Properties

Label 350.6.a.y.1.4
Level $350$
Weight $6$
Character 350.1
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 915x^{3} - 2649x^{2} + 122688x - 432576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(6.91835\) of defining polynomial
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +3.91835 q^{3} +16.0000 q^{4} -15.6734 q^{6} -49.0000 q^{7} -64.0000 q^{8} -227.647 q^{9} +337.260 q^{11} +62.6937 q^{12} -24.3276 q^{13} +196.000 q^{14} +256.000 q^{16} -1445.07 q^{17} +910.586 q^{18} -1197.44 q^{19} -191.999 q^{21} -1349.04 q^{22} +2247.26 q^{23} -250.775 q^{24} +97.3103 q^{26} -1844.16 q^{27} -784.000 q^{28} +1182.78 q^{29} +10458.6 q^{31} -1024.00 q^{32} +1321.50 q^{33} +5780.27 q^{34} -3642.34 q^{36} -825.831 q^{37} +4789.75 q^{38} -95.3241 q^{39} +2843.58 q^{41} +767.997 q^{42} -9617.84 q^{43} +5396.16 q^{44} -8989.03 q^{46} +10435.0 q^{47} +1003.10 q^{48} +2401.00 q^{49} -5662.28 q^{51} -389.241 q^{52} -33934.4 q^{53} +7376.64 q^{54} +3136.00 q^{56} -4691.99 q^{57} -4731.12 q^{58} +18857.8 q^{59} -26489.1 q^{61} -41834.6 q^{62} +11154.7 q^{63} +4096.00 q^{64} -5286.01 q^{66} -10647.5 q^{67} -23121.1 q^{68} +8805.55 q^{69} +47989.5 q^{71} +14569.4 q^{72} +37699.4 q^{73} +3303.32 q^{74} -19159.0 q^{76} -16525.7 q^{77} +381.296 q^{78} +62335.6 q^{79} +48092.0 q^{81} -11374.3 q^{82} +369.796 q^{83} -3071.99 q^{84} +38471.4 q^{86} +4634.56 q^{87} -21584.6 q^{88} +115397. q^{89} +1192.05 q^{91} +35956.1 q^{92} +40980.7 q^{93} -41739.9 q^{94} -4012.39 q^{96} -136508. q^{97} -9604.00 q^{98} -76776.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 20 q^{2} - 14 q^{3} + 80 q^{4} + 56 q^{6} - 245 q^{7} - 320 q^{8} + 655 q^{9} + 748 q^{11} - 224 q^{12} - 456 q^{13} + 980 q^{14} + 1280 q^{16} - 780 q^{17} - 2620 q^{18} - 256 q^{19} + 686 q^{21}+ \cdots + 575944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 3.91835 0.251363 0.125681 0.992071i \(-0.459888\pi\)
0.125681 + 0.992071i \(0.459888\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −15.6734 −0.177740
\(7\) −49.0000 −0.377964
\(8\) −64.0000 −0.353553
\(9\) −227.647 −0.936817
\(10\) 0 0
\(11\) 337.260 0.840394 0.420197 0.907433i \(-0.361961\pi\)
0.420197 + 0.907433i \(0.361961\pi\)
\(12\) 62.6937 0.125681
\(13\) −24.3276 −0.0399246 −0.0199623 0.999801i \(-0.506355\pi\)
−0.0199623 + 0.999801i \(0.506355\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1445.07 −1.21273 −0.606367 0.795185i \(-0.707374\pi\)
−0.606367 + 0.795185i \(0.707374\pi\)
\(18\) 910.586 0.662430
\(19\) −1197.44 −0.760973 −0.380486 0.924786i \(-0.624243\pi\)
−0.380486 + 0.924786i \(0.624243\pi\)
\(20\) 0 0
\(21\) −191.999 −0.0950061
\(22\) −1349.04 −0.594248
\(23\) 2247.26 0.885795 0.442898 0.896572i \(-0.353950\pi\)
0.442898 + 0.896572i \(0.353950\pi\)
\(24\) −250.775 −0.0888701
\(25\) 0 0
\(26\) 97.3103 0.0282310
\(27\) −1844.16 −0.486843
\(28\) −784.000 −0.188982
\(29\) 1182.78 0.261162 0.130581 0.991438i \(-0.458316\pi\)
0.130581 + 0.991438i \(0.458316\pi\)
\(30\) 0 0
\(31\) 10458.6 1.95466 0.977330 0.211721i \(-0.0679068\pi\)
0.977330 + 0.211721i \(0.0679068\pi\)
\(32\) −1024.00 −0.176777
\(33\) 1321.50 0.211243
\(34\) 5780.27 0.857533
\(35\) 0 0
\(36\) −3642.34 −0.468408
\(37\) −825.831 −0.0991715 −0.0495857 0.998770i \(-0.515790\pi\)
−0.0495857 + 0.998770i \(0.515790\pi\)
\(38\) 4789.75 0.538089
\(39\) −95.3241 −0.0100355
\(40\) 0 0
\(41\) 2843.58 0.264183 0.132092 0.991238i \(-0.457831\pi\)
0.132092 + 0.991238i \(0.457831\pi\)
\(42\) 767.997 0.0671795
\(43\) −9617.84 −0.793244 −0.396622 0.917982i \(-0.629818\pi\)
−0.396622 + 0.917982i \(0.629818\pi\)
\(44\) 5396.16 0.420197
\(45\) 0 0
\(46\) −8989.03 −0.626352
\(47\) 10435.0 0.689043 0.344522 0.938778i \(-0.388041\pi\)
0.344522 + 0.938778i \(0.388041\pi\)
\(48\) 1003.10 0.0628406
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −5662.28 −0.304836
\(52\) −389.241 −0.0199623
\(53\) −33934.4 −1.65940 −0.829698 0.558212i \(-0.811488\pi\)
−0.829698 + 0.558212i \(0.811488\pi\)
\(54\) 7376.64 0.344250
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) −4691.99 −0.191280
\(58\) −4731.12 −0.184669
\(59\) 18857.8 0.705281 0.352640 0.935759i \(-0.385284\pi\)
0.352640 + 0.935759i \(0.385284\pi\)
\(60\) 0 0
\(61\) −26489.1 −0.911470 −0.455735 0.890115i \(-0.650624\pi\)
−0.455735 + 0.890115i \(0.650624\pi\)
\(62\) −41834.6 −1.38215
\(63\) 11154.7 0.354083
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −5286.01 −0.149372
\(67\) −10647.5 −0.289774 −0.144887 0.989448i \(-0.546282\pi\)
−0.144887 + 0.989448i \(0.546282\pi\)
\(68\) −23121.1 −0.606367
\(69\) 8805.55 0.222656
\(70\) 0 0
\(71\) 47989.5 1.12980 0.564899 0.825160i \(-0.308915\pi\)
0.564899 + 0.825160i \(0.308915\pi\)
\(72\) 14569.4 0.331215
\(73\) 37699.4 0.827993 0.413997 0.910278i \(-0.364132\pi\)
0.413997 + 0.910278i \(0.364132\pi\)
\(74\) 3303.32 0.0701248
\(75\) 0 0
