Properties

Label 350.8.a.v.1.3
Level $350$
Weight $8$
Character 350.1
Self dual yes
Analytic conductor $109.335$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,8,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.334758919\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2473x^{2} - 31160x + 389808 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-35.1621\) of defining polynomial
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +8.12245 q^{3} +64.0000 q^{4} -64.9796 q^{6} +343.000 q^{7} -512.000 q^{8} -2121.03 q^{9} -1568.25 q^{11} +519.837 q^{12} -6855.29 q^{13} -2744.00 q^{14} +4096.00 q^{16} -30329.5 q^{17} +16968.2 q^{18} -7158.12 q^{19} +2786.00 q^{21} +12546.0 q^{22} -12135.4 q^{23} -4158.70 q^{24} +54842.3 q^{26} -34991.7 q^{27} +21952.0 q^{28} +7299.31 q^{29} -4403.10 q^{31} -32768.0 q^{32} -12738.1 q^{33} +242636. q^{34} -135746. q^{36} +477796. q^{37} +57264.9 q^{38} -55681.8 q^{39} -462355. q^{41} -22288.0 q^{42} +177870. q^{43} -100368. q^{44} +97083.6 q^{46} +424536. q^{47} +33269.6 q^{48} +117649. q^{49} -246350. q^{51} -438738. q^{52} +685895. q^{53} +279934. q^{54} -175616. q^{56} -58141.5 q^{57} -58394.5 q^{58} -3438.30 q^{59} -302654. q^{61} +35224.8 q^{62} -727512. q^{63} +262144. q^{64} +101905. q^{66} +4.02722e6 q^{67} -1.94109e6 q^{68} -98569.6 q^{69} -2.50784e6 q^{71} +1.08597e6 q^{72} -5.59256e6 q^{73} -3.82236e6 q^{74} -458120. q^{76} -537911. q^{77} +445454. q^{78} +190724. q^{79} +4.35446e6 q^{81} +3.69884e6 q^{82} +4.96181e6 q^{83} +178304. q^{84} -1.42296e6 q^{86} +59288.3 q^{87} +802946. q^{88} -8.40090e6 q^{89} -2.35136e6 q^{91} -776668. q^{92} -35763.9 q^{93} -3.39628e6 q^{94} -266157. q^{96} -3.36217e6 q^{97} -941192. q^{98} +3.32631e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} - 42 q^{3} + 256 q^{4} + 336 q^{6} + 1372 q^{7} - 2048 q^{8} + 2210 q^{9} + 1324 q^{11} - 2688 q^{12} + 17458 q^{13} - 10976 q^{14} + 16384 q^{16} + 18158 q^{17} - 17680 q^{18} + 11984 q^{19}+ \cdots - 23711228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 8.12245 0.173685 0.0868426 0.996222i \(-0.472322\pi\)
0.0868426 + 0.996222i \(0.472322\pi\)
\(4\) 64.0000 0.500000
\(5\) 0 0
\(6\) −64.9796 −0.122814
\(7\) 343.000 0.377964
\(8\) −512.000 −0.353553
\(9\) −2121.03 −0.969833
\(10\) 0 0
\(11\) −1568.25 −0.355256 −0.177628 0.984098i \(-0.556842\pi\)
−0.177628 + 0.984098i \(0.556842\pi\)
\(12\) 519.837 0.0868426
\(13\) −6855.29 −0.865414 −0.432707 0.901535i \(-0.642442\pi\)
−0.432707 + 0.901535i \(0.642442\pi\)
\(14\) −2744.00 −0.267261
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) −30329.5 −1.49725 −0.748625 0.662993i \(-0.769286\pi\)
−0.748625 + 0.662993i \(0.769286\pi\)
\(18\) 16968.2 0.685776
\(19\) −7158.12 −0.239420 −0.119710 0.992809i \(-0.538197\pi\)
−0.119710 + 0.992809i \(0.538197\pi\)
\(20\) 0 0
\(21\) 2786.00 0.0656468
\(22\) 12546.0 0.251204
\(23\) −12135.4 −0.207974 −0.103987 0.994579i \(-0.533160\pi\)
−0.103987 + 0.994579i \(0.533160\pi\)
\(24\) −4158.70 −0.0614070
\(25\) 0 0
\(26\) 54842.3 0.611940
\(27\) −34991.7 −0.342131
\(28\) 21952.0 0.188982
\(29\) 7299.31 0.0555762 0.0277881 0.999614i \(-0.491154\pi\)
0.0277881 + 0.999614i \(0.491154\pi\)
\(30\) 0 0
\(31\) −4403.10 −0.0265456 −0.0132728 0.999912i \(-0.504225\pi\)
−0.0132728 + 0.999912i \(0.504225\pi\)
\(32\) −32768.0 −0.176777
\(33\) −12738.1 −0.0617028
\(34\) 242636. 1.05872
\(35\) 0 0
\(36\) −135746. −0.484917
\(37\) 477796. 1.55073 0.775365 0.631514i \(-0.217566\pi\)
0.775365 + 0.631514i \(0.217566\pi\)
\(38\) 57264.9 0.169296
\(39\) −55681.8 −0.150310
\(40\) 0 0
\(41\) −462355. −1.04769 −0.523845 0.851814i \(-0.675503\pi\)
−0.523845 + 0.851814i \(0.675503\pi\)
\(42\) −22288.0 −0.0464193
\(43\) 177870. 0.341164 0.170582 0.985343i \(-0.445435\pi\)
0.170582 + 0.985343i \(0.445435\pi\)
\(44\) −100368. −0.177628
\(45\) 0 0
\(46\) 97083.6 0.147060
\(47\) 424536. 0.596447 0.298223 0.954496i \(-0.403606\pi\)
0.298223 + 0.954496i \(0.403606\pi\)
\(48\) 33269.6 0.0434213
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) −246350. −0.260050
\(52\) −438738. −0.432707
\(53\) 685895. 0.632837 0.316419 0.948620i \(-0.397520\pi\)
0.316419 + 0.948620i \(0.397520\pi\)
\(54\) 279934. 0.241923
\(55\) 0 0
\(56\) −175616. −0.133631
\(57\) −58141.5 −0.0415838
\(58\) −58394.5 −0.0392983
\(59\) −3438.30 −0.00217953 −0.00108976 0.999999i \(-0.500347\pi\)
−0.00108976 + 0.999999i \(0.500347\pi\)
\(60\) 0 0
\(61\) −302654. −0.170723 −0.0853614 0.996350i \(-0.527204\pi\)
−0.0853614 + 0.996350i \(0.527204\pi\)
\(62\) 35224.8 0.0187706
\(63\) −727512. −0.366563
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) 101905. 0.0436304
\(67\) 4.02722e6 1.63585 0.817924 0.575326i \(-0.195125\pi\)
0.817924 + 0.575326i \(0.195125\pi\)
\(68\) −1.94109e6 −0.748625
\(69\) −98569.6 −0.0361219
\(70\) 0 0
\(71\) −2.50784e6 −0.831565 −0.415783 0.909464i \(-0.636492\pi\)
−0.415783 + 0.909464i \(0.636492\pi\)
\(72\) 1.08597e6 0.342888
