Properties

Label 350.8.a.g.1.1
Level 350350
Weight 88
Character 350.1
Self dual yes
Analytic conductor 109.335109.335
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,8,Mod(1,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 350=2527 350 = 2 \cdot 5^{2} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,8,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 109.334758919109.334758919
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Character χ\chi == 350.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+8.00000q23.00000q3+64.0000q424.0000q6+343.000q7+512.000q82178.00q9+2303.00q11192.000q121381.00q13+2744.00q14+4096.00q16+4009.00q1717424.0q187688.00q191029.00q21+18424.0q2281810.0q231536.00q2411048.0q26+13095.0q27+21952.0q28+157191.q2939834.0q31+32768.0q326909.00q33+32072.0q34139392.q36125266.q3761504.0q38+4143.00q39739014.q418232.00q42294604.q43+147392.q44654480.q46+655397.q4712288.0q48+117649.q4912027.0q5188384.0q52291934.q53+104760.q54+175616.q56+23064.0q57+1.25753e6q582.54192e6q59+1.43728e6q61318672.q62747054.q63+262144.q6455272.0q663.15097e6q67+256576.q68+245430.q69+2.11758e6q711.11514e6q72552310.q731.00213e6q74492032.q76+789929.q77+33144.0q782.33442e6q79+4.72400e6q815.91211e6q82219508.q8365856.0q842.35683e6q86471573.q87+1.17914e6q883.15028e6q89473683.q915.23584e6q92+119502.q93+5.24318e6q9498304.0q961.21821e7q97+941192.q985.01593e6q99+O(q100)q+8.00000 q^{2} -3.00000 q^{3} +64.0000 q^{4} -24.0000 q^{6} +343.000 q^{7} +512.000 q^{8} -2178.00 q^{9} +2303.00 q^{11} -192.000 q^{12} -1381.00 q^{13} +2744.00 q^{14} +4096.00 q^{16} +4009.00 q^{17} -17424.0 q^{18} -7688.00 q^{19} -1029.00 q^{21} +18424.0 q^{22} -81810.0 q^{23} -1536.00 q^{24} -11048.0 q^{26} +13095.0 q^{27} +21952.0 q^{28} +157191. q^{29} -39834.0 q^{31} +32768.0 q^{32} -6909.00 q^{33} +32072.0 q^{34} -139392. q^{36} -125266. q^{37} -61504.0 q^{38} +4143.00 q^{39} -739014. q^{41} -8232.00 q^{42} -294604. q^{43} +147392. q^{44} -654480. q^{46} +655397. q^{47} -12288.0 q^{48} +117649. q^{49} -12027.0 q^{51} -88384.0 q^{52} -291934. q^{53} +104760. q^{54} +175616. q^{56} +23064.0 q^{57} +1.25753e6 q^{58} -2.54192e6 q^{59} +1.43728e6 q^{61} -318672. q^{62} -747054. q^{63} +262144. q^{64} -55272.0 q^{66} -3.15097e6 q^{67} +256576. q^{68} +245430. q^{69} +2.11758e6 q^{71} -1.11514e6 q^{72} -552310. q^{73} -1.00213e6 q^{74} -492032. q^{76} +789929. q^{77} +33144.0 q^{78} -2.33442e6 q^{79} +4.72400e6 q^{81} -5.91211e6 q^{82} -219508. q^{83} -65856.0 q^{84} -2.35683e6 q^{86} -471573. q^{87} +1.17914e6 q^{88} -3.15028e6 q^{89} -473683. q^{91} -5.23584e6 q^{92} +119502. q^{93} +5.24318e6 q^{94} -98304.0 q^{96} -1.21821e7 q^{97} +941192. q^{98} -5.01593e6 q^{99} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 8.00000 0.707107
33 −3.00000 −0.0641500 −0.0320750 0.999485i 0.510212π-0.510212\pi
−0.0320750 + 0.999485i 0.510212π0.510212\pi
44 64.0000 0.500000
55 0 0
66 −24.0000 −0.0453609
77 343.000 0.377964
88 512.000 0.353553
99 −2178.00 −0.995885
1010 0 0
1111 2303.00 0.521698 0.260849 0.965380i 0.415997π-0.415997\pi
0.260849 + 0.965380i 0.415997π0.415997\pi
1212 −192.000 −0.0320750
1313 −1381.00 −0.174338 −0.0871690 0.996194i 0.527782π-0.527782\pi
−0.0871690 + 0.996194i 0.527782π0.527782\pi
1414 2744.00 0.267261
1515 0 0
1616 4096.00 0.250000
1717 4009.00 0.197909 0.0989543 0.995092i 0.468450π-0.468450\pi
0.0989543 + 0.995092i 0.468450π0.468450\pi
1818 −17424.0 −0.704197
1919 −7688.00 −0.257144 −0.128572 0.991700i 0.541039π-0.541039\pi
−0.128572 + 0.991700i 0.541039π0.541039\pi
2020 0 0
2121 −1029.00 −0.0242464
2222 18424.0 0.368897
2323 −81810.0 −1.40204 −0.701018 0.713144i 0.747271π-0.747271\pi
−0.701018 + 0.713144i 0.747271π0.747271\pi
2424 −1536.00 −0.0226805
2525 0 0
2626 −11048.0 −0.123276
2727 13095.0 0.128036
2828 21952.0 0.188982
2929 157191. 1.19684 0.598418 0.801184i 0.295796π-0.295796\pi
0.598418 + 0.801184i 0.295796π0.295796\pi
3030 0 0
3131 −39834.0 −0.240153 −0.120076 0.992765i 0.538314π-0.538314\pi
−0.120076 + 0.992765i 0.538314π0.538314\pi
3232 32768.0 0.176777
3333 −6909.00 −0.0334670
3434 32072.0 0.139943
3535 0 0
3636 −139392. −0.497942
3737 −125266. −0.406562 −0.203281 0.979120i 0.565161π-0.565161\pi
−0.203281 + 0.979120i 0.565161π0.565161\pi
3838 −61504.0 −0.181828
3939 4143.00 0.0111838
4040 0 0
4141 −739014. −1.67459 −0.837296 0.546749i 0.815865π-0.815865\pi
−0.837296 + 0.546749i 0.815865π0.815865\pi
4242 −8232.00 −0.0171448
4343 −294604. −0.565066 −0.282533 0.959258i 0.591175π-0.591175\pi
−0.282533 + 0.959258i 0.591175π0.591175\pi
4444 147392. 0.260849
4545 0 0
4646 −654480. −0.991389
4747 655397. 0.920793 0.460396 0.887713i 0.347707π-0.347707\pi
0.460396 + 0.887713i 0.347707π0.347707\pi
4848 −12288.0 −0.0160375
4949 117649. 0.142857
5050 0 0
5151 −12027.0 −0.0126958
5252 −88384.0 −0.0871690
5353 −291934. −0.269351 −0.134676 0.990890i 0.542999π-0.542999\pi
−0.134676 + 0.990890i 0.542999π0.542999\pi
5454 104760. 0.0905352
5555 0 0
5656 175616. 0.133631
5757 23064.0 0.0164958
5858 1.25753e6 0.846291
5959 −2.54192e6 −1.61131 −0.805657 0.592382i 0.798188π-0.798188\pi
−0.805657 + 0.592382i 0.798188π0.798188\pi
