Properties

Label 70.6.c.a.29.1
Level $70$
Weight $6$
Character 70.29
Analytic conductor $11.227$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,6,Mod(29,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.29");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 70.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2268673869\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 29.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 70.29
Dual form 70.6.c.a.29.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -16.0000 q^{4} +(-55.0000 + 10.0000i) q^{5} +49.0000i q^{7} +64.0000i q^{8} +243.000 q^{9} +(40.0000 + 220.000i) q^{10} +384.000 q^{11} +236.000i q^{13} +196.000 q^{14} +256.000 q^{16} +1172.00i q^{17} -972.000i q^{18} +1100.00 q^{19} +(880.000 - 160.000i) q^{20} -1536.00i q^{22} +1400.00i q^{23} +(2925.00 - 1100.00i) q^{25} +944.000 q^{26} -784.000i q^{28} +3854.00 q^{29} +88.0000 q^{31} -1024.00i q^{32} +4688.00 q^{34} +(-490.000 - 2695.00i) q^{35} -3888.00 q^{36} +13240.0i q^{37} -4400.00i q^{38} +(-640.000 - 3520.00i) q^{40} -13338.0 q^{41} -2504.00i q^{43} -6144.00 q^{44} +(-13365.0 + 2430.00i) q^{45} +5600.00 q^{46} +14728.0i q^{47} -2401.00 q^{49} +(-4400.00 - 11700.0i) q^{50} -3776.00i q^{52} +11232.0i q^{53} +(-21120.0 + 3840.00i) q^{55} -3136.00 q^{56} -15416.0i q^{58} -652.000 q^{59} -1494.00 q^{61} -352.000i q^{62} +11907.0i q^{63} -4096.00 q^{64} +(-2360.00 - 12980.0i) q^{65} -18232.0i q^{67} -18752.0i q^{68} +(-10780.0 + 1960.00i) q^{70} -28356.0 q^{71} +15552.0i q^{72} -70892.0i q^{73} +52960.0 q^{74} -17600.0 q^{76} +18816.0i q^{77} +79828.0 q^{79} +(-14080.0 + 2560.00i) q^{80} +59049.0 q^{81} +53352.0i q^{82} +83712.0i q^{83} +(-11720.0 - 64460.0i) q^{85} -10016.0 q^{86} +24576.0i q^{88} +93290.0 q^{89} +(9720.00 + 53460.0i) q^{90} -11564.0 q^{91} -22400.0i q^{92} +58912.0 q^{94} +(-60500.0 + 11000.0i) q^{95} -91068.0i q^{97} +9604.00i q^{98} +93312.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 110 q^{5} + 486 q^{9} + 80 q^{10} + 768 q^{11} + 392 q^{14} + 512 q^{16} + 2200 q^{19} + 1760 q^{20} + 5850 q^{25} + 1888 q^{26} + 7708 q^{29} + 176 q^{31} + 9376 q^{34} - 980 q^{35} - 7776 q^{36}+ \cdots + 186624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −16.0000 −0.500000
\(5\) −55.0000 + 10.0000i −0.983870 + 0.178885i
\(6\) 0 0
\(7\) 49.0000i 0.377964i
\(8\) 64.0000i 0.353553i
\(9\) 243.000 1.00000
\(10\) 40.0000 + 220.000i 0.126491 + 0.695701i
\(11\) 384.000 0.956862 0.478431 0.878125i \(-0.341206\pi\)
0.478431 + 0.878125i \(0.341206\pi\)
\(12\) 0 0
\(13\) 236.000i 0.387305i 0.981070 + 0.193653i \(0.0620335\pi\)
−0.981070 + 0.193653i \(0.937966\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1172.00i 0.983570i 0.870717 + 0.491785i \(0.163655\pi\)
−0.870717 + 0.491785i \(0.836345\pi\)
\(18\) 972.000i 0.707107i
\(19\) 1100.00 0.699051 0.349525 0.936927i \(-0.386343\pi\)
0.349525 + 0.936927i \(0.386343\pi\)
\(20\) 880.000 160.000i 0.491935 0.0894427i
\(21\) 0 0
\(22\) 1536.00i 0.676604i
\(23\) 1400.00i 0.551834i 0.961181 + 0.275917i \(0.0889815\pi\)
−0.961181 + 0.275917i \(0.911019\pi\)
\(24\) 0 0
\(25\) 2925.00 1100.00i 0.936000 0.352000i
\(26\) 944.000 0.273866
\(27\) 0 0
\(28\) 784.000i 0.188982i
\(29\) 3854.00 0.850975 0.425487 0.904964i \(-0.360103\pi\)
0.425487 + 0.904964i \(0.360103\pi\)
\(30\) 0 0
\(31\) 88.0000 0.0164467 0.00822334 0.999966i \(-0.497382\pi\)
0.00822334 + 0.999966i \(0.497382\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 0 0
\(34\) 4688.00 0.695489
\(35\) −490.000 2695.00i −0.0676123 0.371868i
\(36\) −3888.00 −0.500000
\(37\) 13240.0i 1.58995i 0.606642 + 0.794975i \(0.292516\pi\)
−0.606642 + 0.794975i \(0.707484\pi\)
\(38\) 4400.00i 0.494303i
\(39\) 0 0
\(40\) −640.000 3520.00i −0.0632456 0.347851i
\(41\) −13338.0 −1.23917 −0.619585 0.784929i \(-0.712699\pi\)
−0.619585 + 0.784929i \(0.712699\pi\)
\(42\) 0 0
\(43\) 2504.00i 0.206521i −0.994654 0.103260i \(-0.967073\pi\)
0.994654 0.103260i \(-0.0329275\pi\)
\(44\) −6144.00 −0.478431
\(45\) −13365.0 + 2430.00i −0.983870 + 0.178885i
\(46\) 5600.00 0.390206
\(47\) 14728.0i 0.972521i 0.873814 + 0.486261i \(0.161639\pi\)
−0.873814 + 0.486261i \(0.838361\pi\)
\(48\) 0 0
\(49\) −2401.00 −0.142857
\(50\) −4400.00 11700.0i −0.248902 0.661852i
\(51\) 0 0
\(52\) 3776.00i 0.193653i
\(53\) 11232.0i 0.549247i 0.961552 + 0.274623i \(0.0885532\pi\)
−0.961552 + 0.274623i \(0.911447\pi\)
\(54\) 0 0
\(55\) −21120.0 + 3840.00i −0.941428 + 0.171169i
\(56\) −3136.00 −0.133631
\(57\) 0 0
\(58\) 15416.0i 0.601730i
\(59\) −652.000 −0.0243847 −0.0121924 0.999926i \(-0.503881\pi\)
−0.0121924 + 0.999926i \(0.503881\pi\)
\(60\) 0 0
\(61\) −1494.00 −0.0514074 −0.0257037 0.999670i \(-0.508183\pi\)
−0.0257037 + 0.999670i \(0.508183\pi\)
\(62\) 352.000i 0.0116296i
\(63\) 11907.0i 0.377964i
\(64\) −4096.00 −0.125000
\(65\) −2360.00 12980.0i −0.0692833 0.381058i
\(66\) 0 0
\(67\) 18232.0i 0.496189i −0.968736 0.248095i \(-0.920196\pi\)
0.968736 0.248095i \(-0.0798044\pi\)
\(68\) 18752.0i 0.491785i
\(69\) 0 0
\(70\) −10780.0 + 1960.00i −0.262950 + 0.0478091i
\(71\) −28356.0 −0.667574 −0.333787 0.942649i \(-0.608327\pi\)
−0.333787 + 0.942649i \(0.608327\pi\)
\(72\) 15552.0i 0.353553i
\(73\) 70892.0i 1.55701i −0.627641 0.778503i \(-0.715980\pi\)
