Properties

Label 350.8.a.g.1.1
Level $350$
Weight $8$
Character 350.1
Self dual yes
Analytic conductor $109.335$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,8,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.334758919\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} -3.00000 q^{3} +64.0000 q^{4} -24.0000 q^{6} +343.000 q^{7} +512.000 q^{8} -2178.00 q^{9} +2303.00 q^{11} -192.000 q^{12} -1381.00 q^{13} +2744.00 q^{14} +4096.00 q^{16} +4009.00 q^{17} -17424.0 q^{18} -7688.00 q^{19} -1029.00 q^{21} +18424.0 q^{22} -81810.0 q^{23} -1536.00 q^{24} -11048.0 q^{26} +13095.0 q^{27} +21952.0 q^{28} +157191. q^{29} -39834.0 q^{31} +32768.0 q^{32} -6909.00 q^{33} +32072.0 q^{34} -139392. q^{36} -125266. q^{37} -61504.0 q^{38} +4143.00 q^{39} -739014. q^{41} -8232.00 q^{42} -294604. q^{43} +147392. q^{44} -654480. q^{46} +655397. q^{47} -12288.0 q^{48} +117649. q^{49} -12027.0 q^{51} -88384.0 q^{52} -291934. q^{53} +104760. q^{54} +175616. q^{56} +23064.0 q^{57} +1.25753e6 q^{58} -2.54192e6 q^{59} +1.43728e6 q^{61} -318672. q^{62} -747054. q^{63} +262144. q^{64} -55272.0 q^{66} -3.15097e6 q^{67} +256576. q^{68} +245430. q^{69} +2.11758e6 q^{71} -1.11514e6 q^{72} -552310. q^{73} -1.00213e6 q^{74} -492032. q^{76} +789929. q^{77} +33144.0 q^{78} -2.33442e6 q^{79} +4.72400e6 q^{81} -5.91211e6 q^{82} -219508. q^{83} -65856.0 q^{84} -2.35683e6 q^{86} -471573. q^{87} +1.17914e6 q^{88} -3.15028e6 q^{89} -473683. q^{91} -5.23584e6 q^{92} +119502. q^{93} +5.24318e6 q^{94} -98304.0 q^{96} -1.21821e7 q^{97} +941192. q^{98} -5.01593e6 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) −3.00000 −0.0641500 −0.0320750 0.999485i \(-0.510212\pi\)
−0.0320750 + 0.999485i \(0.510212\pi\)
\(4\) 64.0000 0.500000
\(5\) 0 0
\(6\) −24.0000 −0.0453609
\(7\) 343.000 0.377964
\(8\) 512.000 0.353553
\(9\) −2178.00 −0.995885
\(10\) 0 0
\(11\) 2303.00 0.521698 0.260849 0.965380i \(-0.415997\pi\)
0.260849 + 0.965380i \(0.415997\pi\)
\(12\) −192.000 −0.0320750
\(13\) −1381.00 −0.174338 −0.0871690 0.996194i \(-0.527782\pi\)
−0.0871690 + 0.996194i \(0.527782\pi\)
\(14\) 2744.00 0.267261
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 4009.00 0.197909 0.0989543 0.995092i \(-0.468450\pi\)
0.0989543 + 0.995092i \(0.468450\pi\)
\(18\) −17424.0 −0.704197
\(19\) −7688.00 −0.257144 −0.128572 0.991700i \(-0.541039\pi\)
−0.128572 + 0.991700i \(0.541039\pi\)
\(20\) 0 0
\(21\) −1029.00 −0.0242464
\(22\) 18424.0 0.368897
\(23\) −81810.0 −1.40204 −0.701018 0.713144i \(-0.747271\pi\)
−0.701018 + 0.713144i \(0.747271\pi\)
\(24\) −1536.00 −0.0226805
\(25\) 0 0
\(26\) −11048.0 −0.123276
\(27\) 13095.0 0.128036
\(28\) 21952.0 0.188982
\(29\) 157191. 1.19684 0.598418 0.801184i \(-0.295796\pi\)
0.598418 + 0.801184i \(0.295796\pi\)
\(30\) 0 0
\(31\) −39834.0 −0.240153 −0.120076 0.992765i \(-0.538314\pi\)
−0.120076 + 0.992765i \(0.538314\pi\)
\(32\) 32768.0 0.176777
\(33\) −6909.00 −0.0334670
\(34\) 32072.0 0.139943
\(35\) 0 0
\(36\) −139392. −0.497942
\(37\) −125266. −0.406562 −0.203281 0.979120i \(-0.565161\pi\)
−0.203281 + 0.979120i \(0.565161\pi\)
\(38\) −61504.0 −0.181828
\(39\) 4143.00 0.0111838
\(40\) 0 0
\(41\) −739014. −1.67459 −0.837296 0.546749i \(-0.815865\pi\)
−0.837296 + 0.546749i \(0.815865\pi\)
\(42\) −8232.00 −0.0171448
\(43\) −294604. −0.565066 −0.282533 0.959258i \(-0.591175\pi\)
−0.282533 + 0.959258i \(0.591175\pi\)
\(44\) 147392. 0.260849
\(45\) 0 0
\(46\) −654480. −0.991389
\(47\) 655397. 0.920793 0.460396 0.887713i \(-0.347707\pi\)
0.460396 + 0.887713i \(0.347707\pi\)
\(48\) −12288.0 −0.0160375
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) −12027.0 −0.0126958
\(52\) −88384.0 −0.0871690
\(53\) −291934. −0.269351 −0.134676 0.990890i \(-0.542999\pi\)
−0.134676 + 0.990890i \(0.542999\pi\)
\(54\) 104760. 0.0905352
\(55\) 0 0
\(56\) 175616. 0.133631
\(57\) 23064.0 0.0164958
\(58\) 1.25753e6 0.846291
\(59\) −2.54192e6 −1.61131 −0.805657 0.592382i \(-0.798188\pi\)
−0.805657 + 0.592382i \(0.798188\pi\)
\(60\) 0 0
\(61\) 1.43728e6 0.810750 0.405375 0.914150i \(-0.367141\pi\)
0.405375 + 0.914150i \(0.367141\pi\)
\(62\) −318672. −0.169814
\(63\) −747054. −0.376409
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) −55272.0 −0.0236647
\(67\) −3.15097e6 −1.27992 −0.639959 0.768409i \(-0.721049\pi\)
−0.639959 + 0.768409i \(0.721049\pi\)
\(68\) 256576. 0.0989543
\(69\) 245430. 0.0899406
\(70\) 0 0
\(71\) 2.11758e6 0.702158 0.351079 0.936346i \(-0.385815\pi\)
0.351079 + 0.936346i \(0.385815\pi\)
\(72\) −1.11514e6 −0.352098
\(73\) −552310. −0.166170 −0.0830851 0.996542i \(-0.526477\pi\)
−0.0830851 + 0.996542i \(0.526477\pi\)
\(74\) −1.00213e6 −0.287483
\(75\) 0 0
\(76\) −492032. −0.128572
\(77\) 789929. 0.197183
\(78\) 33144.0 0.00790813
\(79\) −2.33442e6 −0.532702 −0.266351 0.963876i \(-0.585818\pi\)
−0.266351 + 0.963876i \(0.585818\pi\)
\(80\) 0 0
\(81\) 4.72400e6 0.987671
\(82\) −5.91211e6 −1.18412
