Properties

Label 350.6.a.c.1.1
Level $350$
Weight $6$
Character 350.1
Self dual yes
Analytic conductor $56.134$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +49.0000 q^{7} -64.0000 q^{8} -243.000 q^{9} +384.000 q^{11} -236.000 q^{13} -196.000 q^{14} +256.000 q^{16} +1172.00 q^{17} +972.000 q^{18} -1100.00 q^{19} -1536.00 q^{22} -1400.00 q^{23} +944.000 q^{26} +784.000 q^{28} -3854.00 q^{29} +88.0000 q^{31} -1024.00 q^{32} -4688.00 q^{34} -3888.00 q^{36} +13240.0 q^{37} +4400.00 q^{38} -13338.0 q^{41} +2504.00 q^{43} +6144.00 q^{44} +5600.00 q^{46} +14728.0 q^{47} +2401.00 q^{49} -3776.00 q^{52} -11232.0 q^{53} -3136.00 q^{56} +15416.0 q^{58} +652.000 q^{59} -1494.00 q^{61} -352.000 q^{62} -11907.0 q^{63} +4096.00 q^{64} -18232.0 q^{67} +18752.0 q^{68} -28356.0 q^{71} +15552.0 q^{72} +70892.0 q^{73} -52960.0 q^{74} -17600.0 q^{76} +18816.0 q^{77} -79828.0 q^{79} +59049.0 q^{81} +53352.0 q^{82} -83712.0 q^{83} -10016.0 q^{86} -24576.0 q^{88} -93290.0 q^{89} -11564.0 q^{91} -22400.0 q^{92} -58912.0 q^{94} -91068.0 q^{97} -9604.00 q^{98} -93312.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) −64.0000 −0.353553
\(9\) −243.000 −1.00000
\(10\) 0 0
\(11\) 384.000 0.956862 0.478431 0.878125i \(-0.341206\pi\)
0.478431 + 0.878125i \(0.341206\pi\)
\(12\) 0 0
\(13\) −236.000 −0.387305 −0.193653 0.981070i \(-0.562034\pi\)
−0.193653 + 0.981070i \(0.562034\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1172.00 0.983570 0.491785 0.870717i \(-0.336345\pi\)
0.491785 + 0.870717i \(0.336345\pi\)
\(18\) 972.000 0.707107
\(19\) −1100.00 −0.699051 −0.349525 0.936927i \(-0.613657\pi\)
−0.349525 + 0.936927i \(0.613657\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1536.00 −0.676604
\(23\) −1400.00 −0.551834 −0.275917 0.961181i \(-0.588981\pi\)
−0.275917 + 0.961181i \(0.588981\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 944.000 0.273866
\(27\) 0 0
\(28\) 784.000 0.188982
\(29\) −3854.00 −0.850975 −0.425487 0.904964i \(-0.639897\pi\)
−0.425487 + 0.904964i \(0.639897\pi\)
\(30\) 0 0
\(31\) 88.0000 0.0164467 0.00822334 0.999966i \(-0.497382\pi\)
0.00822334 + 0.999966i \(0.497382\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −4688.00 −0.695489
\(35\) 0 0
\(36\) −3888.00 −0.500000
\(37\) 13240.0 1.58995 0.794975 0.606642i \(-0.207484\pi\)
0.794975 + 0.606642i \(0.207484\pi\)
\(38\) 4400.00 0.494303
\(39\) 0 0
\(40\) 0 0
\(41\) −13338.0 −1.23917 −0.619585 0.784929i \(-0.712699\pi\)
−0.619585 + 0.784929i \(0.712699\pi\)
\(42\) 0 0
\(43\) 2504.00 0.206521 0.103260 0.994654i \(-0.467073\pi\)
0.103260 + 0.994654i \(0.467073\pi\)
\(44\) 6144.00 0.478431
\(45\) 0 0
\(46\) 5600.00 0.390206
\(47\) 14728.0 0.972521 0.486261 0.873814i \(-0.338361\pi\)
0.486261 + 0.873814i \(0.338361\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −3776.00 −0.193653
\(53\) −11232.0 −0.549247 −0.274623 0.961552i \(-0.588553\pi\)
−0.274623 + 0.961552i \(0.588553\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) 0 0
\(58\) 15416.0 0.601730
\(59\) 652.000 0.0243847 0.0121924 0.999926i \(-0.496119\pi\)
0.0121924 + 0.999926i \(0.496119\pi\)
\(60\) 0 0
\(61\) −1494.00 −0.0514074 −0.0257037 0.999670i \(-0.508183\pi\)
−0.0257037 + 0.999670i \(0.508183\pi\)
\(62\) −352.000 −0.0116296
\(63\) −11907.0 −0.377964
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −18232.0 −0.496189 −0.248095 0.968736i \(-0.579804\pi\)
−0.248095 + 0.968736i \(0.579804\pi\)
\(68\) 18752.0 0.491785
\(69\) 0 0
\(70\) 0 0
\(71\) −28356.0 −0.667574 −0.333787 0.942649i \(-0.608327\pi\)
−0.333787 + 0.942649i \(0.608327\pi\)
\(72\) 15552.0 0.353553
\(73\) 70892.0 1.55701 0.778503 0.627641i \(-0.215980\pi\)
0.778503 + 0.627641i \(0.215980\pi\)
\(74\) −52960.0 −1.12426
\(75\) 0 0
\(76\) −17600.0 −0.349525
\(77\) 18816.0 0.361660
\(78\) 0 0
\(79\) −79828.0 −1.43909 −0.719544 0.694447i \(-0.755649\pi\)
−0.719544 + 0.694447i \(0.755649\pi\)
\(80\) 0 0
\(81\) 59049.0 1.00000
\(82\) 53352.0 0.876226
\(83\) −83712.0 −1.33381 −0.666903 0.745145i \(-0.732380\pi\)
−0.666903 + 0.745145i \(0.732380\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −10016.0 −0.146032
\(87\) 0 0
\(88\) −24576.0 −0.338302
\(89\) −93290.0 −1.24842 −0.624209 0.781257i \(-0.714579\pi\)
−0.624209 + 0.781257i \(0.714579\pi\)
\(90\) 0 0
\(91\) −11564.0 −0.146388
\(92\) −22400.0 −0.275917
\(93\) 0 0
\(94\) −58912.0 −0.687676
\(95\) 0 0
\(96\) 0 0
\(97\) −91068.0 −0.982735 −0.491368 0.870952i \(-0.663503\pi\)