\(73\) −5.59256e6 −1.68260 −0.841299 0.540570i \(-0.818209\pi\)
−0.841299 + 0.540570i \(0.818209\pi\)
\(74\) −3.82236e6 −1.09653
\(75\) 0 0
\(76\) −458120. −0.119710
\(77\) −537911. −0.134274
\(78\) 445454. 0.106285
\(79\) 190724. 0.0435221 0.0217611 0.999763i \(-0.493073\pi\)
0.0217611 + 0.999763i \(0.493073\pi\)
\(80\) 0 0
\(81\) 4.35446e6 0.910410
\(82\) 3.69884e6 0.740828
\(83\) 4.96181e6 0.952504 0.476252 0.879309i \(-0.341995\pi\)
0.476252 + 0.879309i \(0.341995\pi\)
\(84\) 178304. 0.0328234
\(85\) 0 0
\(86\) −1.42296e6 −0.241239
\(87\) 59288.3 0.00965277
\(88\) 802946. 0.125602
\(89\) −8.40090e6 −1.26317 −0.631583 0.775308i \(-0.717595\pi\)
−0.631583 + 0.775308i \(0.717595\pi\)
\(90\) 0 0
\(91\) −2.35136e6 −0.327096
\(92\) −776668. −0.103987
\(93\) −35763.9 −0.00461058
\(94\) −3.39628e6 −0.421752
\(95\) 0 0
\(96\) −266157. −0.0307035
\(97\) −3.36217e6 −0.374040 −0.187020 0.982356i \(-0.559883\pi\)
−0.187020 + 0.982356i \(0.559883\pi\)
\(98\) −941192. −0.101015
\(99\) 3.32631e6 0.344539
\(100\) 0 0
\(101\) 2.66199e6 0.257087 0.128544 0.991704i \(-0.458970\pi\)
0.128544 + 0.991704i \(0.458970\pi\)
\(102\) 1.97080e6 0.183883
\(103\) 249972. 0.0225404 0.0112702 0.999936i \(-0.496413\pi\)
0.0112702 + 0.999936i \(0.496413\pi\)
\(104\) 3.50991e6 0.305970
\(105\) 0 0
\(106\) −5.48716e6 −0.447483
\(107\) 1.70478e7 1.34532 0.672658 0.739954i \(-0.265153\pi\)
0.672658 + 0.739954i \(0.265153\pi\)
\(108\) −2.23947e6 −0.171065
\(109\) −6.63923e6 −0.491049 −0.245524 0.969390i \(-0.578960\pi\)
−0.245524 + 0.969390i \(0.578960\pi\)
\(110\) 0 0
\(111\) 3.88087e6 0.269339
\(112\) 1.40493e6 0.0944911
\(113\) −6.31215e6 −0.411531 −0.205766 0.978601i \(-0.565968\pi\)
−0.205766 + 0.978601i \(0.565968\pi\)
\(114\) 465132. 0.0294042
\(115\) 0 0
\(116\) 467156. 0.0277881
\(117\) 1.45402e7 0.839307
\(118\) 27506.4 0.00154116
\(119\) −1.04030e7 −0.565908
\(120\) 0 0
\(121\) −1.70278e7 −0.873793
\(122\) 2.42123e6 0.120719
\(123\) −3.75546e6 −0.181968
\(124\) −281798. −0.0132728
\(125\) 0 0
\(126\) 5.82009e6 0.259199
\(127\) 4.27455e7 1.85173 0.925865 0.377854i \(-0.123338\pi\)
0.925865 + 0.377854i \(0.123338\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 1.44474e6 0.0592552
\(130\) 0 0
\(131\) 2.54855e6 0.0990475 0.0495237 0.998773i \(-0.484230\pi\)
0.0495237 + 0.998773i \(0.484230\pi\)
\(132\) −815236. −0.0308514
\(133\) −2.45523e6 −0.0904924
\(134\) −3.22177e7 −1.15672
\(135\) 0 0
\(136\) 1.55287e7 0.529358
\(137\) −2.95134e7 −0.980611 −0.490306 0.871551i \(-0.663115\pi\)
−0.490306 + 0.871551i \(0.663115\pi\)
\(138\) 788557. 0.0255421
\(139\) −1.48720e7 −0.469698 −0.234849 0.972032i \(-0.575460\pi\)
−0.234849 + 0.972032i \(0.575460\pi\)
\(140\) 0 0
\(141\) 3.44827e6 0.103594
\(142\) 2.00627e7 0.588005
\(143\) 1.07508e7 0.307444
\(144\) −8.68772e6 −0.242458
\(145\) 0 0
\(146\) 4.47405e7 1.18978
\(147\) 955599. 0.0248122
\(148\) 3.05789e7 0.775365
\(149\) −2.74618e7 −0.680106 −0.340053 0.940406i \(-0.610445\pi\)
−0.340053 + 0.940406i \(0.610445\pi\)
\(150\) 0 0
\(151\) 4.17984e7 0.987962 0.493981 0.869473i \(-0.335541\pi\)
0.493981 + 0.869473i \(0.335541\pi\)
\(152\) 3.66496e6 0.0846479
\(153\) 6.43297e7 1.45208
\(154\) 4.30329e6 0.0949462
\(155\) 0 0
\(156\) −3.56363e6 −0.0751548
\(157\) 7.73011e7 1.59418 0.797089 0.603862i \(-0.206372\pi\)
0.797089 + 0.603862i \(0.206372\pi\)
\(158\) −1.52579e6 −0.0307748
\(159\) 5.57115e6 0.109914
\(160\) 0 0
\(161\) −4.16246e6 −0.0786066
\(162\) −3.48357e7 −0.643757
\(163\) −5.24095e6 −0.0947879 −0.0473940 0.998876i \(-0.515092\pi\)
−0.0473940 + 0.998876i \(0.515092\pi\)
\(164\) −2.95907e7 −0.523845
\(165\) 0 0
\(166\) −3.96945e7 −0.673522
\(167\) 7.89943e7 1.31247 0.656233 0.754558i \(-0.272149\pi\)
0.656233 + 0.754558i \(0.272149\pi\)
\(168\) −1.42643e6 −0.0232097
\(169\) −1.57535e7 −0.251059
\(170\) 0 0
\(171\) 1.51826e7 0.232198
\(172\) 1.13837e7 0.170582
\(173\) 6.36119e7 0.934064 0.467032 0.884240i \(-0.345323\pi\)
0.467032 + 0.884240i \(0.345323\pi\)
\(174\) −474307. −0.00682554
\(175\) 0 0
\(176\) −6.42356e6 −0.0888141
\(177\) −27927.4 −0.000378551 0
\(178\) 6.72072e7 0.893194
\(179\) 5.82926e7 0.759675 0.379837 0.925053i \(-0.375980\pi\)
0.379837 + 0.925053i \(0.375980\pi\)
\(180\) 0 0
\(181\) 1.51100e8 1.89404 0.947022 0.321168i \(-0.104075\pi\)
0.947022 + 0.321168i \(0.104075\pi\)
\(182\) 1.88109e7 0.231292
\(183\) −2.45829e6 −0.0296520
\(184\) 6.21335e6 0.0735298
\(185\) 0 0
\(186\) 286112. 0.00326017
\(187\) 4.75644e7 0.531908
\(188\) 2.71703e7 0.298223
\(189\) −1.20022e7 −0.129313
\(190\) 0 0
\(191\) 1.00664e8 1.04534 0.522670 0.852535i \(-0.324936\pi\)
0.522670 + 0.852535i \(0.324936\pi\)
\(192\) 2.12925e6 0.0217107
\(193\) 7.58322e7 0.759282 0.379641 0.925134i \(-0.376048\pi\)
0.379641 + 0.925134i \(0.376048\pi\)
\(194\) 2.68973e7 0.264486
\(195\) 0 0
\(196\) 7.52954e6 0.0714286
\(197\) 8.92225e7 0.831462 0.415731 0.909488i \(-0.363526\pi\)
0.415731 + 0.909488i \(0.363526\pi\)
\(198\) −2.66104e7 −0.243626