\(76\) −19159.0 −0.380486
\(77\) −16525.7 −0.317639
\(78\) 381.296 0.00709620
\(79\) 62335.6 1.12375 0.561874 0.827223i \(-0.310081\pi\)
0.561874 + 0.827223i \(0.310081\pi\)
\(80\) 0 0
\(81\) 48092.0 0.814443
\(82\) −11374.3 −0.186806
\(83\) 369.796 0.00589205 0.00294603 0.999996i \(-0.499062\pi\)
0.00294603 + 0.999996i \(0.499062\pi\)
\(84\) −3071.99 −0.0475031
\(85\) 0 0
\(86\) 38471.4 0.560908
\(87\) 4634.56 0.0656463
\(88\) −21584.6 −0.297124
\(89\) 115397. 1.54425 0.772126 0.635469i \(-0.219193\pi\)
0.772126 + 0.635469i \(0.219193\pi\)
\(90\) 0 0
\(91\) 1192.05 0.0150901
\(92\) 35956.1 0.442898
\(93\) 40980.7 0.491328
\(94\) −41739.9 −0.487227
\(95\) 0 0
\(96\) −4012.39 −0.0444350
\(97\) −136508. −1.47309 −0.736544 0.676390i \(-0.763543\pi\)
−0.736544 + 0.676390i \(0.763543\pi\)
\(98\) −9604.00 −0.101015
\(99\) −76776.0 −0.787295
\(100\) 0 0
\(101\) 55976.1 0.546008 0.273004 0.962013i \(-0.411983\pi\)
0.273004 + 0.962013i \(0.411983\pi\)
\(102\) 22649.1 0.215552
\(103\) 165176. 1.53410 0.767052 0.641585i \(-0.221723\pi\)
0.767052 + 0.641585i \(0.221723\pi\)
\(104\) 1556.97 0.0141155
\(105\) 0 0
\(106\) 135737. 1.17337
\(107\) 99801.0 0.842705 0.421352 0.906897i \(-0.361556\pi\)
0.421352 + 0.906897i \(0.361556\pi\)
\(108\) −29506.6 −0.243422
\(109\) 225386. 1.81703 0.908514 0.417855i \(-0.137218\pi\)
0.908514 + 0.417855i \(0.137218\pi\)
\(110\) 0 0
\(111\) −3235.90 −0.0249280
\(112\) −12544.0 −0.0944911
\(113\) −104503. −0.769895 −0.384948 0.922938i \(-0.625781\pi\)
−0.384948 + 0.922938i \(0.625781\pi\)
\(114\) 18768.0 0.135255
\(115\) 0 0
\(116\) 18924.5 0.130581
\(117\) 5538.09 0.0374020
\(118\) −75431.4 −0.498709
\(119\) 70808.3 0.458371
\(120\) 0 0
\(121\) −47306.9 −0.293738
\(122\) 105956. 0.644507
\(123\) 11142.1 0.0664058
\(124\) 167338. 0.977330
\(125\) 0 0
\(126\) −44618.7 −0.250375
\(127\) 245433. 1.35028 0.675141 0.737689i \(-0.264083\pi\)
0.675141 + 0.737689i \(0.264083\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −37686.1 −0.199392
\(130\) 0 0
\(131\) −101703. −0.517792 −0.258896 0.965905i \(-0.583359\pi\)
−0.258896 + 0.965905i \(0.583359\pi\)
\(132\) 21144.0 0.105622
\(133\) 58674.5 0.287621
\(134\) 42589.9 0.204901
\(135\) 0 0
\(136\) 92484.3 0.428766
\(137\) 63654.7 0.289754 0.144877 0.989450i \(-0.453721\pi\)
0.144877 + 0.989450i \(0.453721\pi\)
\(138\) −35222.2 −0.157441
\(139\) 277917. 1.22005 0.610025 0.792382i \(-0.291159\pi\)
0.610025 + 0.792382i \(0.291159\pi\)
\(140\) 0 0
\(141\) 40887.9 0.173200
\(142\) −191958. −0.798888
\(143\) −8204.71 −0.0335524
\(144\) −58277.5 −0.234204
\(145\) 0 0
\(146\) −150797. −0.585480
\(147\) 9407.97 0.0359089
\(148\) −13213.3 −0.0495857
\(149\) 456393. 1.68412 0.842060 0.539384i \(-0.181343\pi\)
0.842060 + 0.539384i \(0.181343\pi\)
\(150\) 0 0
\(151\) 318099. 1.13532 0.567662 0.823262i \(-0.307848\pi\)
0.567662 + 0.823262i \(0.307848\pi\)
\(152\) 76636.1 0.269045
\(153\) 328964. 1.13611
\(154\) 66102.9 0.224605
\(155\) 0 0
\(156\) −1525.19 −0.00501777
\(157\) 392920. 1.27220 0.636099 0.771607i \(-0.280547\pi\)
0.636099 + 0.771607i \(0.280547\pi\)
\(158\) −249342. −0.794609
\(159\) −132967. −0.417110
\(160\) 0 0
\(161\) −110116. −0.334799
\(162\) −192368. −0.575898
\(163\) −56353.1 −0.166130 −0.0830652 0.996544i \(-0.526471\pi\)
−0.0830652 + 0.996544i \(0.526471\pi\)
\(164\) 45497.2 0.132092
\(165\) 0 0
\(166\) −1479.18 −0.00416631
\(167\) 312776. 0.867845 0.433922 0.900950i \(-0.357129\pi\)
0.433922 + 0.900950i \(0.357129\pi\)
\(168\) 12288.0 0.0335897
\(169\) −370701. −0.998406
\(170\) 0 0
\(171\) 272593. 0.712892
\(172\) −153885. −0.396622
\(173\) 307297. 0.780626 0.390313 0.920682i \(-0.372367\pi\)
0.390313 + 0.920682i \(0.372367\pi\)
\(174\) −18538.2 −0.0464189
\(175\) 0 0
\(176\) 86338.5 0.210098
\(177\) 73891.7 0.177281
\(178\) −461587. −1.09195
\(179\) −804792. −1.87738 −0.938688 0.344768i \(-0.887958\pi\)
−0.938688 + 0.344768i \(0.887958\pi\)
\(180\) 0 0
\(181\) −518678. −1.17680 −0.588399 0.808571i \(-0.700241\pi\)
−0.588399 + 0.808571i \(0.700241\pi\)
\(182\) −4768.21 −0.0106703
\(183\) −103794. −0.229109
\(184\) −143825. −0.313176
\(185\) 0 0
\(186\) −163923. −0.347422
\(187\) −487363. −1.01917
\(188\) 166960. 0.344522
\(189\) 90363.8 0.184009
\(190\) 0 0
\(191\) −204063. −0.404744 −0.202372 0.979309i \(-0.564865\pi\)
−0.202372 + 0.979309i \(0.564865\pi\)
\(192\) 16049.6 0.0314203
\(193\) 873491. 1.68797 0.843986 0.536365i \(-0.180203\pi\)
0.843986 + 0.536365i \(0.180203\pi\)
\(194\) 546032. 1.04163
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −114332. −0.209895 −0.104948 0.994478i \(-0.533468\pi\)
−0.104948 + 0.994478i \(0.533468\pi\)
\(198\) 307104. 0.556702
\(199\) −262148. −0.469261 −0.234630 0.972085i \(-0.575388\pi\)
−0.234630 + 0.972085i \(0.575388\pi\)
\(200\) 0 0
\(201\) −41720.6 −0.0728384
\(202\) −223904. −0.386086
\(203\) −57956.3 −0.0987098
\(204\) −90596.5 −0.152418
