Properties

Label 351.3.n.a.116.15
Level $351$
Weight $3$
Character 351.116
Analytic conductor $9.564$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,3,Mod(116,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.116");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 351.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.56405727905\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 116.15
Character \(\chi\) \(=\) 351.116
Dual form 351.3.n.a.233.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.245962 - 0.426018i) q^{2} +(1.87901 + 3.25453i) q^{4} +(-1.35391 - 2.34503i) q^{5} +(-8.51494 - 4.91611i) q^{7} +3.81635 q^{8} -1.33204 q^{10} +(7.77093 - 13.4596i) q^{11} +(-12.6433 + 3.02429i) q^{13} +(-4.18870 + 2.41835i) q^{14} +(-6.57735 + 11.3923i) q^{16} -22.4699i q^{17} -10.5454i q^{19} +(5.08800 - 8.81267i) q^{20} +(-3.82270 - 6.62112i) q^{22} +(-2.18641 + 1.26233i) q^{23} +(8.83387 - 15.3007i) q^{25} +(-1.82137 + 6.13015i) q^{26} -36.9496i q^{28} +(-2.12707 - 1.22806i) q^{29} +(32.9508 - 19.0241i) q^{31} +(10.8683 + 18.8244i) q^{32} +(-9.57260 - 5.52674i) q^{34} +26.6238i q^{35} +10.3786i q^{37} +(-4.49252 - 2.59376i) q^{38} +(-5.16698 - 8.94947i) q^{40} +(-36.5879 - 63.3720i) q^{41} +(-22.9633 + 39.7736i) q^{43} +58.4065 q^{44} +1.24194i q^{46} +(-13.6798 + 23.6942i) q^{47} +(23.8362 + 41.2855i) q^{49} +(-4.34559 - 7.52679i) q^{50} +(-33.5995 - 35.4655i) q^{52} +0.0370030i q^{53} -42.0844 q^{55} +(-32.4960 - 18.7616i) q^{56} +(-1.04636 + 0.604114i) q^{58} +(-32.9332 - 57.0420i) q^{59} +(40.6820 - 70.4633i) q^{61} -18.7168i q^{62} -41.9261 q^{64} +(24.2099 + 25.5544i) q^{65} +(-56.2009 + 32.4476i) q^{67} +(73.1291 - 42.2211i) q^{68} +(11.3422 + 6.54843i) q^{70} +29.5878 q^{71} +28.3208i q^{73} +(4.42149 + 2.55275i) q^{74} +(34.3203 - 19.8148i) q^{76} +(-132.338 + 76.4054i) q^{77} +(-36.3943 + 63.0368i) q^{79} +35.6204 q^{80} -35.9969 q^{82} +(-71.9367 + 124.598i) q^{83} +(-52.6927 + 30.4222i) q^{85} +(11.2962 + 19.5656i) q^{86} +(29.6566 - 51.3667i) q^{88} +80.5846 q^{89} +(122.525 + 36.4043i) q^{91} +(-8.21657 - 4.74384i) q^{92} +(6.72944 + 11.6557i) q^{94} +(-24.7293 + 14.2775i) q^{95} +(97.7027 + 56.4087i) q^{97} +23.4512 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 50 q^{4} + 8 q^{10} - 6 q^{13} + 6 q^{14} - 90 q^{16} + 14 q^{22} - 138 q^{23} - 92 q^{25} - 48 q^{29} - 324 q^{38} - 68 q^{40} + 62 q^{43} + 70 q^{49} - 4 q^{52} + 92 q^{55} + 276 q^{56} + 12 q^{61}+ \cdots - 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.245962 0.426018i 0.122981 0.213009i −0.797961 0.602709i \(-0.794088\pi\)