0.627641 0.778503i \(-0.284020\pi\)
\(74\) 52960.0 1.12426
\(75\) 0 0
\(76\) −17600.0 −0.349525
\(77\) 18816.0i 0.361660i
\(78\) 0 0
\(79\) 79828.0 1.43909 0.719544 0.694447i \(-0.244351\pi\)
0.719544 + 0.694447i \(0.244351\pi\)
\(80\) −14080.0 + 2560.00i −0.245967 + 0.0447214i
\(81\) 59049.0 1.00000
\(82\) 53352.0i 0.876226i
\(83\) 83712.0i 1.33381i 0.745145 + 0.666903i \(0.232380\pi\)
−0.745145 + 0.666903i \(0.767620\pi\)
\(84\) 0 0
\(85\) −11720.0 64460.0i −0.175946 0.967705i
\(86\) −10016.0 −0.146032
\(87\) 0 0
\(88\) 24576.0i 0.338302i
\(89\) 93290.0 1.24842 0.624209 0.781257i \(-0.285421\pi\)
0.624209 + 0.781257i \(0.285421\pi\)
\(90\) 9720.00 + 53460.0i 0.126491 + 0.695701i
\(91\) −11564.0 −0.146388
\(92\) 22400.0i 0.275917i
\(93\) 0 0
\(94\) 58912.0 0.687676
\(95\) −60500.0 + 11000.0i −0.687775 + 0.125050i
\(96\) 0 0
\(97\) 91068.0i 0.982735i −0.870952 0.491368i \(-0.836497\pi\)
0.870952 0.491368i \(-0.163503\pi\)
\(98\) 9604.00i 0.101015i
\(99\) 93312.0 0.956862
\(100\) −46800.0 + 17600.0i −0.468000 + 0.176000i
\(101\) −54306.0 −0.529718 −0.264859 0.964287i \(-0.585325\pi\)
−0.264859 + 0.964287i \(0.585325\pi\)
\(102\) 0 0
\(103\) 135944.i 1.26260i 0.775537 + 0.631302i \(0.217479\pi\)
−0.775537 + 0.631302i \(0.782521\pi\)
\(104\) −15104.0 −0.136933
\(105\) 0 0
\(106\) 44928.0 0.388376
\(107\) 77512.0i 0.654500i 0.944938 + 0.327250i \(0.106122\pi\)
−0.944938 + 0.327250i \(0.893878\pi\)
\(108\) 0 0
\(109\) 151714. 1.22309 0.611546 0.791209i \(-0.290548\pi\)
0.611546 + 0.791209i \(0.290548\pi\)
\(110\) 15360.0 + 84480.0i 0.121035 + 0.665690i
\(111\) 0 0
\(112\) 12544.0i 0.0944911i
\(113\) 235312.i 1.73360i −0.498659 0.866798i \(-0.666174\pi\)
0.498659 0.866798i \(-0.333826\pi\)
\(114\) 0 0
\(115\) −14000.0 77000.0i −0.0987151 0.542933i
\(116\) −61664.0 −0.425487
\(117\) 57348.0i 0.387305i
\(118\) 2608.00i 0.0172426i
\(119\) −57428.0 −0.371755
\(120\) 0 0
\(121\) −13595.0 −0.0844143
\(122\) 5976.00i 0.0363506i
\(123\) 0 0
\(124\) −1408.00 −0.00822334
\(125\) −149875. + 89750.0i −0.857935 + 0.513759i
\(126\) 47628.0 0.267261
\(127\) 341768.i 1.88028i −0.340791 0.940139i \(-0.610695\pi\)
0.340791 0.940139i \(-0.389305\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 0 0
\(130\) −51920.0 + 9440.00i −0.269449 + 0.0489907i
\(131\) −308276. −1.56950 −0.784750 0.619812i \(-0.787209\pi\)
−0.784750 + 0.619812i \(0.787209\pi\)
\(132\) 0 0
\(133\) 53900.0i 0.264216i
\(134\) −72928.0 −0.350859
\(135\) 0 0
\(136\) −75008.0 −0.347745
\(137\) 348136.i 1.58470i −0.610066 0.792351i \(-0.708857\pi\)
0.610066 0.792351i \(-0.291143\pi\)
\(138\) 0 0
\(139\) 292364. 1.28347 0.641737 0.766925i \(-0.278214\pi\)
0.641737 + 0.766925i \(0.278214\pi\)
\(140\) 7840.00 + 43120.0i 0.0338062 + 0.185934i
\(141\) 0 0
\(142\) 113424.i 0.472046i
\(143\) 90624.0i 0.370598i
\(144\) 62208.0 0.250000
\(145\) −211970. + 38540.0i −0.837249 + 0.152227i
\(146\) −283568. −1.10097
\(147\) 0 0
\(148\) 211840.i 0.794975i
\(149\) −178806. −0.659806 −0.329903 0.944015i \(-0.607016\pi\)
−0.329903 + 0.944015i \(0.607016\pi\)
\(150\) 0 0
\(151\) −173892. −0.620636 −0.310318 0.950633i \(-0.600436\pi\)
−0.310318 + 0.950633i \(0.600436\pi\)
\(152\) 70400.0i 0.247152i
\(153\) 284796.i 0.983570i
\(154\) 75264.0 0.255732
\(155\) −4840.00 + 880.000i −0.0161814 + 0.00294207i
\(156\) 0 0
\(157\) 228540.i 0.739968i −0.929038 0.369984i \(-0.879363\pi\)
0.929038 0.369984i \(-0.120637\pi\)
\(158\) 319312.i 1.01759i
\(159\) 0 0
\(160\) 10240.0 + 56320.0i 0.0316228 + 0.173925i
\(161\) −68600.0 −0.208574
\(162\) 236196.i 0.707107i
\(163\) 609624.i 1.79719i 0.438783 + 0.898593i \(0.355410\pi\)
−0.438783 + 0.898593i \(0.644590\pi\)
\(164\) 213408. 0.619585
\(165\) 0 0
\(166\) 334848. 0.943143
\(167\) 648600.i 1.79964i 0.436261 + 0.899820i \(0.356303\pi\)
−0.436261 + 0.899820i \(0.643697\pi\)
\(168\) 0 0
\(169\) 315597. 0.849994
\(170\) −257840. + 46880.0i −0.684271 + 0.124413i
\(171\) 267300. 0.699051
\(172\) 40064.0i 0.103260i
\(173\) 127812.i 0.324681i 0.986735 + 0.162340i \(0.0519042\pi\)
−0.986735 + 0.162340i \(0.948096\pi\)
\(174\) 0 0
\(175\) 53900.0 + 143325.i 0.133043 + 0.353775i
\(176\) 98304.0 0.239216
\(177\) 0 0
\(178\) 373160.i 0.882765i
\(179\) −637208. −1.48644 −0.743222 0.669045i \(-0.766703\pi\)
−0.743222 + 0.669045i \(0.766703\pi\)
\(180\) 213840. 38880.0i 0.491935 0.0894427i
\(181\) 461246. 1.04649 0.523246 0.852181i \(-0.324721\pi\)
0.523246 + 0.852181i \(0.324721\pi\)
\(182\) 46256.0i 0.103512i
\(183\) 0 0
\(184\) −89600.0 −0.195103
\(185\) −132400. 728200.i −0.284419 1.56430i
\(186\) 0 0
\(187\) 450048.i 0.941141i
\(188\) 235648.i 0.486261i
\(189\) 0 0
\(190\) 44000.0 + 242000.i 0.0884237 + 0.486330i
\(191\) 356444. 0.706981 0.353491 0.935438i \(-0.384995\pi\)
0.353491 + 0.935438i \(0.384995\pi\)
\(192\) 0 0
\(193\) 191248.i 0.369576i 0.982778 + 0.184788i \(0.0591598\pi\)
−0.982778 + 0.184788i \(0.940840\pi\)
\(194\) −364272. −0.694899
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 624976.i 1.14735i −0.819081 0.573677i \(-0.805516\pi\)
0.819081 0.573677i \(-0.194484\pi\)
\(198\) 373248.i 0.676604i
\(199\) 247416. 0.442889 0.221445 0.975173i \(-0.428923\pi\)
0.221445 + 0.975173i \(0.428923\pi\)
\(200\) 70400.0 + 187200.i 0.124451 + 0.330926i