\(83\) −219508. −0.0421383 −0.0210692 0.999778i \(-0.506707\pi\)
−0.0210692 + 0.999778i \(0.506707\pi\)
\(84\) −65856.0 −0.0121232
\(85\) 0 0
\(86\) −2.35683e6 −0.399562
\(87\) −471573. −0.0767771
\(88\) 1.17914e6 0.184448
\(89\) −3.15028e6 −0.473679 −0.236840 0.971549i \(-0.576112\pi\)
−0.236840 + 0.971549i \(0.576112\pi\)
\(90\) 0 0
\(91\) −473683. −0.0658936
\(92\) −5.23584e6 −0.701018
\(93\) 119502. 0.0154058
\(94\) 5.24318e6 0.651099
\(95\) 0 0
\(96\) −98304.0 −0.0113402
\(97\) −1.21821e7 −1.35526 −0.677630 0.735403i \(-0.736993\pi\)
−0.677630 + 0.735403i \(0.736993\pi\)
\(98\) 941192. 0.101015
\(99\) −5.01593e6 −0.519552
\(100\) 0 0
\(101\) −8.78918e6 −0.848836 −0.424418 0.905466i \(-0.639521\pi\)
−0.424418 + 0.905466i \(0.639521\pi\)
\(102\) −96216.0 −0.00897732
\(103\) 6.08668e6 0.548846 0.274423 0.961609i \(-0.411513\pi\)
0.274423 + 0.961609i \(0.411513\pi\)
\(104\) −707072. −0.0616378
\(105\) 0 0
\(106\) −2.33547e6 −0.190460
\(107\) 3.17738e6 0.250742 0.125371 0.992110i \(-0.459988\pi\)
0.125371 + 0.992110i \(0.459988\pi\)
\(108\) 838080. 0.0640180
\(109\) −1.50644e7 −1.11419 −0.557093 0.830450i \(-0.688083\pi\)
−0.557093 + 0.830450i \(0.688083\pi\)
\(110\) 0 0
\(111\) 375798. 0.0260810
\(112\) 1.40493e6 0.0944911
\(113\) −1.74841e7 −1.13990 −0.569952 0.821678i \(-0.693038\pi\)
−0.569952 + 0.821678i \(0.693038\pi\)
\(114\) 184512. 0.0116643
\(115\) 0 0
\(116\) 1.00602e7 0.598418
\(117\) 3.00782e6 0.173621
\(118\) −2.03354e7 −1.13937
\(119\) 1.37509e6 0.0748024
\(120\) 0 0
\(121\) −1.41834e7 −0.727831
\(122\) 1.14982e7 0.573287
\(123\) 2.21704e6 0.107425
\(124\) −2.54938e6 −0.120076
\(125\) 0 0
\(126\) −5.97643e6 −0.266161
\(127\) 3.54207e7 1.53442 0.767210 0.641396i \(-0.221644\pi\)
0.767210 + 0.641396i \(0.221644\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 883812. 0.0362490
\(130\) 0 0
\(131\) −8.64463e6 −0.335967 −0.167984 0.985790i \(-0.553726\pi\)
−0.167984 + 0.985790i \(0.553726\pi\)
\(132\) −442176. −0.0167335
\(133\) −2.63698e6 −0.0971912
\(134\) −2.52077e7 −0.905038
\(135\) 0 0
\(136\) 2.05261e6 0.0699713
\(137\) −4.91067e7 −1.63162 −0.815809 0.578321i \(-0.803708\pi\)
−0.815809 + 0.578321i \(0.803708\pi\)
\(138\) 1.96344e6 0.0635976
\(139\) 5.04104e6 0.159209 0.0796047 0.996827i \(-0.474634\pi\)
0.0796047 + 0.996827i \(0.474634\pi\)
\(140\) 0 0
\(141\) −1.96619e6 −0.0590689
\(142\) 1.69406e7 0.496501
\(143\) −3.18044e6 −0.0909518
\(144\) −8.92109e6 −0.248971
\(145\) 0 0
\(146\) −4.41848e6 −0.117500
\(147\) −352947. −0.00916429
\(148\) −8.01702e6 −0.203281
\(149\) −3.39189e7 −0.840021 −0.420011 0.907519i \(-0.637974\pi\)
−0.420011 + 0.907519i \(0.637974\pi\)
\(150\) 0 0
\(151\) −3.61357e7 −0.854116 −0.427058 0.904224i \(-0.640450\pi\)
−0.427058 + 0.904224i \(0.640450\pi\)
\(152\) −3.93626e6 −0.0909140
\(153\) −8.73160e6 −0.197094
\(154\) 6.31943e6 0.139430
\(155\) 0 0
\(156\) 265152. 0.00559189
\(157\) 1.67447e7 0.345326 0.172663 0.984981i \(-0.444763\pi\)
0.172663 + 0.984981i \(0.444763\pi\)
\(158\) −1.86754e7 −0.376677
\(159\) 875802. 0.0172789
\(160\) 0 0
\(161\) −2.80608e7 −0.529920
\(162\) 3.77920e7 0.698389
\(163\) 5.94510e7 1.07523 0.537616 0.843190i \(-0.319325\pi\)
0.537616 + 0.843190i \(0.319325\pi\)
\(164\) −4.72969e7 −0.837296
\(165\) 0 0
\(166\) −1.75606e6 −0.0297963
\(167\) −5.24249e7 −0.871024 −0.435512 0.900183i \(-0.643433\pi\)
−0.435512 + 0.900183i \(0.643433\pi\)
\(168\) −526848. −0.00857241
\(169\) −6.08414e7 −0.969606
\(170\) 0 0
\(171\) 1.67445e7 0.256085
\(172\) −1.88547e7 −0.282533
\(173\) 9.61135e7 1.41131 0.705656 0.708554i \(-0.250652\pi\)
0.705656 + 0.708554i \(0.250652\pi\)
\(174\) −3.77258e6 −0.0542896
\(175\) 0 0
\(176\) 9.43309e6 0.130425
\(177\) 7.62577e6 0.103366
\(178\) −2.52022e7 −0.334942
\(179\) −1.28054e8 −1.66882 −0.834409 0.551146i \(-0.814191\pi\)
−0.834409 + 0.551146i \(0.814191\pi\)
\(180\) 0 0
\(181\) −1.38094e8 −1.73101 −0.865504 0.500901i \(-0.833002\pi\)
−0.865504 + 0.500901i \(0.833002\pi\)
\(182\) −3.78946e6 −0.0465938
\(183\) −4.31184e6 −0.0520096
\(184\) −4.18867e7 −0.495694
\(185\) 0 0
\(186\) 956016. 0.0108936
\(187\) 9.23273e6 0.103249
\(188\) 4.19454e7 0.460396
\(189\) 4.49158e6 0.0483931
\(190\) 0 0
\(191\) 2.12961e7 0.221148 0.110574 0.993868i \(-0.464731\pi\)
0.110574 + 0.993868i \(0.464731\pi\)
\(192\) −786432. −0.00801875
\(193\) 1.65697e7 0.165907 0.0829535 0.996553i \(-0.473565\pi\)
0.0829535 + 0.996553i \(0.473565\pi\)
\(194\) −9.74571e7 −0.958313
\(195\) 0 0
\(196\) 7.52954e6 0.0714286
\(197\) 4.23674e7 0.394821 0.197411 0.980321i \(-0.436747\pi\)
0.197411 + 0.980321i \(0.436747\pi\)
\(198\) −4.01275e7 −0.367378
\(199\) −1.73127e8 −1.55732 −0.778661 0.627445i \(-0.784101\pi\)
−0.778661 + 0.627445i \(0.784101\pi\)
\(200\) 0 0
\(201\) 9.45290e6 0.0821067
\(202\) −7.03134e7 −0.600217
\(203\) 5.39165e7 0.452362
\(204\) −769728. −0.00634792
\(205\) 0 0
\(206\) 4.86935e7 0.388093
\(207\) 1.78182e8 1.39627
