Properties

Label 490.3.f.p.393.3
Level $490$
Weight $3$
Character 490.393
Analytic conductor $13.352$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,3,Mod(197,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.197");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 490.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3515329537\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 2x^{5} + 730x^{4} - 1570x^{3} + 1682x^{2} + 4930x + 7225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 393.3
Root \(1.93183 - 1.93183i\) of defining polynomial
Character \(\chi\) \(=\) 490.393
Dual form 490.3.f.p.197.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} +(1.93183 + 1.93183i) q^{3} -2.00000i q^{4} +(-4.87575 - 1.10773i) q^{5} +3.86367 q^{6} +(-2.00000 - 2.00000i) q^{8} -1.53604i q^{9} +O(q^{10})\) \(q+(1.00000 - 1.00000i) q^{2} +(1.93183 + 1.93183i) q^{3} -2.00000i q^{4} +(-4.87575 - 1.10773i) q^{5} +3.86367 q^{6} +(-2.00000 - 2.00000i) q^{8} -1.53604i q^{9} +(-5.98348 + 3.76802i) q^{10} -20.0461 q^{11} +(3.86367 - 3.86367i) q^{12} +(-2.21546 - 2.21546i) q^{13} +(-7.27919 - 11.5591i) q^{15} -4.00000 q^{16} +(-8.73498 + 8.73498i) q^{17} +(-1.53604 - 1.53604i) q^{18} +18.2374i q^{19} +(-2.21546 + 9.75150i) q^{20} +(-20.0461 + 20.0461i) q^{22} +(-29.0830 - 29.0830i) q^{23} -7.72733i q^{24} +(22.5459 + 10.8020i) q^{25} -4.43092 q^{26} +(20.3539 - 20.3539i) q^{27} -19.0242i q^{29} +(-18.8383 - 4.27990i) q^{30} -6.28154 q^{31} +(-4.00000 + 4.00000i) q^{32} +(-38.7257 - 38.7257i) q^{33} +17.4700i q^{34} -3.07208 q^{36} +(-26.8360 + 26.8360i) q^{37} +(18.2374 + 18.2374i) q^{38} -8.55979i q^{39} +(7.53604 + 11.9670i) q^{40} +16.3689 q^{41} +(-4.26669 - 4.26669i) q^{43} +40.0922i q^{44} +(-1.70152 + 7.48935i) q^{45} -58.1661 q^{46} +(-8.73498 + 8.73498i) q^{47} +(-7.72733 - 7.72733i) q^{48} +(33.3479 - 11.7439i) q^{50} -33.7490 q^{51} +(-4.43092 + 4.43092i) q^{52} +(-37.8602 - 37.8602i) q^{53} -40.7077i q^{54} +(97.7397 + 22.2056i) q^{55} +(-35.2316 + 35.2316i) q^{57} +(-19.0242 - 19.0242i) q^{58} -95.1326i q^{59} +(-23.1182 + 14.5584i) q^{60} -8.45917 q^{61} +(-6.28154 + 6.28154i) q^{62} +8.00000i q^{64} +(8.34789 + 13.2561i) q^{65} -77.4514 q^{66} +(8.03738 - 8.03738i) q^{67} +(17.4700 + 17.4700i) q^{68} -112.367i q^{69} +94.8180 q^{71} +(-3.07208 + 3.07208i) q^{72} +(5.76760 + 5.76760i) q^{73} +53.6720i q^{74} +(22.6872 + 64.4226i) q^{75} +36.4747 q^{76} +(-8.55979 - 8.55979i) q^{78} +17.4416i q^{79} +(19.5030 + 4.43092i) q^{80} +64.8162 q^{81} +(16.3689 - 16.3689i) q^{82} +(63.0967 + 63.0967i) q^{83} +(52.2656 - 32.9136i) q^{85} -8.53337 q^{86} +(36.7515 - 36.7515i) q^{87} +(40.0922 + 40.0922i) q^{88} +77.4582i q^{89} +(5.78784 + 9.19087i) q^{90} +(-58.1661 + 58.1661i) q^{92} +(-12.1349 - 12.1349i) q^{93} +17.4700i q^{94} +(20.2021 - 88.9209i) q^{95} -15.4547 q^{96} +(-105.134 + 105.134i) q^{97} +30.7916i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 2 q^{3} - 2 q^{5} + 4 q^{6} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} + 2 q^{3} - 2 q^{5} + 4 q^{6} - 16 q^{8} - 6 q^{10} - 40 q^{11} + 4 q^{12} - 8 q^{13} - 10 q^{15} - 32 q^{16} + 46 q^{17} + 52 q^{18} - 8 q^{20} - 40 q^{22} - 54 q^{23} + 26 q^{25} - 16 q^{26} + 26 q^{27} + 22 q^{30} - 208 q^{31} - 32 q^{32} - 22 q^{33} + 104 q^{36} + 38 q^{37} + 36 q^{38} - 4 q^{40} + 36 q^{41} + 72 q^{43} + 254 q^{45} - 108 q^{46} + 46 q^{47} - 8 q^{48} - 30 q^{50} + 136 q^{51} - 16 q^{52} - 30 q^{53} + 96 q^{55} - 246 q^{57} - 132 q^{58} + 64 q^{60} - 120 q^{61} - 208 q^{62} - 230 q^{65} - 44 q^{66} + 74 q^{67} - 92 q^{68} + 8 q^{71} + 104 q^{72} - 54 q^{73} + 300 q^{75} + 72 q^{76} + 84 q^{78} + 8 q^{80} - 244 q^{81} + 36 q^{82} - 32 q^{83} + 272 q^{85} + 144 q^{86} - 236 q^{87} + 80 q^{88} + 524 q^{90} - 108 q^{92} - 142 q^{93} + 396 q^{95} - 16 q^{96} - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) 1.93183 + 1.93183i 0.643944 + 0.643944i 0.951523 0.307578i \(-0.0995186\pi\)
−0.307578 + 0.951523i \(0.599519\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −4.87575 1.10773i −0.975150 0.221546i
\(6\) 3.86367 0.643944
\(7\) 0 0
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 1.53604i 0.170671i
\(10\) −5.98348 + 3.76802i −0.598348 + 0.376802i
\(11\) −20.0461 −1.82237 −0.911186 0.411996i \(-0.864832\pi\)
−0.911186 + 0.411996i \(0.864832\pi\)
\(12\) 3.86367 3.86367i 0.321972 0.321972i
\(13\) −2.21546 2.21546i −0.170420 0.170420i 0.616744 0.787164i \(-0.288451\pi\)
−0.787164 + 0.616744i \(0.788451\pi\)
\(14\) 0 0
\(15\) −7.27919 11.5591i −0.485279 0.770606i
\(16\) −4.00000 −0.250000
\(17\) −8.73498 + 8.73498i −0.513822 + 0.513822i −0.915695 0.401873i \(-0.868359\pi\)
0.401873 + 0.915695i \(0.368359\pi\)
\(18\) −1.53604 1.53604i −0.0853356 0.0853356i
\(19\) 18.2374i 0.959862i 0.877306 + 0.479931i \(0.159338\pi\)
−0.877306 + 0.479931i \(0.840662\pi\)
\(20\) −2.21546 + 9.75150i −0.110773 + 0.487575i
\(21\) 0 0
\(22\) −20.0461 + 20.0461i −0.911186 + 0.911186i
\(23\) −29.0830 29.0830i −1.26448 1.26448i −0.948898 0.315582i \(-0.897800\pi\)
−0.315582 0.948898i \(-0.602200\pi\)
\(24\) 7.72733i 0.321972i
\(25\) 22.5459 + 10.8020i 0.901835 + 0.432081i
\(26\) −4.43092 −0.170420
\(27\) 20.3539 20.3539i 0.753847 0.753847i
\(28\) 0 0
\(29\) 19.0242i 0.656006i −0.944677 0.328003i \(-0.893624\pi\)
0.944677 0.328003i \(-0.106376\pi\)
\(30\) −18.8383 4.27990i −0.627942 0.142663i
\(31\) −6.28154 −0.202630 −0.101315 0.994854i \(-0.532305\pi\)
−0.101315 + 0.994854i \(0.532305\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) −38.7257 38.7257i −1.17351 1.17351i
\(34\) 17.4700i 0.513822i
\(35\) 0 0
\(36\) −3.07208 −0.0853356
\(37\) −26.8360 + 26.8360i −0.725298 + 0.725298i −0.969679 0.244381i \(-0.921415\pi\)
0.244381 + 0.969679i \(0.421415\pi\)
\(38\) 18.2374 + 18.2374i 0.479931 + 0.479931i
\(39\) 8.55979i 0.219482i
\(40\) 7.53604 + 11.9670i 0.188401 + 0.299174i
\(41\) 16.3689 0.399242 0.199621 0.979873i \(-0.436029\pi\)
0.199621 + 0.979873i \(0.436029\pi\)
\(42\) 0 0
\(43\) −4.26669 4.26669i −0.0992252 0.0992252i 0.655752 0.754977i \(-0.272352\pi\)
−0.754977 + 0.655752i \(0.772352\pi\)
\(44\) 40.0922i 0.911186i
\(45\) −1.70152 + 7.48935i −0.0378115 + 0.166430i
\(46\) −58.1661 −1.26448
\(47\) −8.73498 + 8.73498i −0.185851 + 0.185851i −0.793900 0.608049i \(-0.791952\pi\)
0.608049 + 0.793900i \(0.291952\pi\)
\(48\) −7.72733 7.72733i −0.160986 0.160986i
\(49\) 0 0
\(50\) 33.3479 11.7439i 0.666958 0.234877i
\(51\) −33.7490 −0.661746
\(52\) −4.43092 + 4.43092i −0.0852099 + 0.0852099i