\(201\) 0 0
\(202\) 217224.i 0.374567i
\(203\) 188846.i 0.321638i
\(204\) 0 0
\(205\) 733590. 133380.i 1.21918 0.221670i
\(206\) 543776. 0.892795
\(207\) 340200.i 0.551834i
\(208\) 60416.0i 0.0968264i
\(209\) 422400. 0.668895
\(210\) 0 0
\(211\) 300984. 0.465412 0.232706 0.972547i \(-0.425242\pi\)
0.232706 + 0.972547i \(0.425242\pi\)
\(212\) 179712.i 0.274623i
\(213\) 0 0
\(214\) 310048. 0.462801
\(215\) 25040.0 + 137720.i 0.0369435 + 0.203189i
\(216\) 0 0
\(217\) 4312.00i 0.00621626i
\(218\) 606856.i 0.864857i
\(219\) 0 0
\(220\) 337920. 61440.0i 0.470714 0.0855844i
\(221\) −276592. −0.380942
\(222\) 0 0
\(223\) 102136.i 0.137536i −0.997633 0.0687680i \(-0.978093\pi\)
0.997633 0.0687680i \(-0.0219068\pi\)
\(224\) 50176.0 0.0668153
\(225\) 710775. 267300.i 0.936000 0.352000i
\(226\) −941248. −1.22584
\(227\) 595968.i 0.767641i 0.923408 + 0.383821i \(0.125392\pi\)
−0.923408 + 0.383821i \(0.874608\pi\)
\(228\) 0 0
\(229\) −1.01543e6 −1.27956 −0.639778 0.768559i \(-0.720974\pi\)
−0.639778 + 0.768559i \(0.720974\pi\)
\(230\) −308000. + 56000.0i −0.383912 + 0.0698021i
\(231\) 0 0
\(232\) 246656.i 0.300865i
\(233\) 23384.0i 0.0282182i −0.999900 0.0141091i \(-0.995509\pi\)
0.999900 0.0141091i \(-0.00449121\pi\)
\(234\) 229392. 0.273866
\(235\) −147280. 810040.i −0.173970 0.956834i
\(236\) 10432.0 0.0121924
\(237\) 0 0
\(238\) 229712.i 0.262870i
\(239\) −1.15844e6 −1.31183 −0.655915 0.754835i \(-0.727717\pi\)
−0.655915 + 0.754835i \(0.727717\pi\)
\(240\) 0 0
\(241\) −977490. −1.08410 −0.542050 0.840346i \(-0.682352\pi\)
−0.542050 + 0.840346i \(0.682352\pi\)
\(242\) 54380.0i 0.0596899i
\(243\) 0 0
\(244\) 23904.0 0.0257037
\(245\) 132055. 24010.0i 0.140553 0.0255551i
\(246\) 0 0
\(247\) 259600.i 0.270746i
\(248\) 5632.00i 0.00581478i
\(249\) 0 0
\(250\) 359000. + 599500.i 0.363282 + 0.606651i
\(251\) −835700. −0.837271 −0.418636 0.908154i \(-0.637492\pi\)
−0.418636 + 0.908154i \(0.637492\pi\)
\(252\) 190512.i 0.188982i
\(253\) 537600.i 0.528029i
\(254\) −1.36707e6 −1.32956
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 587772.i 0.555106i −0.960710 0.277553i \(-0.910477\pi\)
0.960710 0.277553i \(-0.0895234\pi\)
\(258\) 0 0
\(259\) −648760. −0.600945
\(260\) 37760.0 + 207680.i 0.0346417 + 0.190529i
\(261\) 936522. 0.850975
\(262\) 1.23310e6i 1.10980i
\(263\) 149352.i 0.133144i 0.997782 + 0.0665720i \(0.0212062\pi\)
−0.997782 + 0.0665720i \(0.978794\pi\)
\(264\) 0 0
\(265\) −112320. 617760.i −0.0982522 0.540387i
\(266\) 215600. 0.186829
\(267\) 0 0
\(268\) 291712.i 0.248095i
\(269\) −2.00973e6 −1.69339 −0.846697 0.532076i \(-0.821412\pi\)
−0.846697 + 0.532076i \(0.821412\pi\)
\(270\) 0 0
\(271\) 499200. 0.412906 0.206453 0.978457i \(-0.433808\pi\)
0.206453 + 0.978457i \(0.433808\pi\)
\(272\) 300032.i 0.245893i
\(273\) 0 0
\(274\) −1.39254e6 −1.12055
\(275\) 1.12320e6 422400.i 0.895623 0.336816i
\(276\) 0 0
\(277\) 1.03093e6i 0.807289i −0.914916 0.403644i \(-0.867743\pi\)
0.914916 0.403644i \(-0.132257\pi\)
\(278\) 1.16946e6i 0.907553i
\(279\) 21384.0 0.0164467
\(280\) 172480. 31360.0i 0.131475 0.0239046i
\(281\) 1.12849e6 0.852571 0.426285 0.904589i \(-0.359822\pi\)
0.426285 + 0.904589i \(0.359822\pi\)
\(282\) 0 0
\(283\) 49952.0i 0.0370755i −0.999828 0.0185377i \(-0.994099\pi\)
0.999828 0.0185377i \(-0.00590108\pi\)
\(284\) 453696. 0.333787
\(285\) 0 0
\(286\) 362496. 0.262052
\(287\) 653562.i 0.468362i
\(288\) 248832.i 0.176777i
\(289\) 46273.0 0.0325899
\(290\) 154160. + 847880.i 0.107641 + 0.592024i
\(291\) 0 0
\(292\) 1.13427e6i 0.778503i
\(293\) 86340.0i 0.0587548i 0.999568 + 0.0293774i \(0.00935245\pi\)
−0.999568 + 0.0293774i \(0.990648\pi\)
\(294\) 0 0
\(295\) 35860.0 6520.00i 0.0239914 0.00436207i
\(296\) −847360. −0.562132
\(297\) 0 0
\(298\) 715224.i 0.466553i
\(299\) −330400. −0.213728
\(300\) 0 0
\(301\) 122696. 0.0780574
\(302\) 695568.i 0.438856i
\(303\) 0 0
\(304\) 281600. 0.174763
\(305\) 82170.0 14940.0i 0.0505782 0.00919604i
\(306\) 1.13918e6 0.695489
\(307\) 2.86581e6i 1.73541i −0.497083 0.867703i \(-0.665595\pi\)
0.497083 0.867703i \(-0.334405\pi\)
\(308\) 301056.i 0.180830i
\(309\) 0 0
\(310\) 3520.00 + 19360.0i 0.00208036 + 0.0114420i
\(311\) −374904. −0.219796 −0.109898 0.993943i \(-0.535052\pi\)
−0.109898 + 0.993943i \(0.535052\pi\)
\(312\) 0 0
\(313\) 1.99147e6i 1.14898i −0.818512 0.574490i \(-0.805200\pi\)
0.818512 0.574490i \(-0.194800\pi\)
\(314\) −914160. −0.523237
\(315\) −119070. 654885.i −0.0676123 0.371868i
\(316\) −1.27725e6 −0.719544
\(317\) 417808.i 0.233522i −0.993160 0.116761i \(-0.962749\pi\)
0.993160 0.116761i \(-0.0372512\pi\)
\(318\) 0 0
\(319\) 1.47994e6 0.814266
\(320\) 225280. 40960.0i 0.122984 0.0223607i
\(321\) 0 0
\(322\) 274400.i 0.147484i
\(323\) 1.28920e6i 0.687565i
\(324\) −944784. −0.500000
\(325\) 259600. + 690300.i 0.136332 + 0.362518i
\(326\) 2.43850e6 1.27080
\(327\) 0 0
\(328\) 853632.i 0.438113i
\(329\) −721672. −0.367579
\(330\) 0 0
\(331\) 3.22654e6 1.61870 0.809352 0.587323i \(-0.199818\pi\)
0.809352 + 0.587323i \(0.199818\pi\)
\(332\) 1.33939e6i 0.666903i
\(333\) 3.21732e6i 1.58995i
\(334\) 2.59440e6 1.27254
\(335\) 182320. + 1.00276e6i 0.0887610 + 0.488186i
\(336\) 0 0
\(337\) 2.97302e6i 1.42601i 0.701159 + 0.713005i \(0.252666\pi\)
−0.701159 + 0.713005i \(0.747334\pi\)
