453725 0.121575i −0.0247166 0.999694i \(-0.507868\pi\)
0.478442 + 0.878119i \(0.341202\pi\)
\(824\) −18.3967 + 10.6213i −0.0223261 + 0.0128900i
\(825\) 0 0
\(826\) 480.576 + 809.918i 0.581811 + 0.980531i
\(827\) −84.0099 + 84.0099i −0.101584 + 0.101584i −0.756072 0.654488i \(-0.772884\pi\)
0.654488 + 0.756072i \(0.272884\pi\)
\(828\) −32.7027 + 122.048i −0.0394961 + 0.147401i
\(829\) 880.574 + 508.399i 1.06221 + 0.613268i 0.926043 0.377417i \(-0.123188\pi\)
0.136169 + 0.990686i \(0.456521\pi\)
\(830\) 0 0
\(831\) −568.222 984.190i −0.683781 1.18434i
\(832\) 17.7237 17.7237i 0.0213025 0.0213025i
\(833\) 142.674 588.248i 0.171277 0.706180i
\(834\) 469.333i 0.562749i
\(835\) 0 0
\(836\) −365.588 + 633.217i −0.437306 + 0.757436i
\(837\) 46.7977 + 174.651i 0.0559112 + 0.208664i
\(838\) −90.8382 + 339.013i −0.108399 + 0.404550i
\(839\) 538.853i 0.642256i −0.947036 0.321128i \(-0.895938\pi\)
0.947036 0.321128i \(-0.104062\pi\)
\(840\) 0 0
\(841\) 479.081 0.569656
\(842\) −326.469 87.4770i −0.387730 0.103892i
\(843\) 977.985 262.050i 1.16013 0.310855i
\(844\) −201.930 116.585i −0.239254 0.138133i
\(845\) 0 0
\(846\) −26.8346 −0.0317194
\(847\) 531.429 + 1892.73i 0.627425 + 2.23462i
\(848\) −151.441 151.441i −0.178586 0.178586i
\(849\) −1142.06 + 659.370i −1.34519 + 0.776644i
\(850\) 0 0
\(851\) −780.473 + 1351.82i −0.917125 + 1.58851i
\(852\) −500.437 134.092i −0.587367 0.157385i
\(853\) 1067.08 + 1067.08i 1.25098 + 1.25098i 0.955283 + 0.295694i \(0.0955510\pi\)
0.295694 + 0.955283i \(0.404449\pi\)
\(854\) 0.998762 + 83.7356i 0.00116951 + 0.0980510i
\(855\) 0 0
\(856\) 163.283 + 282.814i 0.190751 + 0.330390i
\(857\) −262.477 979.577i −0.306274 1.14303i −0.931843 0.362861i \(-0.881800\pi\)
0.625569 0.780169i \(-0.284867\pi\)
\(858\) 234.397 62.8064i 0.273190 0.0732009i
\(859\) −196.715 + 113.574i −0.229005 + 0.132216i −0.610113 0.792315i \(-0.708876\pi\)
0.381108 + 0.924530i \(0.375543\pi\)
\(860\) 0 0
\(861\) −313.020 + 3.73356i −0.363554 + 0.00433631i
\(862\) 130.746 130.746i 0.151677 0.151677i
\(863\) 126.070 470.501i 0.146084 0.545193i −0.853621 0.520895i \(-0.825598\pi\)
0.999705 0.0242979i \(-0.00773503\pi\)
\(864\) 141.016 + 81.4155i 0.163213 + 0.0942309i
\(865\) 0 0
\(866\) −456.850 791.288i −0.527541 0.913727i
\(867\) −263.503 + 263.503i −0.303925 + 0.303925i
\(868\) 84.6676 23.7725i 0.0975433 0.0273876i
\(869\) 349.636i 0.402343i
\(870\) 0 0
\(871\) −17.8065 + 30.8417i −0.0204437 + 0.0354095i
\(872\) 31.2006 + 116.442i 0.0357806 + 0.133535i
\(873\) 59.1093 220.599i 0.0677082 0.252690i
\(874\) 1060.80i 1.21373i
\(875\) 0 0
\(876\) 44.5682 0.0508769
\(877\) −137.801 36.9236i −0.157127 0.0421022i 0.179398 0.983777i \(-0.442585\pi\)
−0.336525 + 0.941674i \(0.609252\pi\)
\(878\) 296.370 79.4121i 0.337551 0.0904466i
\(879\) −680.695 392.999i −0.774397 0.447098i
\(880\) 0 0
\(881\) 21.6989 0.0246299 0.0123149 0.999924i \(-0.496080\pi\)
0.0123149 + 0.999924i \(0.496080\pi\)
\(882\) −103.443 25.0891i −0.117283 0.0284457i
\(883\) 100.328 + 100.328i 0.113622 + 0.113622i 0.761632 0.648010i \(-0.224398\pi\)
−0.648010 + 0.761632i \(0.724398\pi\)
\(884\) −67.0372 + 38.7040i −0.0758340 + 0.0437828i
\(885\) 0 0
\(886\) 30.6228 53.0402i 0.0345629 0.0598647i