\(205\) 0 0
\(206\) −660705. −1.08478
\(207\) −511581. −0.829828
\(208\) −6227.86 −0.00998115
\(209\) −403848. −0.639517
\(210\) 0 0
\(211\) 878765. 1.35883 0.679417 0.733752i \(-0.262233\pi\)
0.679417 + 0.733752i \(0.262233\pi\)
\(212\) −542950. −0.829698
\(213\) 188040. 0.283989
\(214\) −399204. −0.595882
\(215\) 0 0
\(216\) 118026. 0.172125
\(217\) −512474. −0.738792
\(218\) −901546. −1.28483
\(219\) 147719. 0.208127
\(220\) 0 0
\(221\) 35155.0 0.0484179
\(222\) 12943.6 0.0176268
\(223\) −540539. −0.727888 −0.363944 0.931421i \(-0.618570\pi\)
−0.363944 + 0.931421i \(0.618570\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 418011. 0.544398
\(227\) 135234. 0.174189 0.0870947 0.996200i \(-0.472242\pi\)
0.0870947 + 0.996200i \(0.472242\pi\)
\(228\) −75071.8 −0.0956400
\(229\) −118878. −0.149800 −0.0749000 0.997191i \(-0.523864\pi\)
−0.0749000 + 0.997191i \(0.523864\pi\)
\(230\) 0 0
\(231\) −64753.6 −0.0798425
\(232\) −75698.0 −0.0923346
\(233\) −659512. −0.795854 −0.397927 0.917417i \(-0.630270\pi\)
−0.397927 + 0.917417i \(0.630270\pi\)
\(234\) −22152.4 −0.0264472
\(235\) 0 0
\(236\) 301726. 0.352640
\(237\) 244253. 0.282468
\(238\) −283233. −0.324117
\(239\) 467946. 0.529908 0.264954 0.964261i \(-0.414643\pi\)
0.264954 + 0.964261i \(0.414643\pi\)
\(240\) 0 0
\(241\) −215104. −0.238564 −0.119282 0.992860i \(-0.538059\pi\)
−0.119282 + 0.992860i \(0.538059\pi\)
\(242\) 189228. 0.207704
\(243\) 636572. 0.691564
\(244\) −423826. −0.455735
\(245\) 0 0
\(246\) −44568.6 −0.0469560
\(247\) 29130.8 0.0303815
\(248\) −669353. −0.691077
\(249\) 1448.99 0.00148104
\(250\) 0 0
\(251\) −874948. −0.876593 −0.438297 0.898830i \(-0.644418\pi\)
−0.438297 + 0.898830i \(0.644418\pi\)
\(252\) 178475. 0.177042
\(253\) 757910. 0.744417
\(254\) −981734. −0.954793
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 227843. 0.215180 0.107590 0.994195i \(-0.465687\pi\)
0.107590 + 0.994195i \(0.465687\pi\)
\(258\) 150744. 0.140991
\(259\) 40465.7 0.0374833
\(260\) 0 0
\(261\) −269256. −0.244661
\(262\) 406812. 0.366134
\(263\) −1.56138e6 −1.39194 −0.695968 0.718073i \(-0.745024\pi\)
−0.695968 + 0.718073i \(0.745024\pi\)
\(264\) −84576.2 −0.0746858
\(265\) 0 0
\(266\) −234698. −0.203379
\(267\) 452165. 0.388167
\(268\) −170360. −0.144887
\(269\) −1.58500e6 −1.33551 −0.667756 0.744380i \(-0.732745\pi\)
−0.667756 + 0.744380i \(0.732745\pi\)
\(270\) 0 0
\(271\) 477067. 0.394599 0.197300 0.980343i \(-0.436783\pi\)
0.197300 + 0.980343i \(0.436783\pi\)
\(272\) −369937. −0.303184
\(273\) 4670.88 0.00379308
\(274\) −254619. −0.204887
\(275\) 0 0
\(276\) 140889. 0.111328
\(277\) 138751. 0.108652 0.0543258 0.998523i \(-0.482699\pi\)
0.0543258 + 0.998523i \(0.482699\pi\)
\(278\) −1.11167e6 −0.862706
\(279\) −2.38087e6 −1.83116
\(280\) 0 0
\(281\) −2.51115e6 −1.89717 −0.948585 0.316522i \(-0.897485\pi\)
−0.948585 + 0.316522i \(0.897485\pi\)
\(282\) −163552. −0.122471
\(283\) 2.29079e6 1.70027 0.850136 0.526563i \(-0.176520\pi\)
0.850136 + 0.526563i \(0.176520\pi\)
\(284\) 767833. 0.564899
\(285\) 0 0
\(286\) 32818.9 0.0237251
\(287\) −139335. −0.0998519
\(288\) 233110. 0.165607
\(289\) 668362. 0.470725
\(290\) 0 0
\(291\) −534886. −0.370279
\(292\) 603190. 0.413997
\(293\) 446400. 0.303777 0.151888 0.988398i \(-0.451465\pi\)
0.151888 + 0.988398i \(0.451465\pi\)
\(294\) −37631.9 −0.0253914
\(295\) 0 0
\(296\) 52853.2 0.0350624
\(297\) −621961. −0.409140
\(298\) −1.82557e6 −1.19085
\(299\) −54670.4 −0.0353650
\(300\) 0 0
\(301\) 471274. 0.299818
\(302\) −1.27240e6 −0.802795
\(303\) 219334. 0.137246
\(304\) −306544. −0.190243
\(305\) 0 0
\(306\) −1.31586e6 −0.803351
\(307\) 132928. 0.0804956 0.0402478 0.999190i \(-0.487185\pi\)
0.0402478 + 0.999190i \(0.487185\pi\)
\(308\) −264412. −0.158819
\(309\) 647219. 0.385616
\(310\) 0 0
\(311\) −1.02347e6 −0.600029 −0.300015 0.953935i \(-0.596992\pi\)
−0.300015 + 0.953935i \(0.596992\pi\)
\(312\) 6100.74 0.00354810
\(313\) 2.03277e6 1.17281 0.586404 0.810018i \(-0.300543\pi\)
0.586404 + 0.810018i \(0.300543\pi\)
\(314\) −1.57168e6 −0.899580
\(315\) 0 0
\(316\) 997370. 0.561874
\(317\) 2.42685e6 1.35642 0.678212 0.734866i \(-0.262755\pi\)
0.678212 + 0.734866i \(0.262755\pi\)
\(318\) 531868. 0.294941
\(319\) 398904. 0.219479
\(320\) 0 0
\(321\) 391056. 0.211824
\(322\) 440463. 0.236739
\(323\) 1.73038e6 0.922858
\(324\) 769472. 0.407221
\(325\) 0 0
\(326\) 225412. 0.117472
\(327\) 883144. 0.456733
\(328\) −181989. −0.0934029
\(329\) −511314. −0.260434
\(330\) 0 0
\(331\) 552981. 0.277422 0.138711 0.990333i \(-0.455704\pi\)
0.138711 + 0.990333i \(0.455704\pi\)
\(332\) 5916.73 0.00294603
\(333\) 187998. 0.0929055
\(334\) −1.25110e6 −0.613659
\(335\) 0 0
\(336\) −49151.8 −0.0237515
\(337\) −202099. −0.0969371 −0.0484685 0.998825i \(-0.515434\pi\)
−0.0484685 + 0.998825i \(0.515434\pi\)
\(338\) 1.48280e6 0.705980
\(339\) −409479. −0.193523