\(208\) −5.65658e6 −0.0435845
\(209\) −1.77055e7 −0.134151
\(210\) 0 0
\(211\) 1.94275e8 1.42373 0.711866 0.702315i \(-0.247850\pi\)
0.711866 + 0.702315i \(0.247850\pi\)
\(212\) −1.86838e7 −0.134676
\(213\) −6.35273e6 −0.0450435
\(214\) 2.54191e7 0.177301
\(215\) 0 0
\(216\) 6.70464e6 0.0452676
\(217\) −1.36631e7 −0.0907693
\(218\) −1.20515e8 −0.787849
\(219\) 1.65693e6 0.0106598
\(220\) 0 0
\(221\) −5.53643e6 −0.0345030
\(222\) 3.00638e6 0.0184420
\(223\) 8.21095e7 0.495822 0.247911 0.968783i \(-0.420256\pi\)
0.247911 + 0.968783i \(0.420256\pi\)
\(224\) 1.12394e7 0.0668153
\(225\) 0 0
\(226\) −1.39873e8 −0.806034
\(227\) 3.15611e8 1.79086 0.895430 0.445202i \(-0.146868\pi\)
0.895430 + 0.445202i \(0.146868\pi\)
\(228\) 1.47610e6 0.00824789
\(229\) 2.36109e8 1.29924 0.649619 0.760260i \(-0.274928\pi\)
0.649619 + 0.760260i \(0.274928\pi\)
\(230\) 0 0
\(231\) −2.36979e6 −0.0126493
\(232\) 8.04818e7 0.423145
\(233\) 1.60204e8 0.829711 0.414856 0.909887i \(-0.363832\pi\)
0.414856 + 0.909887i \(0.363832\pi\)
\(234\) 2.40625e7 0.122768
\(235\) 0 0
\(236\) −1.62683e8 −0.805657
\(237\) 7.00326e6 0.0341728
\(238\) 1.10007e7 0.0528933
\(239\) −3.55108e8 −1.68255 −0.841274 0.540609i \(-0.818194\pi\)
−0.841274 + 0.540609i \(0.818194\pi\)
\(240\) 0 0
\(241\) −9.64026e7 −0.443638 −0.221819 0.975088i \(-0.571199\pi\)
−0.221819 + 0.975088i \(0.571199\pi\)
\(242\) −1.13467e8 −0.514654
\(243\) −4.28108e7 −0.191395
\(244\) 9.19859e7 0.405375
\(245\) 0 0
\(246\) 1.77363e7 0.0759611
\(247\) 1.06171e7 0.0448299
\(248\) −2.03950e7 −0.0849069
\(249\) 658524. 0.00270317
\(250\) 0 0
\(251\) 1.57871e8 0.630151 0.315076 0.949067i \(-0.397970\pi\)
0.315076 + 0.949067i \(0.397970\pi\)
\(252\) −4.78115e7 −0.188205
\(253\) −1.88408e8 −0.731440
\(254\) 2.83366e8 1.08500
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −1.86351e8 −0.684803 −0.342402 0.939554i \(-0.611240\pi\)
−0.342402 + 0.939554i \(0.611240\pi\)
\(258\) 7.07050e6 0.0256319
\(259\) −4.29662e7 −0.153666
\(260\) 0 0
\(261\) −3.42362e8 −1.19191
\(262\) −6.91570e7 −0.237565
\(263\) −2.33579e8 −0.791751 −0.395875 0.918304i \(-0.629559\pi\)
−0.395875 + 0.918304i \(0.629559\pi\)
\(264\) −3.53741e6 −0.0118324
\(265\) 0 0
\(266\) −2.10959e7 −0.0687245
\(267\) 9.45084e6 0.0303865
\(268\) −2.01662e8 −0.639959
\(269\) −8.11207e7 −0.254097 −0.127048 0.991897i \(-0.540550\pi\)
−0.127048 + 0.991897i \(0.540550\pi\)
\(270\) 0 0
\(271\) −4.27197e8 −1.30387 −0.651937 0.758273i \(-0.726043\pi\)
−0.651937 + 0.758273i \(0.726043\pi\)
\(272\) 1.64209e7 0.0494772
\(273\) 1.42105e6 0.00422707
\(274\) −3.92854e8 −1.15373
\(275\) 0 0
\(276\) 1.57075e7 0.0449703
\(277\) 2.93503e8 0.829724 0.414862 0.909884i \(-0.363830\pi\)
0.414862 + 0.909884i \(0.363830\pi\)
\(278\) 4.03283e7 0.112578
\(279\) 8.67585e7 0.239165
\(280\) 0 0
\(281\) 4.33253e8 1.16485 0.582424 0.812885i \(-0.302104\pi\)
0.582424 + 0.812885i \(0.302104\pi\)
\(282\) −1.57295e7 −0.0417680
\(283\) −2.49936e8 −0.655505 −0.327752 0.944764i \(-0.606291\pi\)
−0.327752 + 0.944764i \(0.606291\pi\)
\(284\) 1.35525e8 0.351079
\(285\) 0 0
\(286\) −2.54435e7 −0.0643127
\(287\) −2.53482e8 −0.632937
\(288\) −7.13687e7 −0.176049
\(289\) −3.94267e8 −0.960832
\(290\) 0 0
\(291\) 3.65464e7 0.0869399
\(292\) −3.53478e7 −0.0830851
\(293\) 8.02521e8 1.86389 0.931943 0.362604i \(-0.118112\pi\)
0.931943 + 0.362604i \(0.118112\pi\)
\(294\) −2.82358e6 −0.00648013
\(295\) 0 0
\(296\) −6.41362e7 −0.143742
\(297\) 3.01578e7 0.0667962
\(298\) −2.71352e8 −0.593985
\(299\) 1.12980e8 0.244428
\(300\) 0 0
\(301\) −1.01049e8 −0.213575
\(302\) −2.89085e8 −0.603951
\(303\) 2.63675e7 0.0544528
\(304\) −3.14900e7 −0.0642859
\(305\) 0 0
\(306\) −6.98528e7 −0.139367
\(307\) −3.02427e8 −0.596536 −0.298268 0.954482i \(-0.596409\pi\)
−0.298268 + 0.954482i \(0.596409\pi\)
\(308\) 5.05555e7 0.0985917
\(309\) −1.82601e7 −0.0352085
\(310\) 0 0
\(311\) 5.70669e8 1.07578 0.537889 0.843015i \(-0.319222\pi\)
0.537889 + 0.843015i \(0.319222\pi\)
\(312\) 2.12122e6 0.00395407
\(313\) 4.23943e8 0.781452 0.390726 0.920507i \(-0.372224\pi\)
0.390726 + 0.920507i \(0.372224\pi\)
\(314\) 1.33958e8 0.244182
\(315\) 0 0
\(316\) −1.49403e8 −0.266351
\(317\) −7.40954e8 −1.30642 −0.653212 0.757175i \(-0.726579\pi\)
−0.653212 + 0.757175i \(0.726579\pi\)
\(318\) 7.00642e6 0.0122180
\(319\) 3.62011e8 0.624388
\(320\) 0 0
\(321\) −9.53215e6 −0.0160851
\(322\) −2.24487e8 −0.374710
\(323\) −3.08212e7 −0.0508910
\(324\) 3.02336e8 0.493836
\(325\) 0 0
\(326\) 4.75608e8 0.760304
\(327\) 4.51931e7 0.0714751
\(328\) −3.78375e8 −0.592058
\(329\) 2.24801e8 0.348027
\(330\) 0 0
\(331\) 6.85452e8 1.03891 0.519457 0.854497i \(-0.326134\pi\)
0.519457 + 0.854497i \(0.326134\pi\)
\(332\) −1.40485e7 −0.0210692
\(333\) 2.72829e8 0.404889
\(334\) −4.19399e8 −0.615907
\(335\) 0 0
\(336\) −4.21478e6 −0.00606161
\(337\) 7.06213e7 0.100515 0.0502576 0.998736i \(-0.483996\pi\)
0.0502576 + 0.998736i \(0.483996\pi\)