\(199\) −1.18034e7 −0.106175 −0.0530873 0.998590i \(-0.516906\pi\)
−0.0530873 + 0.998590i \(0.516906\pi\)
\(200\) 0 0
\(201\) 3.27109e7 0.284123
\(202\) −2.12959e7 −0.181788
\(203\) 2.50366e6 0.0210058
\(204\) −1.57664e7 −0.130025
\(205\) 0 0
\(206\) −1.99978e6 −0.0159384
\(207\) 2.57396e7 0.201700
\(208\) −2.80793e7 −0.216354
\(209\) 1.12257e7 0.0850556
\(210\) 0 0
\(211\) 1.90523e8 1.39624 0.698119 0.715982i \(-0.254021\pi\)
0.698119 + 0.715982i \(0.254021\pi\)
\(212\) 4.38973e7 0.316419
\(213\) −2.03698e7 −0.144431
\(214\) −1.36382e8 −0.951282
\(215\) 0 0
\(216\) 1.79158e7 0.120962
\(217\) −1.51026e6 −0.0100333
\(218\) 5.31138e7 0.347224
\(219\) −4.54253e7 −0.292242
\(220\) 0 0
\(221\) 2.07918e8 1.29574
\(222\) −3.10470e7 −0.190451
\(223\) −5.48678e7 −0.331322 −0.165661 0.986183i \(-0.552976\pi\)
−0.165661 + 0.986183i \(0.552976\pi\)
\(224\) −1.12394e7 −0.0668153
\(225\) 0 0
\(226\) 5.04972e7 0.290997
\(227\) 5.97953e7 0.339294 0.169647 0.985505i \(-0.445737\pi\)
0.169647 + 0.985505i \(0.445737\pi\)
\(228\) −3.72106e6 −0.0207919
\(229\) −1.72334e8 −0.948302 −0.474151 0.880444i \(-0.657245\pi\)
−0.474151 + 0.880444i \(0.657245\pi\)
\(230\) 0 0
\(231\) −4.36916e6 −0.0233215
\(232\) −3.73725e6 −0.0196492
\(233\) −2.30822e8 −1.19545 −0.597725 0.801702i \(-0.703928\pi\)
−0.597725 + 0.801702i \(0.703928\pi\)
\(234\) −1.16322e8 −0.593480
\(235\) 0 0
\(236\) −220051. −0.00108976
\(237\) 1.54915e6 0.00755915
\(238\) 8.32242e7 0.400157
\(239\) 1.12257e8 0.531887 0.265943 0.963989i \(-0.414317\pi\)
0.265943 + 0.963989i \(0.414317\pi\)
\(240\) 0 0
\(241\) −7.28605e7 −0.335299 −0.167650 0.985847i \(-0.553618\pi\)
−0.167650 + 0.985847i \(0.553618\pi\)
\(242\) 1.36222e8 0.617865
\(243\) 1.11896e8 0.500256
\(244\) −1.93698e7 −0.0853614
\(245\) 0 0
\(246\) 3.00437e7 0.128671
\(247\) 4.90710e7 0.207198
\(248\) 2.25439e6 0.00938528
\(249\) 4.03021e7 0.165436
\(250\) 0 0
\(251\) −2.62256e8 −1.04681 −0.523404 0.852085i \(-0.675338\pi\)
−0.523404 + 0.852085i \(0.675338\pi\)
\(252\) −4.65608e7 −0.183281
\(253\) 1.90315e7 0.0738839
\(254\) −3.41964e8 −1.30937
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 2.87621e8 1.05695 0.528475 0.848949i \(-0.322764\pi\)
0.528475 + 0.848949i \(0.322764\pi\)
\(258\) −1.15579e7 −0.0418997
\(259\) 1.63884e8 0.586121
\(260\) 0 0
\(261\) −1.54820e7 −0.0538997
\(262\) −2.03884e7 −0.0700371
\(263\) 8.02212e7 0.271922 0.135961 0.990714i \(-0.456588\pi\)
0.135961 + 0.990714i \(0.456588\pi\)
\(264\) 6.52189e6 0.0218152
\(265\) 0 0
\(266\) 1.96419e7 0.0639878
\(267\) −6.82359e7 −0.219393
\(268\) 2.57742e8 0.817924
\(269\) −5.50125e7 −0.172317 −0.0861585 0.996281i \(-0.527459\pi\)
−0.0861585 + 0.996281i \(0.527459\pi\)
\(270\) 0 0
\(271\) 3.07796e8 0.939442 0.469721 0.882815i \(-0.344354\pi\)
0.469721 + 0.882815i \(0.344354\pi\)
\(272\) −1.24230e8 −0.374313
\(273\) −1.90988e7 −0.0568117
\(274\) 2.36107e8 0.693397
\(275\) 0 0
\(276\) −6.30845e6 −0.0180610
\(277\) 3.21773e8 0.909641 0.454820 0.890583i \(-0.349703\pi\)
0.454820 + 0.890583i \(0.349703\pi\)
\(278\) 1.18976e8 0.332126
\(279\) 9.33908e6 0.0257448
\(280\) 0 0
\(281\) −8.09521e7 −0.217649 −0.108824 0.994061i \(-0.534709\pi\)
−0.108824 + 0.994061i \(0.534709\pi\)
\(282\) −2.75862e7 −0.0732520
\(283\) −3.07805e8 −0.807278 −0.403639 0.914918i \(-0.632255\pi\)
−0.403639 + 0.914918i \(0.632255\pi\)
\(284\) −1.60502e8 −0.415783
\(285\) 0 0
\(286\) −8.60066e7 −0.217396
\(287\) −1.58588e8 −0.395989
\(288\) 6.95018e7 0.171444
\(289\) 5.09542e8 1.24176
\(290\) 0 0
\(291\) −2.73090e7 −0.0649652
\(292\) −3.57924e8 −0.841299
\(293\) −6.33399e7 −0.147109 −0.0735547 0.997291i \(-0.523434\pi\)
−0.0735547 + 0.997291i \(0.523434\pi\)
\(294\) −7.64479e6 −0.0175449
\(295\) 0 0
\(296\) −2.44631e8 −0.548266
\(297\) 5.48759e7 0.121544
\(298\) 2.19694e8 0.480908
\(299\) 8.31920e7 0.179983
\(300\) 0 0
\(301\) 6.10094e7 0.128948
\(302\) −3.34387e8 −0.698595
\(303\) 2.16219e7 0.0446523
\(304\) −2.93197e7 −0.0598551
\(305\) 0 0
\(306\) −5.14638e8 −1.02678
\(307\) 8.77945e8 1.73174 0.865871 0.500267i \(-0.166765\pi\)
0.865871 + 0.500267i \(0.166765\pi\)
\(308\) −3.44263e7 −0.0671371
\(309\) 2.03039e6 0.00391493
\(310\) 0 0
\(311\) −9.28974e8 −1.75123 −0.875613 0.483014i \(-0.839542\pi\)
−0.875613 + 0.483014i \(0.839542\pi\)
\(312\) 2.85091e7 0.0531425
\(313\) −7.40062e8 −1.36415 −0.682076 0.731281i \(-0.738923\pi\)
−0.682076 + 0.731281i \(0.738923\pi\)
\(314\) −6.18409e8 −1.12725
\(315\) 0 0
\(316\) 1.22063e7 0.0217611
\(317\) −2.49190e8 −0.439362 −0.219681 0.975572i \(-0.570502\pi\)
−0.219681 + 0.975572i \(0.570502\pi\)
\(318\) −4.45692e7 −0.0777213
\(319\) −1.14472e7 −0.0197438
\(320\) 0 0
\(321\) 1.38470e8 0.233661
\(322\) 3.32997e7 0.0555833
\(323\) 2.17102e8 0.358472
\(324\) 2.78686e8 0.455205
\(325\) 0 0
\(326\) 4.19276e7 0.0670252
\(327\) −5.39268e7 −0.0852879
\(328\) 2.36726e8 0.370414
\(329\) 1.45616e8 0.225436
\(330\) 0 0
\(331\) −3.40070e8 −0.515431 −0.257715 0.966221i \(-0.582970\pi\)