−0.491368 + 0.870952i \(0.663503\pi\)
\(98\) −9604.00 −0.101015
\(99\) −93312.0 −0.956862
\(100\) 0 0
\(101\) −54306.0 −0.529718 −0.264859 0.964287i \(-0.585325\pi\)
−0.264859 + 0.964287i \(0.585325\pi\)
\(102\) 0 0
\(103\) −135944. −1.26260 −0.631302 0.775537i \(-0.717479\pi\)
−0.631302 + 0.775537i \(0.717479\pi\)
\(104\) 15104.0 0.136933
\(105\) 0 0
\(106\) 44928.0 0.388376
\(107\) 77512.0 0.654500 0.327250 0.944938i \(-0.393878\pi\)
0.327250 + 0.944938i \(0.393878\pi\)
\(108\) 0 0
\(109\) −151714. −1.22309 −0.611546 0.791209i \(-0.709452\pi\)
−0.611546 + 0.791209i \(0.709452\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 12544.0 0.0944911
\(113\) 235312. 1.73360 0.866798 0.498659i \(-0.166174\pi\)
0.866798 + 0.498659i \(0.166174\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −61664.0 −0.425487
\(117\) 57348.0 0.387305
\(118\) −2608.00 −0.0172426
\(119\) 57428.0 0.371755
\(120\) 0 0
\(121\) −13595.0 −0.0844143
\(122\) 5976.00 0.0363506
\(123\) 0 0
\(124\) 1408.00 0.00822334
\(125\) 0 0
\(126\) 47628.0 0.267261
\(127\) −341768. −1.88028 −0.940139 0.340791i \(-0.889305\pi\)
−0.940139 + 0.340791i \(0.889305\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −308276. −1.56950 −0.784750 0.619812i \(-0.787209\pi\)
−0.784750 + 0.619812i \(0.787209\pi\)
\(132\) 0 0
\(133\) −53900.0 −0.264216
\(134\) 72928.0 0.350859
\(135\) 0 0
\(136\) −75008.0 −0.347745
\(137\) −348136. −1.58470 −0.792351 0.610066i \(-0.791143\pi\)
−0.792351 + 0.610066i \(0.791143\pi\)
\(138\) 0 0
\(139\) −292364. −1.28347 −0.641737 0.766925i \(-0.721786\pi\)
−0.641737 + 0.766925i \(0.721786\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 113424. 0.472046
\(143\) −90624.0 −0.370598
\(144\) −62208.0 −0.250000
\(145\) 0 0
\(146\) −283568. −1.10097
\(147\) 0 0
\(148\) 211840. 0.794975
\(149\) 178806. 0.659806 0.329903 0.944015i \(-0.392984\pi\)
0.329903 + 0.944015i \(0.392984\pi\)
\(150\) 0 0
\(151\) −173892. −0.620636 −0.310318 0.950633i \(-0.600436\pi\)
−0.310318 + 0.950633i \(0.600436\pi\)
\(152\) 70400.0 0.247152
\(153\) −284796. −0.983570
\(154\) −75264.0 −0.255732
\(155\) 0 0
\(156\) 0 0
\(157\) −228540. −0.739968 −0.369984 0.929038i \(-0.620637\pi\)
−0.369984 + 0.929038i \(0.620637\pi\)
\(158\) 319312. 1.01759
\(159\) 0 0
\(160\) 0 0
\(161\) −68600.0 −0.208574
\(162\) −236196. −0.707107
\(163\) −609624. −1.79719 −0.898593 0.438783i \(-0.855410\pi\)
−0.898593 + 0.438783i \(0.855410\pi\)
\(164\) −213408. −0.619585
\(165\) 0 0
\(166\) 334848. 0.943143
\(167\) 648600. 1.79964 0.899820 0.436261i \(-0.143697\pi\)
0.899820 + 0.436261i \(0.143697\pi\)
\(168\) 0 0
\(169\) −315597. −0.849994
\(170\) 0 0
\(171\) 267300. 0.699051
\(172\) 40064.0 0.103260
\(173\) −127812. −0.324681 −0.162340 0.986735i \(-0.551904\pi\)
−0.162340 + 0.986735i \(0.551904\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 98304.0 0.239216
\(177\) 0 0
\(178\) 373160. 0.882765
\(179\) 637208. 1.48644 0.743222 0.669045i \(-0.233297\pi\)
0.743222 + 0.669045i \(0.233297\pi\)
\(180\) 0 0
\(181\) 461246. 1.04649 0.523246 0.852181i \(-0.324721\pi\)
0.523246 + 0.852181i \(0.324721\pi\)
\(182\) 46256.0 0.103512
\(183\) 0 0
\(184\) 89600.0 0.195103
\(185\) 0 0
\(186\) 0 0
\(187\) 450048. 0.941141
\(188\) 235648. 0.486261
\(189\) 0 0
\(190\) 0 0
\(191\) 356444. 0.706981 0.353491 0.935438i \(-0.384995\pi\)
0.353491 + 0.935438i \(0.384995\pi\)
\(192\) 0 0
\(193\) −191248. −0.369576 −0.184788 0.982778i \(-0.559160\pi\)
−0.184788 + 0.982778i \(0.559160\pi\)
\(194\) 364272. 0.694899
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −624976. −1.14735 −0.573677 0.819081i \(-0.694484\pi\)
−0.573677 + 0.819081i \(0.694484\pi\)
\(198\) 373248. 0.676604
\(199\) −247416. −0.442889 −0.221445 0.975173i \(-0.571077\pi\)
−0.221445 + 0.975173i \(0.571077\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 217224. 0.374567
\(203\) −188846. −0.321638
\(204\) 0 0
\(205\) 0 0
\(206\) 543776. 0.892795
\(207\) 340200. 0.551834
\(208\) −60416.0 −0.0968264
\(209\) −422400. −0.668895
\(210\) 0 0
\(211\) 300984. 0.465412 0.232706 0.972547i \(-0.425242\pi\)
0.232706 + 0.972547i \(0.425242\pi\)
\(212\) −179712. −0.274623
\(213\) 0 0
\(214\) −310048. −0.462801
\(215\) 0 0
\(216\) 0 0
\(217\) 4312.00 0.00621626
\(218\) 606856. 0.864857
\(219\) 0 0
\(220\) 0 0
\(221\) −276592. −0.380942
\(222\) 0 0
\(223\) 102136. 0.137536 0.0687680 0.997633i \(-0.478093\pi\)