0.920942 + 0.389700i \(0.127421\pi\)
\(3\) 0 0
\(4\) 1.87901 + 3.25453i 0.469751 + 0.813633i
\(5\) −1.35391 2.34503i −0.270781 0.469007i 0.698281 0.715824i \(-0.253949\pi\)
−0.969062 + 0.246817i \(0.920615\pi\)
\(6\) 0 0
\(7\) −8.51494 4.91611i −1.21642 0.702301i −0.252270 0.967657i \(-0.581177\pi\)
−0.964150 + 0.265356i \(0.914510\pi\)
\(8\) 3.81635 0.477044
\(9\) 0 0
\(10\) −1.33204 −0.133204
\(11\) 7.77093 13.4596i 0.706448 1.22360i −0.259718 0.965684i \(-0.583630\pi\)
0.966166 0.257920i \(-0.0830370\pi\)
\(12\) 0 0
\(13\) −12.6433 + 3.02429i −0.972564 + 0.232637i
\(14\) −4.18870 + 2.41835i −0.299193 + 0.172739i
\(15\) 0 0
\(16\) −6.57735 + 11.3923i −0.411084 + 0.712019i
\(17\) 22.4699i 1.32176i −0.750492 0.660880i \(-0.770183\pi\)
0.750492 0.660880i \(-0.229817\pi\)
\(18\) 0 0
\(19\) 10.5454i 0.555020i −0.960723 0.277510i \(-0.910491\pi\)
0.960723 0.277510i \(-0.0895091\pi\)
\(20\) 5.08800 8.81267i 0.254400 0.440633i
\(21\) 0 0
\(22\) −3.82270 6.62112i −0.173759 0.300960i
\(23\) −2.18641 + 1.26233i −0.0950615 + 0.0548838i −0.546777 0.837278i \(-0.684146\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(24\) 0 0
\(25\) 8.83387 15.3007i 0.353355 0.612029i
\(26\) −1.82137 + 6.13015i −0.0700528 + 0.235775i
\(27\) 0 0
\(28\) 36.9496i 1.31963i
\(29\) −2.12707 1.22806i −0.0733472 0.0423470i 0.462878 0.886422i \(-0.346817\pi\)
−0.536225 + 0.844075i \(0.680150\pi\)
\(30\) 0 0
\(31\) 32.9508 19.0241i 1.06293 0.613682i 0.136687 0.990614i \(-0.456354\pi\)
0.926241 + 0.376933i \(0.123021\pi\)
\(32\) 10.8683 + 18.8244i 0.339633 + 0.588261i
\(33\) 0 0
\(34\) −9.57260 5.52674i −0.281547 0.162551i
\(35\) 26.6238i 0.760680i
\(36\) 0 0
\(37\) 10.3786i 0.280504i 0.990116 + 0.140252i \(0.0447912\pi\)
−0.990116 + 0.140252i \(0.955209\pi\)
\(38\) −4.49252 2.59376i −0.118224 0.0682568i
\(39\) 0 0
\(40\) −5.16698 8.94947i −0.129174 0.223737i
\(41\) −36.5879 63.3720i −0.892387 1.54566i −0.837006 0.547194i \(-0.815696\pi\)
−0.0553805 0.998465i \(-0.517637\pi\)
\(42\) 0 0
\(43\) −22.9633 + 39.7736i −0.534030 + 0.924967i 0.465180 + 0.885216i \(0.345990\pi\)
−0.999210 + 0.0397508i \(0.987344\pi\)
\(44\) 58.4065 1.32742
\(45\) 0 0
\(46\) 1.24194i 0.0269986i
\(47\) −13.6798 + 23.6942i −0.291060 + 0.504132i −0.974061 0.226287i \(-0.927341\pi\)
0.683000 + 0.730418i \(0.260675\pi\)
\(48\) 0 0
\(49\) 23.8362 + 41.2855i 0.486453 + 0.842561i
\(50\) −4.34559 7.52679i −0.0869118 0.150536i
\(51\) 0 0