\(338\) 1.26239e6i 0.601037i
\(339\) 0 0
\(340\) 187520. + 1.03136e6i 0.0879732 + 0.483853i
\(341\) 33792.0 0.0157372
\(342\) 1.06920e6i 0.494303i
\(343\) 117649.i 0.0539949i
\(344\) 160256. 0.0730160
\(345\) 0 0
\(346\) 511248. 0.229584
\(347\) 584664.i 0.260665i 0.991470 + 0.130332i \(0.0416045\pi\)
−0.991470 + 0.130332i \(0.958396\pi\)
\(348\) 0 0
\(349\) 3.62799e6 1.59442 0.797210 0.603703i \(-0.206309\pi\)
0.797210 + 0.603703i \(0.206309\pi\)
\(350\) 573300. 215600.i 0.250157 0.0940760i
\(351\) 0 0
\(352\) 393216.i 0.169151i
\(353\) 1.62880e6i 0.695713i 0.937548 + 0.347856i \(0.113090\pi\)
−0.937548 + 0.347856i \(0.886910\pi\)
\(354\) 0 0
\(355\) 1.55958e6 283560.i 0.656805 0.119419i
\(356\) −1.49264e6 −0.624209
\(357\) 0 0
\(358\) 2.54883e6i 1.05107i
\(359\) 606052. 0.248184 0.124092 0.992271i \(-0.460398\pi\)
0.124092 + 0.992271i \(0.460398\pi\)
\(360\) −155520. 855360.i −0.0632456 0.347851i
\(361\) −1.26610e6 −0.511328
\(362\) 1.84498e6i 0.739982i
\(363\) 0 0
\(364\) 185024. 0.0731939
\(365\) 708920. + 3.89906e6i 0.278526 + 1.53189i
\(366\) 0 0
\(367\) 2.15002e6i 0.833255i −0.909077 0.416628i \(-0.863212\pi\)
0.909077 0.416628i \(-0.136788\pi\)
\(368\) 358400.i 0.137958i
\(369\) −3.24113e6 −1.23917
\(370\) −2.91280e6 + 529600.i −1.10613 + 0.201115i
\(371\) −550368. −0.207596
\(372\) 0 0
\(373\) 1.64186e6i 0.611031i 0.952187 + 0.305515i \(0.0988287\pi\)
−0.952187 + 0.305515i \(0.901171\pi\)
\(374\) 1.80019e6 0.665487
\(375\) 0 0
\(376\) −942592. −0.343838
\(377\) 909544.i 0.329587i
\(378\) 0 0
\(379\) −4.00041e6 −1.43056 −0.715280 0.698838i \(-0.753701\pi\)
−0.715280 + 0.698838i \(0.753701\pi\)
\(380\) 968000. 176000.i 0.343887 0.0625250i
\(381\) 0 0
\(382\) 1.42578e6i 0.499911i
\(383\) 5.71586e6i 1.99106i −0.0944312 0.995531i \(-0.530103\pi\)
0.0944312 0.995531i \(-0.469897\pi\)
\(384\) 0 0
\(385\) −188160. 1.03488e6i −0.0646957 0.355826i
\(386\) 764992. 0.261330
\(387\) 608472.i 0.206521i
\(388\) 1.45709e6i 0.491368i
\(389\) 1.67611e6 0.561600 0.280800 0.959766i \(-0.409400\pi\)
0.280800 + 0.959766i \(0.409400\pi\)
\(390\) 0 0
\(391\) −1.64080e6 −0.542767
\(392\) 153664.i 0.0505076i
\(393\) 0 0
\(394\) −2.49990e6 −0.811302
\(395\) −4.39054e6 + 798280.i −1.41588 + 0.257432i
\(396\) −1.49299e6 −0.478431
\(397\) 945140.i 0.300968i −0.988612 0.150484i \(-0.951917\pi\)
0.988612 0.150484i \(-0.0480832\pi\)
\(398\) 989664.i 0.313170i
\(399\) 0 0
\(400\) 748800. 281600.i 0.234000 0.0880000i
\(401\) 552786. 0.171671 0.0858353 0.996309i \(-0.472644\pi\)
0.0858353 + 0.996309i \(0.472644\pi\)
\(402\) 0 0
\(403\) 20768.0i 0.00636989i
\(404\) 868896. 0.264859
\(405\) −3.24770e6 + 590490.i −0.983870 + 0.178885i
\(406\) 755384. 0.227433
\(407\) 5.08416e6i 1.52136i
\(408\) 0 0
\(409\) 1.04783e6 0.309729 0.154865 0.987936i \(-0.450506\pi\)
0.154865 + 0.987936i \(0.450506\pi\)
\(410\) −533520. 2.93436e6i −0.156744 0.862092i
\(411\) 0 0
\(412\) 2.17510e6i 0.631302i
\(413\) 31948.0i 0.00921655i
\(414\) 1.36080e6 0.390206
\(415\) −837120. 4.60416e6i −0.238598 1.31229i
\(416\) 241664. 0.0684666
\(417\) 0 0
\(418\) 1.68960e6i 0.472980i
\(419\) 6.88344e6 1.91545 0.957724 0.287690i \(-0.0928872\pi\)
0.957724 + 0.287690i \(0.0928872\pi\)
\(420\) 0 0
\(421\) −4.56311e6 −1.25475 −0.627373 0.778719i \(-0.715870\pi\)
−0.627373 + 0.778719i \(0.715870\pi\)
\(422\) 1.20394e6i 0.329096i
\(423\) 3.57890e6i 0.972521i
\(424\) −718848. −0.194188
\(425\) 1.28920e6 + 3.42810e6i 0.346217 + 0.920622i
\(426\) 0 0
\(427\) 73206.0i 0.0194302i
\(428\) 1.24019e6i 0.327250i
\(429\) 0 0
\(430\) 550880. 100160.i 0.143677 0.0261230i
\(431\) −2.49110e6 −0.645949 −0.322974 0.946408i \(-0.604683\pi\)
−0.322974 + 0.946408i \(0.604683\pi\)
\(432\) 0 0
\(433\) 4.42817e6i 1.13502i −0.823365 0.567512i \(-0.807906\pi\)
0.823365 0.567512i \(-0.192094\pi\)
\(434\) 17248.0 0.00439556
\(435\) 0 0
\(436\) −2.42742e6 −0.611546
\(437\) 1.54000e6i 0.385760i
\(438\) 0 0
\(439\) −635432. −0.157365 −0.0786824 0.996900i \(-0.525071\pi\)
−0.0786824 + 0.996900i \(0.525071\pi\)
\(440\) −245760. 1.35168e6i −0.0605173 0.332845i
\(441\) −583443. −0.142857
\(442\) 1.10637e6i 0.269367i
\(443\) 1.80612e6i 0.437258i 0.975808 + 0.218629i \(0.0701584\pi\)
−0.975808 + 0.218629i \(0.929842\pi\)
\(444\) 0 0
\(445\) −5.13095e6 + 932900.i −1.22828 + 0.223324i
\(446\) −408544. −0.0972527
\(447\) 0 0
\(448\) 200704.i 0.0472456i
\(449\) 3.90323e6 0.913710 0.456855 0.889541i \(-0.348976\pi\)
0.456855 + 0.889541i \(0.348976\pi\)
\(450\) −1.06920e6 2.84310e6i −0.248902 0.661852i
\(451\) −5.12179e6 −1.18572
\(452\) 3.76499e6i 0.866798i
\(453\) 0 0
\(454\) 2.38387e6 0.542804
\(455\) 636020. 115640.i 0.144026 0.0261866i
\(456\) 0 0
\(457\) 4.36264e6i 0.977145i −0.872523 0.488572i \(-0.837518\pi\)
0.872523 0.488572i \(-0.162482\pi\)
\(458\) 4.06170e6i 0.904783i
\(459\) 0 0
\(460\) 224000. + 1.23200e6i 0.0493575 + 0.271466i
\(461\) 846710. 0.185559 0.0927796 0.995687i \(-0.470425\pi\)
0.0927796 + 0.995687i \(0.470425\pi\)
\(462\) 0 0
\(463\) 7.37970e6i 1.59988i −0.600082 0.799938i \(-0.704866\pi\)
0.600082 0.799938i \(-0.295134\pi\)
\(464\) 986624. 0.212744
\(465\) 0 0
\(466\) −93536.0 −0.0199533
\(467\) 2.88296e6i 0.611711i 0.952078 + 0.305856i \(0.0989425\pi\)
−0.952078 + 0.305856i \(0.901058\pi\)