0.0687680 + 0.997633i \(0.478093\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) −941248. −1.22584
\(227\) 595968. 0.767641 0.383821 0.923408i \(-0.374608\pi\)
0.383821 + 0.923408i \(0.374608\pi\)
\(228\) 0 0
\(229\) 1.01543e6 1.27956 0.639778 0.768559i \(-0.279026\pi\)
0.639778 + 0.768559i \(0.279026\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 246656. 0.300865
\(233\) 23384.0 0.0282182 0.0141091 0.999900i \(-0.495509\pi\)
0.0141091 + 0.999900i \(0.495509\pi\)
\(234\) −229392. −0.273866
\(235\) 0 0
\(236\) 10432.0 0.0121924
\(237\) 0 0
\(238\) −229712. −0.262870
\(239\) 1.15844e6 1.31183 0.655915 0.754835i \(-0.272283\pi\)
0.655915 + 0.754835i \(0.272283\pi\)
\(240\) 0 0
\(241\) −977490. −1.08410 −0.542050 0.840346i \(-0.682352\pi\)
−0.542050 + 0.840346i \(0.682352\pi\)
\(242\) 54380.0 0.0596899
\(243\) 0 0
\(244\) −23904.0 −0.0257037
\(245\) 0 0
\(246\) 0 0
\(247\) 259600. 0.270746
\(248\) −5632.00 −0.00581478
\(249\) 0 0
\(250\) 0 0
\(251\) −835700. −0.837271 −0.418636 0.908154i \(-0.637492\pi\)
−0.418636 + 0.908154i \(0.637492\pi\)
\(252\) −190512. −0.188982
\(253\) −537600. −0.528029
\(254\) 1.36707e6 1.32956
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −587772. −0.555106 −0.277553 0.960710i \(-0.589523\pi\)
−0.277553 + 0.960710i \(0.589523\pi\)
\(258\) 0 0
\(259\) 648760. 0.600945
\(260\) 0 0
\(261\) 936522. 0.850975
\(262\) 1.23310e6 1.10980
\(263\) −149352. −0.133144 −0.0665720 0.997782i \(-0.521206\pi\)
−0.0665720 + 0.997782i \(0.521206\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 215600. 0.186829
\(267\) 0 0
\(268\) −291712. −0.248095
\(269\) 2.00973e6 1.69339 0.846697 0.532076i \(-0.178588\pi\)
0.846697 + 0.532076i \(0.178588\pi\)
\(270\) 0 0
\(271\) 499200. 0.412906 0.206453 0.978457i \(-0.433808\pi\)
0.206453 + 0.978457i \(0.433808\pi\)
\(272\) 300032. 0.245893
\(273\) 0 0
\(274\) 1.39254e6 1.12055
\(275\) 0 0
\(276\) 0 0
\(277\) −1.03093e6 −0.807289 −0.403644 0.914916i \(-0.632257\pi\)
−0.403644 + 0.914916i \(0.632257\pi\)
\(278\) 1.16946e6 0.907553
\(279\) −21384.0 −0.0164467
\(280\) 0 0
\(281\) 1.12849e6 0.852571 0.426285 0.904589i \(-0.359822\pi\)
0.426285 + 0.904589i \(0.359822\pi\)
\(282\) 0 0
\(283\) 49952.0 0.0370755 0.0185377 0.999828i \(-0.494099\pi\)
0.0185377 + 0.999828i \(0.494099\pi\)
\(284\) −453696. −0.333787
\(285\) 0 0
\(286\) 362496. 0.262052
\(287\) −653562. −0.468362
\(288\) 248832. 0.176777
\(289\) −46273.0 −0.0325899
\(290\) 0 0
\(291\) 0 0
\(292\) 1.13427e6 0.778503
\(293\) −86340.0 −0.0587548 −0.0293774 0.999568i \(-0.509352\pi\)
−0.0293774 + 0.999568i \(0.509352\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −847360. −0.562132
\(297\) 0 0
\(298\) −715224. −0.466553
\(299\) 330400. 0.213728
\(300\) 0 0
\(301\) 122696. 0.0780574
\(302\) 695568. 0.438856
\(303\) 0 0
\(304\) −281600. −0.174763
\(305\) 0 0
\(306\) 1.13918e6 0.695489
\(307\) −2.86581e6 −1.73541 −0.867703 0.497083i \(-0.834405\pi\)
−0.867703 + 0.497083i \(0.834405\pi\)
\(308\) 301056. 0.180830
\(309\) 0 0
\(310\) 0 0
\(311\) −374904. −0.219796 −0.109898 0.993943i \(-0.535052\pi\)
−0.109898 + 0.993943i \(0.535052\pi\)
\(312\) 0 0
\(313\) 1.99147e6 1.14898 0.574490 0.818512i \(-0.305200\pi\)
0.574490 + 0.818512i \(0.305200\pi\)
\(314\) 914160. 0.523237
\(315\) 0 0
\(316\) −1.27725e6 −0.719544
\(317\) −417808. −0.233522 −0.116761 0.993160i \(-0.537251\pi\)
−0.116761 + 0.993160i \(0.537251\pi\)
\(318\) 0 0
\(319\) −1.47994e6 −0.814266
\(320\) 0 0
\(321\) 0 0
\(322\) 274400. 0.147484
\(323\) −1.28920e6 −0.687565
\(324\) 944784. 0.500000
\(325\) 0 0
\(326\) 2.43850e6 1.27080
\(327\) 0 0
\(328\) 853632. 0.438113
\(329\) 721672. 0.367579
\(330\) 0 0
\(331\) 3.22654e6 1.61870 0.809352 0.587323i \(-0.199818\pi\)
0.809352 + 0.587323i \(0.199818\pi\)
\(332\) −1.33939e6 −0.666903
\(333\) −3.21732e6 −1.58995
\(334\) −2.59440e6 −1.27254
\(335\) 0 0
\(336\) 0 0
\(337\) 2.97302e6 1.42601 0.713005 0.701159i \(-0.247334\pi\)
0.713005 + 0.701159i \(0.247334\pi\)
\(338\) 1.26239e6 0.601037
\(339\) 0 0
\(340\) 0 0
\(341\) 33792.0 0.0157372
\(342\) −1.06920e6 −0.494303
\(343\) 117649. 0.0539949
\(344\) −160256. −0.0730160
\(345\) 0 0
\(346\) 511248. 0.229584
\(347\) 584664. 0.260665 0.130332 0.991470i \(-0.458396\pi\)
0.130332 + 0.991470i \(0.458396\pi\)
\(348\) 0 0
\(349\) −3.62799e6 −1.59442 −0.797210 0.603703i \(-0.793691\pi\)
−0.797210 + 0.603703i \(0.793691\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −393216. −0.169151