\(52\) −33.5995 35.4655i −0.646145 0.682028i
\(53\) 0.0370030i 0.000698170i 1.00000 0.000349085i \(0.000111117\pi\)
−1.00000 0.000349085i \(0.999889\pi\)
\(54\) 0 0
\(55\) −42.0844 −0.765172
\(56\) −32.4960 18.7616i −0.580286 0.335028i
\(57\) 0 0
\(58\) −1.04636 + 0.604114i −0.0180406 + 0.0104158i
\(59\) −32.9332 57.0420i −0.558190 0.966814i −0.997648 0.0685502i \(-0.978163\pi\)
0.439458 0.898263i \(-0.355171\pi\)
\(60\) 0 0
\(61\) 40.6820 70.4633i 0.666918 1.15514i −0.311843 0.950134i \(-0.600946\pi\)
0.978761 0.205003i \(-0.0657204\pi\)
\(62\) 18.7168i 0.301885i
\(63\) 0 0
\(64\) −41.9261 −0.655095
\(65\) 24.2099 + 25.5544i 0.372461 + 0.393145i
\(66\) 0 0
\(67\) −56.2009 + 32.4476i −0.838819 + 0.484293i −0.856863 0.515545i \(-0.827590\pi\)
0.0180434 + 0.999837i \(0.494256\pi\)
\(68\) 73.1291 42.2211i 1.07543 0.620899i
\(69\) 0 0
\(70\) 11.3422 + 6.54843i 0.162032 + 0.0935491i
\(71\) 29.5878 0.416730 0.208365 0.978051i \(-0.433186\pi\)
0.208365 + 0.978051i \(0.433186\pi\)
\(72\) 0 0
\(73\) 28.3208i 0.387956i 0.981006 + 0.193978i \(0.0621390\pi\)
−0.981006 + 0.193978i \(0.937861\pi\)
\(74\) 4.42149 + 2.55275i 0.0597498 + 0.0344966i
\(75\) 0 0
\(76\) 34.3203 19.8148i 0.451583 0.260721i
\(77\) −132.338 + 76.4054i −1.71868 + 0.992278i
\(78\) 0 0
\(79\) −36.3943 + 63.0368i −0.460688 + 0.797935i −0.998995 0.0448138i \(-0.985731\pi\)
0.538308 + 0.842748i \(0.319064\pi\)
\(80\) 35.6204 0.445256
\(81\) 0 0
\(82\) −35.9969 −0.438986
\(83\) −71.9367 + 124.598i −0.866708 + 1.50118i −0.00136586 + 0.999999i \(0.500435\pi\)
−0.865342 + 0.501182i \(0.832899\pi\)
\(84\) 0 0
\(85\) −52.6927 + 30.4222i −0.619915 + 0.357908i
\(86\) 11.2962 + 19.5656i 0.131351 + 0.227507i
\(87\) 0 0
\(88\) 29.6566 51.3667i 0.337007 0.583713i
\(89\) 80.5846 0.905445 0.452722 0.891652i \(-0.350453\pi\)
0.452722 + 0.891652i \(0.350453\pi\)
\(90\) 0 0
\(91\) 122.525 + 36.4043i 1.34643 + 0.400047i
\(92\) −8.21657 4.74384i −0.0893105 0.0515635i
\(93\) 0 0
\(94\) 6.72944 + 11.6557i 0.0715898 + 0.123997i
\(95\) −24.7293 + 14.2775i −0.260308 + 0.150289i
\(96\) 0 0
\(97\) 97.7027 + 56.4087i 1.00724 + 0.581533i 0.910384 0.413765i \(-0.135787\pi\)
0.0968606 + 0.995298i \(0.469120\pi\)
\(98\) 23.4512 0.239298
\(99\) 0 0
\(100\) 66.3956 0.663956
\(101\) 171.233 + 98.8613i 1.69538 + 0.978825i 0.950036 + 0.312139i \(0.101046\pi\)
0.745339 + 0.666686i \(0.232288\pi\)
\(102\) 0 0
\(103\) 10.9095 + 18.8959i 0.105918 + 0.183455i 0.914113 0.405460i \(-0.132889\pi\)
−0.808195 + 0.588915i \(0.799555\pi\)
\(104\) −48.2513 + 11.5417i −0.463955 + 0.110978i