\(468\) 917568.i 0.193653i
\(469\) 893368. 0.187542
\(470\) −3.24016e6 + 589120.i −0.676584 + 0.123015i
\(471\) 0 0
\(472\) 41728.0i 0.00862130i
\(473\) 961536.i 0.197612i
\(474\) 0 0
\(475\) 3.21750e6 1.21000e6i 0.654311 0.246066i
\(476\) 918848. 0.185877
\(477\) 2.72938e6i 0.549247i
\(478\) 4.63374e6i 0.927603i
\(479\) 6.63322e6 1.32095 0.660473 0.750849i \(-0.270356\pi\)
0.660473 + 0.750849i \(0.270356\pi\)
\(480\) 0 0
\(481\) −3.12464e6 −0.615797
\(482\) 3.90996e6i 0.766575i
\(483\) 0 0
\(484\) 217520. 0.0422071
\(485\) 910680. + 5.00874e6i 0.175797 + 0.966883i
\(486\) 0 0
\(487\) 2.17919e6i 0.416364i 0.978090 + 0.208182i \(0.0667546\pi\)
−0.978090 + 0.208182i \(0.933245\pi\)
\(488\) 95616.0i 0.0181753i
\(489\) 0 0
\(490\) −96040.0 528220.i −0.0180702 0.0993859i
\(491\) 7.92307e6 1.48317 0.741583 0.670861i \(-0.234075\pi\)
0.741583 + 0.670861i \(0.234075\pi\)
\(492\) 0 0
\(493\) 4.51689e6i 0.836993i
\(494\) 1.03840e6 0.191446
\(495\) −5.13216e6 + 933120.i −0.941428 + 0.171169i
\(496\) 22528.0 0.00411167
\(497\) 1.38944e6i 0.252319i
\(498\) 0 0
\(499\) 2.68311e6 0.482378 0.241189 0.970478i \(-0.422463\pi\)
0.241189 + 0.970478i \(0.422463\pi\)
\(500\) 2.39800e6 1.43600e6i 0.428967 0.256879i
\(501\) 0 0
\(502\) 3.34280e6i 0.592040i
\(503\) 5.90502e6i 1.04064i −0.853971 0.520321i \(-0.825812\pi\)
0.853971 0.520321i \(-0.174188\pi\)
\(504\) −762048. −0.133631
\(505\) 2.98683e6 543060.i 0.521173 0.0947588i
\(506\) 2.15040e6 0.373373
\(507\) 0 0
\(508\) 5.46829e6i 0.940139i
\(509\) 2.57879e6 0.441186 0.220593 0.975366i \(-0.429201\pi\)
0.220593 + 0.975366i \(0.429201\pi\)
\(510\) 0 0
\(511\) 3.47371e6 0.588493
\(512\) 262144.i 0.0441942i
\(513\) 0 0
\(514\) −2.35109e6 −0.392519
\(515\) −1.35944e6 7.47692e6i −0.225861 1.24224i
\(516\) 0 0
\(517\) 5.65555e6i 0.930569i
\(518\) 2.59504e6i 0.424932i
\(519\) 0 0
\(520\) 830720. 151040.i 0.134724 0.0244953i
\(521\) 1.03587e7 1.67190 0.835950 0.548806i \(-0.184917\pi\)
0.835950 + 0.548806i \(0.184917\pi\)
\(522\) 3.74609e6i 0.601730i
\(523\) 1.02151e7i 1.63301i −0.577335 0.816507i \(-0.695908\pi\)
0.577335 0.816507i \(-0.304092\pi\)
\(524\) 4.93242e6 0.784750
\(525\) 0 0
\(526\) 597408. 0.0941470
\(527\) 103136.i 0.0161765i
\(528\) 0 0
\(529\) 4.47634e6 0.695479
\(530\) −2.47104e6 + 449280.i −0.382111 + 0.0694748i
\(531\) −158436. −0.0243847
\(532\) 862400.i 0.132108i
\(533\) 3.14777e6i 0.479938i
\(534\) 0 0
\(535\) −775120. 4.26316e6i −0.117080 0.643943i
\(536\) 1.16685e6 0.175429
\(537\) 0 0
\(538\) 8.03894e6i 1.19741i
\(539\) −921984. −0.136695
\(540\) 0 0
\(541\) −3.21546e6 −0.472335 −0.236167 0.971712i \(-0.575891\pi\)
−0.236167 + 0.971712i \(0.575891\pi\)
\(542\) 1.99680e6i 0.291969i
\(543\) 0 0
\(544\) 1.20013e6 0.173872
\(545\) −8.34427e6 + 1.51714e6i −1.20336 + 0.218793i
\(546\) 0 0
\(547\) 3.71041e6i 0.530217i −0.964219 0.265108i \(-0.914592\pi\)
0.964219 0.265108i \(-0.0854077\pi\)
\(548\) 5.57018e6i 0.792351i
\(549\) −363042. −0.0514074
\(550\) −1.68960e6 4.49280e6i −0.238165 0.633301i
\(551\) 4.23940e6 0.594875
\(552\) 0 0
\(553\) 3.91157e6i 0.543924i
\(554\) −4.12371e6 −0.570839
\(555\) 0 0
\(556\) −4.67782e6 −0.641737
\(557\) 4.69093e6i 0.640650i −0.947308 0.320325i \(-0.896208\pi\)
0.947308 0.320325i \(-0.103792\pi\)
\(558\) 85536.0i 0.0116296i
\(559\) 590944. 0.0799865
\(560\) −125440. 689920.i −0.0169031 0.0929670i
\(561\) 0 0
\(562\) 4.51394e6i 0.602858i
\(563\) 1.14387e7i 1.52092i −0.649386 0.760459i \(-0.724974\pi\)
0.649386 0.760459i \(-0.275026\pi\)
\(564\) 0 0
\(565\) 2.35312e6 + 1.29422e7i 0.310115 + 1.70563i
\(566\) −199808. −0.0262163
\(567\) 2.89340e6i 0.377964i
\(568\) 1.81478e6i 0.236023i
\(569\) −8.01383e6 −1.03767 −0.518835 0.854874i \(-0.673634\pi\)
−0.518835 + 0.854874i \(0.673634\pi\)
\(570\) 0 0
\(571\) −8.91239e6 −1.14394 −0.571971 0.820274i \(-0.693821\pi\)
−0.571971 + 0.820274i \(0.693821\pi\)
\(572\) 1.44998e6i 0.185299i
\(573\) 0 0
\(574\) −2.61425e6 −0.331182
\(575\) 1.54000e6 + 4.09500e6i 0.194246 + 0.516517i
\(576\) −995328. −0.125000
\(577\) 9.12994e6i 1.14164i −0.821076 0.570819i \(-0.806626\pi\)
0.821076 0.570819i \(-0.193374\pi\)
\(578\) 185092.i 0.0230445i
\(579\) 0 0
\(580\) 3.39152e6 616640.i 0.418624 0.0761135i
\(581\) −4.10189e6 −0.504131
\(582\) 0 0
\(583\) 4.31309e6i 0.525553i
\(584\) 4.53709e6 0.550484
\(585\) −573480. 3.15414e6i −0.0692833 0.381058i
\(586\) 345360. 0.0415459
\(587\) 1.62764e7i 1.94968i 0.222895 + 0.974842i \(0.428449\pi\)
−0.222895 + 0.974842i \(0.571551\pi\)
\(588\) 0 0
\(589\) 96800.0 0.0114971
\(590\) −26080.0 143440.i −0.00308445 0.0169645i
\(591\) 0 0
\(592\) 3.38944e6i 0.397488i
\(593\) 1.40344e7i 1.63892i −0.573134 0.819461i \(-0.694273\pi\)
0.573134 0.819461i \(-0.305727\pi\)
\(594\) 0 0
\(595\) 3.15854e6 574280.i 0.365758 0.0665015i
\(596\) 2.86090e6 0.329903
\(597\) 0 0
\(598\) 1.32160e6i 0.151129i
\(599\) −1.93710e6 −0.220590 −0.110295 0.993899i \(-0.535179\pi\)
−0.110295 + 0.993899i \(0.535179\pi\)
\(600\) 0 0
\(601\) −3.81246e6 −0.430545 −0.215273 0.976554i \(-0.569064\pi\)
−0.215273 + 0.976554i \(0.569064\pi\)
\(602\) 490784.i 0.0551949i
\(603\) 4.43038e6i 0.496189i
\(604\) 2.78227e6 0.310318
\(605\) 747725. 135950.i 0.0830526 0.0151005i
\(606\) 0 0
\(607\) 1.29742e7i 1.42925i 0.699508 + 0.714624i \(0.253402\pi\)