6060 0 0
6161 1.43728e6 0.810750 0.405375 0.914150i 0.367141π-0.367141\pi
0.405375 + 0.914150i 0.367141π0.367141\pi
6262 −318672. −0.169814
6363 −747054. −0.376409
6464 262144. 0.125000
6565 0 0
6666 −55272.0 −0.0236647
6767 −3.15097e6 −1.27992 −0.639959 0.768409i 0.721049π-0.721049\pi
−0.639959 + 0.768409i 0.721049π0.721049\pi
6868 256576. 0.0989543
6969 245430. 0.0899406
7070 0 0
7171 2.11758e6 0.702158 0.351079 0.936346i 0.385815π-0.385815\pi
0.351079 + 0.936346i 0.385815π0.385815\pi
7272 −1.11514e6 −0.352098
7373 −552310. −0.166170 −0.0830851 0.996542i 0.526477π-0.526477\pi
−0.0830851 + 0.996542i 0.526477π0.526477\pi
7474 −1.00213e6 −0.287483
7575 0 0
7676 −492032. −0.128572
7777 789929. 0.197183
7878 33144.0 0.00790813
7979 −2.33442e6 −0.532702 −0.266351 0.963876i 0.585818π-0.585818\pi
−0.266351 + 0.963876i 0.585818π0.585818\pi
8080 0 0
8181 4.72400e6 0.987671
8282 −5.91211e6 −1.18412
8383 −219508. −0.0421383 −0.0210692 0.999778i 0.506707π-0.506707\pi
−0.0210692 + 0.999778i 0.506707π0.506707\pi
8484 −65856.0 −0.0121232
8585 0 0
8686 −2.35683e6 −0.399562
8787 −471573. −0.0767771
8888 1.17914e6 0.184448
8989 −3.15028e6 −0.473679 −0.236840 0.971549i 0.576112π-0.576112\pi
−0.236840 + 0.971549i 0.576112π0.576112\pi
9090 0 0
9191 −473683. −0.0658936
9292 −5.23584e6 −0.701018
9393 119502. 0.0154058
9494 5.24318e6 0.651099
9595 0 0
9696 −98304.0 −0.0113402
9797 −1.21821e7 −1.35526 −0.677630 0.735403i 0.736993π-0.736993\pi
−0.677630 + 0.735403i 0.736993π0.736993\pi
9898 941192. 0.101015
9999 −5.01593e6 −0.519552
100100 0 0
101101 −8.78918e6 −0.848836 −0.424418 0.905466i 0.639521π-0.639521\pi
−0.424418 + 0.905466i 0.639521π0.639521\pi
102102 −96216.0 −0.00897732
103103 6.08668e6 0.548846 0.274423 0.961609i 0.411513π-0.411513\pi
0.274423 + 0.961609i 0.411513π0.411513\pi
104104 −707072. −0.0616378
105105 0 0
106106 −2.33547e6 −0.190460
107107 3.17738e6 0.250742 0.125371 0.992110i 0.459988π-0.459988\pi
0.125371 + 0.992110i 0.459988π0.459988\pi
108108 838080. 0.0640180
109109 −1.50644e7 −1.11419 −0.557093 0.830450i 0.688083π-0.688083\pi
−0.557093 + 0.830450i 0.688083π0.688083\pi
110110 0 0
111111 375798. 0.0260810
112112 1.40493e6 0.0944911
113113 −1.74841e7 −1.13990 −0.569952 0.821678i 0.693038π-0.693038\pi
−0.569952 + 0.821678i 0.693038π0.693038\pi
114114 184512. 0.0116643
115115 0 0
116116 1.00602e7 0.598418
117117 3.00782e6 0.173621
118118 −2.03354e7 −1.13937
119119 1.37509e6 0.0748024
120120 0 0
121121 −1.41834e7 −0.727831
122122 1.14982e7 0.573287
123123 2.21704e6 0.107425
124124 −2.54938e6 −0.120076
125125 0 0
126126 −5.97643e6 −0.266161
127127 3.54207e7 1.53442 0.767210 0.641396i 0.221644π-0.221644\pi
0.767210 + 0.641396i 0.221644π0.221644\pi
128128 2.09715e6 0.0883883
129129 883812. 0.0362490
130130 0 0
131131 −8.64463e6 −0.335967 −0.167984 0.985790i 0.553726π-0.553726\pi
−0.167984 + 0.985790i 0.553726π0.553726\pi
132132 −442176. −0.0167335
133133 −2.63698e6 −0.0971912
134134 −2.52077e7 −0.905038
135135 0 0
136136 2.05261e6 0.0699713
137137 −4.91067e7 −1.63162 −0.815809 0.578321i 0.803708π-0.803708\pi
−0.815809 + 0.578321i 0.803708π0.803708\pi
138138 1.96344e6 0.0635976
139139 5.04104e6 0.159209 0.0796047 0.996827i 0.474634π-0.474634\pi
0.0796047 + 0.996827i 0.474634π0.474634\pi
140140 0 0
141141 −1.96619e6 −0.0590689
142142 1.69406e7 0.496501
143143 −3.18044e6 −0.0909518
144144 −8.92109e6 −0.248971
145145 0 0
146146 −4.41848e6 −0.117500
147147 −352947. −0.00916429
148148 −8.01702e6 −0.203281
149149 −3.39189e7 −0.840021 −0.420011 0.907519i 0.637974π-0.637974\pi
−0.420011 + 0.907519i 0.637974π0.637974\pi
150150 0 0
151151 −3.61357e7 −0.854116 −0.427058 0.904224i 0.640450π-0.640450\pi
−0.427058 + 0.904224i 0.640450π0.640450\pi
152152 −3.93626e6 −0.0909140
153153 −8.73160e6 −0.197094
154154 6.31943e6 0.139430
155155 0 0
156156 265152. 0.00559189
157157 1.67447e7 0.345326 0.172663 0.984981i 0.444763π-0.444763\pi
0.172663 + 0.984981i 0.444763π0.444763\pi
158158 −1.86754e7 −0.376677
159159 875802. 0.0172789
160160 0 0
161161 −2.80608e7 −0.529920
162162 3.77920e7 0.698389
163163 5.94510e7 1.07523 0.537616 0.843190i 0.319325π-0.319325\pi
0.537616 + 0.843190i 0.319325π0.319325\pi
164164 −4.72969e7 −0.837296
165165 0 0
166166 −1.75606e6 −0.0297963
167167 −5.24249e7 −0.871024 −0.435512 0.900183i 0.643433π-0.643433\pi
−0.435512 + 0.900183i 0.643433π0.643433\pi
168168 −526848. −0.00857241
169169 −6.08414e7 −0.969606
170170 0 0
171171 1.67445e7 0.256085
172172 −1.88547e7 −0.282533
173173 9.61135e7 1.41131 0.705656 0.708554i 0.250652π-0.250652\pi
0.705656 + 0.708554i 0.250652π0.250652\pi
174174 −3.77258e6 −0.0542896
175175 0 0
176176 9.43309e6 0.130425
177177 7.62577e6 0.103366
178178 −2.52022e7 −0.334942
179179 −1.28054e8 −1.66882 −0.834409 0.551146i 0.814191π-0.814191\pi
−0.834409 + 0.551146i 0.814191π0.814191\pi
180180 0 0
181181 −1.38094e8 −1.73101 −0.865504 0.500901i 0.833002π-0.833002\pi
−0.865504 + 0.500901i 0.833002π0.833002\pi
182182 −3.78946e6 −0.0465938
183183 −4.31184e6 −0.0520096
184184 −4.18867e7 −0.495694
185185 0 0
186186 956016. 0.0108936
187187 9.23273e6 0.103249