−0.257715 + 0.966221i \(0.582970\pi\)
\(332\) 3.17556e8 0.476252
\(333\) −1.01342e9 −1.50395
\(334\) −6.31955e8 −0.928054
\(335\) 0 0
\(336\) 1.14115e7 0.0164117
\(337\) −5.86495e8 −0.834756 −0.417378 0.908733i \(-0.637051\pi\)
−0.417378 + 0.908733i \(0.637051\pi\)
\(338\) 1.26028e8 0.177525
\(339\) −5.12702e7 −0.0714769
\(340\) 0 0
\(341\) 6.90517e6 0.00943048
\(342\) −1.21460e8 −0.164189
\(343\) 4.03536e7 0.0539949
\(344\) −9.10695e7 −0.120620
\(345\) 0 0
\(346\) −5.08895e8 −0.660483
\(347\) −9.58314e8 −1.23127 −0.615637 0.788030i \(-0.711101\pi\)
−0.615637 + 0.788030i \(0.711101\pi\)
\(348\) 3.79445e6 0.00482638
\(349\) 6.52289e8 0.821393 0.410697 0.911772i \(-0.365286\pi\)
0.410697 + 0.911772i \(0.365286\pi\)
\(350\) 0 0
\(351\) 2.39878e8 0.296085
\(352\) 5.13885e7 0.0628010
\(353\) −8.14776e7 −0.0985887 −0.0492943 0.998784i \(-0.515697\pi\)
−0.0492943 + 0.998784i \(0.515697\pi\)
\(354\) 223420. 0.000267676 0
\(355\) 0 0
\(356\) −5.37657e8 −0.631583
\(357\) −8.44981e7 −0.0982898
\(358\) −4.66341e8 −0.537171
\(359\) 1.13536e9 1.29510 0.647552 0.762022i \(-0.275793\pi\)
0.647552 + 0.762022i \(0.275793\pi\)
\(360\) 0 0
\(361\) −8.42633e8 −0.942678
\(362\) −1.20880e9 −1.33929
\(363\) −1.38307e8 −0.151765
\(364\) −1.50487e8 −0.163548
\(365\) 0 0
\(366\) 1.96663e7 0.0209671
\(367\) 5.55248e8 0.586349 0.293174 0.956059i \(-0.405288\pi\)
0.293174 + 0.956059i \(0.405288\pi\)
\(368\) −4.97068e7 −0.0519934
\(369\) 9.80668e8 1.01608
\(370\) 0 0
\(371\) 2.35262e8 0.239190
\(372\) −2.28889e6 −0.00230529
\(373\) −1.08270e8 −0.108026 −0.0540130 0.998540i \(-0.517201\pi\)
−0.0540130 + 0.998540i \(0.517201\pi\)
\(374\) −3.80515e8 −0.376116
\(375\) 0 0
\(376\) −2.17362e8 −0.210876
\(377\) −5.00389e7 −0.0480964
\(378\) 9.60173e7 0.0914383
\(379\) 1.02345e8 0.0965668 0.0482834 0.998834i \(-0.484625\pi\)
0.0482834 + 0.998834i \(0.484625\pi\)
\(380\) 0 0
\(381\) 3.47199e8 0.321618
\(382\) −8.05312e8 −0.739166
\(383\) −8.11322e8 −0.737900 −0.368950 0.929449i \(-0.620283\pi\)
−0.368950 + 0.929449i \(0.620283\pi\)
\(384\) −1.70340e7 −0.0153518
\(385\) 0 0
\(386\) −6.06657e8 −0.536893
\(387\) −3.77267e8 −0.330872
\(388\) −2.15179e8 −0.187020
\(389\) 1.07770e9 0.928266 0.464133 0.885765i \(-0.346366\pi\)
0.464133 + 0.885765i \(0.346366\pi\)
\(390\) 0 0
\(391\) 3.68062e8 0.311389
\(392\) −6.02363e7 −0.0505076
\(393\) 2.07005e7 0.0172031
\(394\) −7.13780e8 −0.587932
\(395\) 0 0
\(396\) 2.12884e8 0.172270
\(397\) −4.78761e8 −0.384018 −0.192009 0.981393i \(-0.561500\pi\)
−0.192009 + 0.981393i \(0.561500\pi\)
\(398\) 9.44270e7 0.0750767
\(399\) −1.99425e7 −0.0157172
\(400\) 0 0
\(401\) −1.57281e9 −1.21807 −0.609034 0.793144i \(-0.708443\pi\)
−0.609034 + 0.793144i \(0.708443\pi\)
\(402\) −2.61687e8 −0.200905
\(403\) 3.01845e7 0.0229729
\(404\) 1.70367e8 0.128544
\(405\) 0 0
\(406\) −2.00293e7 −0.0148534
\(407\) −7.49304e8 −0.550906
\(408\) 1.26131e8 0.0919417
\(409\) 1.70492e9 1.23217 0.616086 0.787679i \(-0.288717\pi\)
0.616086 + 0.787679i \(0.288717\pi\)
\(410\) 0 0
\(411\) −2.39721e8 −0.170318
\(412\) 1.59982e7 0.0112702
\(413\) −1.17934e6 −0.000823783 0
\(414\) −2.05917e8 −0.142623
\(415\) 0 0
\(416\) 2.24634e8 0.152985
\(417\) −1.20797e8 −0.0815796
\(418\) −8.98059e7 −0.0601434
\(419\) −5.32172e8 −0.353429 −0.176715 0.984262i \(-0.556547\pi\)
−0.176715 + 0.984262i \(0.556547\pi\)
\(420\) 0 0
\(421\) 1.33991e8 0.0875162 0.0437581 0.999042i \(-0.486067\pi\)
0.0437581 + 0.999042i \(0.486067\pi\)
\(422\) −1.52419e9 −0.987289
\(423\) −9.00451e8 −0.578454
\(424\) −3.51178e8 −0.223742
\(425\) 0 0
\(426\) 1.62959e8 0.102128
\(427\) −1.03810e8 −0.0645271
\(428\) 1.09106e9 0.672658
\(429\) 8.73231e7 0.0533984
\(430\) 0 0
\(431\) 1.66271e9 1.00034 0.500169 0.865928i \(-0.333271\pi\)
0.500169 + 0.865928i \(0.333271\pi\)
\(432\) −1.43326e8 −0.0855327
\(433\) 1.23313e9 0.729965 0.364983 0.931014i \(-0.381075\pi\)
0.364983 + 0.931014i \(0.381075\pi\)
\(434\) 1.20821e7 0.00709460
\(435\) 0 0
\(436\) −4.24911e8 −0.245524
\(437\) 8.68670e7 0.0497931
\(438\) 3.63402e8 0.206647
\(439\) −1.77669e8 −0.100227 −0.0501137 0.998744i \(-0.515958\pi\)
−0.0501137 + 0.998744i \(0.515958\pi\)
\(440\) 0 0
\(441\) −2.49537e8 −0.138548
\(442\) −1.66334e9 −0.916228
\(443\) −2.79169e9 −1.52565 −0.762825 0.646605i \(-0.776188\pi\)
−0.762825 + 0.646605i \(0.776188\pi\)
\(444\) 2.48376e8 0.134669
\(445\) 0 0
\(446\) 4.38942e8 0.234280
\(447\) −2.23057e8 −0.118124
\(448\) 8.99154e7 0.0472456
\(449\) 2.76253e9 1.44028 0.720138 0.693831i \(-0.244079\pi\)
0.720138 + 0.693831i \(0.244079\pi\)
\(450\) 0 0
\(451\) 7.25090e8 0.372198
\(452\) −4.03978e8 −0.205766
\(453\) 3.39506e8 0.171594
\(454\) −4.78363e8 −0.239917
\(455\) 0 0
\(456\) 2.97684e7 0.0147021
\(457\) −7.69684e8 −0.377230 −0.188615 0.982051i \(-0.560400\pi\)
−0.188615 + 0.982051i \(0.560400\pi\)
\(458\) 1.37867e9 0.670551
\(459\) 1.06128e9 0.512256
\(460\) 0 0
\(461\) 3.88680e9 1.84773 0.923865 0.382719i \(-0.125012\pi\)
0.923865 + 0.382719i \(0.125012\pi\)