\(353\) −1.62880e6 −0.695713 −0.347856 0.937548i \(-0.613090\pi\)
−0.347856 + 0.937548i \(0.613090\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.49264e6 −0.624209
\(357\) 0 0
\(358\) −2.54883e6 −1.05107
\(359\) −606052. −0.248184 −0.124092 0.992271i \(-0.539602\pi\)
−0.124092 + 0.992271i \(0.539602\pi\)
\(360\) 0 0
\(361\) −1.26610e6 −0.511328
\(362\) −1.84498e6 −0.739982
\(363\) 0 0
\(364\) −185024. −0.0731939
\(365\) 0 0
\(366\) 0 0
\(367\) −2.15002e6 −0.833255 −0.416628 0.909077i \(-0.636788\pi\)
−0.416628 + 0.909077i \(0.636788\pi\)
\(368\) −358400. −0.137958
\(369\) 3.24113e6 1.23917
\(370\) 0 0
\(371\) −550368. −0.207596
\(372\) 0 0
\(373\) −1.64186e6 −0.611031 −0.305515 0.952187i \(-0.598829\pi\)
−0.305515 + 0.952187i \(0.598829\pi\)
\(374\) −1.80019e6 −0.665487
\(375\) 0 0
\(376\) −942592. −0.343838
\(377\) 909544. 0.329587
\(378\) 0 0
\(379\) 4.00041e6 1.43056 0.715280 0.698838i \(-0.246299\pi\)
0.715280 + 0.698838i \(0.246299\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.42578e6 −0.499911
\(383\) 5.71586e6 1.99106 0.995531 0.0944312i \(-0.0301033\pi\)
0.995531 + 0.0944312i \(0.0301033\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 764992. 0.261330
\(387\) −608472. −0.206521
\(388\) −1.45709e6 −0.491368
\(389\) −1.67611e6 −0.561600 −0.280800 0.959766i \(-0.590600\pi\)
−0.280800 + 0.959766i \(0.590600\pi\)
\(390\) 0 0
\(391\) −1.64080e6 −0.542767
\(392\) −153664. −0.0505076
\(393\) 0 0
\(394\) 2.49990e6 0.811302
\(395\) 0 0
\(396\) −1.49299e6 −0.478431
\(397\) −945140. −0.300968 −0.150484 0.988612i \(-0.548083\pi\)
−0.150484 + 0.988612i \(0.548083\pi\)
\(398\) 989664. 0.313170
\(399\) 0 0
\(400\) 0 0
\(401\) 552786. 0.171671 0.0858353 0.996309i \(-0.472644\pi\)
0.0858353 + 0.996309i \(0.472644\pi\)
\(402\) 0 0
\(403\) −20768.0 −0.00636989
\(404\) −868896. −0.264859
\(405\) 0 0
\(406\) 755384. 0.227433
\(407\) 5.08416e6 1.52136
\(408\) 0 0
\(409\) −1.04783e6 −0.309729 −0.154865 0.987936i \(-0.549494\pi\)
−0.154865 + 0.987936i \(0.549494\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −2.17510e6 −0.631302
\(413\) 31948.0 0.00921655
\(414\) −1.36080e6 −0.390206
\(415\) 0 0
\(416\) 241664. 0.0684666
\(417\) 0 0
\(418\) 1.68960e6 0.472980
\(419\) −6.88344e6 −1.91545 −0.957724 0.287690i \(-0.907113\pi\)
−0.957724 + 0.287690i \(0.907113\pi\)
\(420\) 0 0
\(421\) −4.56311e6 −1.25475 −0.627373 0.778719i \(-0.715870\pi\)
−0.627373 + 0.778719i \(0.715870\pi\)
\(422\) −1.20394e6 −0.329096
\(423\) −3.57890e6 −0.972521
\(424\) 718848. 0.194188
\(425\) 0 0
\(426\) 0 0
\(427\) −73206.0 −0.0194302
\(428\) 1.24019e6 0.327250
\(429\) 0 0
\(430\) 0 0
\(431\) −2.49110e6 −0.645949 −0.322974 0.946408i \(-0.604683\pi\)
−0.322974 + 0.946408i \(0.604683\pi\)
\(432\) 0 0
\(433\) 4.42817e6 1.13502 0.567512 0.823365i \(-0.307906\pi\)
0.567512 + 0.823365i \(0.307906\pi\)
\(434\) −17248.0 −0.00439556
\(435\) 0 0
\(436\) −2.42742e6 −0.611546
\(437\) 1.54000e6 0.385760
\(438\) 0 0
\(439\) 635432. 0.157365 0.0786824 0.996900i \(-0.474929\pi\)
0.0786824 + 0.996900i \(0.474929\pi\)
\(440\) 0 0
\(441\) −583443. −0.142857
\(442\) 1.10637e6 0.269367
\(443\) −1.80612e6 −0.437258 −0.218629 0.975808i \(-0.570158\pi\)
−0.218629 + 0.975808i \(0.570158\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −408544. −0.0972527
\(447\) 0 0
\(448\) 200704. 0.0472456
\(449\) −3.90323e6 −0.913710 −0.456855 0.889541i \(-0.651024\pi\)
−0.456855 + 0.889541i \(0.651024\pi\)
\(450\) 0 0
\(451\) −5.12179e6 −1.18572
\(452\) 3.76499e6 0.866798
\(453\) 0 0
\(454\) −2.38387e6 −0.542804
\(455\) 0 0
\(456\) 0 0
\(457\) −4.36264e6 −0.977145 −0.488572 0.872523i \(-0.662482\pi\)
−0.488572 + 0.872523i \(0.662482\pi\)
\(458\) −4.06170e6 −0.904783
\(459\) 0 0
\(460\) 0 0
\(461\) 846710. 0.185559 0.0927796 0.995687i \(-0.470425\pi\)
0.0927796 + 0.995687i \(0.470425\pi\)
\(462\) 0 0
\(463\) 7.37970e6 1.59988 0.799938 0.600082i \(-0.204866\pi\)
0.799938 + 0.600082i \(0.204866\pi\)
\(464\) −986624. −0.212744
\(465\) 0 0
\(466\) −93536.0 −0.0199533
\(467\) 2.88296e6 0.611711 0.305856 0.952078i \(-0.401058\pi\)
0.305856 + 0.952078i \(0.401058\pi\)
\(468\) 917568. 0.193653
\(469\) −893368. −0.187542
\(470\) 0 0
\(471\) 0 0
\(472\) −41728.0 −0.00862130
\(473\) 961536. 0.197612
\(474\) 0 0
\(475\) 0 0
\(476\) 918848. 0.185877
\(477\) 2.72938e6 0.549247
\(478\) −4.63374e6 −0.927603
\(479\) −6.63322e6 −1.32095 −0.660473 0.750849i \(-0.729644\pi\)