−0.699508 + 0.714624i \(0.746598\pi\)
\(608\) 1.12640e6i 0.123576i
\(609\) 0 0
\(610\) −59760.0 328680.i −0.00650258 0.0357642i
\(611\) −3.47581e6 −0.376663
\(612\) 4.55674e6i 0.491785i
\(613\) 1.28775e7i 1.38414i 0.721832 + 0.692069i \(0.243300\pi\)
−0.721832 + 0.692069i \(0.756700\pi\)
\(614\) −1.14632e7 −1.22712
\(615\) 0 0
\(616\) −1.20422e6 −0.127866
\(617\) 1.55320e7i 1.64253i −0.570544 0.821267i \(-0.693268\pi\)
0.570544 0.821267i \(-0.306732\pi\)
\(618\) 0 0
\(619\) −9.95199e6 −1.04396 −0.521979 0.852958i \(-0.674806\pi\)
−0.521979 + 0.852958i \(0.674806\pi\)
\(620\) 77440.0 14080.0i 0.00809070 0.00147104i
\(621\) 0 0
\(622\) 1.49962e6i 0.155419i
\(623\) 4.57121e6i 0.471858i
\(624\) 0 0
\(625\) 7.34562e6 6.43500e6i 0.752192 0.658944i
\(626\) −7.96587e6 −0.812452
\(627\) 0 0
\(628\) 3.65664e6i 0.369984i
\(629\) −1.55173e7 −1.56383
\(630\) −2.61954e6 + 476280.i −0.262950 + 0.0478091i
\(631\) −1.75371e7 −1.75341 −0.876706 0.481027i \(-0.840264\pi\)
−0.876706 + 0.481027i \(0.840264\pi\)
\(632\) 5.10899e6i 0.508795i
\(633\) 0 0
\(634\) −1.67123e6 −0.165125
\(635\) 3.41768e6 + 1.87972e7i 0.336354 + 1.84995i
\(636\) 0 0
\(637\) 566636.i 0.0553294i
\(638\) 5.91974e6i 0.575773i
\(639\) −6.89051e6 −0.667574
\(640\) −163840. 901120.i −0.0158114 0.0869626i
\(641\) 1.29073e7 1.24076 0.620382 0.784300i \(-0.286978\pi\)
0.620382 + 0.784300i \(0.286978\pi\)
\(642\) 0 0
\(643\) 4.99083e6i 0.476042i 0.971260 + 0.238021i \(0.0764988\pi\)
−0.971260 + 0.238021i \(0.923501\pi\)
\(644\) 1.09760e6 0.104287
\(645\) 0 0
\(646\) 5.15680e6 0.486182
\(647\) 951144.i 0.0893276i −0.999002 0.0446638i \(-0.985778\pi\)
0.999002 0.0446638i \(-0.0142217\pi\)
\(648\) 3.77914e6i 0.353553i
\(649\) −250368. −0.0233328
\(650\) 2.76120e6 1.03840e6i 0.256339 0.0964009i
\(651\) 0 0
\(652\) 9.75398e6i 0.898593i
\(653\) 1.62012e7i 1.48684i 0.668826 + 0.743419i \(0.266797\pi\)
−0.668826 + 0.743419i \(0.733203\pi\)
\(654\) 0 0
\(655\) 1.69552e7 3.08276e6i 1.54418 0.280761i
\(656\) −3.41453e6 −0.309793
\(657\) 1.72268e7i 1.55701i
\(658\) 2.88669e6i 0.259917i
\(659\) −6.37817e6 −0.572114 −0.286057 0.958213i \(-0.592345\pi\)
−0.286057 + 0.958213i \(0.592345\pi\)
\(660\) 0 0
\(661\) 1.01756e7 0.905850 0.452925 0.891549i \(-0.350380\pi\)
0.452925 + 0.891549i \(0.350380\pi\)
\(662\) 1.29062e7i 1.14460i
\(663\) 0 0
\(664\) −5.35757e6 −0.471571
\(665\) −539000. 2.96450e6i −0.0472645 0.259955i
\(666\) 1.28693e7 1.12426
\(667\) 5.39560e6i 0.469597i
\(668\) 1.03776e7i 0.899820i
\(669\) 0 0
\(670\) 4.01104e6 729280.i 0.345199 0.0627635i
\(671\) −573696. −0.0491899
\(672\) 0 0
\(673\) 1.87501e7i 1.59575i −0.602823 0.797875i \(-0.705957\pi\)
0.602823 0.797875i \(-0.294043\pi\)
\(674\) 1.18921e7 1.00834
\(675\) 0 0
\(676\) −5.04955e6 −0.424997
\(677\) 9.56143e6i 0.801772i 0.916128 + 0.400886i \(0.131298\pi\)
−0.916128 + 0.400886i \(0.868702\pi\)
\(678\) 0 0
\(679\) 4.46233e6 0.371439
\(680\) 4.12544e6 750080.i 0.342135 0.0622064i
\(681\) 0 0
\(682\) 135168.i 0.0111279i
\(683\) 1.20383e7i 0.987450i 0.869618 + 0.493725i \(0.164365\pi\)
−0.869618 + 0.493725i \(0.835635\pi\)
\(684\) −4.27680e6 −0.349525
\(685\) 3.48136e6 + 1.91475e7i 0.283480 + 1.55914i
\(686\) −470596. −0.0381802
\(687\) 0 0
\(688\) 641024.i 0.0516301i
\(689\) −2.65075e6 −0.212726
\(690\) 0 0
\(691\) 1.50689e7 1.20057 0.600284 0.799787i \(-0.295054\pi\)
0.600284 + 0.799787i \(0.295054\pi\)
\(692\) 2.04499e6i 0.162340i
\(693\) 4.57229e6i 0.361660i
\(694\) 2.33866e6 0.184318
\(695\) −1.60800e7 + 2.92364e6i −1.26277 + 0.229595i
\(696\) 0 0
\(697\) 1.56321e7i 1.21881i
\(698\) 1.45120e7i 1.12742i
\(699\) 0 0
\(700\) −862400. 2.29320e6i −0.0665217 0.176887i
\(701\) 5.00312e6 0.384544 0.192272 0.981342i \(-0.438414\pi\)
0.192272 + 0.981342i \(0.438414\pi\)
\(702\) 0 0
\(703\) 1.45640e7i 1.11146i
\(704\) −1.57286e6 −0.119608
\(705\) 0 0
\(706\) 6.51518e6 0.491943
\(707\) 2.66099e6i 0.200214i
\(708\) 0 0
\(709\) −6.39854e6 −0.478041 −0.239021 0.971015i \(-0.576826\pi\)
−0.239021 + 0.971015i \(0.576826\pi\)
\(710\) −1.13424e6 6.23832e6i −0.0844421 0.464432i
\(711\) 1.93982e7 1.43909
\(712\) 5.97056e6i 0.441382i
\(713\) 123200.i 0.00907584i
\(714\) 0 0
\(715\) −906240. 4.98432e6i −0.0662946 0.364620i
\(716\) 1.01953e7 0.743222
\(717\) 0 0
\(718\) 2.42421e6i 0.175493i
\(719\) 4.18314e6 0.301773 0.150886 0.988551i \(-0.451787\pi\)
0.150886 + 0.988551i \(0.451787\pi\)
\(720\) −3.42144e6 + 622080.i −0.245967 + 0.0447214i
\(721\) −6.66126e6 −0.477219
\(722\) 5.06440e6i 0.361564i
\(723\) 0 0
\(724\) −7.37994e6 −0.523246
\(725\) 1.12730e7 4.23940e6i 0.796512 0.299543i
\(726\) 0 0
\(727\) 6.29260e6i 0.441564i 0.975323 + 0.220782i \(0.0708610\pi\)
−0.975323 + 0.220782i \(0.929139\pi\)
\(728\) 740096.i 0.0517559i
\(729\) 1.43489e7 1.00000
\(730\) 1.55962e7 2.83568e6i 1.08321 0.196947i
\(731\) 2.93469e6 0.203127
\(732\) 0 0
\(733\) 6.62340e6i 0.455324i −0.973740 0.227662i \(-0.926892\pi\)
0.973740 0.227662i \(-0.0731082\pi\)
\(734\) −8.60010e6 −0.589201
\(735\) 0 0
\(736\) 1.43360e6 0.0975514
\(737\) 7.00109e6i 0.474785i
\(738\) 1.29645e7i 0.876226i
\(739\) −3.44169e6 −0.231825 −0.115913 0.993259i \(-0.536979\pi\)
−0.115913 + 0.993259i \(0.536979\pi\)
\(740\) 2.11840e6 + 1.16512e7i 0.142210 + 0.782152i
\(741\) 0 0