188188 4.19454e7 0.460396
189189 4.49158e6 0.0483931
190190 0 0
191191 2.12961e7 0.221148 0.110574 0.993868i 0.464731π-0.464731\pi
0.110574 + 0.993868i 0.464731π0.464731\pi
192192 −786432. −0.00801875
193193 1.65697e7 0.165907 0.0829535 0.996553i 0.473565π-0.473565\pi
0.0829535 + 0.996553i 0.473565π0.473565\pi
194194 −9.74571e7 −0.958313
195195 0 0
196196 7.52954e6 0.0714286
197197 4.23674e7 0.394821 0.197411 0.980321i 0.436747π-0.436747\pi
0.197411 + 0.980321i 0.436747π0.436747\pi
198198 −4.01275e7 −0.367378
199199 −1.73127e8 −1.55732 −0.778661 0.627445i 0.784101π-0.784101\pi
−0.778661 + 0.627445i 0.784101π0.784101\pi
200200 0 0
201201 9.45290e6 0.0821067
202202 −7.03134e7 −0.600217
203203 5.39165e7 0.452362
204204 −769728. −0.00634792
205205 0 0
206206 4.86935e7 0.388093
207207 1.78182e8 1.39627
208208 −5.65658e6 −0.0435845
209209 −1.77055e7 −0.134151
210210 0 0
211211 1.94275e8 1.42373 0.711866 0.702315i 0.247850π-0.247850\pi
0.711866 + 0.702315i 0.247850π0.247850\pi
212212 −1.86838e7 −0.134676
213213 −6.35273e6 −0.0450435
214214 2.54191e7 0.177301
215215 0 0
216216 6.70464e6 0.0452676
217217 −1.36631e7 −0.0907693
218218 −1.20515e8 −0.787849
219219 1.65693e6 0.0106598
220220 0 0
221221 −5.53643e6 −0.0345030
222222 3.00638e6 0.0184420
223223 8.21095e7 0.495822 0.247911 0.968783i 0.420256π-0.420256\pi
0.247911 + 0.968783i 0.420256π0.420256\pi
224224 1.12394e7 0.0668153
225225 0 0
226226 −1.39873e8 −0.806034
227227 3.15611e8 1.79086 0.895430 0.445202i 0.146868π-0.146868\pi
0.895430 + 0.445202i 0.146868π0.146868\pi
228228 1.47610e6 0.00824789
229229 2.36109e8 1.29924 0.649619 0.760260i 0.274928π-0.274928\pi
0.649619 + 0.760260i 0.274928π0.274928\pi
230230 0 0
231231 −2.36979e6 −0.0126493
232232 8.04818e7 0.423145
233233 1.60204e8 0.829711 0.414856 0.909887i 0.363832π-0.363832\pi
0.414856 + 0.909887i 0.363832π0.363832\pi
234234 2.40625e7 0.122768
235235 0 0
236236 −1.62683e8 −0.805657
237237 7.00326e6 0.0341728
238238 1.10007e7 0.0528933
239239 −3.55108e8 −1.68255 −0.841274 0.540609i 0.818194π-0.818194\pi
−0.841274 + 0.540609i 0.818194π0.818194\pi
240240 0 0
241241 −9.64026e7 −0.443638 −0.221819 0.975088i 0.571199π-0.571199\pi
−0.221819 + 0.975088i 0.571199π0.571199\pi
242242 −1.13467e8 −0.514654
243243 −4.28108e7 −0.191395
244244 9.19859e7 0.405375
245245 0 0
246246 1.77363e7 0.0759611
247247 1.06171e7 0.0448299
248248 −2.03950e7 −0.0849069
249249 658524. 0.00270317
250250 0 0
251251 1.57871e8 0.630151 0.315076 0.949067i 0.397970π-0.397970\pi
0.315076 + 0.949067i 0.397970π0.397970\pi
252252 −4.78115e7 −0.188205
253253 −1.88408e8 −0.731440
254254 2.83366e8 1.08500
255255 0 0
256256 1.67772e7 0.0625000
257257 −1.86351e8 −0.684803 −0.342402 0.939554i 0.611240π-0.611240\pi
−0.342402 + 0.939554i 0.611240π0.611240\pi
258258 7.07050e6 0.0256319
259259 −4.29662e7 −0.153666
260260 0 0
261261 −3.42362e8 −1.19191
262262 −6.91570e7 −0.237565
263263 −2.33579e8 −0.791751 −0.395875 0.918304i 0.629559π-0.629559\pi
−0.395875 + 0.918304i 0.629559π0.629559\pi
264264 −3.53741e6 −0.0118324
265265 0 0
266266 −2.10959e7 −0.0687245
267267 9.45084e6 0.0303865
268268 −2.01662e8 −0.639959
269269 −8.11207e7 −0.254097 −0.127048 0.991897i 0.540550π-0.540550\pi
−0.127048 + 0.991897i 0.540550π0.540550\pi
270270 0 0
271271 −4.27197e8 −1.30387 −0.651937 0.758273i 0.726043π-0.726043\pi
−0.651937 + 0.758273i 0.726043π0.726043\pi
272272 1.64209e7 0.0494772
273273 1.42105e6 0.00422707
274274 −3.92854e8 −1.15373
275275 0 0
276276 1.57075e7 0.0449703
277277 2.93503e8 0.829724 0.414862 0.909884i 0.363830π-0.363830\pi
0.414862 + 0.909884i 0.363830π0.363830\pi
278278 4.03283e7 0.112578
279279 8.67585e7 0.239165
280280 0 0
281281 4.33253e8 1.16485 0.582424 0.812885i 0.302104π-0.302104\pi
0.582424 + 0.812885i 0.302104π0.302104\pi
282282 −1.57295e7 −0.0417680
283283 −2.49936e8 −0.655505 −0.327752 0.944764i 0.606291π-0.606291\pi
−0.327752 + 0.944764i 0.606291π0.606291\pi
284284 1.35525e8 0.351079
285285 0 0
286286 −2.54435e7 −0.0643127
287287 −2.53482e8 −0.632937
288288 −7.13687e7 −0.176049
289289 −3.94267e8 −0.960832
290290 0 0
291291 3.65464e7 0.0869399
292292 −3.53478e7 −0.0830851
293293 8.02521e8 1.86389 0.931943 0.362604i 0.118112π-0.118112\pi
0.931943 + 0.362604i 0.118112π0.118112\pi
294294 −2.82358e6 −0.00648013
295295 0 0
296296 −6.41362e7 −0.143742
297297 3.01578e7 0.0667962
298298 −2.71352e8 −0.593985
299299 1.12980e8 0.244428
300300 0 0
301301 −1.01049e8 −0.213575
302302 −2.89085e8 −0.603951
303303 2.63675e7 0.0544528
304304 −3.14900e7 −0.0642859
305305 0 0
306306 −6.98528e7 −0.139367
307307 −3.02427e8 −0.596536 −0.298268 0.954482i 0.596409π-0.596409\pi
−0.298268 + 0.954482i 0.596409π0.596409\pi
308308 5.05555e7 0.0985917
309309 −1.82601e7 −0.0352085
310310 0 0
311311 5.70669e8 1.07578 0.537889 0.843015i 0.319222π-0.319222\pi
0.537889 + 0.843015i 0.319222π0.319222\pi
312312 2.12122e6 0.00395407
313313 4.23943e8 0.781452 0.390726 0.920507i 0.372224π-0.372224\pi
0.390726 + 0.920507i 0.372224π0.372224\pi
314314 1.33958e8 0.244182
315315 0 0
316316 −1.49403e8 −0.266351
317317 −7.40954e8 −1.30642 −0.653212 0.757175i 0.726579π-0.726579\pi