−0.660473 + 0.750849i \(0.729644\pi\)
\(480\) 0 0
\(481\) −3.12464e6 −0.615797
\(482\) 3.90996e6 0.766575
\(483\) 0 0
\(484\) −217520. −0.0422071
\(485\) 0 0
\(486\) 0 0
\(487\) 2.17919e6 0.416364 0.208182 0.978090i \(-0.433245\pi\)
0.208182 + 0.978090i \(0.433245\pi\)
\(488\) 95616.0 0.0181753
\(489\) 0 0
\(490\) 0 0
\(491\) 7.92307e6 1.48317 0.741583 0.670861i \(-0.234075\pi\)
0.741583 + 0.670861i \(0.234075\pi\)
\(492\) 0 0
\(493\) −4.51689e6 −0.836993
\(494\) −1.03840e6 −0.191446
\(495\) 0 0
\(496\) 22528.0 0.00411167
\(497\) −1.38944e6 −0.252319
\(498\) 0 0
\(499\) −2.68311e6 −0.482378 −0.241189 0.970478i \(-0.577537\pi\)
−0.241189 + 0.970478i \(0.577537\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.34280e6 0.592040
\(503\) 5.90502e6 1.04064 0.520321 0.853971i \(-0.325812\pi\)
0.520321 + 0.853971i \(0.325812\pi\)
\(504\) 762048. 0.133631
\(505\) 0 0
\(506\) 2.15040e6 0.373373
\(507\) 0 0
\(508\) −5.46829e6 −0.940139
\(509\) −2.57879e6 −0.441186 −0.220593 0.975366i \(-0.570799\pi\)
−0.220593 + 0.975366i \(0.570799\pi\)
\(510\) 0 0
\(511\) 3.47371e6 0.588493
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 2.35109e6 0.392519
\(515\) 0 0
\(516\) 0 0
\(517\) 5.65555e6 0.930569
\(518\) −2.59504e6 −0.424932
\(519\) 0 0
\(520\) 0 0
\(521\) 1.03587e7 1.67190 0.835950 0.548806i \(-0.184917\pi\)
0.835950 + 0.548806i \(0.184917\pi\)
\(522\) −3.74609e6 −0.601730
\(523\) 1.02151e7 1.63301 0.816507 0.577335i \(-0.195908\pi\)
0.816507 + 0.577335i \(0.195908\pi\)
\(524\) −4.93242e6 −0.784750
\(525\) 0 0
\(526\) 597408. 0.0941470
\(527\) 103136. 0.0161765
\(528\) 0 0
\(529\) −4.47634e6 −0.695479
\(530\) 0 0
\(531\) −158436. −0.0243847
\(532\) −862400. −0.132108
\(533\) 3.14777e6 0.479938
\(534\) 0 0
\(535\) 0 0
\(536\) 1.16685e6 0.175429
\(537\) 0 0
\(538\) −8.03894e6 −1.19741
\(539\) 921984. 0.136695
\(540\) 0 0
\(541\) −3.21546e6 −0.472335 −0.236167 0.971712i \(-0.575891\pi\)
−0.236167 + 0.971712i \(0.575891\pi\)
\(542\) −1.99680e6 −0.291969
\(543\) 0 0
\(544\) −1.20013e6 −0.173872
\(545\) 0 0
\(546\) 0 0
\(547\) −3.71041e6 −0.530217 −0.265108 0.964219i \(-0.585408\pi\)
−0.265108 + 0.964219i \(0.585408\pi\)
\(548\) −5.57018e6 −0.792351
\(549\) 363042. 0.0514074
\(550\) 0 0
\(551\) 4.23940e6 0.594875
\(552\) 0 0
\(553\) −3.91157e6 −0.543924
\(554\) 4.12371e6 0.570839
\(555\) 0 0
\(556\) −4.67782e6 −0.641737
\(557\) −4.69093e6 −0.640650 −0.320325 0.947308i \(-0.603792\pi\)
−0.320325 + 0.947308i \(0.603792\pi\)
\(558\) 85536.0 0.0116296
\(559\) −590944. −0.0799865
\(560\) 0 0
\(561\) 0 0
\(562\) −4.51394e6 −0.602858
\(563\) 1.14387e7 1.52092 0.760459 0.649386i \(-0.224974\pi\)
0.760459 + 0.649386i \(0.224974\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −199808. −0.0262163
\(567\) 2.89340e6 0.377964
\(568\) 1.81478e6 0.236023
\(569\) 8.01383e6 1.03767 0.518835 0.854874i \(-0.326366\pi\)
0.518835 + 0.854874i \(0.326366\pi\)
\(570\) 0 0
\(571\) −8.91239e6 −1.14394 −0.571971 0.820274i \(-0.693821\pi\)
−0.571971 + 0.820274i \(0.693821\pi\)
\(572\) −1.44998e6 −0.185299
\(573\) 0 0
\(574\) 2.61425e6 0.331182
\(575\) 0 0
\(576\) −995328. −0.125000
\(577\) −9.12994e6 −1.14164 −0.570819 0.821076i \(-0.693374\pi\)
−0.570819 + 0.821076i \(0.693374\pi\)
\(578\) 185092. 0.0230445
\(579\) 0 0
\(580\) 0 0
\(581\) −4.10189e6 −0.504131
\(582\) 0 0
\(583\) −4.31309e6 −0.525553
\(584\) −4.53709e6 −0.550484
\(585\) 0 0
\(586\) 345360. 0.0415459
\(587\) 1.62764e7 1.94968 0.974842 0.222895i \(-0.0715509\pi\)
0.974842 + 0.222895i \(0.0715509\pi\)
\(588\) 0 0
\(589\) −96800.0 −0.0114971
\(590\) 0 0
\(591\) 0 0
\(592\) 3.38944e6 0.397488
\(593\) 1.40344e7 1.63892 0.819461 0.573134i \(-0.194273\pi\)
0.819461 + 0.573134i \(0.194273\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.86090e6 0.329903
\(597\) 0 0
\(598\) −1.32160e6 −0.151129
\(599\) 1.93710e6 0.220590 0.110295 0.993899i \(-0.464821\pi\)
0.110295 + 0.993899i \(0.464821\pi\)
\(600\) 0 0
\(601\) −3.81246e6 −0.430545 −0.215273 0.976554i \(-0.569064\pi\)
−0.215273 + 0.976554i \(0.569064\pi\)
\(602\) −490784. −0.0551949
\(603\) 4.43038e6 0.496189
\(604\) −2.78227e6 −0.310318
\(605\) 0 0
\(606\) 0 0
\(607\) 1.29742e7 1.42925 0.714624 0.699508i \(-0.246598\pi\)
0.714624 + 0.699508i \(0.246598\pi\)
\(608\) 1.12640e6 0.123576
\(609\) 0 0
\(610\) 0 0
\(611\) −3.47581e6 −0.376663
\(612\) −4.55674e6 −0.491785
\(613\) −1.28775e7 −1.38414 −0.692069 0.721832i \(-0.743300\pi\)