\(462\) 3.49532e7 0.0164908
\(463\) −1.84763e9 −0.865132 −0.432566 0.901602i \(-0.642392\pi\)
−0.432566 + 0.901602i \(0.642392\pi\)
\(464\) 2.98980e7 0.0138941
\(465\) 0 0
\(466\) 1.84657e9 0.845310
\(467\) −2.13137e9 −0.968389 −0.484194 0.874960i \(-0.660887\pi\)
−0.484194 + 0.874960i \(0.660887\pi\)
\(468\) 9.30575e8 0.419654
\(469\) 1.38133e9 0.618293
\(470\) 0 0
\(471\) 6.27875e8 0.276885
\(472\) 1.76041e6 0.000770579 0
\(473\) −2.78945e8 −0.121201
\(474\) −1.23932e7 −0.00534513
\(475\) 0 0
\(476\) −6.65794e8 −0.282954
\(477\) −1.45480e9 −0.613747
\(478\) −8.98052e8 −0.376101
\(479\) 1.12045e9 0.465819 0.232910 0.972498i \(-0.425175\pi\)
0.232910 + 0.972498i \(0.425175\pi\)
\(480\) 0 0
\(481\) −3.27543e9 −1.34202
\(482\) 5.82884e8 0.237092
\(483\) −3.38094e7 −0.0136528
\(484\) −1.08978e9 −0.436896
\(485\) 0 0
\(486\) −8.95167e8 −0.353734
\(487\) 3.36201e9 1.31901 0.659505 0.751700i \(-0.270766\pi\)
0.659505 + 0.751700i \(0.270766\pi\)
\(488\) 1.54959e8 0.0603596
\(489\) −4.25693e7 −0.0164633
\(490\) 0 0
\(491\) −3.38603e9 −1.29094 −0.645470 0.763786i \(-0.723338\pi\)
−0.645470 + 0.763786i \(0.723338\pi\)
\(492\) −2.40350e8 −0.0909841
\(493\) −2.21385e8 −0.0832115
\(494\) −3.92568e8 −0.146511
\(495\) 0 0
\(496\) −1.80351e7 −0.00663640
\(497\) −8.60190e8 −0.314302
\(498\) −3.22417e8 −0.116981
\(499\) 1.78302e9 0.642398 0.321199 0.947012i \(-0.395914\pi\)
0.321199 + 0.947012i \(0.395914\pi\)
\(500\) 0 0
\(501\) 6.41628e8 0.227956
\(502\) 2.09805e9 0.740205
\(503\) 1.96251e9 0.687581 0.343790 0.939046i \(-0.388289\pi\)
0.343790 + 0.939046i \(0.388289\pi\)
\(504\) 3.72486e8 0.129599
\(505\) 0 0
\(506\) −1.52252e8 −0.0522438
\(507\) −1.27957e8 −0.0436052
\(508\) 2.73571e9 0.925865
\(509\) −1.81259e9 −0.609238 −0.304619 0.952474i \(-0.598529\pi\)
−0.304619 + 0.952474i \(0.598529\pi\)
\(510\) 0 0
\(511\) −1.91825e9 −0.635962
\(512\) −1.34218e8 −0.0441942
\(513\) 2.50475e8 0.0819132
\(514\) −2.30097e9 −0.747376
\(515\) 0 0
\(516\) 9.24635e7 0.0296276
\(517\) −6.65779e8 −0.211891
\(518\) −1.31107e9 −0.414450
\(519\) 5.16684e8 0.162233
\(520\) 0 0
\(521\) 1.41631e9 0.438758 0.219379 0.975640i \(-0.429597\pi\)
0.219379 + 0.975640i \(0.429597\pi\)
\(522\) 1.23856e8 0.0381128
\(523\) 3.18021e9 0.972075 0.486037 0.873938i \(-0.338442\pi\)
0.486037 + 0.873938i \(0.338442\pi\)
\(524\) 1.63107e8 0.0495237
\(525\) 0 0
\(526\) −6.41770e8 −0.192278
\(527\) 1.33544e8 0.0397454
\(528\) −5.21751e7 −0.0154257
\(529\) −3.25756e9 −0.956747
\(530\) 0 0
\(531\) 7.29273e6 0.00211378
\(532\) −1.57135e8 −0.0452462
\(533\) 3.16958e9 0.906685
\(534\) 5.45887e8 0.155135
\(535\) 0 0
\(536\) −2.06193e9 −0.578360
\(537\) 4.73479e8 0.131944
\(538\) 4.40100e8 0.121847
\(539\) −1.84503e8 −0.0507509
\(540\) 0 0
\(541\) 2.09280e9 0.568247 0.284124 0.958788i \(-0.408297\pi\)
0.284124 + 0.958788i \(0.408297\pi\)
\(542\) −2.46237e9 −0.664286
\(543\) 1.22731e9 0.328968
\(544\) 9.93838e8 0.264679
\(545\) 0 0
\(546\) 1.52791e8 0.0401719
\(547\) 2.89817e9 0.757127 0.378563 0.925575i \(-0.376418\pi\)
0.378563 + 0.925575i \(0.376418\pi\)
\(548\) −1.88886e9 −0.490306
\(549\) 6.41936e8 0.165573
\(550\) 0 0
\(551\) −5.22493e7 −0.0133061
\(552\) 5.04676e7 0.0127710
\(553\) 6.54183e7 0.0164498
\(554\) −2.57418e9 −0.643213
\(555\) 0 0
\(556\) −9.51810e8 −0.234849
\(557\) 4.62851e9 1.13488 0.567438 0.823416i \(-0.307935\pi\)
0.567438 + 0.823416i \(0.307935\pi\)
\(558\) −7.47126e7 −0.0182043
\(559\) −1.21935e9 −0.295248
\(560\) 0 0
\(561\) 3.86340e8 0.0923845
\(562\) 6.47617e8 0.153901
\(563\) 2.76931e9 0.654021 0.327011 0.945021i \(-0.393959\pi\)
0.327011 + 0.945021i \(0.393959\pi\)
\(564\) 2.20689e8 0.0517970
\(565\) 0 0
\(566\) 2.46244e9 0.570832
\(567\) 1.49358e9 0.344103
\(568\) 1.28402e9 0.294003
\(569\) −5.09524e9 −1.15950 −0.579751 0.814794i \(-0.696850\pi\)
−0.579751 + 0.814794i \(0.696850\pi\)
\(570\) 0 0
\(571\) 8.03829e9 1.80691 0.903456 0.428680i \(-0.141021\pi\)
0.903456 + 0.428680i \(0.141021\pi\)
\(572\) 6.88053e8 0.153722
\(573\) 8.17638e8 0.181560
\(574\) 1.26870e9 0.280007
\(575\) 0 0
\(576\) −5.56014e8 −0.121229
\(577\) 2.23461e9 0.484268 0.242134 0.970243i \(-0.422153\pi\)
0.242134 + 0.970243i \(0.422153\pi\)
\(578\) −4.07634e9 −0.878057
\(579\) 6.15943e8 0.131876
\(580\) 0 0
\(581\) 1.70190e9 0.360013
\(582\) 2.18472e8 0.0459374
\(583\) −1.07566e9 −0.224819
\(584\) 2.86339e9 0.594888
\(585\) 0 0
\(586\) 5.06719e8 0.104022
\(587\) 7.07231e9 1.44320 0.721602 0.692308i \(-0.243406\pi\)
0.721602 + 0.692308i \(0.243406\pi\)
\(588\) 6.11583e7 0.0124061
\(589\) 3.15179e7 0.00635556
\(590\) 0 0
\(591\) 7.24705e8 0.144413
\(592\) 1.95705e9 0.387682
\(593\) −1.86473e9 −0.367219 −0.183610 0.982999i \(-0.558778\pi\)
−0.183610 + 0.982999i \(0.558778\pi\)
\(594\) −4.39007e8 −0.0859447
\(595\) 0 0
\(596\) −1.75755e9 −0.340053
\(597\) −9.58724e7 −0.0184409
\(598\) −6.65536e8 −0.127267
\(599\) −2.05712e9 −0.391080 −0.195540 0.980696i \(-0.562646\pi\)
−0.195540 + 0.980696i \(0.562646\pi\)