−0.653212 + 0.757175i 0.726579π0.726579\pi
318318 7.00642e6 0.0122180
319319 3.62011e8 0.624388
320320 0 0
321321 −9.53215e6 −0.0160851
322322 −2.24487e8 −0.374710
323323 −3.08212e7 −0.0508910
324324 3.02336e8 0.493836
325325 0 0
326326 4.75608e8 0.760304
327327 4.51931e7 0.0714751
328328 −3.78375e8 −0.592058
329329 2.24801e8 0.348027
330330 0 0
331331 6.85452e8 1.03891 0.519457 0.854497i 0.326134π-0.326134\pi
0.519457 + 0.854497i 0.326134π0.326134\pi
332332 −1.40485e7 −0.0210692
333333 2.72829e8 0.404889
334334 −4.19399e8 −0.615907
335335 0 0
336336 −4.21478e6 −0.00606161
337337 7.06213e7 0.100515 0.0502576 0.998736i 0.483996π-0.483996\pi
0.0502576 + 0.998736i 0.483996π0.483996\pi
338338 −4.86731e8 −0.685615
339339 5.24522e7 0.0731249
340340 0 0
341341 −9.17377e7 −0.125287
342342 1.33956e8 0.181080
343343 4.03536e7 0.0539949
344344 −1.50837e8 −0.199781
345345 0 0
346346 7.68908e8 0.997949
347347 −5.95905e8 −0.765639 −0.382819 0.923823i 0.625047π-0.625047\pi
−0.382819 + 0.923823i 0.625047π0.625047\pi
348348 −3.01807e7 −0.0383885
349349 1.11603e9 1.40536 0.702680 0.711506i 0.251987π-0.251987\pi
0.702680 + 0.711506i 0.251987π0.251987\pi
350350 0 0
351351 −1.80842e7 −0.0223215
352352 7.54647e7 0.0922241
353353 1.26050e9 1.52522 0.762609 0.646860i 0.223918π-0.223918\pi
0.762609 + 0.646860i 0.223918π0.223918\pi
354354 6.10061e7 0.0730907
355355 0 0
356356 −2.01618e8 −0.236840
357357 −4.12526e6 −0.00479858
358358 −1.02444e9 −1.18003
359359 1.44717e7 0.0165078 0.00825390 0.999966i 0.497373π-0.497373\pi
0.00825390 + 0.999966i 0.497373π0.497373\pi
360360 0 0
361361 −8.34766e8 −0.933877
362362 −1.10475e9 −1.22401
363363 4.25501e7 0.0466904
364364 −3.03157e7 −0.0329468
365365 0 0
366366 −3.44947e7 −0.0367764
367367 1.35964e9 1.43580 0.717900 0.696146i 0.245103π-0.245103\pi
0.717900 + 0.696146i 0.245103π0.245103\pi
368368 −3.35094e8 −0.350509
369369 1.60957e9 1.66770
370370 0 0
371371 −1.00133e8 −0.101805
372372 7.64813e6 0.00770291
373373 8.65452e8 0.863499 0.431750 0.901993i 0.357896π-0.357896\pi
0.431750 + 0.901993i 0.357896π0.357896\pi
374374 7.38618e7 0.0730078
375375 0 0
376376 3.35563e8 0.325549
377377 −2.17081e8 −0.208654
378378 3.59327e7 0.0342191
379379 2.06822e8 0.195146 0.0975731 0.995228i 0.468892π-0.468892\pi
0.0975731 + 0.995228i 0.468892π0.468892\pi
380380 0 0
381381 −1.06262e8 −0.0984331
382382 1.70368e8 0.156375
383383 3.21422e8 0.292335 0.146167 0.989260i 0.453306π-0.453306\pi
0.146167 + 0.989260i 0.453306π0.453306\pi
384384 −6.29146e6 −0.00567012
385385 0 0
386386 1.32558e8 0.117314
387387 6.41648e8 0.562740
388388 −7.79657e8 −0.677630
389389 5.80546e8 0.500050 0.250025 0.968239i 0.419561π-0.419561\pi
0.250025 + 0.968239i 0.419561π0.419561\pi
390390 0 0
391391 −3.27976e8 −0.277475
392392 6.02363e7 0.0505076
393393 2.59339e7 0.0215523
394394 3.38939e8 0.279181
395395 0 0
396396 −3.21020e8 −0.259776
397397 1.02652e9 0.823380 0.411690 0.911324i 0.364939π-0.364939\pi
0.411690 + 0.911324i 0.364939π0.364939\pi
398398 −1.38501e9 −1.10119
399399 7.91095e6 0.00623482
400400 0 0
401401 4.12720e8 0.319632 0.159816 0.987147i 0.448910π-0.448910\pi
0.159816 + 0.987147i 0.448910π0.448910\pi
402402 7.56232e7 0.0580582
403403 5.50108e7 0.0418678
404404 −5.62508e8 −0.424418
405405 0 0
406406 4.31332e8 0.319868
407407 −2.88488e8 −0.212103
408408 −6.15782e6 −0.00448866
409409 1.84599e9 1.33413 0.667064 0.745001i 0.267551π-0.267551\pi
0.667064 + 0.745001i 0.267551π0.267551\pi
410410 0 0
411411 1.47320e8 0.104668
412412 3.89548e8 0.274423
413413 −8.71879e8 −0.609019
414414 1.42546e9 0.987309
415415 0 0
416416 −4.52526e7 −0.0308189
417417 −1.51231e7 −0.0102133
418418 −1.41644e8 −0.0948594
419419 1.27567e9 0.847205 0.423603 0.905848i 0.360765π-0.360765\pi
0.423603 + 0.905848i 0.360765π0.360765\pi
420420 0 0
421421 1.30451e8 0.0852041 0.0426020 0.999092i 0.486435π-0.486435\pi
0.0426020 + 0.999092i 0.486435π0.486435\pi
422422 1.55420e9 1.00673
423423 −1.42745e9 −0.917004
424424 −1.49470e8 −0.0952301
425425 0 0
426426 −5.08218e7 −0.0318505
427427 4.92987e8 0.306435
428428 2.03353e8 0.125371
429429 9.54133e6 0.00583456
430430 0 0
431431 2.60852e9 1.56937 0.784683 0.619897i 0.212826π-0.212826\pi
0.784683 + 0.619897i 0.212826π0.212826\pi
432432 5.36371e7 0.0320090
433433 6.77620e8 0.401124 0.200562 0.979681i 0.435723π-0.435723\pi
0.200562 + 0.979681i 0.435723π0.435723\pi
434434 −1.09304e8 −0.0641836
435435 0 0
436436 −9.64119e8 −0.557093
437437 6.28955e8 0.360524
438438 1.32554e7 0.00753763
439439 −7.90402e8 −0.445884 −0.222942 0.974832i 0.571566π-0.571566\pi
−0.222942 + 0.974832i 0.571566π0.571566\pi
440440 0 0
441441 −2.56240e8 −0.142269
442442 −4.42914e7 −0.0243973
443443 2.13809e9 1.16846 0.584228 0.811589i 0.301397π-0.301397\pi
0.584228 + 0.811589i 0.301397π0.301397\pi
444444 2.40511e7 0.0130405
445445 0 0
446446 6.56876e8 0.350599
447447 1.01757e8 0.0538874
448448 8.99154e7 0.0472456
449449 2.81523e7 0.0146775 0.00733875 0.999973i 0.497664π-0.497664\pi
0.00733875 + 0.999973i 0.497664π0.497664\pi
450450 0 0
451451 −1.70195e9 −0.873632
452452 −1.11898e9 −0.569952
453453 1.08407e8 0.0547916