\(338\) −4.86731e8 −0.685615
\(339\) 5.24522e7 0.0731249
\(340\) 0 0
\(341\) −9.17377e7 −0.125287
\(342\) 1.33956e8 0.181080
\(343\) 4.03536e7 0.0539949
\(344\) −1.50837e8 −0.199781
\(345\) 0 0
\(346\) 7.68908e8 0.997949
\(347\) −5.95905e8 −0.765639 −0.382819 0.923823i \(-0.625047\pi\)
−0.382819 + 0.923823i \(0.625047\pi\)
\(348\) −3.01807e7 −0.0383885
\(349\) 1.11603e9 1.40536 0.702680 0.711506i \(-0.251987\pi\)
0.702680 + 0.711506i \(0.251987\pi\)
\(350\) 0 0
\(351\) −1.80842e7 −0.0223215
\(352\) 7.54647e7 0.0922241
\(353\) 1.26050e9 1.52522 0.762609 0.646860i \(-0.223918\pi\)
0.762609 + 0.646860i \(0.223918\pi\)
\(354\) 6.10061e7 0.0730907
\(355\) 0 0
\(356\) −2.01618e8 −0.236840
\(357\) −4.12526e6 −0.00479858
\(358\) −1.02444e9 −1.18003
\(359\) 1.44717e7 0.0165078 0.00825390 0.999966i \(-0.497373\pi\)
0.00825390 + 0.999966i \(0.497373\pi\)
\(360\) 0 0
\(361\) −8.34766e8 −0.933877
\(362\) −1.10475e9 −1.22401
\(363\) 4.25501e7 0.0466904
\(364\) −3.03157e7 −0.0329468
\(365\) 0 0
\(366\) −3.44947e7 −0.0367764
\(367\) 1.35964e9 1.43580 0.717900 0.696146i \(-0.245103\pi\)
0.717900 + 0.696146i \(0.245103\pi\)
\(368\) −3.35094e8 −0.350509
\(369\) 1.60957e9 1.66770
\(370\) 0 0
\(371\) −1.00133e8 −0.101805
\(372\) 7.64813e6 0.00770291
\(373\) 8.65452e8 0.863499 0.431750 0.901993i \(-0.357896\pi\)
0.431750 + 0.901993i \(0.357896\pi\)
\(374\) 7.38618e7 0.0730078
\(375\) 0 0
\(376\) 3.35563e8 0.325549
\(377\) −2.17081e8 −0.208654
\(378\) 3.59327e7 0.0342191
\(379\) 2.06822e8 0.195146 0.0975731 0.995228i \(-0.468892\pi\)
0.0975731 + 0.995228i \(0.468892\pi\)
\(380\) 0 0
\(381\) −1.06262e8 −0.0984331
\(382\) 1.70368e8 0.156375
\(383\) 3.21422e8 0.292335 0.146167 0.989260i \(-0.453306\pi\)
0.146167 + 0.989260i \(0.453306\pi\)
\(384\) −6.29146e6 −0.00567012
\(385\) 0 0
\(386\) 1.32558e8 0.117314
\(387\) 6.41648e8 0.562740
\(388\) −7.79657e8 −0.677630
\(389\) 5.80546e8 0.500050 0.250025 0.968239i \(-0.419561\pi\)
0.250025 + 0.968239i \(0.419561\pi\)
\(390\) 0 0
\(391\) −3.27976e8 −0.277475
\(392\) 6.02363e7 0.0505076
\(393\) 2.59339e7 0.0215523
\(394\) 3.38939e8 0.279181
\(395\) 0 0
\(396\) −3.21020e8 −0.259776
\(397\) 1.02652e9 0.823380 0.411690 0.911324i \(-0.364939\pi\)
0.411690 + 0.911324i \(0.364939\pi\)
\(398\) −1.38501e9 −1.10119
\(399\) 7.91095e6 0.00623482
\(400\) 0 0
\(401\) 4.12720e8 0.319632 0.159816 0.987147i \(-0.448910\pi\)
0.159816 + 0.987147i \(0.448910\pi\)
\(402\) 7.56232e7 0.0580582
\(403\) 5.50108e7 0.0418678
\(404\) −5.62508e8 −0.424418
\(405\) 0 0
\(406\) 4.31332e8 0.319868
\(407\) −2.88488e8 −0.212103
\(408\) −6.15782e6 −0.00448866
\(409\) 1.84599e9 1.33413 0.667064 0.745001i \(-0.267551\pi\)
0.667064 + 0.745001i \(0.267551\pi\)
\(410\) 0 0
\(411\) 1.47320e8 0.104668
\(412\) 3.89548e8 0.274423
\(413\) −8.71879e8 −0.609019
\(414\) 1.42546e9 0.987309
\(415\) 0 0
\(416\) −4.52526e7 −0.0308189
\(417\) −1.51231e7 −0.0102133
\(418\) −1.41644e8 −0.0948594
\(419\) 1.27567e9 0.847205 0.423603 0.905848i \(-0.360765\pi\)
0.423603 + 0.905848i \(0.360765\pi\)
\(420\) 0 0
\(421\) 1.30451e8 0.0852041 0.0426020 0.999092i \(-0.486435\pi\)
0.0426020 + 0.999092i \(0.486435\pi\)
\(422\) 1.55420e9 1.00673
\(423\) −1.42745e9 −0.917004
\(424\) −1.49470e8 −0.0952301
\(425\) 0 0
\(426\) −5.08218e7 −0.0318505
\(427\) 4.92987e8 0.306435
\(428\) 2.03353e8 0.125371
\(429\) 9.54133e6 0.00583456
\(430\) 0 0
\(431\) 2.60852e9 1.56937 0.784683 0.619897i \(-0.212826\pi\)
0.784683 + 0.619897i \(0.212826\pi\)
\(432\) 5.36371e7 0.0320090
\(433\) 6.77620e8 0.401124 0.200562 0.979681i \(-0.435723\pi\)
0.200562 + 0.979681i \(0.435723\pi\)
\(434\) −1.09304e8 −0.0641836
\(435\) 0 0
\(436\) −9.64119e8 −0.557093
\(437\) 6.28955e8 0.360524
\(438\) 1.32554e7 0.00753763
\(439\) −7.90402e8 −0.445884 −0.222942 0.974832i \(-0.571566\pi\)
−0.222942 + 0.974832i \(0.571566\pi\)
\(440\) 0 0
\(441\) −2.56240e8 −0.142269
\(442\) −4.42914e7 −0.0243973
\(443\) 2.13809e9 1.16846 0.584228 0.811589i \(-0.301397\pi\)
0.584228 + 0.811589i \(0.301397\pi\)
\(444\) 2.40511e7 0.0130405
\(445\) 0 0
\(446\) 6.56876e8 0.350599
\(447\) 1.01757e8 0.0538874
\(448\) 8.99154e7 0.0472456
\(449\) 2.81523e7 0.0146775 0.00733875 0.999973i \(-0.497664\pi\)
0.00733875 + 0.999973i \(0.497664\pi\)
\(450\) 0 0
\(451\) −1.70195e9 −0.873632
\(452\) −1.11898e9 −0.569952
\(453\) 1.08407e8 0.0547916
\(454\) 2.52489e9 1.26633
\(455\) 0 0
\(456\) 1.18088e7 0.00583214
\(457\) −7.59179e8 −0.372081 −0.186041 0.982542i \(-0.559566\pi\)
−0.186041 + 0.982542i \(0.559566\pi\)
\(458\) 1.88887e9 0.918700
\(459\) 5.24979e7 0.0253394
\(460\) 0 0
\(461\) 3.30359e9 1.57048 0.785240 0.619191i \(-0.212539\pi\)
0.785240 + 0.619191i \(0.212539\pi\)
\(462\) −1.89583e7 −0.00894442
\(463\) 3.42142e9 1.60204 0.801020 0.598638i \(-0.204291\pi\)
0.801020 + 0.598638i \(0.204291\pi\)
\(464\) 6.43854e8 0.299209
\(465\) 0 0
\(466\) 1.28163e9 0.586695