\(340\) 0 0
\(341\) 3.52728e6 1.64268
\(342\) −1.09037e6 −0.504091
\(343\) −117649. −0.0539949
\(344\) 615542. 0.280454
\(345\) 0 0
\(346\) −1.22919e6 −0.551986
\(347\) −1.04617e6 −0.466419 −0.233210 0.972426i \(-0.574923\pi\)
−0.233210 + 0.972426i \(0.574923\pi\)
\(348\) 74152.9 0.0328231
\(349\) −2.72359e6 −1.19696 −0.598479 0.801139i \(-0.704228\pi\)
−0.598479 + 0.801139i \(0.704228\pi\)
\(350\) 0 0
\(351\) 44863.9 0.0194370
\(352\) −345354. −0.148562
\(353\) −1.73711e6 −0.741979 −0.370989 0.928637i \(-0.620981\pi\)
−0.370989 + 0.928637i \(0.620981\pi\)
\(354\) −295567. −0.125357
\(355\) 0 0
\(356\) 1.84635e6 0.772126
\(357\) 277452. 0.115217
\(358\) 3.21917e6 1.32751
\(359\) 1.68699e6 0.690837 0.345419 0.938449i \(-0.387737\pi\)
0.345419 + 0.938449i \(0.387737\pi\)
\(360\) 0 0
\(361\) −1.04224e6 −0.420920
\(362\) 2.07471e6 0.832121
\(363\) −185365. −0.0738348
\(364\) 19072.8 0.00754504
\(365\) 0 0
\(366\) 415175. 0.162005
\(367\) −3.25743e6 −1.26244 −0.631219 0.775605i \(-0.717445\pi\)
−0.631219 + 0.775605i \(0.717445\pi\)
\(368\) 575298. 0.221449
\(369\) −647330. −0.247491
\(370\) 0 0
\(371\) 1.66278e6 0.627193
\(372\) 655691. 0.245664
\(373\) −3.36622e6 −1.25277 −0.626384 0.779514i \(-0.715466\pi\)
−0.626384 + 0.779514i \(0.715466\pi\)
\(374\) 1.94945e6 0.720665
\(375\) 0 0
\(376\) −667838. −0.243614
\(377\) −28774.2 −0.0104268
\(378\) −361455. −0.130114
\(379\) 4.98342e6 1.78209 0.891044 0.453917i \(-0.149974\pi\)
0.891044 + 0.453917i \(0.149974\pi\)
\(380\) 0 0
\(381\) 961695. 0.339410
\(382\) 816252. 0.286197
\(383\) 1.14076e6 0.397374 0.198687 0.980063i \(-0.436332\pi\)
0.198687 + 0.980063i \(0.436332\pi\)
\(384\) −64198.3 −0.0222175
\(385\) 0 0
\(386\) −3.49396e6 −1.19358
\(387\) 2.18947e6 0.743124
\(388\) −2.18413e6 −0.736544
\(389\) −4.58469e6 −1.53616 −0.768080 0.640354i \(-0.778788\pi\)
−0.768080 + 0.640354i \(0.778788\pi\)
\(390\) 0 0
\(391\) −3.24744e6 −1.07423
\(392\) −153664. −0.0505076
\(393\) −398508. −0.130154
\(394\) 457329. 0.148418
\(395\) 0 0
\(396\) −1.22842e6 −0.393647
\(397\) 4.12709e6 1.31422 0.657110 0.753795i \(-0.271779\pi\)
0.657110 + 0.753795i \(0.271779\pi\)
\(398\) 1.04859e6 0.331817
\(399\) 229907. 0.0722971
\(400\) 0 0
\(401\) 2.33931e6 0.726487 0.363243 0.931694i \(-0.381669\pi\)
0.363243 + 0.931694i \(0.381669\pi\)
\(402\) 166882. 0.0515045
\(403\) −254434. −0.0780390
\(404\) 895617. 0.273004
\(405\) 0 0
\(406\) 231825. 0.0697984
\(407\) −278520. −0.0833431
\(408\) 362386. 0.107776
\(409\) 5.04134e6 1.49018 0.745088 0.666966i \(-0.232408\pi\)
0.745088 + 0.666966i \(0.232408\pi\)
\(410\) 0 0
\(411\) 249422. 0.0728333
\(412\) 2.64282e6 0.767052
\(413\) −924034. −0.266571
\(414\) 2.04632e6 0.586777
\(415\) 0 0
\(416\) 24911.4 0.00705774
\(417\) 1.08898e6 0.306675
\(418\) 1.61539e6 0.452207
\(419\) 66941.5 0.0186277 0.00931387 0.999957i \(-0.497035\pi\)
0.00931387 + 0.999957i \(0.497035\pi\)
\(420\) 0 0
\(421\) 670296. 0.184315 0.0921576 0.995744i \(-0.470624\pi\)
0.0921576 + 0.995744i \(0.470624\pi\)
\(422\) −3.51506e6 −0.960841
\(423\) −2.37548e6 −0.645508
\(424\) 2.17180e6 0.586685
\(425\) 0 0
\(426\) −752160. −0.200810
\(427\) 1.29797e6 0.344503
\(428\) 1.59682e6 0.421352
\(429\) −32149.0 −0.00843381
\(430\) 0 0
\(431\) −365337. −0.0947329 −0.0473664 0.998878i \(-0.515083\pi\)
−0.0473664 + 0.998878i \(0.515083\pi\)
\(432\) −472105. −0.121711
\(433\) −1.30294e6 −0.333967 −0.166984 0.985960i \(-0.553403\pi\)
−0.166984 + 0.985960i \(0.553403\pi\)
\(434\) 2.04989e6 0.522405
\(435\) 0 0
\(436\) 3.60618e6 0.908514
\(437\) −2.69095e6 −0.674066
\(438\) −590878. −0.147168
\(439\) 5.16315e6 1.27865 0.639327 0.768935i \(-0.279213\pi\)
0.639327 + 0.768935i \(0.279213\pi\)
\(440\) 0 0
\(441\) −546579. −0.133831
\(442\) −140620. −0.0342367
\(443\) −7.64624e6 −1.85114 −0.925569 0.378579i \(-0.876413\pi\)
−0.925569 + 0.378579i \(0.876413\pi\)
\(444\) −51774.4 −0.0124640
\(445\) 0 0
\(446\) 2.16216e6 0.514695
\(447\) 1.78831e6 0.423325
\(448\) −200704. −0.0472456
\(449\) 4.83346e6 1.13147 0.565734 0.824588i \(-0.308593\pi\)
0.565734 + 0.824588i \(0.308593\pi\)
\(450\) 0 0
\(451\) 959024. 0.222018
\(452\) −1.67204e6 −0.384948
\(453\) 1.24642e6 0.285378
\(454\) −540936. −0.123170
\(455\) 0 0
\(456\) 300287. 0.0676277
\(457\) −3.51870e6 −0.788119 −0.394060 0.919085i \(-0.628930\pi\)
−0.394060 + 0.919085i \(0.628930\pi\)
\(458\) 475511. 0.105925
\(459\) 2.66493e6 0.590411
\(460\) 0 0
\(461\) 3.55938e6 0.780049 0.390024 0.920805i \(-0.372467\pi\)
0.390024 + 0.920805i \(0.372467\pi\)
\(462\) 259015. 0.0564572
\(463\) 4.39317e6 0.952413 0.476207 0.879333i \(-0.342011\pi\)
0.476207 + 0.879333i \(0.342011\pi\)
\(464\) 302792. 0.0652904
\(465\) 0 0
\(466\) 2.63805e6 0.562754
\(467\) −7.46723e6 −1.58441 −0.792205 0.610256i \(-0.791067\pi\)
−0.792205 + 0.610256i \(0.791067\pi\)
\(468\) 88609.4 0.0187010
\(469\) 521727. 0.109524