\(600\) 0 0
\(601\) 3.69684e8 0.0694657 0.0347329 0.999397i \(-0.488942\pi\)
0.0347329 + 0.999397i \(0.488942\pi\)
\(602\) −4.88075e8 −0.0911799
\(603\) −8.54183e9 −1.58650
\(604\) 2.67510e9 0.493981
\(605\) 0 0
\(606\) −1.72975e8 −0.0315739
\(607\) −3.13002e9 −0.568050 −0.284025 0.958817i \(-0.591670\pi\)
−0.284025 + 0.958817i \(0.591670\pi\)
\(608\) 2.34557e8 0.0423240
\(609\) 2.03359e7 0.00364840
\(610\) 0 0
\(611\) −2.91031e9 −0.516173
\(612\) 4.11710e9 0.726042
\(613\) −6.41139e9 −1.12419 −0.562096 0.827072i \(-0.690005\pi\)
−0.562096 + 0.827072i \(0.690005\pi\)
\(614\) −7.02356e9 −1.22453
\(615\) 0 0
\(616\) 2.75410e8 0.0474731
\(617\) −1.24237e9 −0.212938 −0.106469 0.994316i \(-0.533954\pi\)
−0.106469 + 0.994316i \(0.533954\pi\)
\(618\) −1.62431e7 −0.00276827
\(619\) −7.46312e9 −1.26475 −0.632373 0.774664i \(-0.717919\pi\)
−0.632373 + 0.774664i \(0.717919\pi\)
\(620\) 0 0
\(621\) 4.24640e8 0.0711542
\(622\) 7.43179e9 1.23830
\(623\) −2.88151e9 −0.477432
\(624\) −2.28072e8 −0.0375774
\(625\) 0 0
\(626\) 5.92049e9 0.964601
\(627\) 9.11806e7 0.0147729
\(628\) 4.94727e9 0.797089
\(629\) −1.44913e10 −2.32183
\(630\) 0 0
\(631\) −5.15836e9 −0.817351 −0.408676 0.912680i \(-0.634009\pi\)
−0.408676 + 0.912680i \(0.634009\pi\)
\(632\) −9.76506e7 −0.0153874
\(633\) 1.54752e9 0.242506
\(634\) 1.99352e9 0.310676
\(635\) 0 0
\(636\) 3.56554e8 0.0549572
\(637\) −8.06518e8 −0.123631
\(638\) 9.15774e7 0.0139610
\(639\) 5.31920e9 0.806480
\(640\) 0 0
\(641\) −4.57861e9 −0.686642 −0.343321 0.939218i \(-0.611552\pi\)
−0.343321 + 0.939218i \(0.611552\pi\)
\(642\) −1.10776e9 −0.165224
\(643\) 3.25934e9 0.483494 0.241747 0.970339i \(-0.422280\pi\)
0.241747 + 0.970339i \(0.422280\pi\)
\(644\) −2.66397e8 −0.0393033
\(645\) 0 0
\(646\) −1.73682e9 −0.253478
\(647\) 9.75723e9 1.41632 0.708160 0.706052i \(-0.249526\pi\)
0.708160 + 0.706052i \(0.249526\pi\)
\(648\) −2.22949e9 −0.321879
\(649\) 5.39213e6 0.000774290 0
\(650\) 0 0
\(651\) −1.22670e7 −0.00174263
\(652\) −3.35421e8 −0.0473940
\(653\) 4.87557e9 0.685219 0.342610 0.939478i \(-0.388689\pi\)
0.342610 + 0.939478i \(0.388689\pi\)
\(654\) 4.31415e8 0.0603077
\(655\) 0 0
\(656\) −1.89381e9 −0.261922
\(657\) 1.18620e10 1.63184
\(658\) −1.16493e9 −0.159407
\(659\) −5.19574e9 −0.707210 −0.353605 0.935395i \(-0.615044\pi\)
−0.353605 + 0.935395i \(0.615044\pi\)
\(660\) 0 0
\(661\) 9.49831e9 1.27921 0.639604 0.768704i \(-0.279098\pi\)
0.639604 + 0.768704i \(0.279098\pi\)
\(662\) 2.72056e9 0.364464
\(663\) 1.68880e9 0.225051
\(664\) −2.54045e9 −0.336761
\(665\) 0 0
\(666\) 8.10733e9 1.06345
\(667\) −8.85804e7 −0.0115584
\(668\) 5.05564e9 0.656233
\(669\) −4.45661e8 −0.0575458
\(670\) 0 0
\(671\) 4.74637e8 0.0606503
\(672\) −9.12917e7 −0.0116048
\(673\) 4.20205e9 0.531383 0.265692 0.964058i \(-0.414400\pi\)
0.265692 + 0.964058i \(0.414400\pi\)
\(674\) 4.69196e9 0.590261
\(675\) 0 0
\(676\) −1.00823e9 −0.125529
\(677\) −1.34115e10 −1.66119 −0.830593 0.556879i \(-0.811999\pi\)
−0.830593 + 0.556879i \(0.811999\pi\)
\(678\) 4.10161e8 0.0505418
\(679\) −1.15322e9 −0.141374
\(680\) 0 0
\(681\) 4.85685e8 0.0589304
\(682\) −5.52414e7 −0.00666836
\(683\) 6.53462e9 0.784780 0.392390 0.919799i \(-0.371648\pi\)
0.392390 + 0.919799i \(0.371648\pi\)
\(684\) 9.71683e8 0.116099
\(685\) 0 0
\(686\) −3.22829e8 −0.0381802
\(687\) −1.39977e9 −0.164706
\(688\) 7.28556e8 0.0852910
\(689\) −4.70201e9 −0.547666
\(690\) 0 0
\(691\) −5.38588e9 −0.620989 −0.310494 0.950575i \(-0.600495\pi\)
−0.310494 + 0.950575i \(0.600495\pi\)
\(692\) 4.07116e9 0.467032
\(693\) 1.14092e9 0.130224
\(694\) 7.66652e9 0.870642
\(695\) 0 0
\(696\) −3.03556e7 −0.00341277
\(697\) 1.40230e10 1.56865
\(698\) −5.21831e9 −0.580813
\(699\) −1.87484e9 −0.207632
\(700\) 0 0
\(701\) −7.53668e9 −0.826356 −0.413178 0.910650i \(-0.635581\pi\)
−0.413178 + 0.910650i \(0.635581\pi\)
\(702\) −1.91903e9 −0.209364
\(703\) −3.42012e9 −0.371276
\(704\) −4.11108e8 −0.0444070
\(705\) 0 0
\(706\) 6.51821e8 0.0697127
\(707\) 9.13061e8 0.0971699
\(708\) −1.78736e6 −0.000189276 0
\(709\) 1.49758e10 1.57807 0.789036 0.614347i \(-0.210580\pi\)
0.789036 + 0.614347i \(0.210580\pi\)
\(710\) 0 0
\(711\) −4.04530e8 −0.0422092
\(712\) 4.30126e9 0.446597
\(713\) 5.34335e7 0.00552078
\(714\) 6.75985e8 0.0695014
\(715\) 0 0
\(716\) 3.73073e9 0.379837
\(717\) 9.11799e8 0.0923808
\(718\) −9.08291e9 −0.915776
\(719\) −1.71309e10 −1.71882 −0.859409 0.511289i \(-0.829168\pi\)
−0.859409 + 0.511289i \(0.829168\pi\)
\(720\) 0 0
\(721\) 8.57404e7 0.00851946
\(722\) 6.74106e9 0.666574
\(723\) −5.91806e8 −0.0582365
\(724\) 9.67042e9 0.947022
\(725\) 0 0
\(726\) 1.10646e9 0.107314
\(727\) 1.59520e10 1.53973 0.769865 0.638207i \(-0.220324\pi\)
0.769865 + 0.638207i \(0.220324\pi\)
\(728\) 1.20390e9 0.115646
\(729\) −8.61434e9 −0.823523
\(730\) 0 0
\(731\) −5.39472e9 −0.510808
\(732\) −1.57331e8 −0.0148260
\(733\) 1.08379e10 1.01644 0.508220 0.861227i \(-0.330304\pi\)
0.508220 + 0.861227i \(0.330304\pi\)