\(467\) 2.96740e9 1.34824 0.674120 0.738622i \(-0.264523\pi\)
0.674120 + 0.738622i \(0.264523\pi\)
\(468\) 1.92500e8 0.0868103
\(469\) −1.08078e9 −0.483763
\(470\) 0 0
\(471\) −5.02342e7 −0.0221527
\(472\) −1.30146e9 −0.569686
\(473\) −6.78473e8 −0.294794
\(474\) 5.60261e7 0.0241638
\(475\) 0 0
\(476\) 8.80056e7 0.0374012
\(477\) 6.35832e8 0.268243
\(478\) −2.84086e9 −1.18974
\(479\) 3.49512e9 1.45308 0.726538 0.687127i \(-0.241128\pi\)
0.726538 + 0.687127i \(0.241128\pi\)
\(480\) 0 0
\(481\) 1.72992e8 0.0708793
\(482\) −7.71221e8 −0.313700
\(483\) 8.41825e7 0.0339944
\(484\) −9.07735e8 −0.363915
\(485\) 0 0
\(486\) −3.42486e8 −0.135337
\(487\) −2.32240e9 −0.911141 −0.455571 0.890200i \(-0.650565\pi\)
−0.455571 + 0.890200i \(0.650565\pi\)
\(488\) 7.35887e8 0.286643
\(489\) −1.78353e8 −0.0689762
\(490\) 0 0
\(491\) −3.54551e9 −1.35174 −0.675871 0.737020i \(-0.736232\pi\)
−0.675871 + 0.737020i \(0.736232\pi\)
\(492\) 1.41891e8 0.0537126
\(493\) 6.30179e8 0.236864
\(494\) 8.49370e7 0.0316995
\(495\) 0 0
\(496\) −1.63160e8 −0.0600382
\(497\) 7.26329e8 0.265391
\(498\) 5.26819e6 0.00191143
\(499\) −5.30900e9 −1.91276 −0.956381 0.292123i \(-0.905638\pi\)
−0.956381 + 0.292123i \(0.905638\pi\)
\(500\) 0 0
\(501\) 1.57275e8 0.0558762
\(502\) 1.26297e9 0.445584
\(503\) −2.07831e9 −0.728151 −0.364076 0.931369i \(-0.618615\pi\)
−0.364076 + 0.931369i \(0.618615\pi\)
\(504\) −3.82492e8 −0.133081
\(505\) 0 0
\(506\) −1.50727e9 −0.517206
\(507\) 1.82524e8 0.0622003
\(508\) 2.26693e9 0.767210
\(509\) −5.30242e9 −1.78222 −0.891112 0.453784i \(-0.850074\pi\)
−0.891112 + 0.453784i \(0.850074\pi\)
\(510\) 0 0
\(511\) −1.89442e8 −0.0628064
\(512\) 1.34218e8 0.0441942
\(513\) −1.00674e8 −0.0329237
\(514\) −1.49081e9 −0.484229
\(515\) 0 0
\(516\) 5.65640e7 0.0181245
\(517\) 1.50938e9 0.480376
\(518\) −3.43730e8 −0.108658
\(519\) −2.88341e8 −0.0905357
\(520\) 0 0
\(521\) −1.30449e9 −0.404118 −0.202059 0.979373i \(-0.564763\pi\)
−0.202059 + 0.979373i \(0.564763\pi\)
\(522\) −2.73890e9 −0.842808
\(523\) 2.26437e9 0.692136 0.346068 0.938210i \(-0.387517\pi\)
0.346068 + 0.938210i \(0.387517\pi\)
\(524\) −5.53256e8 −0.167984
\(525\) 0 0
\(526\) −1.86863e9 −0.559852
\(527\) −1.59695e8 −0.0475284
\(528\) −2.82993e7 −0.00836674
\(529\) 3.28805e9 0.965703
\(530\) 0 0
\(531\) 5.53631e9 1.60468
\(532\) −1.68767e8 −0.0485956
\(533\) 1.02058e9 0.291945
\(534\) 7.56067e7 0.0214865
\(535\) 0 0
\(536\) −1.61329e9 −0.452519
\(537\) 3.84163e8 0.107055
\(538\) −6.48966e8 −0.179673
\(539\) 2.70946e8 0.0745283
\(540\) 0 0
\(541\) 2.94233e9 0.798915 0.399458 0.916752i \(-0.369198\pi\)
0.399458 + 0.916752i \(0.369198\pi\)
\(542\) −3.41757e9 −0.921978
\(543\) 4.14281e8 0.111044
\(544\) 1.31367e8 0.0349856
\(545\) 0 0
\(546\) 1.13684e7 0.00298899
\(547\) −2.04414e9 −0.534016 −0.267008 0.963694i \(-0.586035\pi\)
−0.267008 + 0.963694i \(0.586035\pi\)
\(548\) −3.14283e9 −0.815809
\(549\) −3.13040e9 −0.807414
\(550\) 0 0
\(551\) −1.20848e9 −0.307759
\(552\) 1.25660e8 0.0317988
\(553\) −8.00706e8 −0.201342
\(554\) 2.34803e9 0.586704
\(555\) 0 0
\(556\) 3.22627e8 0.0796047
\(557\) 5.47095e9 1.34144 0.670718 0.741713i \(-0.265986\pi\)
0.670718 + 0.741713i \(0.265986\pi\)
\(558\) 6.94068e8 0.169115
\(559\) 4.06848e8 0.0985124
\(560\) 0 0
\(561\) −2.76982e7 −0.00662340
\(562\) 3.46602e9 0.823672
\(563\) −3.36364e9 −0.794384 −0.397192 0.917735i \(-0.630015\pi\)
−0.397192 + 0.917735i \(0.630015\pi\)
\(564\) −1.25836e8 −0.0295344
\(565\) 0 0
\(566\) −1.99949e9 −0.463512
\(567\) 1.62033e9 0.373305
\(568\) 1.08420e9 0.248250
\(569\) −4.28774e9 −0.975744 −0.487872 0.872915i \(-0.662227\pi\)
−0.487872 + 0.872915i \(0.662227\pi\)
\(570\) 0 0
\(571\) −8.17590e9 −1.83785 −0.918923 0.394437i \(-0.870940\pi\)
−0.918923 + 0.394437i \(0.870940\pi\)
\(572\) −2.03548e8 −0.0454759
\(573\) −6.38882e7 −0.0141866
\(574\) −2.02785e9 −0.447554
\(575\) 0 0
\(576\) −5.70950e8 −0.124486
\(577\) −2.91623e9 −0.631986 −0.315993 0.948762i \(-0.602338\pi\)
−0.315993 + 0.948762i \(0.602338\pi\)
\(578\) −3.15413e9 −0.679411
\(579\) −4.97092e7 −0.0106429
\(580\) 0 0
\(581\) −7.52912e7 −0.0159268
\(582\) 2.92371e8 0.0614758
\(583\) −6.72324e8 −0.140520
\(584\) −2.82783e8 −0.0587500
\(585\) 0 0
\(586\) 6.42016e9 1.31797
\(587\) −2.55546e9 −0.521477 −0.260739 0.965409i \(-0.583966\pi\)
−0.260739 + 0.965409i \(0.583966\pi\)
\(588\) −2.25886e7 −0.00458214
\(589\) 3.06244e8 0.0617538
\(590\) 0 0
\(591\) −1.27102e8 −0.0253278
\(592\) −5.13090e8 −0.101641
\(593\) −7.96504e9 −1.56854 −0.784272 0.620417i \(-0.786963\pi\)
−0.784272 + 0.620417i \(0.786963\pi\)
\(594\) 2.41262e8 0.0472321
\(595\) 0 0
\(596\) −2.17081e9 −0.420011
\(597\) 5.19380e8 0.0999023
\(598\) 9.03837e8 0.172837
\(599\) 5.10160e9 0.969869 0.484934 0.874551i \(-0.338844\pi\)
0.484934 + 0.874551i \(0.338844\pi\)
\(600\) 0 0
\(601\) −2.27123e9 −0.426776 −0.213388 0.976967i \(-0.568450\pi\)
−0.213388 + 0.976967i \(0.568450\pi\)