\(105\) 0 0
\(106\) 0.0157640 + 0.00910133i 0.000148717 + 8.58616e-5i
\(107\) 180.007i 1.68231i −0.540796 0.841154i \(-0.681877\pi\)
0.540796 0.841154i \(-0.318123\pi\)
\(108\) 0 0
\(109\) 117.078i 1.07411i 0.843548 + 0.537055i \(0.180463\pi\)
−0.843548 + 0.537055i \(0.819537\pi\)
\(110\) −10.3512 + 17.9287i −0.0941015 + 0.162989i
\(111\) 0 0
\(112\) 112.011 64.6699i 1.00010 0.577409i
\(113\) 59.6664 34.4484i 0.528021 0.304853i −0.212189 0.977229i \(-0.568059\pi\)
0.740210 + 0.672375i \(0.234726\pi\)
\(114\) 0 0
\(115\) 5.92040 + 3.41815i 0.0514818 + 0.0297230i
\(116\) 9.23016i 0.0795703i
\(117\) 0 0
\(118\) −32.4013 −0.274587
\(119\) −110.464 + 191.330i −0.928273 + 1.60782i
\(120\) 0 0
\(121\) −60.2747 104.399i −0.498138 0.862801i
\(122\) −20.0124 34.6626i −0.164036 0.284119i
\(123\) 0 0
\(124\) 123.829 + 71.4929i 0.998624 + 0.576556i
\(125\) −115.536 −0.924290
\(126\) 0 0
\(127\) 70.8862 0.558159 0.279080 0.960268i \(-0.409971\pi\)
0.279080 + 0.960268i \(0.409971\pi\)
\(128\) −53.7852 + 93.1587i −0.420197 + 0.727803i
\(129\) 0 0
\(130\) 16.8414 4.02846i 0.129549 0.0309882i
\(131\) 127.088 73.3745i 0.970140 0.560111i 0.0708610 0.997486i \(-0.477425\pi\)
0.899279 + 0.437376i \(0.144092\pi\)
\(132\) 0 0
\(133\) −51.8422 + 89.7933i −0.389791 + 0.675137i
\(134\) 31.9235i 0.238235i
\(135\) 0 0
\(136\) 85.7531i 0.630537i
\(137\) −34.9983 + 60.6188i −0.255462 + 0.442473i −0.965021 0.262173i \(-0.915561\pi\)
0.709559 + 0.704646i \(0.248894\pi\)
\(138\) 0 0
\(139\) −76.5741 132.630i −0.550892 0.954174i −0.998210 0.0597988i \(-0.980954\pi\)
0.447318 0.894375i \(-0.352379\pi\)
\(140\) −86.6480 + 50.0262i −0.618914 + 0.357330i
\(141\) 0 0
\(142\) 7.27747 12.6049i 0.0512498 0.0887672i
\(143\) −57.5446 + 193.676i −0.402410 + 1.35438i
\(144\) 0 0
\(145\) 6.65074i 0.0458672i
\(146\) 12.0652 + 6.96583i 0.0826382 + 0.0477112i
\(147\) 0 0
\(148\) −33.7776 + 19.5015i −0.228227 + 0.131767i
\(149\) −16.2539 28.1526i −0.109087 0.188944i 0.806314 0.591488i \(-0.201459\pi\)
−0.915400 + 0.402544i \(0.868126\pi\)
\(150\) 0 0
\(151\) −29.5608 17.0670i −0.195767 0.113026i 0.398912 0.916989i \(-0.369388\pi\)
−0.594680 + 0.803963i \(0.702721\pi\)
\(152\) 40.2448i 0.264769i
\(153\) 0 0
\(154\) 75.1713i 0.488125i
\(155\) −89.2245 51.5138i −0.575642 0.332347i
\(156\) 0 0
\(157\) 110.354 + 191.138i 0.702889 + 1.21744i 0.967448 + 0.253070i \(0.0814401\pi\)
−0.264559 + 0.964369i \(0.585227\pi\)
\(158\) 17.9032 + 31.0093i 0.113312 + 0.196261i
\(159\) 0 0
\(160\) 29.4292 50.9728i 0.183932 0.318580i