−0.692069 + 0.721832i \(0.743300\pi\)
\(614\) 1.14632e7 1.22712
\(615\) 0 0
\(616\) −1.20422e6 −0.127866
\(617\) −1.55320e7 −1.64253 −0.821267 0.570544i \(-0.806732\pi\)
−0.821267 + 0.570544i \(0.806732\pi\)
\(618\) 0 0
\(619\) 9.95199e6 1.04396 0.521979 0.852958i \(-0.325194\pi\)
0.521979 + 0.852958i \(0.325194\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.49962e6 0.155419
\(623\) −4.57121e6 −0.471858
\(624\) 0 0
\(625\) 0 0
\(626\) −7.96587e6 −0.812452
\(627\) 0 0
\(628\) −3.65664e6 −0.369984
\(629\) 1.55173e7 1.56383
\(630\) 0 0
\(631\) −1.75371e7 −1.75341 −0.876706 0.481027i \(-0.840264\pi\)
−0.876706 + 0.481027i \(0.840264\pi\)
\(632\) 5.10899e6 0.508795
\(633\) 0 0
\(634\) 1.67123e6 0.165125
\(635\) 0 0
\(636\) 0 0
\(637\) −566636. −0.0553294
\(638\) 5.91974e6 0.575773
\(639\) 6.89051e6 0.667574
\(640\) 0 0
\(641\) 1.29073e7 1.24076 0.620382 0.784300i \(-0.286978\pi\)
0.620382 + 0.784300i \(0.286978\pi\)
\(642\) 0 0
\(643\) −4.99083e6 −0.476042 −0.238021 0.971260i \(-0.576499\pi\)
−0.238021 + 0.971260i \(0.576499\pi\)
\(644\) −1.09760e6 −0.104287
\(645\) 0 0
\(646\) 5.15680e6 0.486182
\(647\) −951144. −0.0893276 −0.0446638 0.999002i \(-0.514222\pi\)
−0.0446638 + 0.999002i \(0.514222\pi\)
\(648\) −3.77914e6 −0.353553
\(649\) 250368. 0.0233328
\(650\) 0 0
\(651\) 0 0
\(652\) −9.75398e6 −0.898593
\(653\) −1.62012e7 −1.48684 −0.743419 0.668826i \(-0.766797\pi\)
−0.743419 + 0.668826i \(0.766797\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.41453e6 −0.309793
\(657\) −1.72268e7 −1.55701
\(658\) −2.88669e6 −0.259917
\(659\) 6.37817e6 0.572114 0.286057 0.958213i \(-0.407655\pi\)
0.286057 + 0.958213i \(0.407655\pi\)
\(660\) 0 0
\(661\) 1.01756e7 0.905850 0.452925 0.891549i \(-0.350380\pi\)
0.452925 + 0.891549i \(0.350380\pi\)
\(662\) −1.29062e7 −1.14460
\(663\) 0 0
\(664\) 5.35757e6 0.471571
\(665\) 0 0
\(666\) 1.28693e7 1.12426
\(667\) 5.39560e6 0.469597
\(668\) 1.03776e7 0.899820
\(669\) 0 0
\(670\) 0 0
\(671\) −573696. −0.0491899
\(672\) 0 0
\(673\) 1.87501e7 1.59575 0.797875 0.602823i \(-0.205957\pi\)
0.797875 + 0.602823i \(0.205957\pi\)
\(674\) −1.18921e7 −1.00834
\(675\) 0 0
\(676\) −5.04955e6 −0.424997
\(677\) 9.56143e6 0.801772 0.400886 0.916128i \(-0.368702\pi\)
0.400886 + 0.916128i \(0.368702\pi\)
\(678\) 0 0
\(679\) −4.46233e6 −0.371439
\(680\) 0 0
\(681\) 0 0
\(682\) −135168. −0.0111279
\(683\) −1.20383e7 −0.987450 −0.493725 0.869618i \(-0.664365\pi\)
−0.493725 + 0.869618i \(0.664365\pi\)
\(684\) 4.27680e6 0.349525
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) 0 0
\(688\) 641024. 0.0516301
\(689\) 2.65075e6 0.212726
\(690\) 0 0
\(691\) 1.50689e7 1.20057 0.600284 0.799787i \(-0.295054\pi\)
0.600284 + 0.799787i \(0.295054\pi\)
\(692\) −2.04499e6 −0.162340
\(693\) −4.57229e6 −0.361660
\(694\) −2.33866e6 −0.184318
\(695\) 0 0
\(696\) 0 0
\(697\) −1.56321e7 −1.21881
\(698\) 1.45120e7 1.12742
\(699\) 0 0
\(700\) 0 0
\(701\) 5.00312e6 0.384544 0.192272 0.981342i \(-0.438414\pi\)
0.192272 + 0.981342i \(0.438414\pi\)
\(702\) 0 0
\(703\) −1.45640e7 −1.11146
\(704\) 1.57286e6 0.119608
\(705\) 0 0
\(706\) 6.51518e6 0.491943
\(707\) −2.66099e6 −0.200214
\(708\) 0 0
\(709\) 6.39854e6 0.478041 0.239021 0.971015i \(-0.423174\pi\)
0.239021 + 0.971015i \(0.423174\pi\)
\(710\) 0 0
\(711\) 1.93982e7 1.43909
\(712\) 5.97056e6 0.441382
\(713\) −123200. −0.00907584
\(714\) 0 0
\(715\) 0 0
\(716\) 1.01953e7 0.743222
\(717\) 0 0
\(718\) 2.42421e6 0.175493
\(719\) −4.18314e6 −0.301773 −0.150886 0.988551i \(-0.548213\pi\)
−0.150886 + 0.988551i \(0.548213\pi\)
\(720\) 0 0
\(721\) −6.66126e6 −0.477219
\(722\) 5.06440e6 0.361564
\(723\) 0 0
\(724\) 7.37994e6 0.523246
\(725\) 0 0
\(726\) 0 0
\(727\) 6.29260e6 0.441564 0.220782 0.975323i \(-0.429139\pi\)
0.220782 + 0.975323i \(0.429139\pi\)
\(728\) 740096. 0.0517559
\(729\) −1.43489e7 −1.00000
\(730\) 0 0
\(731\) 2.93469e6 0.203127
\(732\) 0 0
\(733\) 6.62340e6 0.455324 0.227662 0.973740i \(-0.426892\pi\)
0.227662 + 0.973740i \(0.426892\pi\)
\(734\) 8.60010e6 0.589201
\(735\) 0 0
\(736\) 1.43360e6 0.0975514
\(737\) −7.00109e6 −0.474785
\(738\) −1.29645e7 −0.876226
\(739\) 3.44169e6 0.231825 0.115913 0.993259i \(-0.463021\pi\)
0.115913 + 0.993259i \(0.463021\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2.20147e6 0.146792
\(743\) 1.85406e7 1.23212 0.616060 0.787699i \(-0.288728\pi\)
0.616060 + 0.787699i \(0.288728\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 6.56742e6 0.432064