\(602\) −8.08393e8 −0.151020
\(603\) 6.86280e9 1.27465
\(604\) −2.31268e9 −0.427058
\(605\) 0 0
\(606\) 2.10940e8 0.0385040
\(607\) −3.21591e9 −0.583638 −0.291819 0.956474i \(-0.594260\pi\)
−0.291819 + 0.956474i \(0.594260\pi\)
\(608\) −2.51920e8 −0.0454570
\(609\) −1.61750e8 −0.0290190
\(610\) 0 0
\(611\) −9.05103e8 −0.160529
\(612\) −5.58823e8 −0.0985471
\(613\) −2.39288e9 −0.419574 −0.209787 0.977747i \(-0.567277\pi\)
−0.209787 + 0.977747i \(0.567277\pi\)
\(614\) −2.41942e9 −0.421815
\(615\) 0 0
\(616\) 4.04444e8 0.0697149
\(617\) −6.09839e9 −1.04524 −0.522621 0.852565i \(-0.675046\pi\)
−0.522621 + 0.852565i \(0.675046\pi\)
\(618\) −1.46080e8 −0.0248962
\(619\) 4.49455e9 0.761674 0.380837 0.924642i \(-0.375636\pi\)
0.380837 + 0.924642i \(0.375636\pi\)
\(620\) 0 0
\(621\) −1.07130e9 −0.179511
\(622\) 4.56535e9 0.760690
\(623\) −1.08055e9 −0.179034
\(624\) 1.69697e7 0.00279595
\(625\) 0 0
\(626\) 3.39154e9 0.552570
\(627\) 5.31164e7 0.00860582
\(628\) 1.07166e9 0.172663
\(629\) −5.02191e8 −0.0804622
\(630\) 0 0
\(631\) −5.29152e9 −0.838451 −0.419225 0.907882i \(-0.637698\pi\)
−0.419225 + 0.907882i \(0.637698\pi\)
\(632\) −1.19522e9 −0.188338
\(633\) −5.82825e8 −0.0913324
\(634\) −5.92763e9 −0.923781
\(635\) 0 0
\(636\) 5.60513e7 0.00863945
\(637\) −1.62473e8 −0.0249054
\(638\) 2.89609e9 0.441509
\(639\) −4.61208e9 −0.699268
\(640\) 0 0
\(641\) 1.94450e9 0.291612 0.145806 0.989313i \(-0.453422\pi\)
0.145806 + 0.989313i \(0.453422\pi\)
\(642\) −7.62572e7 −0.0113739
\(643\) 5.84495e9 0.867047 0.433523 0.901142i \(-0.357270\pi\)
0.433523 + 0.901142i \(0.357270\pi\)
\(644\) −1.79589e9 −0.264960
\(645\) 0 0
\(646\) −2.46570e8 −0.0359853
\(647\) −8.35753e9 −1.21315 −0.606573 0.795028i \(-0.707456\pi\)
−0.606573 + 0.795028i \(0.707456\pi\)
\(648\) 2.41869e9 0.349195
\(649\) −5.85405e9 −0.840620
\(650\) 0 0
\(651\) 4.09892e7 0.00582285
\(652\) 3.80486e9 0.537616
\(653\) −9.47179e9 −1.33118 −0.665588 0.746319i \(-0.731819\pi\)
−0.665588 + 0.746319i \(0.731819\pi\)
\(654\) 3.61545e8 0.0505405
\(655\) 0 0
\(656\) −3.02700e9 −0.418648
\(657\) 1.20293e9 0.165486
\(658\) 1.79841e9 0.246092
\(659\) −9.59528e9 −1.30605 −0.653024 0.757338i \(-0.726500\pi\)
−0.653024 + 0.757338i \(0.726500\pi\)
\(660\) 0 0
\(661\) −3.05680e9 −0.411683 −0.205841 0.978585i \(-0.565993\pi\)
−0.205841 + 0.978585i \(0.565993\pi\)
\(662\) 5.48362e9 0.734622
\(663\) 1.66093e7 0.00221337
\(664\) −1.12388e8 −0.0148981
\(665\) 0 0
\(666\) 2.18263e9 0.286300
\(667\) −1.28598e10 −1.67801
\(668\) −3.35519e9 −0.435512
\(669\) −2.46328e8 −0.0318070
\(670\) 0 0
\(671\) 3.31006e9 0.422967
\(672\) −3.37183e7 −0.00428620
\(673\) 2.91477e9 0.368597 0.184299 0.982870i \(-0.440999\pi\)
0.184299 + 0.982870i \(0.440999\pi\)
\(674\) 5.64971e8 0.0710749
\(675\) 0 0
\(676\) −3.89385e9 −0.484803
\(677\) 1.04043e10 1.28870 0.644348 0.764732i \(-0.277129\pi\)
0.644348 + 0.764732i \(0.277129\pi\)
\(678\) 4.19618e8 0.0517071
\(679\) −4.17847e9 −0.512240
\(680\) 0 0
\(681\) −9.46833e8 −0.114884
\(682\) −7.33902e8 −0.0885916
\(683\) −9.43735e9 −1.13339 −0.566693 0.823929i \(-0.691777\pi\)
−0.566693 + 0.823929i \(0.691777\pi\)
\(684\) 1.07165e9 0.128043
\(685\) 0 0
\(686\) 3.22829e8 0.0381802
\(687\) −7.08328e8 −0.0833462
\(688\) −1.20670e9 −0.141266
\(689\) 4.03161e8 0.0469582
\(690\) 0 0
\(691\) −2.32820e9 −0.268440 −0.134220 0.990952i \(-0.542853\pi\)
−0.134220 + 0.990952i \(0.542853\pi\)
\(692\) 6.15127e9 0.705656
\(693\) −1.72047e9 −0.196372
\(694\) −4.76724e9 −0.541388
\(695\) 0 0
\(696\) −2.41445e8 −0.0271448
\(697\) −2.96271e9 −0.331416
\(698\) 8.92825e9 0.993739
\(699\) −4.80611e8 −0.0532260
\(700\) 0 0
\(701\) 1.49770e9 0.164215 0.0821075 0.996623i \(-0.473835\pi\)
0.0821075 + 0.996623i \(0.473835\pi\)
\(702\) −1.44674e8 −0.0157837
\(703\) 9.63045e8 0.104545
\(704\) 6.03718e8 0.0652123
\(705\) 0 0
\(706\) 1.00840e10 1.07849
\(707\) −3.01469e9 −0.320830
\(708\) 4.88049e8 0.0516829
\(709\) −7.48971e9 −0.789229 −0.394615 0.918847i \(-0.629122\pi\)
−0.394615 + 0.918847i \(0.629122\pi\)
\(710\) 0 0
\(711\) 5.08436e9 0.530509
\(712\) −1.61294e9 −0.167471
\(713\) 3.25882e9 0.336703
\(714\) −3.30021e7 −0.00339311
\(715\) 0 0
\(716\) −8.19548e9 −0.834409
\(717\) 1.06532e9 0.107935
\(718\) 1.15774e8 0.0116728
\(719\) −4.25246e9 −0.426667 −0.213333 0.976979i \(-0.568432\pi\)
−0.213333 + 0.976979i \(0.568432\pi\)
\(720\) 0 0
\(721\) 2.08773e9 0.207444
\(722\) −6.67813e9 −0.660351
\(723\) 2.89208e8 0.0284594
\(724\) −8.83800e9 −0.865504
\(725\) 0 0
\(726\) 3.40401e8 0.0330151
\(727\) −3.55527e9 −0.343165 −0.171582 0.985170i \(-0.554888\pi\)
−0.171582 + 0.985170i \(0.554888\pi\)
\(728\) −2.42526e8 −0.0232969
\(729\) −1.02030e10 −0.975393
\(730\) 0 0
\(731\) −1.18107e9 −0.111831
\(732\) −2.75958e8 −0.0260048
\(733\) 1.97546e10 1.85270 0.926350 0.376664i \(-0.122929\pi\)
0.926350 + 0.376664i \(0.122929\pi\)
\(734\) 1.08772e10 1.01526
\(735\) 0 0
\(736\) −2.68075e9 −0.247847