454454 2.52489e9 1.26633
455455 0 0
456456 1.18088e7 0.00583214
457457 −7.59179e8 −0.372081 −0.186041 0.982542i 0.559566π-0.559566\pi
−0.186041 + 0.982542i 0.559566π0.559566\pi
458458 1.88887e9 0.918700
459459 5.24979e7 0.0253394
460460 0 0
461461 3.30359e9 1.57048 0.785240 0.619191i 0.212539π-0.212539\pi
0.785240 + 0.619191i 0.212539π0.212539\pi
462462 −1.89583e7 −0.00894442
463463 3.42142e9 1.60204 0.801020 0.598638i 0.204291π-0.204291\pi
0.801020 + 0.598638i 0.204291π0.204291\pi
464464 6.43854e8 0.299209
465465 0 0
466466 1.28163e9 0.586695
467467 2.96740e9 1.34824 0.674120 0.738622i 0.264523π-0.264523\pi
0.674120 + 0.738622i 0.264523π0.264523\pi
468468 1.92500e8 0.0868103
469469 −1.08078e9 −0.483763
470470 0 0
471471 −5.02342e7 −0.0221527
472472 −1.30146e9 −0.569686
473473 −6.78473e8 −0.294794
474474 5.60261e7 0.0241638
475475 0 0
476476 8.80056e7 0.0374012
477477 6.35832e8 0.268243
478478 −2.84086e9 −1.18974
479479 3.49512e9 1.45308 0.726538 0.687127i 0.241128π-0.241128\pi
0.726538 + 0.687127i 0.241128π0.241128\pi
480480 0 0
481481 1.72992e8 0.0708793
482482 −7.71221e8 −0.313700
483483 8.41825e7 0.0339944
484484 −9.07735e8 −0.363915
485485 0 0
486486 −3.42486e8 −0.135337
487487 −2.32240e9 −0.911141 −0.455571 0.890200i 0.650565π-0.650565\pi
−0.455571 + 0.890200i 0.650565π0.650565\pi
488488 7.35887e8 0.286643
489489 −1.78353e8 −0.0689762
490490 0 0
491491 −3.54551e9 −1.35174 −0.675871 0.737020i 0.736232π-0.736232\pi
−0.675871 + 0.737020i 0.736232π0.736232\pi
492492 1.41891e8 0.0537126
493493 6.30179e8 0.236864
494494 8.49370e7 0.0316995
495495 0 0
496496 −1.63160e8 −0.0600382
497497 7.26329e8 0.265391
498498 5.26819e6 0.00191143
499499 −5.30900e9 −1.91276 −0.956381 0.292123i 0.905638π-0.905638\pi
−0.956381 + 0.292123i 0.905638π0.905638\pi
500500 0 0
501501 1.57275e8 0.0558762
502502 1.26297e9 0.445584
503503 −2.07831e9 −0.728151 −0.364076 0.931369i 0.618615π-0.618615\pi
−0.364076 + 0.931369i 0.618615π0.618615\pi
504504 −3.82492e8 −0.133081
505505 0 0
506506 −1.50727e9 −0.517206
507507 1.82524e8 0.0622003
508508 2.26693e9 0.767210
509509 −5.30242e9 −1.78222 −0.891112 0.453784i 0.850074π-0.850074\pi
−0.891112 + 0.453784i 0.850074π0.850074\pi
510510 0 0
511511 −1.89442e8 −0.0628064
512512 1.34218e8 0.0441942
513513 −1.00674e8 −0.0329237
514514 −1.49081e9 −0.484229
515515 0 0
516516 5.65640e7 0.0181245
517517 1.50938e9 0.480376
518518 −3.43730e8 −0.108658
519519 −2.88341e8 −0.0905357
520520 0 0
521521 −1.30449e9 −0.404118 −0.202059 0.979373i 0.564763π-0.564763\pi
−0.202059 + 0.979373i 0.564763π0.564763\pi
522522 −2.73890e9 −0.842808
523523 2.26437e9 0.692136 0.346068 0.938210i 0.387517π-0.387517\pi
0.346068 + 0.938210i 0.387517π0.387517\pi
524524 −5.53256e8 −0.167984
525525 0 0
526526 −1.86863e9 −0.559852
527527 −1.59695e8 −0.0475284
528528 −2.82993e7 −0.00836674
529529 3.28805e9 0.965703
530530 0 0
531531 5.53631e9 1.60468
532532 −1.68767e8 −0.0485956
533533 1.02058e9 0.291945
534534 7.56067e7 0.0214865
535535 0 0
536536 −1.61329e9 −0.452519
537537 3.84163e8 0.107055
538538 −6.48966e8 −0.179673
539539 2.70946e8 0.0745283
540540 0 0
541541 2.94233e9 0.798915 0.399458 0.916752i 0.369198π-0.369198\pi
0.399458 + 0.916752i 0.369198π0.369198\pi
542542 −3.41757e9 −0.921978
543543 4.14281e8 0.111044
544544 1.31367e8 0.0349856
545545 0 0
546546 1.13684e7 0.00298899
547547 −2.04414e9 −0.534016 −0.267008 0.963694i 0.586035π-0.586035\pi
−0.267008 + 0.963694i 0.586035π0.586035\pi
548548 −3.14283e9 −0.815809
549549 −3.13040e9 −0.807414
550550 0 0
551551 −1.20848e9 −0.307759
552552 1.25660e8 0.0317988
553553 −8.00706e8 −0.201342
554554 2.34803e9 0.586704
555555 0 0
556556 3.22627e8 0.0796047
557557 5.47095e9 1.34144 0.670718 0.741713i 0.265986π-0.265986\pi
0.670718 + 0.741713i 0.265986π0.265986\pi
558558 6.94068e8 0.169115
559559 4.06848e8 0.0985124
560560 0 0
561561 −2.76982e7 −0.00662340
562562 3.46602e9 0.823672
563563 −3.36364e9 −0.794384 −0.397192 0.917735i 0.630015π-0.630015\pi
−0.397192 + 0.917735i 0.630015π0.630015\pi
564564 −1.25836e8 −0.0295344
565565 0 0
566566 −1.99949e9 −0.463512
567567 1.62033e9 0.373305
568568 1.08420e9 0.248250
569569 −4.28774e9 −0.975744 −0.487872 0.872915i 0.662227π-0.662227\pi
−0.487872 + 0.872915i 0.662227π0.662227\pi
570570 0 0
571571 −8.17590e9 −1.83785 −0.918923 0.394437i 0.870940π-0.870940\pi
−0.918923 + 0.394437i 0.870940π0.870940\pi
572572 −2.03548e8 −0.0454759
573573 −6.38882e7 −0.0141866
574574 −2.02785e9 −0.447554
575575 0 0
576576 −5.70950e8 −0.124486
577577 −2.91623e9 −0.631986 −0.315993 0.948762i 0.602338π-0.602338\pi
−0.315993 + 0.948762i 0.602338π0.602338\pi
578578 −3.15413e9 −0.679411
579579 −4.97092e7 −0.0106429
580580 0 0
581581 −7.52912e7 −0.0159268
582582 2.92371e8 0.0614758
583583 −6.72324e8 −0.140520
584584 −2.82783e8 −0.0587500
585585 0 0
586586 6.42016e9 1.31797
587587 −2.55546e9 −0.521477 −0.260739 0.965409i 0.583966π-0.583966\pi
−0.260739 + 0.965409i 0.583966π0.583966\pi
588588 −2.25886e7 −0.00458214
589589 3.06244e8 0.0617538
590590 0 0
591591 −1.27102e8 −0.0253278
592592 −5.13090e8 −0.101641
593593 −7.96504e9 −1.56854 −0.784272 0.620417i 0.786963π-0.786963\pi