\(887\) −470.784 126.146i −0.530759 0.142217i −0.0165205 0.999864i \(-0.505259\pi\)
−0.514239 + 0.857647i \(0.671926\pi\)
\(888\) 207.371 + 207.371i 0.233526 + 0.233526i
\(889\) 210.867 125.121i 0.237195 0.140743i
\(890\) 0 0
\(891\) 649.655 + 1125.24i 0.729131 + 1.26289i
\(892\) 68.2776 + 254.815i 0.0765444 + 0.285668i
\(893\) −217.612 + 58.3090i −0.243686 + 0.0652956i
\(894\) −454.247 + 262.259i −0.508106 + 0.293355i
\(895\) 0 0
\(896\) 38.7772 69.0531i 0.0432781 0.0770682i
\(897\) 248.945 248.945i 0.277530 0.277530i
\(898\) −17.6616 + 65.9140i −0.0196677 + 0.0734009i
\(899\) 103.491 + 59.7506i 0.115118 + 0.0664634i
\(900\) 0 0
\(901\) 330.708 + 572.803i 0.367045 + 0.635741i
\(902\) −328.133 + 328.133i −0.363783 + 0.363783i
\(903\) 82.5642 + 80.6178i 0.0914332 + 0.0892778i
\(904\) 54.3998i 0.0601768i
\(905\) 0 0
\(906\) 159.808 276.796i 0.176389 0.305514i
\(907\) −2.40540 8.97709i −0.00265204 0.00989756i 0.964587 0.263764i \(-0.0849642\pi\)
−0.967239 + 0.253867i \(0.918297\pi\)
\(908\) 174.448 651.048i 0.192123 0.717013i
\(909\) 195.752i 0.215349i
\(910\) 0 0
\(911\) −1071.38 −1.17605 −0.588027 0.808841i \(-0.700095\pi\)
−0.588027 + 0.808841i \(0.700095\pi\)
\(912\) 192.509 + 51.5826i 0.211084 + 0.0565599i
\(913\) 1727.81 462.964i 1.89245 0.507080i
\(914\) −354.912 204.908i −0.388306 0.224188i
\(915\) 0 0
\(916\) 763.785 0.833827
\(917\) 273.854 + 975.355i 0.298642 + 1.06364i
\(918\) −355.581 355.581i −0.387343 0.387343i
\(919\) −1186.43 + 684.983i −1.29100 + 0.745357i −0.978831 0.204671i \(-0.934388\pi\)
−0.312165 + 0.950028i \(0.601054\pi\)
\(920\) 0 0
\(921\) 0.400667 0.693975i 0.000435034 0.000753502i
\(922\) 475.708 + 127.466i 0.515952 + 0.138249i
\(923\) −210.065 210.065i −0.227590 0.227590i
\(924\) 659.388 391.257i 0.713623 0.423438i
\(925\) 0 0
\(926\) 268.097 + 464.358i 0.289522 + 0.501466i
\(927\) −2.98582 11.1432i −0.00322095 0.0120207i
\(928\) 103.950 27.8533i 0.112015 0.0300143i
\(929\) 818.100 472.330i 0.880624 0.508429i 0.00976001 0.999952i \(-0.496893\pi\)
0.870864 + 0.491524i \(0.163560\pi\)
\(930\) 0 0
\(931\) −893.377 + 21.3147i −0.959589 + 0.0228944i
\(932\) −472.039 + 472.039i −0.506480 + 0.506480i
\(933\) 251.743 939.516i 0.269821 1.00698i
\(934\) 610.710 + 352.594i 0.653865 + 0.377509i
\(935\) 0 0
\(936\) 6.80607 + 11.7885i 0.00727144 + 0.0125945i
\(937\) −649.423 + 649.423i −0.693087 + 0.693087i −0.962910 0.269823i \(-0.913035\pi\)
0.269823 + 0.962910i \(0.413035\pi\)
\(938\) −27.8248 + 109.029i −0.0296640 + 0.116235i
\(939\) 711.582i 0.757808i
\(940\) 0 0
\(941\) 18.0898 31.3324i 0.0192240 0.0332969i −0.856253 0.516556i \(-0.827214\pi\)
0.875477 + 0.483259i \(0.160547\pi\)
\(942\) −39.2203 146.372i −0.0416352 0.155385i
\(943\) −174.249 + 650.307i −0.184782 + 0.689615i
\(944\) 380.530i 0.403104i
\(945\) 0 0
\(946\) 171.061 0.180825
\(947\) −1460.44 391.323i −1.54217 0.413223i −0.615204 0.788368i \(-0.710926\pi\)
−0.926966 + 0.375144i \(0.877593\pi\)
\(948\) −92.0546 + 24.6659i −0.0971040 + 0.0260189i
\(949\) 22.1319 + 12.7779i 0.0233213 + 0.0134646i
\(950\) 0 0
\(951\) 211.325 0.222214
\(952\) −170.869 + 174.994i −0.179484 + 0.183817i