\(53\) −37.8602 37.8602i −0.714343 0.714343i 0.253098 0.967441i \(-0.418551\pi\)
−0.967441 + 0.253098i \(0.918551\pi\)
\(54\) 40.7077i 0.753847i
\(55\) 97.7397 + 22.2056i 1.77709 + 0.403739i
\(56\) 0 0
\(57\) −35.2316 + 35.2316i −0.618098 + 0.618098i
\(58\) −19.0242 19.0242i −0.328003 0.328003i
\(59\) 95.1326i 1.61242i −0.591631 0.806209i \(-0.701516\pi\)
0.591631 0.806209i \(-0.298484\pi\)
\(60\) −23.1182 + 14.5584i −0.385303 + 0.242640i
\(61\) −8.45917 −0.138675 −0.0693375 0.997593i \(-0.522089\pi\)
−0.0693375 + 0.997593i \(0.522089\pi\)
\(62\) −6.28154 + 6.28154i −0.101315 + 0.101315i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 8.34789 + 13.2561i 0.128429 + 0.203941i
\(66\) −77.4514 −1.17351
\(67\) 8.03738 8.03738i 0.119961 0.119961i −0.644578 0.764539i \(-0.722967\pi\)
0.764539 + 0.644578i \(0.222967\pi\)
\(68\) 17.4700 + 17.4700i 0.256911 + 0.256911i
\(69\) 112.367i 1.62851i
\(70\) 0 0
\(71\) 94.8180 1.33547 0.667733 0.744401i \(-0.267265\pi\)
0.667733 + 0.744401i \(0.267265\pi\)
\(72\) −3.07208 + 3.07208i −0.0426678 + 0.0426678i
\(73\) 5.76760 + 5.76760i 0.0790083 + 0.0790083i 0.745507 0.666498i \(-0.232208\pi\)
−0.666498 + 0.745507i \(0.732208\pi\)
\(74\) 53.6720i 0.725298i
\(75\) 22.6872 + 64.4226i 0.302496 + 0.858967i
\(76\) 36.4747 0.479931
\(77\) 0 0
\(78\) −8.55979 8.55979i −0.109741 0.109741i
\(79\) 17.4416i 0.220780i 0.993888 + 0.110390i \(0.0352100\pi\)
−0.993888 + 0.110390i \(0.964790\pi\)
\(80\) 19.5030 + 4.43092i 0.243787 + 0.0553865i
\(81\) 64.8162 0.800200
\(82\) 16.3689 16.3689i 0.199621 0.199621i
\(83\) 63.0967 + 63.0967i 0.760201 + 0.760201i 0.976359 0.216157i \(-0.0693525\pi\)
−0.216157 + 0.976359i \(0.569352\pi\)
\(84\) 0 0
\(85\) 52.2656 32.9136i 0.614889 0.387219i
\(86\) −8.53337 −0.0992252
\(87\) 36.7515 36.7515i 0.422431 0.422431i
\(88\) 40.0922 + 40.0922i 0.455593 + 0.455593i
\(89\) 77.4582i 0.870317i 0.900354 + 0.435158i \(0.143308\pi\)
−0.900354 + 0.435158i \(0.856692\pi\)
\(90\) 5.78784 + 9.19087i 0.0643093 + 0.102121i
\(91\) 0 0
\(92\) −58.1661 + 58.1661i −0.632240 + 0.632240i
\(93\) −12.1349 12.1349i −0.130483 0.130483i
\(94\) 17.4700i 0.185851i
\(95\) 20.2021 88.9209i 0.212653 0.936009i
\(96\) −15.4547 −0.160986
\(97\) −105.134 + 105.134i −1.08385 + 1.08385i −0.0877043 + 0.996147i \(0.527953\pi\)
−0.996147 + 0.0877043i \(0.972047\pi\)
\(98\) 0 0
\(99\) 30.7916i 0.311026i
\(100\) 21.6040 45.0917i 0.216040 0.450917i
\(101\) −127.439 −1.26177 −0.630887 0.775874i \(-0.717309\pi\)
−0.630887 + 0.775874i \(0.717309\pi\)
\(102\) −33.7490 + 33.7490i −0.330873 + 0.330873i
\(103\) −5.31067 5.31067i −0.0515599 0.0515599i 0.680857 0.732417i \(-0.261608\pi\)
−0.732417 + 0.680857i \(0.761608\pi\)
\(104\) 8.86183i 0.0852099i
\(105\) 0 0
\(106\) −75.7204 −0.714343
\(107\) 81.6414 81.6414i 0.763004 0.763004i −0.213860 0.976864i \(-0.568604\pi\)
0.976864 + 0.213860i \(0.0686038\pi\)
\(108\) −40.7077 40.7077i −0.376924 0.376924i
\(109\) 42.6209i 0.391017i −0.980702 0.195509i \(-0.937364\pi\)
0.980702 0.195509i \(-0.0626357\pi\)
\(110\) 119.945 75.5341i 1.09041 0.686673i
\(111\) −103.685 −0.934103
\(112\) 0 0
\(113\) −13.6000 13.6000i −0.120354 0.120354i 0.644365 0.764718i \(-0.277122\pi\)
−0.764718 + 0.644365i \(0.777122\pi\)
\(114\) 70.4631i 0.618098i
\(115\) 109.586 + 174.018i 0.952917 + 1.51320i
\(116\) −38.0483 −0.328003
\(117\) −3.40304 + 3.40304i −0.0290858 + 0.0290858i
\(118\) −95.1326 95.1326i −0.806209 0.806209i
\(119\) 0 0
\(120\) −8.55979 + 37.6765i −0.0713316 + 0.313971i
\(121\) 280.845 2.32104
\(122\) −8.45917 + 8.45917i −0.0693375 + 0.0693375i
\(123\) 31.6220 + 31.6220i 0.257090 + 0.257090i
\(124\) 12.5631i 0.101315i
\(125\) −97.9623 77.6427i −0.783699 0.621141i
\(126\) 0 0
\(127\) 24.7683 24.7683i 0.195026 0.195026i −0.602838 0.797864i \(-0.705963\pi\)
0.797864 + 0.602838i \(0.205963\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 16.4850i 0.127791i
\(130\) 21.6040 + 4.90825i 0.166185 + 0.0377558i
\(131\) −144.724 −1.10477 −0.552383 0.833590i \(-0.686282\pi\)
−0.552383 + 0.833590i \(0.686282\pi\)
\(132\) −77.4514 + 77.4514i −0.586753 + 0.586753i
\(133\) 0 0
\(134\) 16.0748i 0.119961i
\(135\) −121.787 + 76.6938i −0.902126 + 0.568102i
\(136\) 34.9399 0.256911
\(137\) 33.3725 33.3725i 0.243595 0.243595i −0.574741 0.818336i \(-0.694897\pi\)
0.818336 + 0.574741i \(0.194897\pi\)
\(138\) −112.367 112.367i −0.814255 0.814255i
\(139\) 121.473i 0.873910i 0.899483 + 0.436955i \(0.143943\pi\)
−0.899483 + 0.436955i \(0.856057\pi\)
\(140\) 0 0
\(141\) −33.7490 −0.239355
\(142\) 94.8180 94.8180i 0.667733 0.667733i
\(143\) 44.4113 + 44.4113i 0.310568 + 0.310568i
\(144\) 6.14417i 0.0426678i
\(145\) −21.0736 + 92.7571i −0.145335 + 0.639704i
\(146\) 11.5352 0.0790083
\(147\) 0 0
\(148\) 53.6720 + 53.6720i 0.362649 + 0.362649i
\(149\) 135.757i 0.911119i 0.890205 + 0.455560i \(0.150561\pi\)
−0.890205 + 0.455560i \(0.849439\pi\)
\(150\) 87.1097 + 41.7354i 0.580732 + 0.278236i
\(151\) 82.7236 0.547839 0.273919 0.961753i \(-0.411680\pi\)
0.273919 + 0.961753i \(0.411680\pi\)
\(152\) 36.4747 36.4747i 0.239965 0.239965i
\(153\) 13.4173 + 13.4173i 0.0876947 + 0.0876947i
\(154\) 0 0
\(155\) 30.6272 + 6.95825i 0.197595 + 0.0448919i
\(156\) −17.1196 −0.109741
\(157\) 27.7332 27.7332i 0.176645 0.176645i −0.613247 0.789891i \(-0.710137\pi\)
0.789891 + 0.613247i \(0.210137\pi\)
\(158\) 17.4416 + 17.4416i 0.110390 + 0.110390i
\(159\) 146.279i 0.919994i
\(160\) 23.9339 15.0721i 0.149587 0.0942005i
\(161\) 0 0
\(162\) 64.8162 64.8162i 0.400100 0.400100i
\(163\) −87.3885 87.3885i −0.536126 0.536126i 0.386263 0.922389i \(-0.373766\pi\)
−0.922389 + 0.386263i \(0.873766\pi\)
\(164\) 32.7378i 0.199621i
\(165\) 145.919 + 231.714i 0.884359 + 1.40433i
\(166\) 126.193 0.760201
\(167\) 173.339 173.339i 1.03796 1.03796i 0.0387094 0.999251i \(-0.487675\pi\)
0.999251 0.0387094i \(-0.0123247\pi\)
\(168\) 0 0
\(169\) 159.183i 0.941914i
\(170\) 19.3520 85.1791i 0.113835 0.501054i
\(171\) 28.0134 0.163821
\(172\) −8.53337 + 8.53337i −0.0496126 + 0.0496126i
\(173\) 171.272 + 171.272i 0.990012 + 0.990012i 0.999951 0.00993824i \(-0.00316349\pi\)
−0.00993824 + 0.999951i \(0.503163\pi\)
\(174\) 73.5030i 0.422431i
\(175\) 0 0
\(176\) 80.1843 0.455593
\(177\) 183.780 183.780i 1.03831 1.03831i
\(178\) 77.4582 + 77.4582i 0.435158 + 0.435158i
\(179\) 173.381i 0.968608i −0.874900 0.484304i \(-0.839073\pi\)
0.874900 0.484304i \(-0.160927\pi\)
\(180\) 14.9787 + 3.40304i 0.0832151 + 0.0189058i
\(181\) −237.263 −1.31085 −0.655424 0.755262i \(-0.727510\pi\)
−0.655424 + 0.755262i \(0.727510\pi\)
\(182\) 0 0