−0.784272 + 0.620417i 0.786963π0.786963\pi
594594 2.41262e8 0.0472321
595595 0 0
596596 −2.17081e9 −0.420011
597597 5.19380e8 0.0999023
598598 9.03837e8 0.172837
599599 5.10160e9 0.969869 0.484934 0.874551i 0.338844π-0.338844\pi
0.484934 + 0.874551i 0.338844π0.338844\pi
600600 0 0
601601 −2.27123e9 −0.426776 −0.213388 0.976967i 0.568450π-0.568450\pi
−0.213388 + 0.976967i 0.568450π0.568450\pi
602602 −8.08393e8 −0.151020
603603 6.86280e9 1.27465
604604 −2.31268e9 −0.427058
605605 0 0
606606 2.10940e8 0.0385040
607607 −3.21591e9 −0.583638 −0.291819 0.956474i 0.594260π-0.594260\pi
−0.291819 + 0.956474i 0.594260π0.594260\pi
608608 −2.51920e8 −0.0454570
609609 −1.61750e8 −0.0290190
610610 0 0
611611 −9.05103e8 −0.160529
612612 −5.58823e8 −0.0985471
613613 −2.39288e9 −0.419574 −0.209787 0.977747i 0.567277π-0.567277\pi
−0.209787 + 0.977747i 0.567277π0.567277\pi
614614 −2.41942e9 −0.421815
615615 0 0
616616 4.04444e8 0.0697149
617617 −6.09839e9 −1.04524 −0.522621 0.852565i 0.675046π-0.675046\pi
−0.522621 + 0.852565i 0.675046π0.675046\pi
618618 −1.46080e8 −0.0248962
619619 4.49455e9 0.761674 0.380837 0.924642i 0.375636π-0.375636\pi
0.380837 + 0.924642i 0.375636π0.375636\pi
620620 0 0
621621 −1.07130e9 −0.179511
622622 4.56535e9 0.760690
623623 −1.08055e9 −0.179034
624624 1.69697e7 0.00279595
625625 0 0
626626 3.39154e9 0.552570
627627 5.31164e7 0.00860582
628628 1.07166e9 0.172663
629629 −5.02191e8 −0.0804622
630630 0 0
631631 −5.29152e9 −0.838451 −0.419225 0.907882i 0.637698π-0.637698\pi
−0.419225 + 0.907882i 0.637698π0.637698\pi
632632 −1.19522e9 −0.188338
633633 −5.82825e8 −0.0913324
634634 −5.92763e9 −0.923781
635635 0 0
636636 5.60513e7 0.00863945
637637 −1.62473e8 −0.0249054
638638 2.89609e9 0.441509
639639 −4.61208e9 −0.699268
640640 0 0
641641 1.94450e9 0.291612 0.145806 0.989313i 0.453422π-0.453422\pi
0.145806 + 0.989313i 0.453422π0.453422\pi
642642 −7.62572e7 −0.0113739
643643 5.84495e9 0.867047 0.433523 0.901142i 0.357270π-0.357270\pi
0.433523 + 0.901142i 0.357270π0.357270\pi
644644 −1.79589e9 −0.264960
645645 0 0
646646 −2.46570e8 −0.0359853
647647 −8.35753e9 −1.21315 −0.606573 0.795028i 0.707456π-0.707456\pi
−0.606573 + 0.795028i 0.707456π0.707456\pi
648648 2.41869e9 0.349195
649649 −5.85405e9 −0.840620
650650 0 0
651651 4.09892e7 0.00582285
652652 3.80486e9 0.537616
653653 −9.47179e9 −1.33118 −0.665588 0.746319i 0.731819π-0.731819\pi
−0.665588 + 0.746319i 0.731819π0.731819\pi
654654 3.61545e8 0.0505405
655655 0 0
656656 −3.02700e9 −0.418648
657657 1.20293e9 0.165486
658658 1.79841e9 0.246092
659659 −9.59528e9 −1.30605 −0.653024 0.757338i 0.726500π-0.726500\pi
−0.653024 + 0.757338i 0.726500π0.726500\pi
660660 0 0
661661 −3.05680e9 −0.411683 −0.205841 0.978585i 0.565993π-0.565993\pi
−0.205841 + 0.978585i 0.565993π0.565993\pi
662662 5.48362e9 0.734622
663663 1.66093e7 0.00221337
664664 −1.12388e8 −0.0148981
665665 0 0
666666 2.18263e9 0.286300
667667 −1.28598e10 −1.67801
668668 −3.35519e9 −0.435512
669669 −2.46328e8 −0.0318070
670670 0 0
671671 3.31006e9 0.422967
672672 −3.37183e7 −0.00428620
673673 2.91477e9 0.368597 0.184299 0.982870i 0.440999π-0.440999\pi
0.184299 + 0.982870i 0.440999π0.440999\pi
674674 5.64971e8 0.0710749
675675 0 0
676676 −3.89385e9 −0.484803
677677 1.04043e10 1.28870 0.644348 0.764732i 0.277129π-0.277129\pi
0.644348 + 0.764732i 0.277129π0.277129\pi
678678 4.19618e8 0.0517071
679679 −4.17847e9 −0.512240
680680 0 0
681681 −9.46833e8 −0.114884
682682 −7.33902e8 −0.0885916
683683 −9.43735e9 −1.13339 −0.566693 0.823929i 0.691777π-0.691777\pi
−0.566693 + 0.823929i 0.691777π0.691777\pi
684684 1.07165e9 0.128043
685685 0 0
686686 3.22829e8 0.0381802
687687 −7.08328e8 −0.0833462
688688 −1.20670e9 −0.141266
689689 4.03161e8 0.0469582
690690 0 0
691691 −2.32820e9 −0.268440 −0.134220 0.990952i 0.542853π-0.542853\pi
−0.134220 + 0.990952i 0.542853π0.542853\pi
692692 6.15127e9 0.705656
693693 −1.72047e9 −0.196372
694694 −4.76724e9 −0.541388
695695 0 0
696696 −2.41445e8 −0.0271448
697697 −2.96271e9 −0.331416
698698 8.92825e9 0.993739
699699 −4.80611e8 −0.0532260
700700 0 0
701701 1.49770e9 0.164215 0.0821075 0.996623i 0.473835π-0.473835\pi
0.0821075 + 0.996623i 0.473835π0.473835\pi
702702 −1.44674e8 −0.0157837
703703 9.63045e8 0.104545
704704 6.03718e8 0.0652123
705705 0 0
706706 1.00840e10 1.07849
707707 −3.01469e9 −0.320830
708708 4.88049e8 0.0516829
709709 −7.48971e9 −0.789229 −0.394615 0.918847i 0.629122π-0.629122\pi
−0.394615 + 0.918847i 0.629122π0.629122\pi
710710 0 0
711711 5.08436e9 0.530509
712712 −1.61294e9 −0.167471
713713 3.25882e9 0.336703
714714 −3.30021e7 −0.00339311
715715 0 0
716716 −8.19548e9 −0.834409
717717 1.06532e9 0.107935
718718 1.15774e8 0.0116728
719719 −4.25246e9 −0.426667 −0.213333 0.976979i 0.568432π-0.568432\pi
−0.213333 + 0.976979i 0.568432π0.568432\pi
720720 0 0
721721 2.08773e9 0.207444
722722 −6.67813e9 −0.660351
723723 2.89208e8 0.0284594
724724 −8.83800e9 −0.865504
725725 0 0
726726 3.40401e8 0.0330151
727727 −3.55527e9 −0.343165 −0.171582 0.985170i 0.554888π-0.554888\pi
−0.171582 + 0.985170i 0.554888π0.554888\pi