\(161\) 24.8229 0.154180
\(162\) 0 0
\(163\) 42.5714i 0.261174i −0.991437 0.130587i \(-0.958314\pi\)
0.991437 0.130587i \(-0.0416862\pi\)
\(164\) 137.498 238.153i 0.838400 1.45215i
\(165\) 0 0
\(166\) 35.3874 + 61.2927i 0.213177 + 0.369233i
\(167\) −103.978 180.096i −0.622624 1.07842i −0.988995 0.147948i \(-0.952733\pi\)
0.366371 0.930469i \(-0.380600\pi\)
\(168\) 0 0
\(169\) 150.707 76.4741i 0.891760 0.452509i
\(170\) 29.9308i 0.176063i
\(171\) 0 0
\(172\) −172.593 −1.00345
\(173\) −47.0331 27.1546i −0.271867 0.156963i 0.357869 0.933772i \(-0.383504\pi\)
−0.629736 + 0.776809i \(0.716837\pi\)
\(174\) 0 0
\(175\) −150.440 + 86.8565i −0.859657 + 0.496323i
\(176\) 102.224 + 177.058i 0.580819 + 1.00601i
\(177\) 0 0
\(178\) 19.8207 34.3305i 0.111352 0.192868i
\(179\) 82.5470i 0.461156i 0.973054 + 0.230578i \(0.0740617\pi\)
−0.973054 + 0.230578i \(0.925938\pi\)
\(180\) 0 0
\(181\) 166.981 0.922544 0.461272 0.887259i \(-0.347393\pi\)
0.461272 + 0.887259i \(0.347393\pi\)
\(182\) 45.6453 43.2438i 0.250799 0.237603i
\(183\) 0 0
\(184\) −8.34412 + 4.81748i −0.0453485 + 0.0261820i
\(185\) 24.3383 14.0517i 0.131558 0.0759551i
\(186\) 0 0
\(187\) −302.437 174.612i −1.61731 0.933755i
\(188\) −102.818 −0.546904
\(189\) 0 0
\(190\) 14.0468i 0.0739307i
\(191\) −61.1253 35.2907i −0.320028 0.184768i 0.331377 0.943498i \(-0.392487\pi\)
−0.651405 + 0.758730i \(0.725820\pi\)
\(192\) 0 0
\(193\) 40.4093 23.3303i 0.209375 0.120883i −0.391646 0.920116i \(-0.628094\pi\)
0.601021 + 0.799233i \(0.294761\pi\)
\(194\) 48.0623 27.7488i 0.247744 0.143035i
\(195\) 0 0
\(196\) −89.5766 + 155.151i −0.457024 + 0.791588i
\(197\) 194.423 0.986919 0.493460 0.869769i \(-0.335732\pi\)
0.493460 + 0.869769i \(0.335732\pi\)
\(198\) 0 0
\(199\) −22.2689 −0.111904 −0.0559520 0.998433i \(-0.517819\pi\)
−0.0559520 + 0.998433i \(0.517819\pi\)
\(200\) 33.7131 58.3929i 0.168566 0.291964i
\(201\) 0 0
\(202\) 84.2335 48.6322i 0.416998 0.240754i
\(203\) 12.0746 + 20.9138i 0.0594807 + 0.103024i
\(204\) 0 0
\(205\) −99.0731 + 171.600i −0.483283 + 0.837071i
\(206\) 10.7333 0.0521034
\(207\) 0 0
\(208\) 48.7059 163.928i 0.234163 0.788117i
\(209\) −141.937 81.9474i −0.679125 0.392093i
\(210\) 0 0
\(211\) −96.7627 167.598i −0.458591 0.794303i 0.540296 0.841475i \(-0.318312\pi\)
−0.998887 + 0.0471724i \(0.984979\pi\)
\(212\) −0.120428 + 0.0695289i −0.000568054 + 0.000327966i
\(213\) 0 0
\(214\) −76.6863 44.2748i −0.358347 0.206892i
\(215\) 124.361 0.578421
\(216\) 0 0
\(217\) −374.099 −1.72396