\(183\) −16.3417 16.3417i −0.0892989 0.0892989i
\(184\) 116.332i 0.632240i
\(185\) 160.573 101.119i 0.867961 0.546587i
\(186\) −24.2698 −0.130483
\(187\) 175.102 175.102i 0.936375 0.936375i
\(188\) 17.4700 + 17.4700i 0.0929253 + 0.0929253i
\(189\) 0 0
\(190\) −68.7188 109.123i −0.361678 0.574331i
\(191\) 20.9842 0.109865 0.0549324 0.998490i \(-0.482506\pi\)
0.0549324 + 0.998490i \(0.482506\pi\)
\(192\) −15.4547 + 15.4547i −0.0804930 + 0.0804930i
\(193\) −35.3917 35.3917i −0.183377 0.183377i 0.609449 0.792826i \(-0.291391\pi\)
−0.792826 + 0.609449i \(0.791391\pi\)
\(194\) 210.267i 1.08385i
\(195\) −9.48193 + 41.7354i −0.0486253 + 0.214028i
\(196\) 0 0
\(197\) −85.5963 + 85.5963i −0.434499 + 0.434499i −0.890156 0.455657i \(-0.849404\pi\)
0.455657 + 0.890156i \(0.349404\pi\)
\(198\) 30.7916 + 30.7916i 0.155513 + 0.155513i
\(199\) 307.461i 1.54503i −0.634996 0.772515i \(-0.718998\pi\)
0.634996 0.772515i \(-0.281002\pi\)
\(200\) −23.4877 66.6958i −0.117439 0.333479i
\(201\) 31.0537 0.154496
\(202\) −127.439 + 127.439i −0.630887 + 0.630887i
\(203\) 0 0
\(204\) 67.4981i 0.330873i
\(205\) −79.8107 18.1323i −0.389321 0.0884504i
\(206\) −10.6213 −0.0515599
\(207\) −44.6728 + 44.6728i −0.215810 + 0.215810i
\(208\) 8.86183 + 8.86183i 0.0426050 + 0.0426050i
\(209\) 365.588i 1.74922i
\(210\) 0 0
\(211\) −116.585 −0.552533 −0.276267 0.961081i \(-0.589097\pi\)
−0.276267 + 0.961081i \(0.589097\pi\)
\(212\) −75.7204 + 75.7204i −0.357172 + 0.357172i
\(213\) 183.173 + 183.173i 0.859965 + 0.859965i
\(214\) 163.283i 0.763004i
\(215\) 16.0770 + 25.5296i 0.0747766 + 0.118742i
\(216\) −81.4155 −0.376924
\(217\) 0 0
\(218\) −42.6209 42.6209i −0.195509 0.195509i
\(219\) 22.2841i 0.101754i
\(220\) 44.4113 195.479i 0.201869 0.888543i
\(221\) 38.7040 0.175131
\(222\) −103.685 + 103.685i −0.467051 + 0.467051i
\(223\) 93.2689 + 93.2689i 0.418246 + 0.418246i 0.884599 0.466353i \(-0.154432\pi\)
−0.466353 + 0.884599i \(0.654432\pi\)
\(224\) 0 0
\(225\) 16.5924 34.6314i 0.0737438 0.153917i
\(226\) −27.1999 −0.120354
\(227\) −238.300 + 238.300i −1.04978 + 1.04978i −0.0510852 + 0.998694i \(0.516268\pi\)
−0.998694 + 0.0510852i \(0.983732\pi\)
\(228\) 70.4631 + 70.4631i 0.309049 + 0.309049i
\(229\) 381.893i 1.66765i −0.552026 0.833827i \(-0.686145\pi\)
0.552026 0.833827i \(-0.313855\pi\)
\(230\) 283.603 + 64.4323i 1.23306 + 0.280140i
\(231\) 0 0
\(232\) −38.0483 + 38.0483i −0.164001 + 0.164001i
\(233\) 236.020 + 236.020i 1.01296 + 1.01296i 0.999915 + 0.0130448i \(0.00415242\pi\)
0.0130448 + 0.999915i \(0.495848\pi\)
\(234\) 6.80607i 0.0290858i
\(235\) 52.2656 32.9136i 0.222407 0.140058i
\(236\) −190.265 −0.806209
\(237\) −33.6943 + 33.6943i −0.142170 + 0.142170i
\(238\) 0 0
\(239\) 437.169i 1.82916i −0.404406 0.914579i \(-0.632522\pi\)
0.404406 0.914579i \(-0.367478\pi\)
\(240\) 29.1167 + 46.2363i 0.121320 + 0.192651i
\(241\) 3.89241 0.0161511 0.00807554 0.999967i \(-0.497429\pi\)
0.00807554 + 0.999967i \(0.497429\pi\)
\(242\) 280.845 280.845i 1.16052 1.16052i
\(243\) −57.9708 57.9708i −0.238563 0.238563i
\(244\) 16.9183i 0.0693375i
\(245\) 0 0
\(246\) 63.2440 0.257090
\(247\) 40.4041 40.4041i 0.163579 0.163579i
\(248\) 12.5631 + 12.5631i 0.0506576 + 0.0506576i
\(249\) 243.785i 0.979054i
\(250\) −175.605 + 20.3197i −0.702420 + 0.0812787i
\(251\) −368.235 −1.46707 −0.733535 0.679651i \(-0.762131\pi\)
−0.733535 + 0.679651i \(0.762131\pi\)
\(252\) 0 0
\(253\) 583.001 + 583.001i 2.30435 + 2.30435i
\(254\) 49.5366i 0.195026i
\(255\) 164.552 + 37.3848i 0.645302 + 0.146607i
\(256\) 16.0000 0.0625000
\(257\) −187.252 + 187.252i −0.728605 + 0.728605i −0.970342 0.241736i \(-0.922283\pi\)
0.241736 + 0.970342i \(0.422283\pi\)
\(258\) −16.4850 16.4850i −0.0638955 0.0638955i
\(259\) 0 0
\(260\) 26.5123 16.6958i 0.101970 0.0642146i
\(261\) −29.2219 −0.111961
\(262\) −144.724 + 144.724i −0.552383 + 0.552383i
\(263\) −194.119 194.119i −0.738097 0.738097i 0.234113 0.972209i \(-0.424781\pi\)
−0.972209 + 0.234113i \(0.924781\pi\)
\(264\) 154.903i 0.586753i
\(265\) 142.658 + 226.536i 0.538332 + 0.854851i
\(266\) 0 0
\(267\) −149.636 + 149.636i −0.560436 + 0.560436i
\(268\) −16.0748 16.0748i −0.0599804 0.0599804i
\(269\) 139.255i 0.517677i −0.965921 0.258839i \(-0.916660\pi\)
0.965921 0.258839i \(-0.0833398\pi\)
\(270\) −45.0932 + 198.481i −0.167012 + 0.735114i
\(271\) −62.0657 −0.229025 −0.114512 0.993422i \(-0.536531\pi\)
−0.114512 + 0.993422i \(0.536531\pi\)
\(272\) 34.9399 34.9399i 0.128456 0.128456i
\(273\) 0 0
\(274\) 66.7450i 0.243595i
\(275\) −451.956 216.538i −1.64348 0.787412i
\(276\) −224.734 −0.814255
\(277\) −294.136 + 294.136i −1.06186 + 1.06186i −0.0639081 + 0.997956i \(0.520356\pi\)
−0.997956 + 0.0639081i \(0.979644\pi\)
\(278\) 121.473 + 121.473i 0.436955 + 0.436955i
\(279\) 9.64871i 0.0345832i
\(280\) 0 0
\(281\) −370.599 −1.31886 −0.659428 0.751767i \(-0.729202\pi\)
−0.659428 + 0.751767i \(0.729202\pi\)
\(282\) −33.7490 + 33.7490i −0.119677 + 0.119677i
\(283\) −341.319 341.319i −1.20607 1.20607i −0.972289 0.233784i \(-0.924889\pi\)
−0.233784 0.972289i \(-0.575111\pi\)
\(284\) 189.636i 0.667733i
\(285\) 210.807 132.753i 0.739675 0.465801i
\(286\) 88.8225 0.310568
\(287\) 0 0
\(288\) 6.14417 + 6.14417i 0.0213339 + 0.0213339i
\(289\) 136.400i 0.471973i
\(290\) 71.6835 + 113.831i 0.247184 + 0.392520i
\(291\) −406.201 −1.39588
\(292\) 11.5352 11.5352i 0.0395041 0.0395041i
\(293\) 203.433 + 203.433i 0.694312 + 0.694312i 0.963178 0.268866i \(-0.0866489\pi\)
−0.268866 + 0.963178i \(0.586649\pi\)
\(294\) 0 0
\(295\) −105.381 + 463.843i −0.357224 + 1.57235i
\(296\) 107.344 0.362649
\(297\) −408.015 + 408.015i −1.37379 + 1.37379i
\(298\) 135.757 + 135.757i 0.455560 + 0.455560i
\(299\) 128.865i 0.430985i
\(300\) 128.845 45.3743i 0.429484 0.151248i
\(301\) 0 0
\(302\) 82.7236 82.7236i 0.273919 0.273919i
\(303\) −246.191 246.191i −0.812513 0.812513i
\(304\) 72.9495i 0.239965i
\(305\) 41.2448 + 9.37047i 0.135229 + 0.0307228i
\(306\) 26.8346 0.0876947
\(307\) −0.207402 + 0.207402i −0.000675578 + 0.000675578i −0.707444 0.706769i \(-0.750152\pi\)
0.706769 + 0.707444i \(0.250152\pi\)
\(308\) 0 0
\(309\) 20.5187i 0.0664034i
\(310\) 37.5855 23.6690i 0.121243 0.0763516i
\(311\) −356.021 −1.14476 −0.572382 0.819987i \(-0.693980\pi\)
−0.572382 + 0.819987i \(0.693980\pi\)
\(312\) −17.1196 + 17.1196i −0.0548705 + 0.0548705i
\(313\) 184.173 + 184.173i 0.588411 + 0.588411i 0.937201 0.348790i \(-0.113407\pi\)
−0.348790 + 0.937201i \(0.613407\pi\)
\(314\) 55.4664i 0.176645i
\(315\) 0 0
\(316\) 34.8833 0.110390