728728 −2.42526e8 −0.0232969
729729 −1.02030e10 −0.975393
730730 0 0
731731 −1.18107e9 −0.111831
732732 −2.75958e8 −0.0260048
733733 1.97546e10 1.85270 0.926350 0.376664i 0.122929π-0.122929\pi
0.926350 + 0.376664i 0.122929π0.122929\pi
734734 1.08772e10 1.01526
735735 0 0
736736 −2.68075e9 −0.247847
737737 −7.25667e9 −0.667731
738738 1.28766e10 1.17924
739739 3.56697e9 0.325121 0.162560 0.986699i 0.448025π-0.448025\pi
0.162560 + 0.986699i 0.448025π0.448025\pi
740740 0 0
741741 −3.18514e7 −0.00287584
742742 −8.01067e8 −0.0719872
743743 −8.93144e9 −0.798842 −0.399421 0.916768i 0.630789π-0.630789\pi
−0.399421 + 0.916768i 0.630789π0.630789\pi
744744 6.11850e7 0.00544678
745745 0 0
746746 6.92362e9 0.610586
747747 4.78088e8 0.0419649
748748 5.90895e8 0.0516243
749749 1.08984e9 0.0947714
750750 0 0
751751 −8.26094e9 −0.711688 −0.355844 0.934545i 0.615807π-0.615807\pi
−0.355844 + 0.934545i 0.615807π0.615807\pi
752752 2.68451e9 0.230198
753753 −4.73613e8 −0.0404242
754754 −1.73665e9 −0.147541
755755 0 0
756756 2.87461e8 0.0241965
757757 1.65500e10 1.38664 0.693318 0.720632i 0.256148π-0.256148\pi
0.693318 + 0.720632i 0.256148π0.256148\pi
758758 1.65458e9 0.137989
759759 5.65225e8 0.0469219
760760 0 0
761761 −7.87845e9 −0.648029 −0.324014 0.946052i 0.605033π-0.605033\pi
−0.324014 + 0.946052i 0.605033π0.605033\pi
762762 −8.50097e8 −0.0696027
763763 −5.16708e9 −0.421123
764764 1.36295e9 0.110574
765765 0 0
766766 2.57138e9 0.206712
767767 3.51039e9 0.280913
768768 −5.03316e7 −0.00400938
769769 9.00174e9 0.713813 0.356907 0.934140i 0.383831π-0.383831\pi
0.356907 + 0.934140i 0.383831π0.383831\pi
770770 0 0
771771 5.59053e8 0.0439301
772772 1.06046e9 0.0829535
773773 −2.39995e10 −1.86885 −0.934424 0.356163i 0.884085π-0.884085\pi
−0.934424 + 0.356163i 0.884085π0.884085\pi
774774 5.13318e9 0.397918
775775 0 0
776776 −6.23725e9 −0.479156
777777 1.28899e8 0.00985769
778778 4.64437e9 0.353588
779779 5.68154e9 0.430611
780780 0 0
781781 4.87678e9 0.366315
782782 −2.62381e9 −0.196204
783783 2.05842e9 0.153238
784784 4.81890e8 0.0357143
785785 0 0
786786 2.07471e8 0.0152398
787787 1.58050e9 0.115580 0.0577901 0.998329i 0.481595π-0.481595\pi
0.0577901 + 0.998329i 0.481595π0.481595\pi
788788 2.71152e9 0.197411
789789 7.00737e8 0.0507908
790790 0 0
791791 −5.99704e9 −0.430843
792792 −2.56816e9 −0.183689
793793 −1.98488e9 −0.141344
794794 8.21216e9 0.582218
795795 0 0
796796 −1.10801e10 −0.778661
797797 1.88835e10 1.32123 0.660613 0.750726i 0.270296π-0.270296\pi
0.660613 + 0.750726i 0.270296π0.270296\pi
798798 6.32876e7 0.00440868
799799 2.62749e9 0.182233
800800 0 0
801801 6.86131e9 0.471730
802802 3.30176e9 0.226014
803803 −1.27197e9 −0.0866907
804804 6.04985e8 0.0410534
805805 0 0
806806 4.40086e8 0.0296050
807807 2.43362e8 0.0163003
808808 −4.50006e9 −0.300109
809809 5.61160e8 0.0372621 0.0186310 0.999826i 0.494069π-0.494069\pi
0.0186310 + 0.999826i 0.494069π0.494069\pi
810810 0 0
811811 6.94523e9 0.457208 0.228604 0.973520i 0.426584π-0.426584\pi
0.228604 + 0.973520i 0.426584π0.426584\pi
812812 3.45066e9 0.226181
813813 1.28159e9 0.0836435
814814 −2.30790e9 −0.149979
815815 0 0
816816 −4.92626e7 −0.00317396
817817 2.26492e9 0.145303
818818 1.47679e10 0.943370
819819 1.03168e9 0.0656224
820820 0 0
821821 8.87330e9 0.559608 0.279804 0.960057i 0.409731π-0.409731\pi
0.279804 + 0.960057i 0.409731π0.409731\pi
822822 1.17856e9 0.0740117
823823 −1.87347e10 −1.17152 −0.585758 0.810486i 0.699203π-0.699203\pi
−0.585758 + 0.810486i 0.699203π0.699203\pi
824824 3.11638e9 0.194046
825825 0 0
826826 −6.97503e9 −0.430642
827827 1.69343e10 1.04111 0.520556 0.853828i 0.325725π-0.325725\pi
0.520556 + 0.853828i 0.325725π0.325725\pi
828828 1.14037e10 0.698133
829829 −3.44175e8 −0.0209816 −0.0104908 0.999945i 0.503339π-0.503339\pi
−0.0104908 + 0.999945i 0.503339π0.503339\pi
830830 0 0
831831 −8.80510e8 −0.0532268
832832 −3.62021e8 −0.0217922
833833 4.71655e8 0.0282727
834834 −1.20985e8 −0.00722188
835835 0 0
836836 −1.13315e9 −0.0670757
837837 −5.21626e8 −0.0307482
838838 1.02053e10 0.599065
839839 2.98584e10 1.74542 0.872709 0.488241i 0.162361π-0.162361\pi
0.872709 + 0.488241i 0.162361π0.162361\pi
840840 0 0
841841 7.45913e9 0.432417
842842 1.04361e9 0.0602484
843843 −1.29976e9 −0.0747250
844844 1.24336e10 0.711866
845845 0 0
846846 −1.14196e10 −0.648419
847847 −4.86489e9 −0.275094
848848 −1.19576e9 −0.0673378
849849 7.49807e8 0.0420506
850850 0 0
851851 1.02480e10 0.570015
852852 −4.06575e8 −0.0225217
853853 −9.16319e9 −0.505504 −0.252752 0.967531i 0.581336π-0.581336\pi
−0.252752 + 0.967531i 0.581336π0.581336\pi
854854 3.94390e9 0.216682
855855 0 0
856856 1.62682e9 0.0886506
857857 1.12085e10 0.608297 0.304148 0.952625i 0.401628π-0.401628\pi
0.304148 + 0.952625i 0.401628π0.401628\pi
858858 7.63306e7 0.00412566
859859 7.88838e9 0.424631 0.212315 0.977201i 0.431900π-0.431900\pi
0.212315 + 0.977201i 0.431900π0.431900\pi
860860 0 0
861861 7.60445e8 0.0406029
862862 2.08682e10 1.10971
863863 −2.69012e10 −1.42473 −0.712367 0.701807i 0.752377π-0.752377\pi
−0.712367 + 0.701807i 0.752377π0.752377\pi
864864 4.29097e8 0.0226338
865865 0 0