\(747\) 2.03420e7 1.33381
\(748\) 7.20077e6 0.470571
\(749\) 3.79809e6 0.247378
\(750\) 0 0
\(751\) 3.22428e6 0.208609 0.104305 0.994545i \(-0.466738\pi\)
0.104305 + 0.994545i \(0.466738\pi\)
\(752\) 3.77037e6 0.243130
\(753\) 0 0
\(754\) −3.63818e6 −0.233053
\(755\) 0 0
\(756\) 0 0
\(757\) 2.34007e6 0.148419 0.0742095 0.997243i \(-0.476357\pi\)
0.0742095 + 0.997243i \(0.476357\pi\)
\(758\) −1.60016e7 −1.01156
\(759\) 0 0
\(760\) 0 0
\(761\) −8.34242e6 −0.522192 −0.261096 0.965313i \(-0.584084\pi\)
−0.261096 + 0.965313i \(0.584084\pi\)
\(762\) 0 0
\(763\) −7.43399e6 −0.462286
\(764\) 5.70310e6 0.353491
\(765\) 0 0
\(766\) −2.28635e7 −1.40789
\(767\) −153872. −0.00944433
\(768\) 0 0
\(769\) 3.29971e6 0.201215 0.100607 0.994926i \(-0.467921\pi\)
0.100607 + 0.994926i \(0.467921\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.05997e6 −0.184788
\(773\) −7.19867e6 −0.433315 −0.216657 0.976248i \(-0.569515\pi\)
−0.216657 + 0.976248i \(0.569515\pi\)
\(774\) 2.43389e6 0.146032
\(775\) 0 0
\(776\) 5.82835e6 0.347449
\(777\) 0 0
\(778\) 6.70442e6 0.397112
\(779\) 1.46718e7 0.866243
\(780\) 0 0
\(781\) −1.08887e7 −0.638776
\(782\) 6.56320e6 0.383795
\(783\) 0 0
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) 1.79424e7 1.03262 0.516312 0.856400i \(-0.327304\pi\)
0.516312 + 0.856400i \(0.327304\pi\)
\(788\) −9.99962e6 −0.573677
\(789\) 0 0
\(790\) 0 0
\(791\) 1.15303e7 0.655238
\(792\) 5.97197e6 0.338302
\(793\) 352584. 0.0199104
\(794\) 3.78056e6 0.212816
\(795\) 0 0
\(796\) −3.95866e6 −0.221445
\(797\) −1.53422e7 −0.855543 −0.427771 0.903887i \(-0.640701\pi\)
−0.427771 + 0.903887i \(0.640701\pi\)
\(798\) 0 0
\(799\) 1.72612e7 0.956543
\(800\) 0 0
\(801\) 2.26695e7 1.24842
\(802\) −2.21114e6 −0.121389
\(803\) 2.72225e7 1.48984
\(804\) 0 0
\(805\) 0 0
\(806\) 83072.0 0.00450419
\(807\) 0 0
\(808\) 3.47558e6 0.187283
\(809\) 9.88141e6 0.530821 0.265410 0.964136i \(-0.414493\pi\)
0.265410 + 0.964136i \(0.414493\pi\)
\(810\) 0 0
\(811\) −1.22149e7 −0.652137 −0.326069 0.945346i \(-0.605724\pi\)
−0.326069 + 0.945346i \(0.605724\pi\)
\(812\) −3.02154e6 −0.160819
\(813\) 0 0
\(814\) −2.03366e7 −1.07577
\(815\) 0 0
\(816\) 0 0
\(817\) −2.75440e6 −0.144368
\(818\) 4.19132e6 0.219012
\(819\) 2.81005e6 0.146388
\(820\) 0 0
\(821\) −2.12593e7 −1.10075 −0.550377 0.834916i \(-0.685516\pi\)
−0.550377 + 0.834916i \(0.685516\pi\)
\(822\) 0 0
\(823\) −1.76882e7 −0.910297 −0.455149 0.890415i \(-0.650414\pi\)
−0.455149 + 0.890415i \(0.650414\pi\)
\(824\) 8.70042e6 0.446398
\(825\) 0 0
\(826\) −127792. −0.00651709
\(827\) 2.48044e7 1.26115 0.630573 0.776130i \(-0.282820\pi\)
0.630573 + 0.776130i \(0.282820\pi\)
\(828\) 5.44320e6 0.275917
\(829\) −879386. −0.0444420 −0.0222210 0.999753i \(-0.507074\pi\)
−0.0222210 + 0.999753i \(0.507074\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −966656. −0.0484132
\(833\) 2.81397e6 0.140510
\(834\) 0 0
\(835\) 0 0
\(836\) −6.75840e6 −0.334448
\(837\) 0 0
\(838\) 2.75337e7 1.35443
\(839\) 2.27773e7 1.11711 0.558556 0.829467i \(-0.311356\pi\)
0.558556 + 0.829467i \(0.311356\pi\)
\(840\) 0 0
\(841\) −5.65783e6 −0.275842
\(842\) 1.82524e7 0.887239
\(843\) 0 0
\(844\) 4.81574e6 0.232706
\(845\) 0 0
\(846\) 1.43156e7 0.687676
\(847\) −666155. −0.0319056
\(848\) −2.87539e6 −0.137312
\(849\) 0 0
\(850\) 0 0
\(851\) −1.85360e7 −0.877389
\(852\) 0 0
\(853\) 1.13876e7 0.535869 0.267934 0.963437i \(-0.413659\pi\)
0.267934 + 0.963437i \(0.413659\pi\)
\(854\) 292824. 0.0137392
\(855\) 0 0
\(856\) −4.96077e6 −0.231401
\(857\) −3.74896e7 −1.74365 −0.871824 0.489819i \(-0.837063\pi\)
−0.871824 + 0.489819i \(0.837063\pi\)
\(858\) 0 0
\(859\) −3.49422e7 −1.61572 −0.807862 0.589372i \(-0.799375\pi\)
−0.807862 + 0.589372i \(0.799375\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 9.96440e6 0.456755
\(863\) −3.40644e7 −1.55695 −0.778473 0.627678i \(-0.784006\pi\)
−0.778473 + 0.627678i \(0.784006\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.77127e7 −0.802583
\(867\) 0 0
\(868\) 68992.0 0.00310813
\(869\) −3.06540e7 −1.37701
\(870\) 0 0
\(871\) 4.30275e6 0.192177
\(872\) 9.70970e6 0.432429
\(873\) 2.21295e7 0.982735
\(874\) −6.16000e6 −0.272773
\(875\) 0 0
\(876\) 0 0
\(877\) −9.56406e6 −0.419897 −0.209949 0.977712i \(-0.567330\pi\)
−0.209949 + 0.977712i \(0.567330\pi\)
\(878\) −2.54173e6 −0.111274
\(879\) 0 0
\(880\) 0 0