\(317\) −54.6955 + 54.6955i −0.172541 + 0.172541i −0.788095 0.615554i \(-0.788932\pi\)
0.615554 + 0.788095i \(0.288932\pi\)
\(318\) −146.279 146.279i −0.459997 0.459997i
\(319\) 381.360i 1.19549i
\(320\) 8.86183 39.0060i 0.0276932 0.121894i
\(321\) 315.435 0.982664
\(322\) 0 0
\(323\) −159.303 159.303i −0.493198 0.493198i
\(324\) 129.632i 0.400100i
\(325\) −26.0180 73.8809i −0.0800554 0.227326i
\(326\) −174.777 −0.536126
\(327\) 82.3364 82.3364i 0.251793 0.251793i
\(328\) −32.7378 32.7378i −0.0998105 0.0998105i
\(329\) 0 0
\(330\) 377.634 + 85.7951i 1.14434 + 0.259985i
\(331\) 86.2829 0.260674 0.130337 0.991470i \(-0.458394\pi\)
0.130337 + 0.991470i \(0.458394\pi\)
\(332\) 126.193 126.193i 0.380101 0.380101i
\(333\) 41.2212 + 41.2212i 0.123788 + 0.123788i
\(334\) 346.679i 1.03796i
\(335\) −48.0915 + 30.2850i −0.143557 + 0.0904030i
\(336\) 0 0
\(337\) 92.8454 92.8454i 0.275506 0.275506i −0.555806 0.831312i \(-0.687590\pi\)
0.831312 + 0.555806i \(0.187590\pi\)
\(338\) −159.183 159.183i −0.470957 0.470957i
\(339\) 52.5457i 0.155002i
\(340\) −65.8272 104.531i −0.193609 0.307444i
\(341\) 125.920 0.369268
\(342\) 28.0134 28.0134i 0.0819104 0.0819104i
\(343\) 0 0
\(344\) 17.0667i 0.0496126i
\(345\) −124.472 + 547.874i −0.360789 + 1.58804i
\(346\) 342.544 0.990012
\(347\) −283.244 + 283.244i −0.816264 + 0.816264i −0.985565 0.169300i \(-0.945849\pi\)
0.169300 + 0.985565i \(0.445849\pi\)
\(348\) −73.5030 73.5030i −0.211216 0.211216i
\(349\) 202.323i 0.579723i −0.957069 0.289862i \(-0.906391\pi\)
0.957069 0.289862i \(-0.0936093\pi\)
\(350\) 0 0
\(351\) −90.1863 −0.256941
\(352\) 80.1843 80.1843i 0.227796 0.227796i
\(353\) 233.476 + 233.476i 0.661405 + 0.661405i 0.955711 0.294306i \(-0.0950885\pi\)
−0.294306 + 0.955711i \(0.595089\pi\)
\(354\) 367.561i 1.03831i
\(355\) −462.309 105.033i −1.30228 0.295867i
\(356\) 154.916 0.435158
\(357\) 0 0
\(358\) −173.381 173.381i −0.484304 0.484304i
\(359\) 31.3178i 0.0872361i −0.999048 0.0436181i \(-0.986112\pi\)
0.999048 0.0436181i \(-0.0138885\pi\)
\(360\) 18.3817 11.5757i 0.0510604 0.0321546i
\(361\) 28.3982 0.0786655
\(362\) −237.263 + 237.263i −0.655424 + 0.655424i
\(363\) 542.546 + 542.546i 1.49462 + 1.49462i
\(364\) 0 0
\(365\) −21.7324 34.5103i −0.0595409 0.0945488i
\(366\) −32.6834 −0.0892989
\(367\) −124.103 + 124.103i −0.338157 + 0.338157i −0.855673 0.517517i \(-0.826857\pi\)
0.517517 + 0.855673i \(0.326857\pi\)
\(368\) 116.332 + 116.332i 0.316120 + 0.316120i
\(369\) 25.1433i 0.0681391i
\(370\) 59.4541 261.691i 0.160687 0.707274i
\(371\) 0 0
\(372\) −24.2698 + 24.2698i −0.0652414 + 0.0652414i
\(373\) 76.4288 + 76.4288i 0.204903 + 0.204903i 0.802097 0.597194i \(-0.203718\pi\)
−0.597194 + 0.802097i \(0.703718\pi\)
\(374\) 350.204i 0.936375i
\(375\) −39.2542 339.240i −0.104678 0.904639i
\(376\) 34.9399 0.0929253
\(377\) −42.1472 + 42.1472i −0.111796 + 0.111796i
\(378\) 0 0
\(379\) 370.389i 0.977279i 0.872486 + 0.488639i \(0.162507\pi\)
−0.872486 + 0.488639i \(0.837493\pi\)
\(380\) −177.842 40.4041i −0.468005 0.106327i
\(381\) 95.6964 0.251172
\(382\) 20.9842 20.9842i 0.0549324 0.0549324i
\(383\) −2.48825 2.48825i −0.00649673 0.00649673i 0.703851 0.710348i \(-0.251462\pi\)
−0.710348 + 0.703851i \(0.751462\pi\)
\(384\) 30.9093i 0.0804930i
\(385\) 0 0
\(386\) −70.7834 −0.183377
\(387\) −6.55381 + 6.55381i −0.0169349 + 0.0169349i
\(388\) 210.267 + 210.267i 0.541925 + 0.541925i
\(389\) 725.344i 1.86464i −0.361637 0.932319i \(-0.617782\pi\)
0.361637 0.932319i \(-0.382218\pi\)
\(390\) 32.2535 + 51.2173i 0.0827012 + 0.131326i
\(391\) 508.079 1.29944
\(392\) 0 0
\(393\) −279.583 279.583i −0.711408 0.711408i
\(394\) 171.193i 0.434499i
\(395\) 19.3206 85.0410i 0.0489129 0.215294i
\(396\) 61.5832 0.155513
\(397\) 90.5936 90.5936i 0.228195 0.228195i −0.583743 0.811938i \(-0.698412\pi\)
0.811938 + 0.583743i \(0.198412\pi\)
\(398\) −307.461 307.461i −0.772515 0.772515i
\(399\) 0 0
\(400\) −90.1835 43.2081i −0.225459 0.108020i
\(401\) −700.963 −1.74804 −0.874019 0.485892i \(-0.838495\pi\)
−0.874019 + 0.485892i \(0.838495\pi\)
\(402\) 31.0537 31.0537i 0.0772481 0.0772481i
\(403\) 13.9165 + 13.9165i 0.0345322 + 0.0345322i
\(404\) 254.878i 0.630887i
\(405\) −316.028 71.7988i −0.780315 0.177281i
\(406\) 0 0
\(407\) 537.957 537.957i 1.32176 1.32176i
\(408\) 67.4981 + 67.4981i 0.165436 + 0.165436i
\(409\) 452.456i 1.10625i 0.833099 + 0.553124i \(0.186564\pi\)
−0.833099 + 0.553124i \(0.813436\pi\)
\(410\) −97.9431 + 61.6784i −0.238886 + 0.150435i
\(411\) 128.940 0.313723
\(412\) −10.6213 + 10.6213i −0.0257799 + 0.0257799i
\(413\) 0 0
\(414\) 89.3455i 0.215810i
\(415\) −237.750 377.538i −0.572891 0.909729i
\(416\) 17.7237 0.0426050
\(417\) −234.666 + 234.666i −0.562749 + 0.562749i
\(418\) −365.588 365.588i −0.874612 0.874612i
\(419\) 248.174i 0.592302i −0.955141 0.296151i \(-0.904297\pi\)
0.955141 0.296151i \(-0.0957031\pi\)
\(420\) 0 0
\(421\) −238.992 −0.567676 −0.283838 0.958872i \(-0.591608\pi\)
−0.283838 + 0.958872i \(0.591608\pi\)
\(422\) −116.585 + 116.585i −0.276267 + 0.276267i
\(423\) 13.4173 + 13.4173i 0.0317194 + 0.0317194i
\(424\) 151.441i 0.357172i
\(425\) −291.293 + 102.582i −0.685396 + 0.241370i
\(426\) 366.345 0.859965
\(427\) 0 0
\(428\) −163.283 163.283i −0.381502 0.381502i
\(429\) 171.590i 0.399977i
\(430\) 41.6066 + 9.45266i 0.0967595 + 0.0219829i
\(431\) −130.746 −0.303355 −0.151677 0.988430i \(-0.548468\pi\)
−0.151677 + 0.988430i \(0.548468\pi\)
\(432\) −81.4155 + 81.4155i −0.188462 + 0.188462i
\(433\) −456.850 456.850i −1.05508 1.05508i −0.998392 0.0566898i \(-0.981945\pi\)
−0.0566898 0.998392i \(-0.518055\pi\)
\(434\) 0 0
\(435\) −219.902 + 138.480i −0.505522 + 0.318346i
\(436\) −85.2417 −0.195509
\(437\) 530.398 530.398i 1.21373 1.21373i
\(438\) 22.2841 + 22.2841i 0.0508769 + 0.0508769i
\(439\) 216.958i 0.494209i −0.968989 0.247105i \(-0.920521\pi\)
0.968989 0.247105i \(-0.0794792\pi\)
\(440\) −151.068 239.891i −0.343337 0.545206i
\(441\) 0 0
\(442\) 38.7040 38.7040i 0.0875655 0.0875655i
\(443\) −30.6228 30.6228i −0.0691258 0.0691258i 0.671699 0.740824i \(-0.265565\pi\)
−0.740824 + 0.671699i \(0.765565\pi\)
\(444\) 207.371i 0.467051i
\(445\) 85.8027 377.667i 0.192815 0.848690i
\(446\) 186.538 0.418246
\(447\) −262.259 + 262.259i −0.586710 + 0.586710i
\(448\) 0 0
\(449\) 48.2524i 0.107466i 0.998555 + 0.0537332i \(0.0171120\pi\)
−0.998555 + 0.0537332i \(0.982888\pi\)
\(450\) −18.0390 51.2237i −0.0400868 0.113831i
\(451\) −328.133 −0.727567
\(452\) −27.1999 + 27.1999i −0.0601768 + 0.0601768i
\(453\) 159.808 + 159.808i 0.352778 + 0.352778i
\(454\) 476.600i 1.04978i