\(734\) −4.44199e9 −0.414611
\(735\) 0 0
\(736\) 3.97654e8 0.0367649
\(737\) −6.31569e9 −0.581145
\(738\) −7.84534e9 −0.718480
\(739\) 1.83957e9 0.167672 0.0838359 0.996480i \(-0.473283\pi\)
0.0838359 + 0.996480i \(0.473283\pi\)
\(740\) 0 0
\(741\) 3.98577e8 0.0359872
\(742\) −1.88210e9 −0.169133
\(743\) 1.50293e10 1.34424 0.672122 0.740441i \(-0.265383\pi\)
0.672122 + 0.740441i \(0.265383\pi\)
\(744\) 1.83111e7 0.00163008
\(745\) 0 0
\(746\) 8.66163e8 0.0763860
\(747\) −1.05241e10 −0.923770
\(748\) 3.04412e9 0.265954
\(749\) 5.84738e9 0.508481
\(750\) 0 0
\(751\) 1.58853e10 1.36853 0.684265 0.729233i \(-0.260123\pi\)
0.684265 + 0.729233i \(0.260123\pi\)
\(752\) 1.73890e9 0.149112
\(753\) −2.13016e9 −0.181815
\(754\) 4.00311e8 0.0340093
\(755\) 0 0
\(756\) −7.68139e8 −0.0646567
\(757\) −2.07844e10 −1.74141 −0.870707 0.491803i \(-0.836338\pi\)
−0.870707 + 0.491803i \(0.836338\pi\)
\(758\) −8.18757e8 −0.0682830
\(759\) 1.54582e8 0.0128325
\(760\) 0 0
\(761\) 5.61591e9 0.461928 0.230964 0.972962i \(-0.425812\pi\)
0.230964 + 0.972962i \(0.425812\pi\)
\(762\) −2.77759e9 −0.227418
\(763\) −2.27725e9 −0.185599
\(764\) 6.44249e9 0.522670
\(765\) 0 0
\(766\) 6.49058e9 0.521774
\(767\) 2.35705e7 0.00188619
\(768\) 1.36272e8 0.0108553
\(769\) −1.64625e9 −0.130543 −0.0652716 0.997868i \(-0.520791\pi\)
−0.0652716 + 0.997868i \(0.520791\pi\)
\(770\) 0 0
\(771\) 2.33619e9 0.183577
\(772\) 4.85326e9 0.379641
\(773\) 3.77661e9 0.294086 0.147043 0.989130i \(-0.453024\pi\)
0.147043 + 0.989130i \(0.453024\pi\)
\(774\) 3.01814e9 0.233962
\(775\) 0 0
\(776\) 1.72143e9 0.132243
\(777\) 1.33114e9 0.101801
\(778\) −8.62157e9 −0.656383
\(779\) 3.30960e9 0.250838
\(780\) 0 0
\(781\) 3.93293e9 0.295419
\(782\) −2.94450e9 −0.220185
\(783\) −2.55416e8 −0.0190143
\(784\) 4.81890e8 0.0357143
\(785\) 0 0
\(786\) −1.65604e8 −0.0121644
\(787\) −1.64925e10 −1.20607 −0.603037 0.797713i \(-0.706043\pi\)
−0.603037 + 0.797713i \(0.706043\pi\)
\(788\) 5.71024e9 0.415731
\(789\) 6.51593e8 0.0472288
\(790\) 0 0
\(791\) −2.16507e9 −0.155544
\(792\) −1.70307e9 −0.121813
\(793\) 2.07478e9 0.147746
\(794\) 3.83009e9 0.271542
\(795\) 0 0
\(796\) −7.55416e8 −0.0530873
\(797\) −2.04858e10 −1.43334 −0.716670 0.697413i \(-0.754335\pi\)
−0.716670 + 0.697413i \(0.754335\pi\)
\(798\) 1.59540e8 0.0111137
\(799\) −1.28760e10 −0.893030
\(800\) 0 0
\(801\) 1.78185e10 1.22506
\(802\) 1.25825e10 0.861304
\(803\) 8.77055e9 0.597754
\(804\) 2.09350e9 0.142061
\(805\) 0 0
\(806\) −2.41476e8 −0.0162443
\(807\) −4.46836e8 −0.0299289
\(808\) −1.36294e9 −0.0908941
\(809\) 3.65098e9 0.242432 0.121216 0.992626i \(-0.461321\pi\)
0.121216 + 0.992626i \(0.461321\pi\)
\(810\) 0 0
\(811\) −1.79825e10 −1.18380 −0.591898 0.806013i \(-0.701621\pi\)
−0.591898 + 0.806013i \(0.701621\pi\)
\(812\) 1.60235e8 0.0105029
\(813\) 2.50006e9 0.163167
\(814\) 5.99444e9 0.389550
\(815\) 0 0
\(816\) −1.00905e9 −0.0650126
\(817\) −1.27322e9 −0.0816817
\(818\) −1.36393e10 −0.871278
\(819\) 4.98730e9 0.317228
\(820\) 0 0
\(821\) −2.45590e9 −0.154885 −0.0774427 0.996997i \(-0.524675\pi\)
−0.0774427 + 0.996997i \(0.524675\pi\)
\(822\) 1.91777e9 0.120433
\(823\) 1.71346e10 1.07146 0.535728 0.844390i \(-0.320037\pi\)
0.535728 + 0.844390i \(0.320037\pi\)
\(824\) −1.27986e8 −0.00796922
\(825\) 0 0
\(826\) 9.43470e6 0.000582503 0
\(827\) −1.70537e10 −1.04846 −0.524228 0.851578i \(-0.675646\pi\)
−0.524228 + 0.851578i \(0.675646\pi\)
\(828\) 1.64733e9 0.100850
\(829\) 2.05756e10 1.25433 0.627163 0.778888i \(-0.284216\pi\)
0.627163 + 0.778888i \(0.284216\pi\)
\(830\) 0 0
\(831\) 2.61358e9 0.157991
\(832\) −1.79707e9 −0.108177
\(833\) −3.56824e9 −0.213893
\(834\) 9.66379e8 0.0576855
\(835\) 0 0
\(836\) 7.18447e8 0.0425278
\(837\) 1.54072e8 0.00908207
\(838\) 4.25737e9 0.249912
\(839\) −1.27697e10 −0.746472 −0.373236 0.927736i \(-0.621752\pi\)
−0.373236 + 0.927736i \(0.621752\pi\)
\(840\) 0 0
\(841\) −1.71966e10 −0.996911
\(842\) −1.07193e9 −0.0618833
\(843\) −6.57530e8 −0.0378024
\(844\) 1.21935e10 0.698119
\(845\) 0 0
\(846\) 7.20361e9 0.409029
\(847\) −5.84052e9 −0.330263
\(848\) 2.80943e9 0.158209
\(849\) −2.50013e9 −0.140212
\(850\) 0 0
\(851\) −5.79826e9 −0.322511
\(852\) −1.30367e9 −0.0722153
\(853\) 1.21052e10 0.667807 0.333904 0.942607i \(-0.391634\pi\)
0.333904 + 0.942607i \(0.391634\pi\)
\(854\) 8.30481e8 0.0456276
\(855\) 0 0
\(856\) −8.72845e9 −0.475641
\(857\) −5.38657e8 −0.0292334 −0.0146167 0.999893i \(-0.504653\pi\)
−0.0146167 + 0.999893i \(0.504653\pi\)
\(858\) −6.98585e8 −0.0377584
\(859\) −1.80931e10 −0.973948 −0.486974 0.873416i \(-0.661899\pi\)
−0.486974 + 0.873416i \(0.661899\pi\)
\(860\) 0 0
\(861\) −1.28812e9 −0.0687775
\(862\) −1.33017e10 −0.707345
\(863\) −3.56217e10 −1.88659 −0.943293 0.331962i \(-0.892289\pi\)
−0.943293 + 0.331962i \(0.892289\pi\)
\(864\) 1.14661e9 0.0604808
\(865\) 0 0
\(866\) −9.86506e9 −0.516163
\(867\) 4.13873e9 0.215675
\(868\) −9.66568e7 −0.00501664
\(869\) −2.99103e8 −0.0154615
\(870\) 0 0