\(737\) −7.25667e9 −0.667731
\(738\) 1.28766e10 1.17924
\(739\) 3.56697e9 0.325121 0.162560 0.986699i \(-0.448025\pi\)
0.162560 + 0.986699i \(0.448025\pi\)
\(740\) 0 0
\(741\) −3.18514e7 −0.00287584
\(742\) −8.01067e8 −0.0719872
\(743\) −8.93144e9 −0.798842 −0.399421 0.916768i \(-0.630789\pi\)
−0.399421 + 0.916768i \(0.630789\pi\)
\(744\) 6.11850e7 0.00544678
\(745\) 0 0
\(746\) 6.92362e9 0.610586
\(747\) 4.78088e8 0.0419649
\(748\) 5.90895e8 0.0516243
\(749\) 1.08984e9 0.0947714
\(750\) 0 0
\(751\) −8.26094e9 −0.711688 −0.355844 0.934545i \(-0.615807\pi\)
−0.355844 + 0.934545i \(0.615807\pi\)
\(752\) 2.68451e9 0.230198
\(753\) −4.73613e8 −0.0404242
\(754\) −1.73665e9 −0.147541
\(755\) 0 0
\(756\) 2.87461e8 0.0241965
\(757\) 1.65500e10 1.38664 0.693318 0.720632i \(-0.256148\pi\)
0.693318 + 0.720632i \(0.256148\pi\)
\(758\) 1.65458e9 0.137989
\(759\) 5.65225e8 0.0469219
\(760\) 0 0
\(761\) −7.87845e9 −0.648029 −0.324014 0.946052i \(-0.605033\pi\)
−0.324014 + 0.946052i \(0.605033\pi\)
\(762\) −8.50097e8 −0.0696027
\(763\) −5.16708e9 −0.421123
\(764\) 1.36295e9 0.110574
\(765\) 0 0
\(766\) 2.57138e9 0.206712
\(767\) 3.51039e9 0.280913
\(768\) −5.03316e7 −0.00400938
\(769\) 9.00174e9 0.713813 0.356907 0.934140i \(-0.383831\pi\)
0.356907 + 0.934140i \(0.383831\pi\)
\(770\) 0 0
\(771\) 5.59053e8 0.0439301
\(772\) 1.06046e9 0.0829535
\(773\) −2.39995e10 −1.86885 −0.934424 0.356163i \(-0.884085\pi\)
−0.934424 + 0.356163i \(0.884085\pi\)
\(774\) 5.13318e9 0.397918
\(775\) 0 0
\(776\) −6.23725e9 −0.479156
\(777\) 1.28899e8 0.00985769
\(778\) 4.64437e9 0.353588
\(779\) 5.68154e9 0.430611
\(780\) 0 0
\(781\) 4.87678e9 0.366315
\(782\) −2.62381e9 −0.196204
\(783\) 2.05842e9 0.153238
\(784\) 4.81890e8 0.0357143
\(785\) 0 0
\(786\) 2.07471e8 0.0152398
\(787\) 1.58050e9 0.115580 0.0577901 0.998329i \(-0.481595\pi\)
0.0577901 + 0.998329i \(0.481595\pi\)
\(788\) 2.71152e9 0.197411
\(789\) 7.00737e8 0.0507908
\(790\) 0 0
\(791\) −5.99704e9 −0.430843
\(792\) −2.56816e9 −0.183689
\(793\) −1.98488e9 −0.141344
\(794\) 8.21216e9 0.582218
\(795\) 0 0
\(796\) −1.10801e10 −0.778661
\(797\) 1.88835e10 1.32123 0.660613 0.750726i \(-0.270296\pi\)
0.660613 + 0.750726i \(0.270296\pi\)
\(798\) 6.32876e7 0.00440868
\(799\) 2.62749e9 0.182233
\(800\) 0 0
\(801\) 6.86131e9 0.471730
\(802\) 3.30176e9 0.226014
\(803\) −1.27197e9 −0.0866907
\(804\) 6.04985e8 0.0410534
\(805\) 0 0
\(806\) 4.40086e8 0.0296050
\(807\) 2.43362e8 0.0163003
\(808\) −4.50006e9 −0.300109
\(809\) 5.61160e8 0.0372621 0.0186310 0.999826i \(-0.494069\pi\)
0.0186310 + 0.999826i \(0.494069\pi\)
\(810\) 0 0
\(811\) 6.94523e9 0.457208 0.228604 0.973520i \(-0.426584\pi\)
0.228604 + 0.973520i \(0.426584\pi\)
\(812\) 3.45066e9 0.226181
\(813\) 1.28159e9 0.0836435
\(814\) −2.30790e9 −0.149979
\(815\) 0 0
\(816\) −4.92626e7 −0.00317396
\(817\) 2.26492e9 0.145303
\(818\) 1.47679e10 0.943370
\(819\) 1.03168e9 0.0656224
\(820\) 0 0
\(821\) 8.87330e9 0.559608 0.279804 0.960057i \(-0.409731\pi\)
0.279804 + 0.960057i \(0.409731\pi\)
\(822\) 1.17856e9 0.0740117
\(823\) −1.87347e10 −1.17152 −0.585758 0.810486i \(-0.699203\pi\)
−0.585758 + 0.810486i \(0.699203\pi\)
\(824\) 3.11638e9 0.194046
\(825\) 0 0
\(826\) −6.97503e9 −0.430642
\(827\) 1.69343e10 1.04111 0.520556 0.853828i \(-0.325725\pi\)
0.520556 + 0.853828i \(0.325725\pi\)
\(828\) 1.14037e10 0.698133
\(829\) −3.44175e8 −0.0209816 −0.0104908 0.999945i \(-0.503339\pi\)
−0.0104908 + 0.999945i \(0.503339\pi\)
\(830\) 0 0
\(831\) −8.80510e8 −0.0532268
\(832\) −3.62021e8 −0.0217922
\(833\) 4.71655e8 0.0282727
\(834\) −1.20985e8 −0.00722188
\(835\) 0 0
\(836\) −1.13315e9 −0.0670757
\(837\) −5.21626e8 −0.0307482
\(838\) 1.02053e10 0.599065
\(839\) 2.98584e10 1.74542 0.872709 0.488241i \(-0.162361\pi\)
0.872709 + 0.488241i \(0.162361\pi\)
\(840\) 0 0
\(841\) 7.45913e9 0.432417
\(842\) 1.04361e9 0.0602484
\(843\) −1.29976e9 −0.0747250
\(844\) 1.24336e10 0.711866
\(845\) 0 0
\(846\) −1.14196e10 −0.648419
\(847\) −4.86489e9 −0.275094
\(848\) −1.19576e9 −0.0673378
\(849\) 7.49807e8 0.0420506
\(850\) 0 0
\(851\) 1.02480e10 0.570015
\(852\) −4.06575e8 −0.0225217
\(853\) −9.16319e9 −0.505504 −0.252752 0.967531i \(-0.581336\pi\)
−0.252752 + 0.967531i \(0.581336\pi\)
\(854\) 3.94390e9 0.216682
\(855\) 0 0
\(856\) 1.62682e9 0.0886506
\(857\) 1.12085e10 0.608297 0.304148 0.952625i \(-0.401628\pi\)
0.304148 + 0.952625i \(0.401628\pi\)
\(858\) 7.63306e7 0.00412566
\(859\) 7.88838e9 0.424631 0.212315 0.977201i \(-0.431900\pi\)
0.212315 + 0.977201i \(0.431900\pi\)
\(860\) 0 0
\(861\) 7.60445e8 0.0406029
\(862\) 2.08682e10 1.10971
\(863\) −2.69012e10 −1.42473 −0.712367 0.701807i \(-0.752377\pi\)
−0.712367 + 0.701807i \(0.752377\pi\)
\(864\) 4.29097e8 0.0226338
\(865\) 0 0
\(866\) 5.42096e9 0.283637
\(867\) 1.18280e9 0.0616374
\(868\) −8.74436e8 −0.0453846
\(869\) −5.37617e9 −0.277910
\(870\) 0 0
\(871\) 4.35148e9 0.223138