\(470\) 0 0
\(471\) 1.53960e6 0.319783
\(472\) −1.20690e6 −0.249354
\(473\) −3.24371e6 −0.666637
\(474\) −977012. −0.199735
\(475\) 0 0
\(476\) 1.13293e6 0.229185
\(477\) 7.72504e6 1.55455
\(478\) −1.87178e6 −0.374702
\(479\) −5.07249e6 −1.01014 −0.505070 0.863078i \(-0.668534\pi\)
−0.505070 + 0.863078i \(0.668534\pi\)
\(480\) 0 0
\(481\) 20090.5 0.00395938
\(482\) 860414. 0.168690
\(483\) −431472. −0.0841560
\(484\) −756910. −0.146869
\(485\) 0 0
\(486\) −2.54629e6 −0.489009
\(487\) −8.40987e6 −1.60682 −0.803409 0.595428i \(-0.796983\pi\)
−0.803409 + 0.595428i \(0.796983\pi\)
\(488\) 1.69530e6 0.322253
\(489\) −220811. −0.0417589
\(490\) 0 0
\(491\) −1.07319e6 −0.200896 −0.100448 0.994942i \(-0.532028\pi\)
−0.100448 + 0.994942i \(0.532028\pi\)
\(492\) 178274. 0.0332029
\(493\) −1.70920e6 −0.316720
\(494\) −116523. −0.0214830
\(495\) 0 0
\(496\) 2.67741e6 0.488665
\(497\) −2.35149e6 −0.427023
\(498\) −5795.96 −0.00104725
\(499\) 4.34278e6 0.780758 0.390379 0.920654i \(-0.372344\pi\)
0.390379 + 0.920654i \(0.372344\pi\)
\(500\) 0 0
\(501\) 1.22557e6 0.218144
\(502\) 3.49979e6 0.619845
\(503\) 1.03452e6 0.182313 0.0911564 0.995837i \(-0.470944\pi\)
0.0911564 + 0.995837i \(0.470944\pi\)
\(504\) −713899. −0.125187
\(505\) 0 0
\(506\) −3.03164e6 −0.526382
\(507\) −1.45254e6 −0.250962
\(508\) 3.92693e6 0.675141
\(509\) −1.12485e6 −0.192442 −0.0962208 0.995360i \(-0.530675\pi\)
−0.0962208 + 0.995360i \(0.530675\pi\)
\(510\) 0 0
\(511\) −1.84727e6 −0.312952
\(512\) −262144. −0.0441942
\(513\) 2.20827e6 0.370474
\(514\) −911371. −0.152155
\(515\) 0 0
\(516\) −602978. −0.0996959
\(517\) 3.51930e6 0.579068
\(518\) −161863. −0.0265047
\(519\) 1.20410e6 0.196220
\(520\) 0 0
\(521\) −193877. −0.0312919 −0.0156460 0.999878i \(-0.504980\pi\)
−0.0156460 + 0.999878i \(0.504980\pi\)
\(522\) 1.07702e6 0.173001
\(523\) 6.31332e6 1.00926 0.504630 0.863336i \(-0.331629\pi\)
0.504630 + 0.863336i \(0.331629\pi\)
\(524\) −1.62725e6 −0.258896
\(525\) 0 0
\(526\) 6.24552e6 0.984247
\(527\) −1.51134e7 −2.37048
\(528\) 338305. 0.0528109
\(529\) −1.38617e6 −0.215367
\(530\) 0 0
\(531\) −4.29292e6 −0.660719
\(532\) 938792. 0.143810
\(533\) −69177.3 −0.0105474
\(534\) −1.80866e6 −0.274476
\(535\) 0 0
\(536\) 681439. 0.102451
\(537\) −3.15346e6 −0.471902
\(538\) 6.33999e6 0.944349
\(539\) 809761. 0.120056
\(540\) 0 0
\(541\) −4.19872e6 −0.616770 −0.308385 0.951262i \(-0.599789\pi\)
−0.308385 + 0.951262i \(0.599789\pi\)
\(542\) −1.90827e6 −0.279024
\(543\) −2.03237e6 −0.295803
\(544\) 1.47975e6 0.214383
\(545\) 0 0
\(546\) −18683.5 −0.00268211
\(547\) −6.84530e6 −0.978192 −0.489096 0.872230i \(-0.662673\pi\)
−0.489096 + 0.872230i \(0.662673\pi\)
\(548\) 1.01848e6 0.144877
\(549\) 6.03015e6 0.853881
\(550\) 0 0
\(551\) −1.41631e6 −0.198737
\(552\) −563555. −0.0787207
\(553\) −3.05445e6 −0.424736
\(554\) −555003. −0.0768283
\(555\) 0 0
\(556\) 4.44667e6 0.610025
\(557\) 9.43023e6 1.28791 0.643953 0.765065i \(-0.277293\pi\)
0.643953 + 0.765065i \(0.277293\pi\)
\(558\) 9.52350e6 1.29482
\(559\) 233979. 0.0316699
\(560\) 0 0
\(561\) −1.90966e6 −0.256182
\(562\) 1.00446e7 1.34150
\(563\) −1.27111e7 −1.69010 −0.845052 0.534685i \(-0.820430\pi\)
−0.845052 + 0.534685i \(0.820430\pi\)
\(564\) 654207. 0.0865998
\(565\) 0 0
\(566\) −9.16315e6 −1.20227
\(567\) −2.35651e6 −0.307830
\(568\) −3.07133e6 −0.399444
\(569\) 7.92638e6 1.02635 0.513173 0.858285i \(-0.328470\pi\)
0.513173 + 0.858285i \(0.328470\pi\)
\(570\) 0 0
\(571\) 1.10620e6 0.141985 0.0709927 0.997477i \(-0.477383\pi\)
0.0709927 + 0.997477i \(0.477383\pi\)
\(572\) −131275. −0.0167762
\(573\) −799591. −0.101738
\(574\) 557341. 0.0706059
\(575\) 0 0
\(576\) −932440. −0.117102
\(577\) 4.53166e6 0.566654 0.283327 0.959023i \(-0.408562\pi\)
0.283327 + 0.959023i \(0.408562\pi\)
\(578\) −2.67345e6 −0.332853
\(579\) 3.42265e6 0.424293
\(580\) 0 0
\(581\) −18120.0 −0.00222699
\(582\) 2.13955e6 0.261827
\(583\) −1.14447e7 −1.39455
\(584\) −2.41276e6 −0.292740
\(585\) 0 0
\(586\) −1.78560e6 −0.214803
\(587\) 201145. 0.0240943 0.0120472 0.999927i \(-0.496165\pi\)
0.0120472 + 0.999927i \(0.496165\pi\)
\(588\) 150527. 0.0179545
\(589\) −1.25236e7 −1.48744
\(590\) 0 0
\(591\) −447994. −0.0527598
\(592\) −211413. −0.0247929
\(593\) 1.56210e7 1.82420 0.912098 0.409973i \(-0.134462\pi\)
0.912098 + 0.409973i \(0.134462\pi\)
\(594\) 2.48784e6 0.289306
\(595\) 0 0
\(596\) 7.30228e6 0.842060
\(597\) −1.02719e6 −0.117955
\(598\) 218681. 0.0250069
\(599\) −2.80468e6 −0.319386 −0.159693 0.987167i \(-0.551050\pi\)
−0.159693 + 0.987167i \(0.551050\pi\)
\(600\) 0 0
\(601\) 7.57493e6 0.855446 0.427723 0.903910i \(-0.359316\pi\)
0.427723 + 0.903910i \(0.359316\pi\)
\(602\) −1.88510e6 −0.212003
\(603\) 2.42386e6 0.271466
\(604\) 5.08958e6 0.567662
\(605\) 0 0
\(606\) −877336. −0.0970475
\(607\) 1.71170e7 1.88562 0.942812 0.333324i \(-0.108170\pi\)