866866 5.42096e9 0.283637
867867 1.18280e9 0.0616374
868868 −8.74436e8 −0.0453846
869869 −5.37617e9 −0.277910
870870 0 0
871871 4.35148e9 0.223138
872872 −7.71295e9 −0.393924
873873 2.65327e10 1.34968
874874 5.03164e9 0.254929
875875 0 0
876876 1.06044e8 0.00532991
877877 1.00443e10 0.502830 0.251415 0.967879i 0.419104π-0.419104\pi
0.251415 + 0.967879i 0.419104π0.419104\pi
878878 −6.32322e9 −0.315288
879879 −2.40756e9 −0.119568
880880 0 0
881881 −2.81294e10 −1.38594 −0.692971 0.720965i 0.743699π-0.743699\pi
−0.692971 + 0.720965i 0.743699π0.743699\pi
882882 −2.04992e9 −0.100600
883883 −2.91109e10 −1.42296 −0.711480 0.702706i 0.751975π-0.751975\pi
−0.711480 + 0.702706i 0.751975π0.751975\pi
884884 −3.54331e8 −0.0172515
885885 0 0
886886 1.71047e10 0.826224
887887 −2.06382e10 −0.992976 −0.496488 0.868044i 0.665377π-0.665377\pi
−0.496488 + 0.868044i 0.665377π0.665377\pi
888888 1.92409e8 0.00922102
889889 1.21493e10 0.579956
890890 0 0
891891 1.08794e10 0.515267
892892 5.25500e9 0.247911
893893 −5.03869e9 −0.236776
894894 8.14055e8 0.0381041
895895 0 0
896896 7.19323e8 0.0334077
897897 −3.38939e8 −0.0156801
898898 2.25219e8 0.0103786
899899 −6.26155e9 −0.287424
900900 0 0
901901 −1.17036e9 −0.0533070
902902 −1.36156e10 −0.617751
903903 3.03148e8 0.0137008
904904 −8.95185e9 −0.403017
905905 0 0
906906 8.67256e8 0.0387435
907907 −1.03208e10 −0.459289 −0.229645 0.973275i 0.573756π-0.573756\pi
−0.229645 + 0.973275i 0.573756π0.573756\pi
908908 2.01991e10 0.895430
909909 1.91428e10 0.845342
910910 0 0
911911 2.93871e10 1.28778 0.643890 0.765118i 0.277319π-0.277319\pi
0.643890 + 0.765118i 0.277319π0.277319\pi
912912 9.44701e7 0.00412394
913913 −5.05527e8 −0.0219835
914914 −6.07343e9 −0.263101
915915 0 0
916916 1.51110e10 0.649619
917917 −2.96511e9 −0.126984
918918 4.19983e8 0.0179177
919919 1.36213e10 0.578914 0.289457 0.957191i 0.406525π-0.406525\pi
0.289457 + 0.957191i 0.406525π0.406525\pi
920920 0 0
921921 9.07282e8 0.0382678
922922 2.64287e10 1.11050
923923 −2.92437e9 −0.122413
924924 −1.51666e8 −0.00632466
925925 0 0
926926 2.73714e10 1.13281
927927 −1.32568e10 −0.546587
928928 5.15083e9 0.211573
929929 3.82858e10 1.56669 0.783344 0.621588i 0.213512π-0.213512\pi
0.783344 + 0.621588i 0.213512π0.213512\pi
930930 0 0
931931 −9.04486e8 −0.0367348
932932 1.02530e10 0.414856
933933 −1.71201e9 −0.0690112
934934 2.37392e10 0.953350
935935 0 0
936936 1.54000e9 0.0613841
937937 −4.25939e10 −1.69145 −0.845724 0.533621i 0.820831π-0.820831\pi
−0.845724 + 0.533621i 0.820831π0.820831\pi
938938 −8.64625e9 −0.342072
939939 −1.27183e9 −0.0501301
940940 0 0
941941 8.79813e9 0.344213 0.172106 0.985078i 0.444943π-0.444943\pi
0.172106 + 0.985078i 0.444943π0.444943\pi
942942 −4.01874e8 −0.0156643
943943 6.04587e10 2.34784
944944 −1.04117e10 −0.402828
945945 0 0
946946 −5.42778e9 −0.208451
947947 −3.15926e10 −1.20882 −0.604408 0.796675i 0.706590π-0.706590\pi
−0.604408 + 0.796675i 0.706590π0.706590\pi
948948 4.48208e8 0.0170864
949949 7.62740e8 0.0289698
950950 0 0
951951 2.22286e9 0.0838071
952952 7.04045e8 0.0264467
953953 4.47398e10 1.67444 0.837218 0.546869i 0.184181π-0.184181\pi
0.837218 + 0.546869i 0.184181π0.184181\pi
954954 5.08666e9 0.189676
955955 0 0
956956 −2.27269e10 −0.841274
957957 −1.08603e9 −0.0400545
958958 2.79610e10 1.02748
959959 −1.68436e10 −0.616694
960960 0 0
961961 −2.59259e10 −0.942327
962962 1.38394e9 0.0501192
963963 −6.92034e9 −0.249710
964964 −6.16977e9 −0.221819
965965 0 0
966966 6.73460e8 0.0240376
967967 1.69742e10 0.603666 0.301833 0.953361i 0.402402π-0.402402\pi
0.301833 + 0.953361i 0.402402π0.402402\pi
968968 −7.26188e9 −0.257327
969969 9.24636e7 0.00326466
970970 0 0
971971 2.06446e10 0.723667 0.361834 0.932243i 0.382151π-0.382151\pi
0.361834 + 0.932243i 0.382151π0.382151\pi
972972 −2.73989e9 −0.0956976
973973 1.72908e9 0.0601755
974974 −1.85792e10 −0.644274
975975 0 0
976976 5.88710e9 0.202688
977977 −4.79396e10 −1.64461 −0.822307 0.569045i 0.807313π-0.807313\pi
−0.822307 + 0.569045i 0.807313π0.807313\pi
978978 −1.42682e9 −0.0487735
979979 −7.25509e9 −0.247118
980980 0 0
981981 3.28102e10 1.10960
982982 −2.83641e10 −0.955826
983983 −3.01960e10 −1.01394 −0.506970 0.861964i 0.669234π-0.669234\pi
−0.506970 + 0.861964i 0.669234π0.669234\pi
984984 1.13513e9 0.0379805
985985 0 0
986986 5.04143e9 0.167488
987987 −6.74404e8 −0.0223259
988988 6.79496e8 0.0224149
989989 2.41016e10 0.792242
990990 0 0
991991 1.83662e10 0.599463 0.299731 0.954024i 0.403103π-0.403103\pi
0.299731 + 0.954024i 0.403103π0.403103\pi
992992 −1.30528e9 −0.0424535
993993 −2.05636e9 −0.0666463
994994 5.81063e9 0.187660
995995 0 0
996996 4.21455e7 0.00135159
997997 6.24126e9 0.199452 0.0997262 0.995015i 0.468203π-0.468203\pi
0.0997262 + 0.995015i 0.468203π0.468203\pi
998998 −4.24720e10 −1.35253
999999 −1.64036e9 −0.0520546
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.8.a.g.1.1 1
5.2 odd 4 70.8.c.b.29.2 yes 2
5.3 odd 4 70.8.c.b.29.1 2
5.4 even 2 350.8.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.8.c.b.29.1 2 5.3 odd 4
70.8.c.b.29.2 yes 2 5.2 odd 4
350.8.a.b.1.1 1 5.4 even 2
350.8.a.g.1.1 1 1.1 even 1 trivial