\(872\) −7.71295e9 −0.393924
\(873\) 2.65327e10 1.34968
\(874\) 5.03164e9 0.254929
\(875\) 0 0
\(876\) 1.06044e8 0.00532991
\(877\) 1.00443e10 0.502830 0.251415 0.967879i \(-0.419104\pi\)
0.251415 + 0.967879i \(0.419104\pi\)
\(878\) −6.32322e9 −0.315288
\(879\) −2.40756e9 −0.119568
\(880\) 0 0
\(881\) −2.81294e10 −1.38594 −0.692971 0.720965i \(-0.743699\pi\)
−0.692971 + 0.720965i \(0.743699\pi\)
\(882\) −2.04992e9 −0.100600
\(883\) −2.91109e10 −1.42296 −0.711480 0.702706i \(-0.751975\pi\)
−0.711480 + 0.702706i \(0.751975\pi\)
\(884\) −3.54331e8 −0.0172515
\(885\) 0 0
\(886\) 1.71047e10 0.826224
\(887\) −2.06382e10 −0.992976 −0.496488 0.868044i \(-0.665377\pi\)
−0.496488 + 0.868044i \(0.665377\pi\)
\(888\) 1.92409e8 0.00922102
\(889\) 1.21493e10 0.579956
\(890\) 0 0
\(891\) 1.08794e10 0.515267
\(892\) 5.25500e9 0.247911
\(893\) −5.03869e9 −0.236776
\(894\) 8.14055e8 0.0381041
\(895\) 0 0
\(896\) 7.19323e8 0.0334077
\(897\) −3.38939e8 −0.0156801
\(898\) 2.25219e8 0.0103786
\(899\) −6.26155e9 −0.287424
\(900\) 0 0
\(901\) −1.17036e9 −0.0533070
\(902\) −1.36156e10 −0.617751
\(903\) 3.03148e8 0.0137008
\(904\) −8.95185e9 −0.403017
\(905\) 0 0
\(906\) 8.67256e8 0.0387435
\(907\) −1.03208e10 −0.459289 −0.229645 0.973275i \(-0.573756\pi\)
−0.229645 + 0.973275i \(0.573756\pi\)
\(908\) 2.01991e10 0.895430
\(909\) 1.91428e10 0.845342
\(910\) 0 0
\(911\) 2.93871e10 1.28778 0.643890 0.765118i \(-0.277319\pi\)
0.643890 + 0.765118i \(0.277319\pi\)
\(912\) 9.44701e7 0.00412394
\(913\) −5.05527e8 −0.0219835
\(914\) −6.07343e9 −0.263101
\(915\) 0 0
\(916\) 1.51110e10 0.649619
\(917\) −2.96511e9 −0.126984
\(918\) 4.19983e8 0.0179177
\(919\) 1.36213e10 0.578914 0.289457 0.957191i \(-0.406525\pi\)
0.289457 + 0.957191i \(0.406525\pi\)
\(920\) 0 0
\(921\) 9.07282e8 0.0382678
\(922\) 2.64287e10 1.11050
\(923\) −2.92437e9 −0.122413
\(924\) −1.51666e8 −0.00632466
\(925\) 0 0
\(926\) 2.73714e10 1.13281
\(927\) −1.32568e10 −0.546587
\(928\) 5.15083e9 0.211573
\(929\) 3.82858e10 1.56669 0.783344 0.621588i \(-0.213512\pi\)
0.783344 + 0.621588i \(0.213512\pi\)
\(930\) 0 0
\(931\) −9.04486e8 −0.0367348
\(932\) 1.02530e10 0.414856
\(933\) −1.71201e9 −0.0690112
\(934\) 2.37392e10 0.953350
\(935\) 0 0
\(936\) 1.54000e9 0.0613841
\(937\) −4.25939e10 −1.69145 −0.845724 0.533621i \(-0.820831\pi\)
−0.845724 + 0.533621i \(0.820831\pi\)
\(938\) −8.64625e9 −0.342072
\(939\) −1.27183e9 −0.0501301
\(940\) 0 0
\(941\) 8.79813e9 0.344213 0.172106 0.985078i \(-0.444943\pi\)
0.172106 + 0.985078i \(0.444943\pi\)
\(942\) −4.01874e8 −0.0156643
\(943\) 6.04587e10 2.34784
\(944\) −1.04117e10 −0.402828
\(945\) 0 0
\(946\) −5.42778e9 −0.208451
\(947\) −3.15926e10 −1.20882 −0.604408 0.796675i \(-0.706590\pi\)
−0.604408 + 0.796675i \(0.706590\pi\)
\(948\) 4.48208e8 0.0170864
\(949\) 7.62740e8 0.0289698
\(950\) 0 0
\(951\) 2.22286e9 0.0838071
\(952\) 7.04045e8 0.0264467
\(953\) 4.47398e10 1.67444 0.837218 0.546869i \(-0.184181\pi\)
0.837218 + 0.546869i \(0.184181\pi\)
\(954\) 5.08666e9 0.189676
\(955\) 0 0
\(956\) −2.27269e10 −0.841274
\(957\) −1.08603e9 −0.0400545
\(958\) 2.79610e10 1.02748
\(959\) −1.68436e10 −0.616694
\(960\) 0 0
\(961\) −2.59259e10 −0.942327
\(962\) 1.38394e9 0.0501192
\(963\) −6.92034e9 −0.249710
\(964\) −6.16977e9 −0.221819
\(965\) 0 0
\(966\) 6.73460e8 0.0240376
\(967\) 1.69742e10 0.603666 0.301833 0.953361i \(-0.402402\pi\)
0.301833 + 0.953361i \(0.402402\pi\)
\(968\) −7.26188e9 −0.257327
\(969\) 9.24636e7 0.00326466
\(970\) 0 0
\(971\) 2.06446e10 0.723667 0.361834 0.932243i \(-0.382151\pi\)
0.361834 + 0.932243i \(0.382151\pi\)
\(972\) −2.73989e9 −0.0956976
\(973\) 1.72908e9 0.0601755
\(974\) −1.85792e10 −0.644274
\(975\) 0 0
\(976\) 5.88710e9 0.202688
\(977\) −4.79396e10 −1.64461 −0.822307 0.569045i \(-0.807313\pi\)
−0.822307 + 0.569045i \(0.807313\pi\)
\(978\) −1.42682e9 −0.0487735
\(979\) −7.25509e9 −0.247118
\(980\) 0 0
\(981\) 3.28102e10 1.10960
\(982\) −2.83641e10 −0.955826
\(983\) −3.01960e10 −1.01394 −0.506970 0.861964i \(-0.669234\pi\)
−0.506970 + 0.861964i \(0.669234\pi\)
\(984\) 1.13513e9 0.0379805
\(985\) 0 0
\(986\) 5.04143e9 0.167488
\(987\) −6.74404e8 −0.0223259
\(988\) 6.79496e8 0.0224149
\(989\) 2.41016e10 0.792242
\(990\) 0 0
\(991\) 1.83662e10 0.599463 0.299731 0.954024i \(-0.403103\pi\)
0.299731 + 0.954024i \(0.403103\pi\)
\(992\) −1.30528e9 −0.0424535
\(993\) −2.05636e9 −0.0666463
\(994\) 5.81063e9 0.187660
\(995\) 0 0
\(996\) 4.21455e7 0.00135159
\(997\) 6.24126e9 0.199452 0.0997262 0.995015i \(-0.468203\pi\)
0.0997262 + 0.995015i \(0.468203\pi\)
\(998\) −4.24720e10 −1.35253
\(999\) −1.64036e9 −0.0520546
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.8.a.g.1.1 1
5.2 odd 4 70.8.c.b.29.2 yes 2
5.3 odd 4 70.8.c.b.29.1 2
5.4 even 2 350.8.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.8.c.b.29.1 2 5.3 odd 4
70.8.c.b.29.2 yes 2 5.2 odd 4
350.8.a.b.1.1 1 5.4 even 2
350.8.a.g.1.1 1 1.1 even 1 trivial