\(455\) 0 0
\(456\) 140.926 0.309049
\(457\) −204.908 + 204.908i −0.448377 + 0.448377i −0.894815 0.446438i \(-0.852692\pi\)
0.446438 + 0.894815i \(0.352692\pi\)
\(458\) −381.893 381.893i −0.833827 0.833827i
\(459\) 355.581i 0.774687i
\(460\) 348.036 219.171i 0.756599 0.476459i
\(461\) −348.242 −0.755407 −0.377703 0.925927i \(-0.623286\pi\)
−0.377703 + 0.925927i \(0.623286\pi\)
\(462\) 0 0
\(463\) −268.097 268.097i −0.579044 0.579044i 0.355596 0.934640i \(-0.384278\pi\)
−0.934640 + 0.355596i \(0.884278\pi\)
\(464\) 76.0967i 0.164001i
\(465\) 45.7245 + 72.6089i 0.0983323 + 0.156148i
\(466\) 472.039 1.01296
\(467\) −352.594 + 352.594i −0.755019 + 0.755019i −0.975411 0.220392i \(-0.929266\pi\)
0.220392 + 0.975411i \(0.429266\pi\)
\(468\) 6.80607 + 6.80607i 0.0145429 + 0.0145429i
\(469\) 0 0
\(470\) 19.3520 85.1791i 0.0411744 0.181232i
\(471\) 107.152 0.227499
\(472\) −190.265 + 190.265i −0.403104 + 0.403104i
\(473\) 85.5303 + 85.5303i 0.180825 + 0.180825i
\(474\) 67.3886i 0.142170i
\(475\) −197.000 + 411.177i −0.414738 + 0.865637i
\(476\) 0 0
\(477\) −58.1548 + 58.1548i −0.121918 + 0.121918i
\(478\) −437.169 437.169i −0.914579 0.914579i
\(479\) 374.806i 0.782475i −0.920290 0.391238i \(-0.872047\pi\)
0.920290 0.391238i \(-0.127953\pi\)
\(480\) 75.3531 + 17.1196i 0.156986 + 0.0356658i
\(481\) 118.908 0.247210
\(482\) 3.89241 3.89241i 0.00807554 0.00807554i
\(483\) 0 0
\(484\) 561.691i 1.16052i
\(485\) 629.064 396.145i 1.29704 0.816795i
\(486\) −115.942 −0.238563
\(487\) 277.508 277.508i 0.569832 0.569832i −0.362249 0.932081i \(-0.617991\pi\)
0.932081 + 0.362249i \(0.117991\pi\)
\(488\) 16.9183 + 16.9183i 0.0346687 + 0.0346687i
\(489\) 337.640i 0.690470i
\(490\) 0 0
\(491\) 100.451 0.204585 0.102293 0.994754i \(-0.467382\pi\)
0.102293 + 0.994754i \(0.467382\pi\)
\(492\) 63.2440 63.2440i 0.128545 0.128545i
\(493\) 166.176 + 166.176i 0.337070 + 0.337070i
\(494\) 80.8083i 0.163579i
\(495\) 34.1088 150.132i 0.0689066 0.303297i
\(496\) 25.1262 0.0506576
\(497\) 0 0
\(498\) 243.785 + 243.785i 0.489527 + 0.489527i
\(499\) 394.800i 0.791182i −0.918427 0.395591i \(-0.870540\pi\)
0.918427 0.395591i \(-0.129460\pi\)
\(500\) −155.285 + 195.925i −0.310571 + 0.391849i
\(501\) 669.725 1.33678
\(502\) −368.235 + 368.235i −0.733535 + 0.733535i
\(503\) 38.4894 + 38.4894i 0.0765197 + 0.0765197i 0.744331 0.667811i \(-0.232769\pi\)
−0.667811 + 0.744331i \(0.732769\pi\)
\(504\) 0 0
\(505\) 621.362 + 141.168i 1.23042 + 0.279541i
\(506\) 1166.00 2.30435
\(507\) 307.516 307.516i 0.606540 0.606540i
\(508\) −49.5366 49.5366i −0.0975129 0.0975129i
\(509\) 510.759i 1.00346i −0.865025 0.501728i \(-0.832698\pi\)
0.865025 0.501728i \(-0.167302\pi\)
\(510\) 201.937 127.167i 0.395954 0.249347i
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 371.201 + 371.201i 0.723589 + 0.723589i
\(514\) 374.503i 0.728605i
\(515\) 20.0107 + 31.7763i 0.0388557 + 0.0617015i
\(516\) −32.9701 −0.0638955
\(517\) 175.102 175.102i 0.338689 0.338689i
\(518\) 0 0
\(519\) 661.738i 1.27503i
\(520\) 9.81651 43.2081i 0.0188779 0.0830925i
\(521\) 785.097 1.50690 0.753452 0.657503i \(-0.228387\pi\)
0.753452 + 0.657503i \(0.228387\pi\)
\(522\) −29.2219 + 29.2219i −0.0559807 + 0.0559807i
\(523\) 216.640 + 216.640i 0.414226 + 0.414226i 0.883208 0.468982i \(-0.155379\pi\)
−0.468982 + 0.883208i \(0.655379\pi\)
\(524\) 289.449i 0.552383i
\(525\) 0 0
\(526\) −388.239 −0.738097
\(527\) 54.8691 54.8691i 0.104116 0.104116i
\(528\) 154.903 + 154.903i 0.293376 + 0.293376i
\(529\) 1162.65i 2.19782i
\(530\) 369.194 + 83.8777i 0.696592 + 0.158260i
\(531\) −146.128 −0.275193
\(532\) 0 0
\(533\) −36.2647 36.2647i −0.0680387 0.0680387i
\(534\) 299.273i 0.560436i
\(535\) −488.500 + 307.627i −0.913084 + 0.575003i
\(536\) −32.1495 −0.0599804
\(537\) 334.943 334.943i 0.623730 0.623730i
\(538\) −139.255 139.255i −0.258839 0.258839i
\(539\) 0 0
\(540\) 153.388 + 243.574i 0.284051 + 0.451063i
\(541\) 529.610 0.978947 0.489474 0.872018i \(-0.337189\pi\)
0.489474 + 0.872018i \(0.337189\pi\)
\(542\) −62.0657 + 62.0657i −0.114512 + 0.114512i
\(543\) −458.353 458.353i −0.844113 0.844113i
\(544\) 69.8798i 0.128456i
\(545\) −47.2124 + 207.809i −0.0866282 + 0.381300i
\(546\) 0 0
\(547\) −343.777 + 343.777i −0.628477 + 0.628477i −0.947685 0.319207i \(-0.896583\pi\)
0.319207 + 0.947685i \(0.396583\pi\)
\(548\) −66.7450 66.7450i −0.121797 0.121797i
\(549\) 12.9936i 0.0236678i
\(550\) −668.495 + 235.418i −1.21544 + 0.428033i
\(551\) 346.951 0.629675
\(552\) −224.734 + 224.734i −0.407127 + 0.407127i
\(553\) 0 0
\(554\) 588.273i 1.06186i
\(555\) 505.544 + 114.855i 0.910890 + 0.206947i
\(556\) 242.947 0.436955
\(557\) 263.079 263.079i 0.472315 0.472315i −0.430348 0.902663i \(-0.641609\pi\)
0.902663 + 0.430348i \(0.141609\pi\)
\(558\) 9.64871 + 9.64871i 0.0172916 + 0.0172916i
\(559\) 18.9053i 0.0338199i
\(560\) 0 0
\(561\) 676.536 1.20595
\(562\) −370.599 + 370.599i −0.659428 + 0.659428i
\(563\) 678.813 + 678.813i 1.20571 + 1.20571i 0.972404 + 0.233302i \(0.0749532\pi\)
0.233302 + 0.972404i \(0.425047\pi\)
\(564\) 67.4981i 0.119677i
\(565\) 51.2449 + 81.3750i 0.0906989 + 0.144027i
\(566\) −682.637 −1.20607
\(567\) 0 0
\(568\) −189.636 189.636i −0.333866 0.333866i
\(569\) 668.937i 1.17564i −0.808993 0.587818i \(-0.799987\pi\)
0.808993 0.587818i \(-0.200013\pi\)
\(570\) 78.0540 343.561i 0.136937 0.602738i
\(571\) −272.787 −0.477735 −0.238868 0.971052i \(-0.576776\pi\)
−0.238868 + 0.971052i \(0.576776\pi\)
\(572\) 88.8225 88.8225i 0.155284 0.155284i
\(573\) 40.5379 + 40.5379i 0.0707468 + 0.0707468i
\(574\) 0 0
\(575\) −341.547 969.858i −0.593995 1.68671i
\(576\) 12.2883 0.0213339
\(577\) −153.009 + 153.009i −0.265180 + 0.265180i −0.827155 0.561974i \(-0.810042\pi\)
0.561974 + 0.827155i \(0.310042\pi\)
\(578\) 136.400 + 136.400i 0.235987 + 0.235987i
\(579\) 136.742i 0.236169i
\(580\) 185.514 + 42.1472i 0.319852 + 0.0726677i
\(581\) 0 0
\(582\) −406.201 + 406.201i −0.697940 + 0.697940i
\(583\) 758.948 + 758.948i 1.30180 + 1.30180i
\(584\) 23.0704i 0.0395041i
\(585\) 20.3620 12.8227i 0.0348068 0.0219192i
\(586\) 406.867 0.694312
\(587\) 193.451 193.451i 0.329559 0.329559i −0.522860 0.852419i \(-0.675135\pi\)
0.852419 + 0.522860i \(0.175135\pi\)
\(588\) 0 0
\(589\) 114.559i 0.194497i
\(590\) 358.462 + 569.224i 0.607562 + 0.964786i
\(591\) −330.715 −0.559586
\(592\) 107.344 107.344i 0.181324 0.181324i
\(593\) 102.991 + 102.991i 0.173679 + 0.173679i 0.788593 0.614915i \(-0.210810\pi\)
−0.614915 + 0.788593i \(0.710810\pi\)
\(594\) 816.031i 1.37379i
\(595\) 0 0
\(596\) 271.514 0.455560
