Properties

Label 350.8.a.y
Level $350$
Weight $8$
Character orbit 350.a
Self dual yes
Analytic conductor $109.335$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,8,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.334758919\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2473x^{2} - 31160x + 389808 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + ( - \beta_1 + 10) q^{3} + 64 q^{4} + ( - 8 \beta_1 + 80) q^{6} - 343 q^{7} + 512 q^{8} + (2 \beta_{3} - 3 \beta_{2} + \cdots + 545) q^{9} + (2 \beta_{3} + 11 \beta_{2} + \cdots + 369) q^{11}+ \cdots + ( - 3875 \beta_{3} + 11136 \beta_{2} + \cdots - 5794491) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} + 42 q^{3} + 256 q^{4} + 336 q^{6} - 1372 q^{7} + 2048 q^{8} + 2210 q^{9} + 1324 q^{11} + 2688 q^{12} - 17458 q^{13} - 10976 q^{14} + 16384 q^{16} - 18158 q^{17} + 17680 q^{18} + 11984 q^{19}+ \cdots - 23711228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2473x^{2} - 31160x + 389808 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 165\nu^{2} + 613\nu - 180252 ) / 2520 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 11\nu^{3} - 240\nu^{2} - 20918\nu + 24417 ) / 315 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{3} - 255\nu^{2} - 6991\nu + 140544 ) / 180 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} + 10\beta _1 + 12 ) / 30 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{3} - \beta_{2} + 206\beta _1 + 12470 ) / 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1049\beta_{3} - 554\beta_{2} + 16250\beta _1 + 386223 ) / 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
54.4803
−35.1621
−26.1112
7.79308
8.00000 −61.8960 64.0000 0 −495.168 −343.000 512.000 1644.11 0
1.2 8.00000 −8.12245 64.0000 0 −64.9796 −343.000 512.000 −2121.03 0
1.3 8.00000 36.1742 64.0000 0 289.394 −343.000 512.000 −878.424 0
1.4 8.00000 75.8442 64.0000 0 606.753 −343.000 512.000 3565.34 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.8.a.y yes 4
5.b even 2 1 350.8.a.v 4
5.c odd 4 2 350.8.c.o 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.8.a.v 4 5.b even 2 1
350.8.a.y yes 4 1.a even 1 1 trivial
350.8.c.o 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 42T_{3}^{3} - 4597T_{3}^{2} + 135786T_{3} + 1379340 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(350))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 42 T^{3} + \cdots + 1379340 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T + 343)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 395322363347625 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 705898274880784 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 49\!\cdots\!32 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 26\!\cdots\!80 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 57\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 79\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 81\!\cdots\!88 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 36\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 22\!\cdots\!52 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 69\!\cdots\!52 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 31\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 16\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 28\!\cdots\!28 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 44\!\cdots\!28 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 14\!\cdots\!43 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 65\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 10\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 30\!\cdots\!76 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 63\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 76\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 75\!\cdots\!00 \) Copy content Toggle raw display
show more
show less