0.942812 + 0.333324i \(0.108170\pi\)
\(608\) 1.22618e6 0.134522
\(609\) −227093. −0.0248120
\(610\) 0 0
\(611\) −253858. −0.0275098
\(612\) 5.26343e6 0.568055
\(613\) −1.57603e7 −1.69400 −0.847002 0.531590i \(-0.821595\pi\)
−0.847002 + 0.531590i \(0.821595\pi\)
\(614\) −531714. −0.0569190
\(615\) 0 0
\(616\) 1.05765e6 0.112302
\(617\) 1.16536e7 1.23239 0.616194 0.787594i \(-0.288674\pi\)
0.616194 + 0.787594i \(0.288674\pi\)
\(618\) −2.58888e6 −0.272672
\(619\) −9.20111e6 −0.965192 −0.482596 0.875843i \(-0.660306\pi\)
−0.482596 + 0.875843i \(0.660306\pi\)
\(620\) 0 0
\(621\) −4.14430e6 −0.431243
\(622\) 4.09386e6 0.424285
\(623\) −5.65444e6 −0.583673
\(624\) −24403.0 −0.00250889
\(625\) 0 0
\(626\) −8.13108e6 −0.829301
\(627\) −1.58242e6 −0.160751
\(628\) 6.28672e6 0.636099
\(629\) 1.19338e6 0.120269
\(630\) 0 0
\(631\) 1.50421e7 1.50395 0.751976 0.659191i \(-0.229101\pi\)
0.751976 + 0.659191i \(0.229101\pi\)
\(632\) −3.98948e6 −0.397305
\(633\) 3.44331e6 0.341560
\(634\) −9.70742e6 −0.959137
\(635\) 0 0
\(636\) −2.12747e6 −0.208555
\(637\) −58410.5 −0.00570351
\(638\) −1.59562e6 −0.155195
\(639\) −1.09247e7 −1.05841
\(640\) 0 0
\(641\) −1.15445e7 −1.10976 −0.554879 0.831931i \(-0.687235\pi\)
−0.554879 + 0.831931i \(0.687235\pi\)
\(642\) −1.56422e6 −0.149782
\(643\) 4.82038e6 0.459784 0.229892 0.973216i \(-0.426163\pi\)
0.229892 + 0.973216i \(0.426163\pi\)
\(644\) −1.76185e6 −0.167400
\(645\) 0 0
\(646\) −6.92152e6 −0.652559
\(647\) 7.53202e6 0.707377 0.353688 0.935363i \(-0.384927\pi\)
0.353688 + 0.935363i \(0.384927\pi\)
\(648\) −3.07789e6 −0.287949
\(649\) 6.35999e6 0.592713
\(650\) 0 0
\(651\) −2.00805e6 −0.185705
\(652\) −901650. −0.0830652
\(653\) 4.07749e6 0.374205 0.187103 0.982340i \(-0.440090\pi\)
0.187103 + 0.982340i \(0.440090\pi\)
\(654\) −3.53257e6 −0.322959
\(655\) 0 0
\(656\) 727956. 0.0660458
\(657\) −8.58213e6 −0.775678
\(658\) 2.04525e6 0.184155
\(659\) −1.52918e7 −1.37165 −0.685826 0.727765i \(-0.740559\pi\)
−0.685826 + 0.727765i \(0.740559\pi\)
\(660\) 0 0
\(661\) 2.03724e7 1.81359 0.906796 0.421570i \(-0.138521\pi\)
0.906796 + 0.421570i \(0.138521\pi\)
\(662\) −2.21193e6 −0.196167
\(663\) 137750. 0.0121705
\(664\) −23666.9 −0.00208315
\(665\) 0 0
\(666\) −751990. −0.0656941
\(667\) 2.65802e6 0.231336
\(668\) 5.00442e6 0.433922
\(669\) −2.11802e6 −0.182964
\(670\) 0 0
\(671\) −8.93371e6 −0.765994
\(672\) 196607. 0.0167949
\(673\) 4.09627e6 0.348619 0.174309 0.984691i \(-0.444231\pi\)
0.174309 + 0.984691i \(0.444231\pi\)
\(674\) 808397. 0.0685449
\(675\) 0 0
\(676\) −5.93122e6 −0.499203
\(677\) 7.73865e6 0.648924 0.324462 0.945899i \(-0.394817\pi\)
0.324462 + 0.945899i \(0.394817\pi\)
\(678\) 1.63792e6 0.136841
\(679\) 6.68889e6 0.556775
\(680\) 0 0
\(681\) 529895. 0.0437847
\(682\) −1.41091e7 −1.16155
\(683\) −2.24027e7 −1.83759 −0.918795 0.394734i \(-0.870837\pi\)
−0.918795 + 0.394734i \(0.870837\pi\)
\(684\) 4.36148e6 0.356446
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) −465805. −0.0376541
\(688\) −2.46217e6 −0.198311
\(689\) 825541. 0.0662507
\(690\) 0 0
\(691\) −2.60639e6 −0.207656 −0.103828 0.994595i \(-0.533109\pi\)
−0.103828 + 0.994595i \(0.533109\pi\)
\(692\) 4.91675e6 0.390313
\(693\) 3.76202e6 0.297570
\(694\) 4.18466e6 0.329808
\(695\) 0 0
\(696\) −296612. −0.0232095
\(697\) −4.10916e6 −0.320384
\(698\) 1.08944e7 0.846377
\(699\) −2.58420e6 −0.200048
\(700\) 0 0
\(701\) −5.34202e6 −0.410592 −0.205296 0.978700i \(-0.565816\pi\)
−0.205296 + 0.978700i \(0.565816\pi\)
\(702\) −179456. −0.0137440
\(703\) 988882. 0.0754668
\(704\) 1.38142e6 0.105049
\(705\) 0 0
\(706\) 6.94846e6 0.524658
\(707\) −2.74283e6 −0.206372
\(708\) 1.18227e6 0.0886406
\(709\) −1.78376e7 −1.33266 −0.666332 0.745656i \(-0.732136\pi\)
−0.666332 + 0.745656i \(0.732136\pi\)
\(710\) 0 0
\(711\) −1.41905e7 −1.05275
\(712\) −7.38539e6 −0.545976
\(713\) 2.35033e7 1.73143
\(714\) −1.10981e6 −0.0814708
\(715\) 0 0
\(716\) −1.28767e7 −0.938688
\(717\) 1.83358e6 0.133199
\(718\) −6.74795e6 −0.488496
\(719\) −1.93072e7 −1.39283 −0.696414 0.717640i \(-0.745222\pi\)
−0.696414 + 0.717640i \(0.745222\pi\)
\(720\) 0 0
\(721\) −8.09364e6 −0.579837
\(722\) 4.16896e6 0.297636
\(723\) −842852. −0.0599660
\(724\) −8.29885e6 −0.588399
\(725\) 0 0
\(726\) 741460. 0.0522091
\(727\) −2.11119e7 −1.48147 −0.740733 0.671800i \(-0.765522\pi\)
−0.740733 + 0.671800i \(0.765522\pi\)
\(728\) −76291.3 −0.00533515
\(729\) −9.19205e6 −0.640610
\(730\) 0 0
\(731\) 1.38984e7 0.961994
\(732\) −1.66070e6 −0.114555
\(733\) 2.35579e7 1.61948 0.809742 0.586786i \(-0.199607\pi\)
0.809742 + 0.586786i \(0.199607\pi\)
\(734\) 1.30297e7 0.892678
\(735\) 0 0
\(736\) −2.30119e6 −0.156588
\(737\) −3.59097e6 −0.243525
\(738\) 2.58932e6 0.175003
\(739\) −8.49978e6 −0.572528 −0.286264 0.958151i \(-0.592413\pi\)
−0.286264 + 0.958151i \(0.592413\pi\)
\(740\) 0 0
\(741\) 114145. 0.00763678
\(742\) −6.65114e6 −0.443492