\(742\) 2.20147e6i 0.146792i
\(743\) 1.85406e7i 1.23212i −0.787699 0.616060i \(-0.788728\pi\)
0.787699 0.616060i \(-0.211272\pi\)
\(744\) 0 0
\(745\) 9.83433e6 1.78806e6i 0.649164 0.118030i
\(746\) 6.56742e6 0.432064
\(747\) 2.03420e7i 1.33381i
\(748\) 7.20077e6i 0.470571i
\(749\) −3.79809e6 −0.247378
\(750\) 0 0
\(751\) 3.22428e6 0.208609 0.104305 0.994545i \(-0.466738\pi\)
0.104305 + 0.994545i \(0.466738\pi\)
\(752\) 3.77037e6i 0.243130i
\(753\) 0 0
\(754\) 3.63818e6 0.233053
\(755\) 9.56406e6 1.73892e6i 0.610625 0.111023i
\(756\) 0 0
\(757\) 2.34007e6i 0.148419i 0.997243 + 0.0742095i \(0.0236434\pi\)
−0.997243 + 0.0742095i \(0.976357\pi\)
\(758\) 1.60016e7i 1.01156i
\(759\) 0 0
\(760\) −704000. 3.87200e6i −0.0442118 0.243165i
\(761\) −8.34242e6 −0.522192 −0.261096 0.965313i \(-0.584084\pi\)
−0.261096 + 0.965313i \(0.584084\pi\)
\(762\) 0 0
\(763\) 7.43399e6i 0.462286i
\(764\) −5.70310e6 −0.353491
\(765\) −2.84796e6 1.56638e7i −0.175946 0.967705i
\(766\) −2.28635e7 −1.40789
\(767\) 153872.i 0.00944433i
\(768\) 0 0
\(769\) −3.29971e6 −0.201215 −0.100607 0.994926i \(-0.532079\pi\)
−0.100607 + 0.994926i \(0.532079\pi\)
\(770\) −4.13952e6 + 752640.i −0.251607 + 0.0457468i
\(771\) 0 0
\(772\) 3.05997e6i 0.184788i
\(773\) 7.19867e6i 0.433315i 0.976248 + 0.216657i \(0.0695154\pi\)
−0.976248 + 0.216657i \(0.930485\pi\)
\(774\) −2.43389e6 −0.146032
\(775\) 257400. 96800.0i 0.0153941 0.00578923i
\(776\) 5.82835e6 0.347449
\(777\) 0 0
\(778\) 6.70442e6i 0.397112i
\(779\) −1.46718e7 −0.866243
\(780\) 0 0
\(781\) −1.08887e7 −0.638776
\(782\) 6.56320e6i 0.383795i
\(783\) 0 0
\(784\) −614656. −0.0357143
\(785\) 2.28540e6 + 1.25697e7i 0.132370 + 0.728033i
\(786\) 0 0
\(787\) 1.79424e7i 1.03262i 0.856400 + 0.516312i \(0.172696\pi\)
−0.856400 + 0.516312i \(0.827304\pi\)
\(788\) 9.99962e6i 0.573677i
\(789\) 0 0
\(790\) 3.19312e6 + 1.75622e7i 0.182032 + 1.00118i
\(791\) 1.15303e7 0.655238
\(792\) 5.97197e6i 0.338302i
\(793\) 352584.i 0.0199104i
\(794\) −3.78056e6 −0.212816
\(795\) 0 0
\(796\) −3.95866e6 −0.221445
\(797\) 1.53422e7i 0.855543i −0.903887 0.427771i \(-0.859299\pi\)
0.903887 0.427771i \(-0.140701\pi\)
\(798\) 0 0
\(799\) −1.72612e7 −0.956543
\(800\) −1.12640e6 2.99520e6i −0.0622254 0.165463i
\(801\) 2.26695e7 1.24842
\(802\) 2.21114e6i 0.121389i
\(803\) 2.72225e7i 1.48984i
\(804\) 0 0
\(805\) 3.77300e6 686000.i 0.205209 0.0373108i
\(806\) 83072.0 0.00450419
\(807\) 0 0
\(808\) 3.47558e6i 0.187283i
\(809\) −9.88141e6 −0.530821 −0.265410 0.964136i \(-0.585507\pi\)
−0.265410 + 0.964136i \(0.585507\pi\)
\(810\) 2.36196e6 + 1.29908e7i 0.126491 + 0.695701i
\(811\) −1.22149e7 −0.652137 −0.326069 0.945346i \(-0.605724\pi\)
−0.326069 + 0.945346i \(0.605724\pi\)
\(812\) 3.02154e6i 0.160819i
\(813\) 0 0
\(814\) 2.03366e7 1.07577
\(815\) −6.09624e6 3.35293e7i −0.321490 1.76820i
\(816\) 0 0
\(817\) 2.75440e6i 0.144368i
\(818\) 4.19132e6i 0.219012i
\(819\) −2.81005e6 −0.146388
\(820\) −1.17374e7 + 2.13408e6i −0.609591 + 0.110835i
\(821\) −2.12593e7 −1.10075 −0.550377 0.834916i \(-0.685516\pi\)
−0.550377 + 0.834916i \(0.685516\pi\)
\(822\) 0 0
\(823\) 1.76882e7i 0.910297i 0.890415 + 0.455149i \(0.150414\pi\)
−0.890415 + 0.455149i \(0.849586\pi\)
\(824\) −8.70042e6 −0.446398
\(825\) 0 0
\(826\) −127792. −0.00651709
\(827\) 2.48044e7i 1.26115i 0.776130 + 0.630573i \(0.217180\pi\)
−0.776130 + 0.630573i \(0.782820\pi\)
\(828\) 5.44320e6i 0.275917i
\(829\) 879386. 0.0444420 0.0222210 0.999753i \(-0.492926\pi\)
0.0222210 + 0.999753i \(0.492926\pi\)
\(830\) −1.84166e7 + 3.34848e6i −0.927930 + 0.168715i
\(831\) 0 0
\(832\) 966656.i 0.0484132i
\(833\) 2.81397e6i 0.140510i
\(834\) 0 0
\(835\) −6.48600e6 3.56730e7i −0.321929 1.77061i
\(836\) −6.75840e6 −0.334448
\(837\) 0 0
\(838\) 2.75337e7i 1.35443i
\(839\) −2.27773e7 −1.11711 −0.558556 0.829467i \(-0.688644\pi\)
−0.558556 + 0.829467i \(0.688644\pi\)
\(840\) 0 0
\(841\) −5.65783e6 −0.275842
\(842\) 1.82524e7i 0.887239i
\(843\) 0 0
\(844\) −4.81574e6 −0.232706
\(845\) −1.73578e7 + 3.15597e6i −0.836284 + 0.152052i
\(846\) 1.43156e7 0.687676
\(847\) 666155.i 0.0319056i
\(848\) 2.87539e6i 0.137312i
\(849\) 0 0
\(850\) 1.37124e7 5.15680e6i 0.650978 0.244812i
\(851\) −1.85360e7 −0.877389
\(852\) 0 0
\(853\) 1.13876e7i 0.535869i −0.963437 0.267934i \(-0.913659\pi\)
0.963437 0.267934i \(-0.0863410\pi\)
\(854\) −292824. −0.0137392
\(855\) −1.47015e7 + 2.67300e6i −0.687775 + 0.125050i
\(856\) −4.96077e6 −0.231401
\(857\) 3.74896e7i 1.74365i −0.489819 0.871824i \(-0.662937\pi\)
0.489819 0.871824i \(-0.337063\pi\)
\(858\) 0 0
\(859\) 3.49422e7 1.61572 0.807862 0.589372i \(-0.200625\pi\)
0.807862 + 0.589372i \(0.200625\pi\)
\(860\) −400640. 2.20352e6i −0.0184718 0.101595i
\(861\) 0 0
\(862\) 9.96440e6i 0.456755i
\(863\) 3.40644e7i 1.55695i 0.627678 + 0.778473i \(0.284006\pi\)
−0.627678 + 0.778473i \(0.715994\pi\)
\(864\) 0 0
\(865\) −1.27812e6 7.02966e6i −0.0580806 0.319443i
\(866\) −1.77127e7 −0.802583
\(867\) 0 0
\(868\) 68992.0i 0.00310813i
\(869\) 3.06540e7 1.37701
\(870\) 0 0
\(871\) 4.30275e6 0.192177
\(872\) 9.70970e6i 0.432429i
\(873\) 2.21295e7i 0.982735i
\(874\) 6.16000e6 0.272773
\(875\) −4.39775e6 7.34388e6i −0.194183 0.324269i
\(876\) 0 0
\(877\) 9.56406e6i 0.419897i −0.977712 0.209949i \(-0.932670\pi\)