\(597\) 593.964 593.964i 0.994914 0.994914i
\(598\) 128.865 + 128.865i 0.215492 + 0.215492i
\(599\) 457.291i 0.763424i −0.924281 0.381712i \(-0.875335\pi\)
0.924281 0.381712i \(-0.124665\pi\)
\(600\) 83.4708 174.219i 0.139118 0.290366i
\(601\) −369.587 −0.614953 −0.307477 0.951556i \(-0.599485\pi\)
−0.307477 + 0.951556i \(0.599485\pi\)
\(602\) 0 0
\(603\) −12.3457 12.3457i −0.0204739 0.0204739i
\(604\) 165.447i 0.273919i
\(605\) −1369.33 311.101i −2.26336 0.514216i
\(606\) −492.383 −0.812513
\(607\) 165.381 165.381i 0.272456 0.272456i −0.557632 0.830088i \(-0.688290\pi\)
0.830088 + 0.557632i \(0.188290\pi\)
\(608\) −72.9495 72.9495i −0.119983 0.119983i
\(609\) 0 0
\(610\) 50.6153 31.8743i 0.0829758 0.0522530i
\(611\) 38.7040 0.0633453
\(612\) 26.8346 26.8346i 0.0438474 0.0438474i
\(613\) 678.753 + 678.753i 1.10726 + 1.10726i 0.993509 + 0.113756i \(0.0362882\pi\)
0.113756 + 0.993509i \(0.463712\pi\)
\(614\) 0.414805i 0.000675578i
\(615\) −119.152 189.210i −0.193744 0.307658i
\(616\) 0 0
\(617\) 22.6455 22.6455i 0.0367026 0.0367026i −0.688517 0.725220i \(-0.741738\pi\)
0.725220 + 0.688517i \(0.241738\pi\)
\(618\) −20.5187 20.5187i −0.0332017 0.0332017i
\(619\) 497.226i 0.803274i −0.915799 0.401637i \(-0.868441\pi\)
0.915799 0.401637i \(-0.131559\pi\)
\(620\) 13.9165 61.2545i 0.0224460 0.0987975i
\(621\) −1183.91 −1.90645
\(622\) −356.021 + 356.021i −0.572382 + 0.572382i
\(623\) 0 0
\(624\) 34.2392i 0.0548705i
\(625\) 391.633 + 487.082i 0.626612 + 0.779331i
\(626\) 368.345 0.588411
\(627\) 706.255 706.255i 1.12640 1.12640i
\(628\) −55.4664 55.4664i −0.0883224 0.0883224i
\(629\) 468.824i 0.745348i
\(630\) 0 0
\(631\) 965.780 1.53056 0.765278 0.643700i \(-0.222602\pi\)
0.765278 + 0.643700i \(0.222602\pi\)
\(632\) 34.8833 34.8833i 0.0551950 0.0551950i
\(633\) −225.222 225.222i −0.355801 0.355801i
\(634\) 109.391i 0.172541i
\(635\) −148.201 + 93.3274i −0.233387 + 0.146972i
\(636\) −292.558 −0.459997
\(637\) 0 0
\(638\) 381.360 + 381.360i 0.597743 + 0.597743i
\(639\) 145.644i 0.227926i
\(640\) −30.1442 47.8678i −0.0471003 0.0747935i
\(641\) 1199.96 1.87202 0.936008 0.351978i \(-0.114491\pi\)
0.936008 + 0.351978i \(0.114491\pi\)
\(642\) 315.435 315.435i 0.491332 0.491332i
\(643\) −405.030 405.030i −0.629906 0.629906i 0.318138 0.948044i \(-0.396942\pi\)
−0.948044 + 0.318138i \(0.896942\pi\)
\(644\) 0 0
\(645\) −18.2610 + 80.3770i −0.0283116 + 0.124615i
\(646\) −318.606 −0.493198
\(647\) 59.6805 59.6805i 0.0922418 0.0922418i −0.659480 0.751722i \(-0.729224\pi\)
0.751722 + 0.659480i \(0.229224\pi\)
\(648\) −129.632 129.632i −0.200050 0.200050i
\(649\) 1907.04i 2.93842i
\(650\) −99.8989 47.8628i −0.153691 0.0736351i
\(651\) 0 0
\(652\) −174.777 + 174.777i −0.268063 + 0.268063i
\(653\) −339.289 339.289i −0.519586 0.519586i 0.397860 0.917446i \(-0.369753\pi\)
−0.917446 + 0.397860i \(0.869753\pi\)
\(654\) 164.673i 0.251793i
\(655\) 705.640 + 160.315i 1.07731 + 0.244756i
\(656\) −65.4757 −0.0998105
\(657\) 8.85928 8.85928i 0.0134844 0.0134844i
\(658\) 0 0
\(659\) 168.872i 0.256255i 0.991758 + 0.128127i \(0.0408966\pi\)
−0.991758 + 0.128127i \(0.959103\pi\)
\(660\) 463.429 291.838i 0.702165 0.442179i
\(661\) 503.549 0.761799 0.380900 0.924616i \(-0.375614\pi\)
0.380900 + 0.924616i \(0.375614\pi\)
\(662\) 86.2829 86.2829i 0.130337 0.130337i
\(663\) 74.7696 + 74.7696i 0.112775 + 0.112775i
\(664\) 252.387i 0.380101i
\(665\) 0 0
\(666\) 82.4425 0.123788
\(667\) −553.281 + 553.281i −0.829506 + 0.829506i
\(668\) −346.679 346.679i −0.518980 0.518980i
\(669\) 360.360i 0.538655i
\(670\) −17.8065 + 78.3765i −0.0265768 + 0.116980i
\(671\) 169.573 0.252717
\(672\) 0 0
\(673\) 143.862 + 143.862i 0.213763 + 0.213763i 0.805864 0.592101i \(-0.201701\pi\)
−0.592101 + 0.805864i \(0.701701\pi\)
\(674\) 185.691i 0.275506i
\(675\) 678.759 239.033i 1.00557 0.354123i
\(676\) −318.367 −0.470957
\(677\) −85.9199 + 85.9199i −0.126913 + 0.126913i −0.767710 0.640797i \(-0.778604\pi\)
0.640797 + 0.767710i \(0.278604\pi\)
\(678\) −52.5457 52.5457i −0.0775010 0.0775010i
\(679\) 0 0
\(680\) −170.358 38.7040i −0.250527 0.0569176i
\(681\) −920.711 −1.35200
\(682\) 125.920 125.920i 0.184634 0.184634i
\(683\) −573.593 573.593i −0.839814 0.839814i 0.149020 0.988834i \(-0.452388\pi\)
−0.988834 + 0.149020i \(0.952388\pi\)
\(684\) 56.0267i 0.0819104i
\(685\) −199.684 + 125.748i −0.291509 + 0.183574i
\(686\) 0 0
\(687\) 737.753 737.753i 1.07388 1.07388i
\(688\) 17.0667 + 17.0667i 0.0248063 + 0.0248063i
\(689\) 167.755i 0.243476i
\(690\) 423.402 + 672.347i 0.613626 + 0.974415i
\(691\) 32.6336 0.0472266 0.0236133 0.999721i \(-0.492483\pi\)
0.0236133 + 0.999721i \(0.492483\pi\)
\(692\) 342.544 342.544i 0.495006 0.495006i
\(693\) 0 0
\(694\) 566.487i 0.816264i
\(695\) 134.560 592.274i 0.193611 0.852193i
\(696\) −147.006 −0.211216
\(697\) −142.982 + 142.982i −0.205139 + 0.205139i
\(698\) −202.323 202.323i −0.289862 0.289862i
\(699\) 911.901i 1.30458i
\(700\) 0 0
\(701\) −311.596 −0.444503 −0.222251 0.974989i \(-0.571341\pi\)
−0.222251 + 0.974989i \(0.571341\pi\)
\(702\) −90.1863 + 90.1863i −0.128471 + 0.128471i
\(703\) −489.418 489.418i −0.696186 0.696186i
\(704\) 160.369i 0.227796i
\(705\) 164.552 + 37.3848i 0.233407 + 0.0530281i
\(706\) 466.952 0.661405
\(707\) 0 0
\(708\) −367.561 367.561i −0.519154 0.519154i
\(709\) 719.127i 1.01428i 0.861863 + 0.507142i \(0.169298\pi\)
−0.861863 + 0.507142i \(0.830702\pi\)
\(710\) −567.342 + 357.276i −0.799073 + 0.503206i
\(711\) 26.7911 0.0376808
\(712\) 154.916 154.916i 0.217579 0.217579i
\(713\) 182.686 + 182.686i 0.256222 + 0.256222i
\(714\) 0 0
\(715\) −167.343 265.734i −0.234045 0.371656i
\(716\) −346.762 −0.484304
\(717\) 844.538 844.538i 1.17788 1.17788i
\(718\) −31.3178 31.3178i −0.0436181 0.0436181i
\(719\) 321.939i 0.447760i 0.974617 + 0.223880i \(0.0718724\pi\)
−0.974617 + 0.223880i \(0.928128\pi\)
\(720\) 6.80607 29.9574i 0.00945288 0.0416075i
\(721\) 0 0
\(722\) 28.3982 28.3982i 0.0393327 0.0393327i
\(723\) 7.51949 + 7.51949i 0.0104004 + 0.0104004i
\(724\) 474.527i 0.655424i
\(725\) 205.499 428.916i 0.283447 0.591609i
\(726\) 1085.09 1.49462
\(727\) 905.157 905.157i 1.24506 1.24506i 0.287182 0.957876i \(-0.407282\pi\)
0.957876 0.287182i \(-0.0927184\pi\)
\(728\) 0 0
\(729\) 807.326i 1.10744i
\(730\) −56.2428 12.7779i −0.0770449 0.0175039i
\(731\) 74.5388 0.101968
\(732\) −32.6834 + 32.6834i −0.0446495 + 0.0446495i
\(733\) −652.173 652.173i −0.889731 0.889731i 0.104766 0.994497i \(-0.466591\pi\)
−0.994497 + 0.104766i \(0.966591\pi\)
\(734\) 248.207i 0.338157i
\(735\) 0 0