\(743\) 5.28179e6 0.351001 0.175501 0.984479i \(-0.443846\pi\)
0.175501 + 0.984479i \(0.443846\pi\)
\(744\) −2.62276e6 −0.173711
\(745\) 0 0
\(746\) 1.34649e7 0.885841
\(747\) −84182.7 −0.00551977
\(748\) −7.79781e6 −0.509587
\(749\) −4.89025e6 −0.318512
\(750\) 0 0
\(751\) 1.72132e7 1.11368 0.556842 0.830619i \(-0.312013\pi\)
0.556842 + 0.830619i \(0.312013\pi\)
\(752\) 2.67135e6 0.172261
\(753\) −3.42836e6 −0.220343
\(754\) 115097. 0.00737284
\(755\) 0 0
\(756\) 1.44582e6 0.0920047
\(757\) 1.95610e7 1.24066 0.620328 0.784343i \(-0.287000\pi\)
0.620328 + 0.784343i \(0.287000\pi\)
\(758\) −1.99337e7 −1.26013
\(759\) 2.96976e6 0.187118
\(760\) 0 0
\(761\) −2.65917e7 −1.66450 −0.832250 0.554401i \(-0.812948\pi\)
−0.832250 + 0.554401i \(0.812948\pi\)
\(762\) −3.84678e6 −0.239999
\(763\) −1.10439e7 −0.686772
\(764\) −3.26501e6 −0.202372
\(765\) 0 0
\(766\) −4.56306e6 −0.280986
\(767\) −458766. −0.0281581
\(768\) 256793. 0.0157102
\(769\) 3.32124e6 0.202528 0.101264 0.994860i \(-0.467711\pi\)
0.101264 + 0.994860i \(0.467711\pi\)
\(770\) 0 0
\(771\) 892769. 0.0540883
\(772\) 1.39759e7 0.843986
\(773\) −3.03574e7 −1.82732 −0.913662 0.406476i \(-0.866758\pi\)
−0.913662 + 0.406476i \(0.866758\pi\)
\(774\) −8.75787e6 −0.525468
\(775\) 0 0
\(776\) 8.73651e6 0.520815
\(777\) 158559. 0.00942190
\(778\) 1.83388e7 1.08623
\(779\) −3.40501e6 −0.201036
\(780\) 0 0
\(781\) 1.61849e7 0.949475
\(782\) 1.29898e7 0.759599
\(783\) −2.18124e6 −0.127145
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) 1.59403e6 0.0920325
\(787\) −1.37541e7 −0.791583 −0.395792 0.918340i \(-0.629530\pi\)
−0.395792 + 0.918340i \(0.629530\pi\)
\(788\) −1.82932e6 −0.104948
\(789\) −6.11804e6 −0.349880
\(790\) 0 0
\(791\) 5.12064e6 0.290993
\(792\) 4.91366e6 0.278351
\(793\) 644416. 0.0363901
\(794\) −1.65084e7 −0.929294
\(795\) 0 0
\(796\) −4.19437e6 −0.234630
\(797\) 2.68171e6 0.149543 0.0747715 0.997201i \(-0.476177\pi\)
0.0747715 + 0.997201i \(0.476177\pi\)
\(798\) −919630. −0.0511217
\(799\) −1.50792e7 −0.835627
\(800\) 0 0
\(801\) −2.62697e7 −1.44668
\(802\) −9.35726e6 −0.513704
\(803\) 1.27145e7 0.695840
\(804\) −667530. −0.0364192
\(805\) 0 0
\(806\) 1.01773e6 0.0551819
\(807\) −6.21058e6 −0.335698
\(808\) −3.58247e6 −0.193043
\(809\) 3.35759e7 1.80367 0.901834 0.432083i \(-0.142221\pi\)
0.901834 + 0.432083i \(0.142221\pi\)
\(810\) 0 0
\(811\) 5.24303e6 0.279917 0.139959 0.990157i \(-0.455303\pi\)
0.139959 + 0.990157i \(0.455303\pi\)
\(812\) −927300. −0.0493549
\(813\) 1.86932e6 0.0991875
\(814\) 1.11408e6 0.0589325
\(815\) 0 0
\(816\) −1.44954e6 −0.0762090
\(817\) 1.15168e7 0.603637
\(818\) −2.01653e7 −1.05371
\(819\) −271366. −0.0141366
\(820\) 0 0
\(821\) −1.95688e7 −1.01323 −0.506614 0.862173i \(-0.669103\pi\)
−0.506614 + 0.862173i \(0.669103\pi\)
\(822\) −997687. −0.0515009
\(823\) 6.20206e6 0.319181 0.159590 0.987183i \(-0.448983\pi\)
0.159590 + 0.987183i \(0.448983\pi\)
\(824\) −1.05713e7 −0.542388
\(825\) 0 0
\(826\) 3.69614e6 0.188494
\(827\) −2.30838e7 −1.17366 −0.586831 0.809710i \(-0.699625\pi\)
−0.586831 + 0.809710i \(0.699625\pi\)
\(828\) −8.18529e6 −0.414914
\(829\) 2.73598e7 1.38270 0.691348 0.722522i \(-0.257017\pi\)
0.691348 + 0.722522i \(0.257017\pi\)
\(830\) 0 0
\(831\) 543675. 0.0273109
\(832\) −99645.8 −0.00499058
\(833\) −3.46961e6 −0.173248
\(834\) −4.35590e6 −0.216852
\(835\) 0 0
\(836\) −6.46156e6 −0.319758
\(837\) −1.92874e7 −0.951613
\(838\) −267766. −0.0131718
\(839\) 1.15303e7 0.565504 0.282752 0.959193i \(-0.408753\pi\)
0.282752 + 0.959193i \(0.408753\pi\)
\(840\) 0 0
\(841\) −1.91122e7 −0.931795
\(842\) −2.68118e6 −0.130331
\(843\) −9.83956e6 −0.476878
\(844\) 1.40602e7 0.679417
\(845\) 0 0
\(846\) 9.50194e6 0.456443
\(847\) 2.31804e6 0.111023
\(848\) −8.68720e6 −0.414849
\(849\) 8.97611e6 0.427385
\(850\) 0 0
\(851\) −1.85586e6 −0.0878456
\(852\) 3.00864e6 0.141994
\(853\) 1.31074e7 0.616800 0.308400 0.951257i \(-0.400206\pi\)
0.308400 + 0.951257i \(0.400206\pi\)
\(854\) −5.19186e6 −0.243601
\(855\) 0 0
\(856\) −6.38726e6 −0.297941
\(857\) 3.48607e7 1.62138 0.810689 0.585477i \(-0.199093\pi\)
0.810689 + 0.585477i \(0.199093\pi\)
\(858\) 128596. 0.00596361
\(859\) 2.14838e7 0.993410 0.496705 0.867919i \(-0.334543\pi\)
0.496705 + 0.867919i \(0.334543\pi\)
\(860\) 0 0
\(861\) −545965. −0.0250990
\(862\) 1.46135e6 0.0669863
\(863\) 3.37660e6 0.154331 0.0771654 0.997018i \(-0.475413\pi\)
0.0771654 + 0.997018i \(0.475413\pi\)
\(864\) 1.88842e6 0.0860625
\(865\) 0 0
\(866\) 5.21175e6 0.236151
\(867\) 2.61888e6 0.118323
\(868\) −8.19958e6 −0.369396
\(869\) 2.10233e7 0.944390
\(870\) 0 0
\(871\) 259028. 0.0115691
\(872\) −1.44247e7 −0.642416
\(873\) 3.10756e7 1.38001
\(874\) 1.07638e7 0.476637
\(875\) 0 0
\(876\) 2.36351e6 0.104063
\(877\) −1.58283e7 −0.694921 −0.347461 0.937695i \(-0.612956\pi\)
−0.347461 + 0.937695i \(0.612956\pi\)