\(871\) −2.76077e10 −1.41569
\(872\) 3.39928e9 0.173612
\(873\) 7.13124e9 0.362757
\(874\) −6.94936e8 −0.0352091
\(875\) 0 0
\(876\) −2.90722e9 −0.146121
\(877\) −1.13282e10 −0.567102 −0.283551 0.958957i \(-0.591513\pi\)
−0.283551 + 0.958957i \(0.591513\pi\)
\(878\) 1.42135e9 0.0708715
\(879\) −5.14475e8 −0.0255507
\(880\) 0 0
\(881\) 3.29464e10 1.62327 0.811637 0.584162i \(-0.198577\pi\)
0.811637 + 0.584162i \(0.198577\pi\)
\(882\) 1.99629e9 0.0979680
\(883\) −1.80365e10 −0.881639 −0.440820 0.897596i \(-0.645312\pi\)
−0.440820 + 0.897596i \(0.645312\pi\)
\(884\) 1.33067e10 0.647871
\(885\) 0 0
\(886\) 2.23336e10 1.07880
\(887\) −3.25522e10 −1.56620 −0.783101 0.621894i \(-0.786363\pi\)
−0.783101 + 0.621894i \(0.786363\pi\)
\(888\) −1.98701e9 −0.0952257
\(889\) 1.46617e10 0.699888
\(890\) 0 0
\(891\) −6.82890e9 −0.323429
\(892\) −3.51154e9 −0.165661
\(893\) −3.03888e9 −0.142802
\(894\) 1.78446e9 0.0835266
\(895\) 0 0
\(896\) −7.19323e8 −0.0334077
\(897\) 6.75723e8 0.0312604
\(898\) −2.21003e10 −1.01843
\(899\) −3.21396e7 −0.00147530
\(900\) 0 0
\(901\) −2.08029e10 −0.947516
\(902\) −5.80072e9 −0.263184
\(903\) 4.95546e8 0.0223963
\(904\) 3.23182e9 0.145498
\(905\) 0 0
\(906\) −2.71605e9 −0.121336
\(907\) 2.41647e10 1.07536 0.537682 0.843148i \(-0.319300\pi\)
0.537682 + 0.843148i \(0.319300\pi\)
\(908\) 3.82690e9 0.169647
\(909\) −5.64614e9 −0.249332
\(910\) 0 0
\(911\) −1.97815e10 −0.866854 −0.433427 0.901189i \(-0.642696\pi\)
−0.433427 + 0.901189i \(0.642696\pi\)
\(912\) −2.38148e8 −0.0103959
\(913\) −7.78137e9 −0.338383
\(914\) 6.15747e9 0.266742
\(915\) 0 0
\(916\) −1.10294e10 −0.474151
\(917\) 8.74152e8 0.0374364
\(918\) −8.49027e9 −0.362220
\(919\) 2.71038e10 1.15193 0.575965 0.817474i \(-0.304626\pi\)
0.575965 + 0.817474i \(0.304626\pi\)
\(920\) 0 0
\(921\) 7.13107e9 0.300778
\(922\) −3.10944e10 −1.30654
\(923\) 1.71920e10 0.719648
\(924\) −2.79626e8 −0.0116607
\(925\) 0 0
\(926\) 1.47811e10 0.611741
\(927\) −5.30197e8 −0.0218604
\(928\) −2.39184e8 −0.00982458
\(929\) −3.62682e10 −1.48413 −0.742063 0.670331i \(-0.766152\pi\)
−0.742063 + 0.670331i \(0.766152\pi\)
\(930\) 0 0
\(931\) −8.42145e8 −0.0342029
\(932\) −1.47726e10 −0.597725
\(933\) −7.54555e9 −0.304162
\(934\) 1.70510e10 0.684754
\(935\) 0 0
\(936\) −7.44460e9 −0.296740
\(937\) −4.10598e10 −1.63053 −0.815265 0.579089i \(-0.803408\pi\)
−0.815265 + 0.579089i \(0.803408\pi\)
\(938\) −1.10507e10 −0.437199
\(939\) −6.01112e9 −0.236933
\(940\) 0 0
\(941\) 1.35312e10 0.529388 0.264694 0.964332i \(-0.414729\pi\)
0.264694 + 0.964332i \(0.414729\pi\)
\(942\) −5.02300e9 −0.195787
\(943\) 5.61089e9 0.217892
\(944\) −1.40833e7 −0.000544881 0
\(945\) 0 0
\(946\) 2.23156e9 0.0857018
\(947\) −6.83192e9 −0.261407 −0.130704 0.991421i \(-0.541724\pi\)
−0.130704 + 0.991421i \(0.541724\pi\)
\(948\) 9.91453e7 0.00377958
\(949\) 3.83386e10 1.45614
\(950\) 0 0
\(951\) −2.02403e9 −0.0763108
\(952\) 5.32635e9 0.200079
\(953\) −1.42589e8 −0.00533654 −0.00266827 0.999996i \(-0.500849\pi\)
−0.00266827 + 0.999996i \(0.500849\pi\)
\(954\) 1.16384e10 0.433984
\(955\) 0 0
\(956\) 7.18442e9 0.265943
\(957\) −9.29791e7 −0.00342921
\(958\) −8.96358e9 −0.329384
\(959\) −1.01231e10 −0.370636
\(960\) 0 0
\(961\) −2.74932e10 −0.999295
\(962\) 2.62034e10 0.948954
\(963\) −3.61587e10 −1.30473
\(964\) −4.66307e9 −0.167650
\(965\) 0 0
\(966\) 2.70475e8 0.00965400
\(967\) 5.48898e9 0.195209 0.0976043 0.995225i \(-0.468882\pi\)
0.0976043 + 0.995225i \(0.468882\pi\)
\(968\) 8.71821e9 0.308932
\(969\) 1.76340e9 0.0622614
\(970\) 0 0
\(971\) −5.22931e10 −1.83306 −0.916531 0.399964i \(-0.869023\pi\)
−0.916531 + 0.399964i \(0.869023\pi\)
\(972\) 7.16134e9 0.250128
\(973\) −5.10111e9 −0.177529
\(974\) −2.68961e10 −0.932681
\(975\) 0 0
\(976\) −1.23967e9 −0.0426807
\(977\) −4.06965e10 −1.39613 −0.698065 0.716034i \(-0.745955\pi\)
−0.698065 + 0.716034i \(0.745955\pi\)
\(978\) 3.40555e8 0.0116413
\(979\) 1.31747e10 0.448748
\(980\) 0 0
\(981\) 1.40820e10 0.476236
\(982\) 2.70883e10 0.912832
\(983\) −2.31376e10 −0.776930 −0.388465 0.921464i \(-0.626995\pi\)
−0.388465 + 0.921464i \(0.626995\pi\)
\(984\) 1.92280e9 0.0643355
\(985\) 0 0
\(986\) 1.77108e9 0.0588394
\(987\) 1.18276e9 0.0391548
\(988\) 3.14054e9 0.103599
\(989\) −2.15853e9 −0.0709531
\(990\) 0 0
\(991\) −4.28251e10 −1.39779 −0.698893 0.715226i \(-0.746324\pi\)
−0.698893 + 0.715226i \(0.746324\pi\)
\(992\) 1.44281e8 0.00469264
\(993\) −2.76220e9 −0.0895227
\(994\) 6.88152e9 0.222245
\(995\) 0 0
\(996\) 2.57933e9 0.0827179
\(997\) 1.31943e10 0.421652 0.210826 0.977524i \(-0.432385\pi\)
0.210826 + 0.977524i \(0.432385\pi\)
\(998\) −1.42642e10 −0.454244
\(999\) −1.67189e10 −0.530553
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.8.a.v.1.3 4
5.2 odd 4 350.8.c.o.99.2 8
5.3 odd 4 350.8.c.o.99.7 8
5.4 even 2 350.8.a.y.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.8.a.v.1.3 4 1.1 even 1 trivial
350.8.a.y.1.2 yes 4 5.4 even 2
350.8.c.o.99.2 8 5.2 odd 4
350.8.c.o.99.7 8 5.3 odd 4