\(736\) 232.664 0.316120
\(737\) −161.118 + 161.118i −0.218613 + 0.218613i
\(738\) −25.1433 25.1433i −0.0340696 0.0340696i
\(739\) 452.333i 0.612088i −0.952017 0.306044i \(-0.900995\pi\)
0.952017 0.306044i \(-0.0990055\pi\)
\(740\) −202.237 321.145i −0.273294 0.433980i
\(741\) 156.108 0.210672
\(742\) 0 0
\(743\) 664.894 + 664.894i 0.894877 + 0.894877i 0.994977 0.100100i \(-0.0319164\pi\)
−0.100100 + 0.994977i \(0.531916\pi\)
\(744\) 48.5396i 0.0652414i
\(745\) 150.382 661.916i 0.201855 0.888478i
\(746\) 152.858 0.204903
\(747\) 96.9191 96.9191i 0.129744 0.129744i
\(748\) −350.204 350.204i −0.468187 0.468187i
\(749\) 0 0
\(750\) −378.494 299.985i −0.504658 0.399980i
\(751\) −225.769 −0.300625 −0.150312 0.988639i \(-0.548028\pi\)
−0.150312 + 0.988639i \(0.548028\pi\)
\(752\) 34.9399 34.9399i 0.0464627 0.0464627i
\(753\) −711.368 711.368i −0.944712 0.944712i
\(754\) 84.2945i 0.111796i
\(755\) −403.340 91.6354i −0.534225 0.121371i
\(756\) 0 0
\(757\) −445.497 + 445.497i −0.588503 + 0.588503i −0.937226 0.348723i \(-0.886615\pi\)
0.348723 + 0.937226i \(0.386615\pi\)
\(758\) 370.389 + 370.389i 0.488639 + 0.488639i
\(759\) 2252.52i 2.96775i
\(760\) −218.246 + 137.438i −0.287166 + 0.180839i
\(761\) 359.782 0.472775 0.236388 0.971659i \(-0.424036\pi\)
0.236388 + 0.971659i \(0.424036\pi\)
\(762\) 95.6964 95.6964i 0.125586 0.125586i
\(763\) 0 0
\(764\) 41.9683i 0.0549324i
\(765\) −50.5566 80.2821i −0.0660871 0.104944i
\(766\) −4.97649 −0.00649673
\(767\) −210.762 + 210.762i −0.274788 + 0.274788i
\(768\) 30.9093 + 30.9093i 0.0402465 + 0.0402465i
\(769\) 1100.57i 1.43117i 0.698527 + 0.715584i \(0.253839\pi\)
−0.698527 + 0.715584i \(0.746161\pi\)
\(770\) 0 0
\(771\) −723.478 −0.938363
\(772\) −70.7834 + 70.7834i −0.0916884 + 0.0916884i
\(773\) 9.13968 + 9.13968i 0.0118236 + 0.0118236i 0.712994 0.701170i \(-0.247339\pi\)
−0.701170 + 0.712994i \(0.747339\pi\)
\(774\) 13.1076i 0.0169349i
\(775\) −141.623 67.8533i −0.182739 0.0875527i
\(776\) 420.534 0.541925
\(777\) 0 0
\(778\) −725.344 725.344i −0.932319 0.932319i
\(779\) 298.526i 0.383217i
\(780\) 83.4708 + 18.9639i 0.107014 + 0.0243126i
\(781\) −1900.73 −2.43371
\(782\) 508.079 508.079i 0.649718 0.649718i
\(783\) −387.216 387.216i −0.494528 0.494528i
\(784\) 0 0
\(785\) −165.941 + 104.499i −0.211390 + 0.133120i
\(786\) −559.167 −0.711408
\(787\) 878.847 878.847i 1.11671 1.11671i 0.124484 0.992222i \(-0.460273\pi\)
0.992222 0.124484i \(-0.0397274\pi\)
\(788\) 171.193 + 171.193i 0.217249 + 0.217249i
\(789\) 750.013i 0.950586i
\(790\) −65.7204 104.362i −0.0831904 0.132103i
\(791\) 0 0
\(792\) 61.5832 61.5832i 0.0777566 0.0777566i
\(793\) 18.7409 + 18.7409i 0.0236330 + 0.0236330i
\(794\) 181.187i 0.228195i
\(795\) −162.038 + 713.220i −0.203821 + 0.897133i
\(796\) −614.922 −0.772515
\(797\) 658.639 658.639i 0.826398 0.826398i −0.160618 0.987017i \(-0.551349\pi\)
0.987017 + 0.160618i \(0.0513489\pi\)
\(798\) 0 0
\(799\) 152.600i 0.190988i
\(800\) −133.392 + 46.9754i −0.166739 + 0.0587193i
\(801\) 118.979 0.148538
\(802\) −700.963 + 700.963i −0.874019 + 0.874019i
\(803\) −115.618 115.618i −0.143982 0.143982i
\(804\) 62.1075i 0.0772481i
\(805\) 0 0
\(806\) 27.8330 0.0345322
\(807\) 269.018 269.018i 0.333355 0.333355i
\(808\) 254.878 + 254.878i 0.315444 + 0.315444i
\(809\) 823.241i 1.01760i −0.860884 0.508802i \(-0.830089\pi\)
0.860884 0.508802i \(-0.169911\pi\)
\(810\) −387.826 + 244.229i −0.478798 + 0.301517i
\(811\) 1415.46 1.74533 0.872666 0.488318i \(-0.162390\pi\)
0.872666 + 0.488318i \(0.162390\pi\)
\(812\) 0 0
\(813\) −119.901 119.901i −0.147479 0.147479i
\(814\) 1075.91i 1.32176i
\(815\) 329.282 + 522.887i 0.404026 + 0.641579i
\(816\) 134.996 0.165436
\(817\) 77.8131 77.8131i 0.0952425 0.0952425i
\(818\) 452.456 + 452.456i 0.553124 + 0.553124i
\(819\) 0 0
\(820\) −36.2647 + 159.621i −0.0442252 + 0.194660i
\(821\) 57.6843 0.0702610 0.0351305 0.999383i \(-0.488815\pi\)
0.0351305 + 0.999383i \(0.488815\pi\)
\(822\) 128.940 128.940i 0.156861 0.156861i
\(823\) 273.359 + 273.359i 0.332150 + 0.332150i 0.853403 0.521252i \(-0.174535\pi\)
−0.521252 + 0.853403i \(0.674535\pi\)
\(824\) 21.2427i 0.0257799i
\(825\) −454.789 1291.42i −0.551259 1.56536i
\(826\) 0 0
\(827\) 84.0099 84.0099i 0.101584 0.101584i −0.654488 0.756072i \(-0.727116\pi\)
0.756072 + 0.654488i \(0.227116\pi\)
\(828\) 89.3455 + 89.3455i 0.107905 + 0.107905i
\(829\) 1016.80i 1.22654i 0.789875 + 0.613268i \(0.210146\pi\)
−0.789875 + 0.613268i \(0.789854\pi\)
\(830\) −615.287 139.788i −0.741310 0.168419i
\(831\) −1136.44 −1.36756
\(832\) 17.7237 17.7237i 0.0213025 0.0213025i
\(833\) 0 0
\(834\) 469.333i 0.562749i
\(835\) −1037.17 + 653.146i −1.24212 + 0.782211i
\(836\) −731.176 −0.874612
\(837\) −127.854 + 127.854i −0.152752 + 0.152752i
\(838\) −248.174 248.174i −0.296151 0.296151i
\(839\) 538.853i 0.642256i 0.947036 + 0.321128i \(0.104062\pi\)
−0.947036 + 0.321128i \(0.895938\pi\)
\(840\) 0 0
\(841\) 479.081 0.569656
\(842\) −238.992 + 238.992i −0.283838 + 0.283838i
\(843\) −715.935 715.935i −0.849271 0.849271i
\(844\) 233.169i 0.276267i
\(845\) −176.332 + 776.139i −0.208677 + 0.918508i
\(846\) 26.8346 0.0317194
\(847\) 0 0
\(848\) 151.441 + 151.441i 0.178586 + 0.178586i
\(849\) 1318.74i 1.55329i
\(850\) −188.711 + 393.875i −0.222013 + 0.463383i
\(851\) 1560.95 1.83425
\(852\) 366.345 366.345i 0.429983 0.429983i
\(853\) 1067.08 + 1067.08i 1.25098 + 1.25098i 0.955283 + 0.295694i \(0.0955510\pi\)
0.295694 + 0.955283i \(0.404449\pi\)
\(854\) 0 0
\(855\) −136.586 31.0312i −0.159750 0.0362938i
\(856\) −326.566 −0.381502
\(857\) −717.100 + 717.100i −0.836756 + 0.836756i −0.988431 0.151674i \(-0.951534\pi\)
0.151674 + 0.988431i \(0.451534\pi\)
\(858\) 171.590 + 171.590i 0.199989 + 0.199989i
\(859\) 227.147i 0.264432i 0.991221 + 0.132216i \(0.0422092\pi\)
−0.991221 + 0.132216i \(0.957791\pi\)
\(860\) 51.0592 32.1539i 0.0593712 0.0373883i
\(861\) 0 0
\(862\) −130.746 + 130.746i −0.151677 + 0.151677i
\(863\) −344.431 344.431i −0.399109 0.399109i 0.478810 0.877919i \(-0.341068\pi\)
−0.877919 + 0.478810i \(0.841068\pi\)
\(864\) 162.831i 0.188462i
\(865\) −645.357 1024.80i −0.746077 1.18474i
\(866\) −913.701 −1.05508
\(867\) −263.503 + 263.503i −0.303925 + 0.303925i
\(868\) 0 0
\(869\) 349.636i 0.402343i
\(870\) −81.4214 + 358.382i −0.0935879 + 0.411934i
\(871\) −35.6129 −0.0408874
\(872\) −85.2417 + 85.2417i −0.0977543 + 0.0977543i
\(873\) 161.489 + 161.489i 0.184982 + 0.184982i
\(874\) 1060.80i 1.21373i
\(875\) 0 0
\(876\) 44.5682 0.0508769