0.977712 0.209949i \(-0.0673297\pi\)
\(878\) 2.54173e6i 0.111274i
\(879\) 0 0
\(880\) −5.40672e6 + 983040.i −0.235357 + 0.0427922i
\(881\) 2.43742e6 0.105801 0.0529006 0.998600i \(-0.483153\pi\)
0.0529006 + 0.998600i \(0.483153\pi\)
\(882\) 2.33377e6i 0.101015i
\(883\) 1.08423e6i 0.0467973i 0.999726 + 0.0233986i \(0.00744870\pi\)
−0.999726 + 0.0233986i \(0.992551\pi\)
\(884\) 4.42547e6 0.190471
\(885\) 0 0
\(886\) 7.22448e6 0.309188
\(887\) 1.35583e7i 0.578623i −0.957235 0.289312i \(-0.906574\pi\)
0.957235 0.289312i \(-0.0934264\pi\)
\(888\) 0 0
\(889\) 1.67466e7 0.710678
\(890\) 3.73160e6 + 2.05238e7i 0.157914 + 0.868526i
\(891\) 2.26748e7 0.956862
\(892\) 1.63418e6i 0.0687680i
\(893\) 1.62008e7i 0.679842i
\(894\) 0 0
\(895\) 3.50464e7 6.37208e6i 1.46247 0.265903i
\(896\) −802816. −0.0334077
\(897\) 0 0
\(898\) 1.56129e7i 0.646090i
\(899\) 339152. 0.0139957
\(900\) −1.13724e7 + 4.27680e6i −0.468000 + 0.176000i
\(901\) −1.31639e7 −0.540223
\(902\) 2.04872e7i 0.838428i
\(903\) 0 0
\(904\) 1.50600e7 0.612919
\(905\) −2.53685e7 + 4.61246e6i −1.02961 + 0.187202i
\(906\) 0 0
\(907\) 1.12138e7i 0.452619i −0.974055 0.226309i \(-0.927334\pi\)
0.974055 0.226309i \(-0.0726661\pi\)
\(908\) 9.53549e6i 0.383821i
\(909\) −1.31964e7 −0.529718
\(910\) −462560. 2.54408e6i −0.0185167 0.101842i
\(911\) −4.15211e7 −1.65757 −0.828787 0.559564i \(-0.810969\pi\)
−0.828787 + 0.559564i \(0.810969\pi\)
\(912\) 0 0
\(913\) 3.21454e7i 1.27627i
\(914\) −1.74506e7 −0.690946
\(915\) 0 0
\(916\) 1.62468e7 0.639778
\(917\) 1.51055e7i 0.593215i
\(918\) 0 0
\(919\) 4.13539e7 1.61520 0.807602 0.589728i \(-0.200765\pi\)
0.807602 + 0.589728i \(0.200765\pi\)
\(920\) 4.92800e6 896000.i 0.191956 0.0349010i
\(921\) 0 0
\(922\) 3.38684e6i 0.131210i
\(923\) 6.69202e6i 0.258555i
\(924\) 0 0
\(925\) 1.45640e7 + 3.87270e7i 0.559663 + 1.48819i
\(926\) −2.95188e7 −1.13128
\(927\) 3.30344e7i 1.26260i
\(928\) 3.94650e6i 0.150433i
\(929\) −945378. −0.0359390 −0.0179695 0.999839i \(-0.505720\pi\)
−0.0179695 + 0.999839i \(0.505720\pi\)
\(930\) 0 0
\(931\) −2.64110e6 −0.0998644
\(932\) 374144.i 0.0141091i
\(933\) 0 0
\(934\) 1.15318e7 0.432545
\(935\) −4.50048e6 2.47526e7i −0.168356 0.925961i
\(936\) −3.67027e6 −0.136933
\(937\) 4.77950e6i 0.177842i −0.996039 0.0889208i \(-0.971658\pi\)
0.996039 0.0889208i \(-0.0283418\pi\)
\(938\) 3.57347e6i 0.132612i
\(939\) 0 0
\(940\) 2.35648e6 + 1.29606e7i 0.0869850 + 0.478417i
\(941\) 2.87439e7 1.05821 0.529104 0.848557i \(-0.322528\pi\)
0.529104 + 0.848557i \(0.322528\pi\)
\(942\) 0 0
\(943\) 1.86732e7i 0.683816i
\(944\) −166912. −0.00609618
\(945\) 0 0
\(946\) −3.84614e6 −0.139733
\(947\) 1.01090e6i 0.0366298i 0.999832 + 0.0183149i \(0.00583015\pi\)
−0.999832 + 0.0183149i \(0.994170\pi\)
\(948\) 0 0
\(949\) 1.67305e7 0.603037
\(950\) −4.84000e6 1.28700e7i −0.173995 0.462668i
\(951\) 0 0
\(952\) 3.67539e6i 0.131435i
\(953\) 4.46529e7i 1.59264i 0.604877 + 0.796319i \(0.293222\pi\)
−0.604877 + 0.796319i \(0.706778\pi\)
\(954\) 1.09175e7 0.388376
\(955\) −1.96044e7 + 3.56444e6i −0.695578 + 0.126469i
\(956\) 1.85350e7 0.655915
\(957\) 0 0
\(958\) 2.65329e7i 0.934051i
\(959\) 1.70587e7 0.598961
\(960\) 0 0
\(961\) −2.86214e7 −0.999730
\(962\) 1.24986e7i 0.435434i
\(963\) 1.88354e7i 0.654500i
\(964\) 1.56398e7 0.542050
\(965\) −1.91248e6 1.05186e7i −0.0661117 0.363615i
\(966\) 0 0
\(967\) 1.83956e7i 0.632626i 0.948655 + 0.316313i \(0.102445\pi\)
−0.948655 + 0.316313i \(0.897555\pi\)
\(968\) 870080.i 0.0298449i
\(969\) 0 0
\(970\) 2.00350e7 3.64272e6i 0.683690 0.124307i
\(971\) 3.72647e7 1.26838 0.634191 0.773177i \(-0.281333\pi\)
0.634191 + 0.773177i \(0.281333\pi\)
\(972\) 0 0
\(973\) 1.43258e7i 0.485107i
\(974\) 8.71677e6 0.294414
\(975\) 0 0
\(976\) −382464. −0.0128519
\(977\) 8.11308e6i 0.271925i −0.990714 0.135963i \(-0.956587\pi\)
0.990714 0.135963i \(-0.0434127\pi\)
\(978\) 0 0
\(979\) 3.58234e7 1.19456
\(980\) −2.11288e6 + 384160.i −0.0702764 + 0.0127775i
\(981\) 3.68665e7 1.22309
\(982\) 3.16923e7i 1.04876i
\(983\) 2.83324e7i 0.935189i 0.883943 + 0.467594i \(0.154879\pi\)
−0.883943 + 0.467594i \(0.845121\pi\)
\(984\) 0 0
\(985\) 6.24976e6 + 3.43737e7i 0.205245 + 1.12885i
\(986\) 1.80676e7 0.591844
\(987\) 0 0
\(988\) 4.15360e6i 0.135373i
\(989\) 3.50560e6 0.113965
\(990\) 3.73248e6 + 2.05286e7i 0.121035 + 0.665690i
\(991\) −4.96125e7 −1.60475 −0.802374 0.596822i \(-0.796430\pi\)
−0.802374 + 0.596822i \(0.796430\pi\)
\(992\) 90112.0i 0.00290739i
\(993\) 0 0
\(994\) −5.55778e6 −0.178417
\(995\) −1.36079e7 + 2.47416e6i −0.435745 + 0.0792264i
\(996\) 0 0
\(997\) 3.47215e7i 1.10627i 0.833092 + 0.553135i \(0.186569\pi\)
−0.833092 + 0.553135i \(0.813431\pi\)
\(998\) 1.07324e7i 0.341093i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.6.c.a.29.1 2
3.2 odd 2 630.6.g.c.379.2 2
4.3 odd 2 560.6.g.a.449.2 2
5.2 odd 4 350.6.a.j.1.1 1
5.3 odd 4 350.6.a.c.1.1 1
5.4 even 2 inner 70.6.c.a.29.2 yes 2
15.14 odd 2 630.6.g.c.379.1 2
20.19 odd 2 560.6.g.a.449.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.c.a.29.1 2 1.1 even 1 trivial
70.6.c.a.29.2 yes 2 5.4 even 2 inner
350.6.a.c.1.1 1 5.3 odd 4
350.6.a.j.1.1 1 5.2 odd 4
560.6.g.a.449.1 2 20.19 odd 2
560.6.g.a.449.2 2 4.3 odd 2
630.6.g.c.379.1 2 15.14 odd 2
630.6.g.c.379.2 2 3.2 odd 2