\(953\) 152.501 + 152.501i 0.160022 + 0.160022i 0.782576 0.622555i \(-0.213905\pi\)
−0.622555 + 0.782576i \(0.713905\pi\)
\(954\) 100.727 58.1548i 0.105584 0.0609589i
\(955\) 0 0
\(956\) 437.169 757.199i 0.457290 0.792049i
\(957\) 1006.38 + 269.660i 1.05160 + 0.281776i
\(958\) −374.806 374.806i −0.391238 0.391238i
\(959\) 3.94024 + 330.347i 0.00410869 + 0.344470i
\(960\) 0 0
\(961\) 460.771 + 798.079i 0.479470 + 0.830467i
\(962\) 43.5234 + 162.432i 0.0452426 + 0.168848i
\(963\) −171.306 + 45.9013i −0.177888 + 0.0476649i
\(964\) 6.74185 3.89241i 0.00699362 0.00403777i
\(965\) 0 0
\(966\) 544.660 969.913i 0.563830 1.00405i
\(967\) −440.127 + 440.127i −0.455147 + 0.455147i −0.897059 0.441911i \(-0.854301\pi\)
0.441911 + 0.897059i \(0.354301\pi\)
\(968\) 205.593 767.284i 0.212390 0.792649i
\(969\) −533.033 307.747i −0.550086 0.317592i
\(970\) 0 0
\(971\) −310.158 537.210i −0.319421 0.553254i 0.660946 0.750433i \(-0.270155\pi\)
−0.980367 + 0.197179i \(0.936822\pi\)
\(972\) −115.942 + 115.942i −0.119281 + 0.119281i
\(973\) −210.266 + 823.907i −0.216101 + 0.846769i
\(974\) 555.017i 0.569832i
\(975\) 0 0
\(976\) 16.9183 29.3034i 0.0173344 0.0300240i
\(977\) −27.6391 103.150i −0.0282897 0.105579i 0.950337 0.311222i \(-0.100738\pi\)
−0.978627 + 0.205643i \(0.934071\pi\)
\(978\) −123.585 + 461.225i −0.126365 + 0.471600i
\(979\) 1552.73i 1.58604i
\(980\) 0 0
\(981\) −65.4674 −0.0667354
\(982\) 137.219 + 36.7677i 0.139734 + 0.0374417i
\(983\) −46.9821 + 12.5888i −0.0477946 + 0.0128065i −0.282637 0.959227i \(-0.591209\pi\)
0.234843 + 0.972033i \(0.424543\pi\)
\(984\) 109.542 + 63.2440i 0.111323 + 0.0642724i
\(985\) 0 0
\(986\) −332.351 −0.337070
\(987\) 228.907 + 58.4183i 0.231921 + 0.0591878i
\(988\) 80.8083 + 80.8083i 0.0817897 + 0.0817897i
\(989\) 214.927 124.088i 0.217318 0.125468i
\(990\) 0 0
\(991\) −363.350 + 629.341i −0.366650 + 0.635056i −0.989039 0.147651i \(-0.952829\pi\)
0.622390 + 0.782708i \(0.286162\pi\)
\(992\) −34.3230 9.19682i −0.0345998 0.00927098i
\(993\) 166.684 + 166.684i 0.167859 + 0.167859i
\(994\) −818.435 459.597i −0.823375 0.462371i
\(995\) 0 0
\(996\) −243.785 422.247i −0.244764 0.423943i
\(997\) −352.926 1317.14i −0.353987 1.32110i −0.881754 0.471710i \(-0.843637\pi\)
0.527766 0.849390i \(-0.323030\pi\)
\(998\) −539.307 + 144.507i −0.540388 + 0.144796i
\(999\) −946.075 + 546.217i −0.947022 + 0.546764i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.p.e.193.2 16
5.2 odd 4 inner 350.3.p.e.207.3 16
5.3 odd 4 70.3.l.c.67.2 yes 16
5.4 even 2 70.3.l.c.53.3 yes 16
7.2 even 3 inner 350.3.p.e.93.3 16
35.2 odd 12 inner 350.3.p.e.107.2 16
35.3 even 12 490.3.f.p.197.3 8
35.4 even 6 490.3.f.o.393.2 8
35.9 even 6 70.3.l.c.23.2 16
35.18 odd 12 490.3.f.o.197.2 8
35.23 odd 12 70.3.l.c.37.3 yes 16
35.24 odd 6 490.3.f.p.393.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.c.23.2 16 35.9 even 6
70.3.l.c.37.3 yes 16 35.23 odd 12
70.3.l.c.53.3 yes 16 5.4 even 2
70.3.l.c.67.2 yes 16 5.3 odd 4
350.3.p.e.93.3 16 7.2 even 3 inner
350.3.p.e.107.2 16 35.2 odd 12 inner
350.3.p.e.193.2 16 1.1 even 1 trivial
350.3.p.e.207.3 16 5.2 odd 4 inner
490.3.f.o.197.2 8 35.18 odd 12
490.3.f.o.393.2 8 35.4 even 6
490.3.f.p.197.3 8 35.3 even 12
490.3.f.p.393.3 8 35.24 odd 6