\(877\) −100.877 + 100.877i −0.115025 + 0.115025i −0.762277 0.647251i \(-0.775918\pi\)
0.647251 + 0.762277i \(0.275918\pi\)
\(878\) −216.958 216.958i −0.247105 0.247105i
\(879\) 785.998i 0.894196i
\(880\) −390.959 88.8225i −0.444271 0.100935i
\(881\) −21.6989 −0.0246299 −0.0123149 0.999924i \(-0.503920\pi\)
−0.0123149 + 0.999924i \(0.503920\pi\)
\(882\) 0 0
\(883\) −100.328 100.328i −0.113622 0.113622i 0.648010 0.761632i \(-0.275602\pi\)
−0.761632 + 0.648010i \(0.775602\pi\)
\(884\) 77.4079i 0.0875655i
\(885\) −1099.65 + 692.488i −1.24254 + 0.782473i
\(886\) −61.2455 −0.0691258
\(887\) 344.638 344.638i 0.388543 0.388543i −0.485625 0.874167i \(-0.661408\pi\)
0.874167 + 0.485625i \(0.161408\pi\)
\(888\) 207.371 + 207.371i 0.233526 + 0.233526i
\(889\) 0 0
\(890\) −291.864 463.470i −0.327937 0.520752i
\(891\) −1299.31 −1.45826
\(892\) 186.538 186.538i 0.209123 0.209123i
\(893\) −159.303 159.303i −0.178391 0.178391i
\(894\) 524.519i 0.586710i
\(895\) −192.059 + 845.362i −0.214591 + 0.944539i
\(896\) 0 0
\(897\) −248.945 + 248.945i −0.277530 + 0.277530i
\(898\) 48.2524 + 48.2524i 0.0537332 + 0.0537332i
\(899\) 119.501i 0.132927i
\(900\) −69.2628 33.1847i −0.0769587 0.0368719i
\(901\) 661.416 0.734091
\(902\) −328.133 + 328.133i −0.363783 + 0.363783i
\(903\) 0 0
\(904\) 54.3998i 0.0601768i
\(905\) 1156.84 + 262.823i 1.27827 + 0.290413i
\(906\) 319.616 0.352778
\(907\) 6.57168 6.57168i 0.00724552 0.00724552i −0.703475 0.710720i \(-0.748369\pi\)
0.710720 + 0.703475i \(0.248369\pi\)
\(908\) 476.600 + 476.600i 0.524890 + 0.524890i
\(909\) 195.752i 0.215349i
\(910\) 0 0
\(911\) −1071.38 −1.17605 −0.588027 0.808841i \(-0.700095\pi\)
−0.588027 + 0.808841i \(0.700095\pi\)
\(912\) 140.926 140.926i 0.154524 0.154524i
\(913\) −1264.84 1264.84i −1.38537 1.38537i
\(914\) 409.817i 0.448377i
\(915\) 61.5759 + 97.7802i 0.0672960 + 0.106864i
\(916\) −763.785 −0.833827
\(917\) 0 0
\(918\) 355.581 + 355.581i 0.387343 + 0.387343i
\(919\) 1369.97i 1.49071i −0.666666 0.745357i \(-0.732279\pi\)
0.666666 0.745357i \(-0.267721\pi\)
\(920\) 128.865 567.207i 0.140070 0.616529i
\(921\) −0.801333 −0.000870069
\(922\) −348.242 + 348.242i −0.377703 + 0.377703i
\(923\) −210.065 210.065i −0.227590 0.227590i
\(924\) 0 0
\(925\) −894.925 + 315.158i −0.967486 + 0.340712i
\(926\) −536.194 −0.579044
\(927\) −8.15741 + 8.15741i −0.00879979 + 0.00879979i
\(928\) 76.0967 + 76.0967i 0.0820007 + 0.0820007i
\(929\) 944.660i 1.01686i −0.861104 0.508429i \(-0.830227\pi\)
0.861104 0.508429i \(-0.169773\pi\)
\(930\) 118.333 + 26.8843i 0.127240 + 0.0289079i
\(931\) 0 0
\(932\) 472.039 472.039i 0.506480 0.506480i
\(933\) −687.774 687.774i −0.737164 0.737164i
\(934\) 705.188i 0.755019i
\(935\) −1047.72 + 659.788i −1.12056 + 0.705656i
\(936\) 13.6121 0.0145429
\(937\) −649.423 + 649.423i −0.693087 + 0.693087i −0.962910 0.269823i \(-0.913035\pi\)
0.269823 + 0.962910i \(0.413035\pi\)
\(938\) 0 0
\(939\) 711.582i 0.757808i
\(940\) −65.8272 104.531i −0.0700289 0.111203i
\(941\) 36.1795 0.0384479 0.0192240 0.999815i \(-0.493880\pi\)
0.0192240 + 0.999815i \(0.493880\pi\)
\(942\) 107.152 107.152i 0.113749 0.113749i
\(943\) −476.058 476.058i −0.504833 0.504833i
\(944\) 380.530i 0.403104i
\(945\) 0 0
\(946\) 171.061 0.180825
\(947\) −1069.11 + 1069.11i −1.12895 + 1.12895i −0.138599 + 0.990349i \(0.544260\pi\)
−0.990349 + 0.138599i \(0.955740\pi\)
\(948\) 67.3886 + 67.3886i 0.0710850 + 0.0710850i
\(949\) 25.5558i 0.0269291i
\(950\) 214.177 + 608.178i 0.225450 + 0.640187i
\(951\) −211.325 −0.222214
\(952\) 0 0
\(953\) −152.501 152.501i −0.160022 0.160022i 0.622555 0.782576i \(-0.286095\pi\)
−0.782576 + 0.622555i \(0.786095\pi\)
\(954\) 116.310i 0.121918i
\(955\) −102.314 23.2448i −0.107135 0.0243401i
\(956\) −874.338 −0.914579
\(957\) −736.724 + 736.724i −0.769826 + 0.769826i
\(958\) −374.806 374.806i −0.391238 0.391238i
\(959\) 0 0
\(960\) 92.4727 58.2335i 0.0963257 0.0606599i
\(961\) −921.542 −0.958941
\(962\) 118.908 118.908i 0.123605 0.123605i
\(963\) −125.405 125.405i −0.130223 0.130223i
\(964\) 7.78482i 0.00807554i
\(965\) 133.357 + 211.766i 0.138194 + 0.219446i
\(966\) 0 0
\(967\) 440.127 440.127i 0.455147 0.455147i −0.441911 0.897059i \(-0.645699\pi\)
0.897059 + 0.441911i \(0.145699\pi\)
\(968\) −561.691 561.691i −0.580259 0.580259i
\(969\) 615.494i 0.635185i
\(970\) 232.919 1025.21i 0.240123 1.05692i
\(971\) −620.316 −0.638843 −0.319421 0.947613i \(-0.603489\pi\)
−0.319421 + 0.947613i \(0.603489\pi\)
\(972\) −115.942 + 115.942i −0.119281 + 0.119281i
\(973\) 0 0
\(974\) 555.017i 0.569832i
\(975\) 92.4630 192.988i 0.0948339 0.197936i
\(976\) 33.8367 0.0346687
\(977\) 75.5113 75.5113i 0.0772890 0.0772890i −0.667406 0.744694i \(-0.732595\pi\)
0.744694 + 0.667406i \(0.232595\pi\)
\(978\) −337.640 337.640i −0.345235 0.345235i
\(979\) 1552.73i 1.58604i
\(980\) 0 0
\(981\) −65.4674 −0.0667354
\(982\) 100.451 100.451i 0.102293 0.102293i
\(983\) 34.3933 + 34.3933i 0.0349881 + 0.0349881i 0.724384 0.689396i \(-0.242124\pi\)
−0.689396 + 0.724384i \(0.742124\pi\)
\(984\) 126.488i 0.128545i
\(985\) 512.164 322.529i 0.519963 0.327440i
\(986\) 332.351 0.337070
\(987\) 0 0
\(988\) −80.8083 80.8083i −0.0817897 0.0817897i
\(989\) 248.176i 0.250937i
\(990\) −116.023 184.241i −0.117195 0.186102i
\(991\) 726.700 0.733300 0.366650 0.930359i \(-0.380505\pi\)
0.366650 + 0.930359i \(0.380505\pi\)
\(992\) 25.1262 25.1262i 0.0253288 0.0253288i
\(993\) 166.684 + 166.684i 0.167859 + 0.167859i
\(994\) 0 0
\(995\) −340.584 + 1499.10i −0.342295 + 1.50664i
\(996\) 487.569 0.489527
\(997\) −964.210 + 964.210i −0.967112 + 0.967112i −0.999476 0.0323644i \(-0.989696\pi\)
0.0323644 + 0.999476i \(0.489696\pi\)
\(998\) −394.800 394.800i −0.395591 0.395591i
\(999\) 1092.43i 1.09353i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.3.f.p.393.3 8
5.2 odd 4 inner 490.3.f.p.197.3 8
7.3 odd 6 70.3.l.c.23.2 16
7.5 odd 6 70.3.l.c.53.3 yes 16
7.6 odd 2 490.3.f.o.393.2 8
35.3 even 12 350.3.p.e.107.2 16
35.12 even 12 70.3.l.c.67.2 yes 16
35.17 even 12 70.3.l.c.37.3 yes 16
35.19 odd 6 350.3.p.e.193.2 16
35.24 odd 6 350.3.p.e.93.3 16
35.27 even 4 490.3.f.o.197.2 8
35.33 even 12 350.3.p.e.207.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.c.23.2 16 7.3 odd 6
70.3.l.c.37.3 yes 16 35.17 even 12
70.3.l.c.53.3 yes 16 7.5 odd 6
70.3.l.c.67.2 yes 16 35.12 even 12
350.3.p.e.93.3 16 35.24 odd 6
350.3.p.e.107.2 16 35.3 even 12
350.3.p.e.193.2 16 35.19 odd 6
350.3.p.e.207.3 16 35.33 even 12
490.3.f.o.197.2 8 35.27 even 4
490.3.f.o.393.2 8 7.6 odd 2
490.3.f.p.197.3 8 5.2 odd 4 inner
490.3.f.p.393.3 8 1.1 even 1 trivial