\(878\) −2.06526e7 −0.904145
\(879\) 1.74915e6 0.0763581
\(880\) 0 0
\(881\) −1.50941e7 −0.655191 −0.327596 0.944818i \(-0.606238\pi\)
−0.327596 + 0.944818i \(0.606238\pi\)
\(882\) 2.18632e6 0.0946328
\(883\) 4.20608e7 1.81542 0.907708 0.419603i \(-0.137831\pi\)
0.907708 + 0.419603i \(0.137831\pi\)
\(884\) 562480. 0.0242090
\(885\) 0 0
\(886\) 3.05850e7 1.30895
\(887\) 2.83691e7 1.21070 0.605351 0.795959i \(-0.293033\pi\)
0.605351 + 0.795959i \(0.293033\pi\)
\(888\) 207097. 0.00881338
\(889\) −1.20262e7 −0.510358
\(890\) 0 0
\(891\) 1.62195e7 0.684453
\(892\) −8.64862e6 −0.363944
\(893\) −1.24952e7 −0.524343
\(894\) −7.15323e6 −0.299336
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) −214218. −0.00888944
\(898\) −1.93338e7 −0.800068
\(899\) 1.23703e7 0.510482
\(900\) 0 0
\(901\) 4.90374e7 2.01241
\(902\) −3.83610e6 −0.156990
\(903\) 1.84662e6 0.0753630
\(904\) 6.68818e6 0.272199
\(905\) 0 0
\(906\) −4.98569e6 −0.201793
\(907\) −1.00151e7 −0.404236 −0.202118 0.979361i \(-0.564783\pi\)
−0.202118 + 0.979361i \(0.564783\pi\)
\(908\) 2.16375e6 0.0870947
\(909\) −1.27428e7 −0.511509
\(910\) 0 0
\(911\) −2.06987e7 −0.826317 −0.413158 0.910659i \(-0.635574\pi\)
−0.413158 + 0.910659i \(0.635574\pi\)
\(912\) −1.20115e6 −0.0478200
\(913\) 124717. 0.00495164
\(914\) 1.40748e7 0.557284
\(915\) 0 0
\(916\) −1.90204e6 −0.0749000
\(917\) 4.98345e6 0.195707
\(918\) −1.06597e7 −0.417484
\(919\) 6.79248e6 0.265301 0.132651 0.991163i \(-0.457651\pi\)
0.132651 + 0.991163i \(0.457651\pi\)
\(920\) 0 0
\(921\) 520861. 0.0202336
\(922\) −1.42375e7 −0.551578
\(923\) −1.16747e6 −0.0451067
\(924\) −1.03606e6 −0.0399213
\(925\) 0 0
\(926\) −1.75727e7 −0.673458
\(927\) −3.76018e7 −1.43717
\(928\) −1.21117e6 −0.0461673
\(929\) −2.18354e7 −0.830085 −0.415042 0.909802i \(-0.636233\pi\)
−0.415042 + 0.909802i \(0.636233\pi\)
\(930\) 0 0
\(931\) −2.87505e6 −0.108710
\(932\) −1.05522e7 −0.397927
\(933\) −4.01030e6 −0.150825
\(934\) 2.98689e7 1.12035
\(935\) 0 0
\(936\) −354438. −0.0132236
\(937\) 3.76114e7 1.39949 0.699747 0.714391i \(-0.253296\pi\)
0.699747 + 0.714391i \(0.253296\pi\)
\(938\) −2.08691e6 −0.0774455
\(939\) 7.96511e6 0.294800
\(940\) 0 0
\(941\) 3.13453e7 1.15398 0.576989 0.816752i \(-0.304227\pi\)
0.576989 + 0.816752i \(0.304227\pi\)
\(942\) −6.15840e6 −0.226121
\(943\) 6.39025e6 0.234012
\(944\) 4.82761e6 0.176320
\(945\) 0 0
\(946\) 1.29748e7 0.471383
\(947\) −2.16274e6 −0.0783664 −0.0391832 0.999232i \(-0.512476\pi\)
−0.0391832 + 0.999232i \(0.512476\pi\)
\(948\) 3.90805e6 0.141234
\(949\) −917134. −0.0330573
\(950\) 0 0
\(951\) 9.50927e6 0.340954
\(952\) −4.53173e6 −0.162058
\(953\) 2.60248e7 0.928230 0.464115 0.885775i \(-0.346372\pi\)
0.464115 + 0.885775i \(0.346372\pi\)
\(954\) −3.09002e7 −1.09923
\(955\) 0 0
\(956\) 7.48713e6 0.264954
\(957\) 1.56305e6 0.0551687
\(958\) 2.02899e7 0.714278
\(959\) −3.11908e6 −0.109517
\(960\) 0 0
\(961\) 8.07542e7 2.82070
\(962\) −80361.9 −0.00279971
\(963\) −2.27193e7 −0.789460
\(964\) −3.44166e6 −0.119282
\(965\) 0 0
\(966\) 1.72589e6 0.0595073
\(967\) −3.85997e7 −1.32745 −0.663725 0.747977i \(-0.731025\pi\)
−0.663725 + 0.747977i \(0.731025\pi\)
\(968\) 3.02764e6 0.103852
\(969\) 6.78024e6 0.231972
\(970\) 0 0
\(971\) 1.98202e7 0.674621 0.337310 0.941393i \(-0.390483\pi\)
0.337310 + 0.941393i \(0.390483\pi\)
\(972\) 1.01852e7 0.345782
\(973\) −1.36179e7 −0.461136
\(974\) 3.36395e7 1.13619
\(975\) 0 0
\(976\) −6.78121e6 −0.227868
\(977\) 6.29461e6 0.210976 0.105488 0.994421i \(-0.466360\pi\)
0.105488 + 0.994421i \(0.466360\pi\)
\(978\) 883246. 0.0295280
\(979\) 3.89187e7 1.29778
\(980\) 0 0
\(981\) −5.13084e7 −1.70222
\(982\) 4.29275e6 0.142055
\(983\) 3.54716e7 1.17084 0.585419 0.810731i \(-0.300930\pi\)
0.585419 + 0.810731i \(0.300930\pi\)
\(984\) −713097. −0.0234780
\(985\) 0 0
\(986\) 6.83679e6 0.223955
\(987\) −2.00351e6 −0.0654633
\(988\) 466093. 0.0151908
\(989\) −2.16138e7 −0.702652
\(990\) 0 0
\(991\) −1.49772e7 −0.484446 −0.242223 0.970221i \(-0.577877\pi\)
−0.242223 + 0.970221i \(0.577877\pi\)
\(992\) −1.07097e7 −0.345538
\(993\) 2.16678e6 0.0697334
\(994\) 9.40595e6 0.301951
\(995\) 0 0
\(996\) 23183.8 0.000740520 0
\(997\) 3.79210e7 1.20821 0.604104 0.796905i \(-0.293531\pi\)
0.604104 + 0.796905i \(0.293531\pi\)
\(998\) −1.73711e7 −0.552079
\(999\) 1.52296e6 0.0482810
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.a.y.1.4 5
5.2 odd 4 70.6.c.d.29.2 10
5.3 odd 4 70.6.c.d.29.9 yes 10
5.4 even 2 350.6.a.z.1.2 5
15.2 even 4 630.6.g.h.379.7 10
15.8 even 4 630.6.g.h.379.2 10
20.3 even 4 560.6.g.d.449.4 10
20.7 even 4 560.6.g.d.449.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.c.d.29.2 10 5.2 odd 4
70.6.c.d.29.9 yes 10 5.3 odd 4
350.6.a.y.1.4 5 1.1 even 1 trivial
350.6.a.z.1.2 5 5.4 even 2
560.6.g.d.449.4 10 20.3 even 4
560.6.g.d.449.7 10 20.7 even 4
630.6.g.h.379.2 10 15.8 even 4
630.6.g.h.379.7 10 15.2 even 4