\(881\) 2.43742e6 0.105801 0.0529006 0.998600i \(-0.483153\pi\)
0.0529006 + 0.998600i \(0.483153\pi\)
\(882\) 2.33377e6 0.101015
\(883\) −1.08423e6 −0.0467973 −0.0233986 0.999726i \(-0.507449\pi\)
−0.0233986 + 0.999726i \(0.507449\pi\)
\(884\) −4.42547e6 −0.190471
\(885\) 0 0
\(886\) 7.22448e6 0.309188
\(887\) −1.35583e7 −0.578623 −0.289312 0.957235i \(-0.593426\pi\)
−0.289312 + 0.957235i \(0.593426\pi\)
\(888\) 0 0
\(889\) −1.67466e7 −0.710678
\(890\) 0 0
\(891\) 2.26748e7 0.956862
\(892\) 1.63418e6 0.0687680
\(893\) −1.62008e7 −0.679842
\(894\) 0 0
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) 0 0
\(898\) 1.56129e7 0.646090
\(899\) −339152. −0.0139957
\(900\) 0 0
\(901\) −1.31639e7 −0.540223
\(902\) 2.04872e7 0.838428
\(903\) 0 0
\(904\) −1.50600e7 −0.612919
\(905\) 0 0
\(906\) 0 0
\(907\) −1.12138e7 −0.452619 −0.226309 0.974055i \(-0.572666\pi\)
−0.226309 + 0.974055i \(0.572666\pi\)
\(908\) 9.53549e6 0.383821
\(909\) 1.31964e7 0.529718
\(910\) 0 0
\(911\) −4.15211e7 −1.65757 −0.828787 0.559564i \(-0.810969\pi\)
−0.828787 + 0.559564i \(0.810969\pi\)
\(912\) 0 0
\(913\) −3.21454e7 −1.27627
\(914\) 1.74506e7 0.690946
\(915\) 0 0
\(916\) 1.62468e7 0.639778
\(917\) −1.51055e7 −0.593215
\(918\) 0 0
\(919\) −4.13539e7 −1.61520 −0.807602 0.589728i \(-0.799235\pi\)
−0.807602 + 0.589728i \(0.799235\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −3.38684e6 −0.131210
\(923\) 6.69202e6 0.258555
\(924\) 0 0
\(925\) 0 0
\(926\) −2.95188e7 −1.13128
\(927\) 3.30344e7 1.26260
\(928\) 3.94650e6 0.150433
\(929\) 945378. 0.0359390 0.0179695 0.999839i \(-0.494280\pi\)
0.0179695 + 0.999839i \(0.494280\pi\)
\(930\) 0 0
\(931\) −2.64110e6 −0.0998644
\(932\) 374144. 0.0141091
\(933\) 0 0
\(934\) −1.15318e7 −0.432545
\(935\) 0 0
\(936\) −3.67027e6 −0.136933
\(937\) −4.77950e6 −0.177842 −0.0889208 0.996039i \(-0.528342\pi\)
−0.0889208 + 0.996039i \(0.528342\pi\)
\(938\) 3.57347e6 0.132612
\(939\) 0 0
\(940\) 0 0
\(941\) 2.87439e7 1.05821 0.529104 0.848557i \(-0.322528\pi\)
0.529104 + 0.848557i \(0.322528\pi\)
\(942\) 0 0
\(943\) 1.86732e7 0.683816
\(944\) 166912. 0.00609618
\(945\) 0 0
\(946\) −3.84614e6 −0.139733
\(947\) 1.01090e6 0.0366298 0.0183149 0.999832i \(-0.494170\pi\)
0.0183149 + 0.999832i \(0.494170\pi\)
\(948\) 0 0
\(949\) −1.67305e7 −0.603037
\(950\) 0 0
\(951\) 0 0
\(952\) −3.67539e6 −0.131435
\(953\) −4.46529e7 −1.59264 −0.796319 0.604877i \(-0.793222\pi\)
−0.796319 + 0.604877i \(0.793222\pi\)
\(954\) −1.09175e7 −0.388376
\(955\) 0 0
\(956\) 1.85350e7 0.655915
\(957\) 0 0
\(958\) 2.65329e7 0.934051
\(959\) −1.70587e7 −0.598961
\(960\) 0 0
\(961\) −2.86214e7 −0.999730
\(962\) 1.24986e7 0.435434
\(963\) −1.88354e7 −0.654500
\(964\) −1.56398e7 −0.542050
\(965\) 0 0
\(966\) 0 0
\(967\) 1.83956e7 0.632626 0.316313 0.948655i \(-0.397555\pi\)
0.316313 + 0.948655i \(0.397555\pi\)
\(968\) 870080. 0.0298449
\(969\) 0 0
\(970\) 0 0
\(971\) 3.72647e7 1.26838 0.634191 0.773177i \(-0.281333\pi\)
0.634191 + 0.773177i \(0.281333\pi\)
\(972\) 0 0
\(973\) −1.43258e7 −0.485107
\(974\) −8.71677e6 −0.294414
\(975\) 0 0
\(976\) −382464. −0.0128519
\(977\) −8.11308e6 −0.271925 −0.135963 0.990714i \(-0.543413\pi\)
−0.135963 + 0.990714i \(0.543413\pi\)
\(978\) 0 0
\(979\) −3.58234e7 −1.19456
\(980\) 0 0
\(981\) 3.68665e7 1.22309
\(982\) −3.16923e7 −1.04876
\(983\) −2.83324e7 −0.935189 −0.467594 0.883943i \(-0.654879\pi\)
−0.467594 + 0.883943i \(0.654879\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.80676e7 0.591844
\(987\) 0 0
\(988\) 4.15360e6 0.135373
\(989\) −3.50560e6 −0.113965
\(990\) 0 0
\(991\) −4.96125e7 −1.60475 −0.802374 0.596822i \(-0.796430\pi\)
−0.802374 + 0.596822i \(0.796430\pi\)
\(992\) −90112.0 −0.00290739
\(993\) 0 0
\(994\) 5.55778e6 0.178417
\(995\) 0 0
\(996\) 0 0
\(997\) 3.47215e7 1.10627 0.553135 0.833092i \(-0.313431\pi\)
0.553135 + 0.833092i \(0.313431\pi\)
\(998\) 1.07324e7 0.341093
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.a.c.1.1 1
5.2 odd 4 70.6.c.a.29.1 2
5.3 odd 4 70.6.c.a.29.2 yes 2
5.4 even 2 350.6.a.j.1.1 1
15.2 even 4 630.6.g.c.379.2 2
15.8 even 4 630.6.g.c.379.1 2
20.3 even 4 560.6.g.a.449.1 2
20.7 even 4 560.6.g.a.449.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.c.a.29.1 2 5.2 odd 4
70.6.c.a.29.2 yes 2 5.3 odd 4
350.6.a.c.1.1 1 1.1 even 1 trivial
350.6.a.j.1.1 1 5.4 even 2
560.6.g.a.449.1 2 20.3 even 4
560.6.g.a.449.2 2 20.7 even 4
630.6.g.c.379.1 2 15.8 even 4
630.6.g.c.379.2 2 15.2 even 4