\(218\) 49.8773 + 28.7967i 0.228795 + 0.132095i
\(219\) 0 0
\(220\) −79.0769 136.965i −0.359441 0.622569i
\(221\) 67.9555 + 284.095i 0.307491 + 1.28550i
\(222\) 0 0
\(223\) 198.753 + 114.750i 0.891271 + 0.514575i 0.874358 0.485282i \(-0.161283\pi\)
0.0169128 + 0.999857i \(0.494616\pi\)
\(224\) 213.718i 0.954097i
\(225\) 0 0
\(226\) 33.8920i 0.149964i
\(227\) 124.606 215.824i 0.548925 0.950766i −0.449423 0.893319i \(-0.648371\pi\)
0.998349 0.0574473i \(-0.0182961\pi\)
\(228\) 0 0
\(229\) −46.3299 + 26.7486i −0.202314 + 0.116806i −0.597734 0.801694i \(-0.703932\pi\)
0.395420 + 0.918500i \(0.370599\pi\)
\(230\) 2.91239 1.68147i 0.0126625 0.00731072i
\(231\) 0 0
\(232\) −8.11764 4.68672i −0.0349898 0.0202014i
\(233\) 111.432i 0.478248i 0.970989 + 0.239124i \(0.0768602\pi\)
−0.970989 + 0.239124i \(0.923140\pi\)
\(234\) 0 0
\(235\) 74.0849 0.315255
\(236\) 123.763 214.364i 0.524421 0.908324i
\(237\) 0 0
\(238\) 54.3401 + 94.1198i 0.228320 + 0.395461i
\(239\) −117.640 203.758i −0.492217 0.852545i 0.507743 0.861509i \(-0.330480\pi\)
−0.999960 + 0.00896368i \(0.997147\pi\)
\(240\) 0 0
\(241\) −220.705 127.424i −0.915787 0.528730i −0.0334983 0.999439i \(-0.510665\pi\)
−0.882289 + 0.470709i \(0.843998\pi\)
\(242\) −59.3011 −0.245046
\(243\) 0 0
\(244\) 305.767 1.25314
\(245\) 64.5439 111.793i 0.263445 0.456299i
\(246\) 0 0
\(247\) 31.8922 + 133.329i 0.129118 + 0.539792i
\(248\) 125.752 72.6027i 0.507063 0.292753i
\(249\) 0 0
\(250\) −28.4175 + 49.2206i −0.113670 + 0.196882i
\(251\) 222.888i 0.888002i −0.896026 0.444001i \(-0.853559\pi\)
0.896026 0.444001i \(-0.146441\pi\)
\(252\) 0 0
\(253\) 39.2378i 0.155090i
\(254\) 17.4353 30.1988i 0.0686429 0.118893i
\(255\) 0 0
\(256\) −57.3939 99.4092i −0.224195 0.388317i
\(257\) −203.969 + 117.762i −0.793654 + 0.458217i −0.841247 0.540650i \(-0.818178\pi\)
0.0475931 + 0.998867i \(0.484845\pi\)
\(258\) 0 0
\(259\) 51.0224 88.3735i 0.196998 0.341210i
\(260\) −37.6771 + 126.809i −0.144912 + 0.487727i
\(261\) 0 0
\(262\) 72.1893i 0.275532i
\(263\) 45.2489 + 26.1244i 0.172049 + 0.0993325i 0.583552 0.812076i \(-0.301663\pi\)
−0.411503 + 0.911409i \(0.634996\pi\)
\(264\) 0 0
\(265\) 0.0867734 0.0500986i 0.000327447 0.000189051i
\(266\) 25.5024 + 44.1714i 0.0958737 + 0.166058i
\(267\) 0 0
\(268\) −211.204 121.938i −0.788073 0.454994i
\(269\) 435.342i 1.61837i −0.587553 0.809186i \(-0.699909\pi\)
0.587553 0.809186i \(-0.300091\pi\)
\(270\) 0 0
\(271\) 535.820i 1.97720i −0.150574 0.988599i \(-0.548112\pi\)
0.150574 0.988599i \(-0.451888\pi\)
\(272\) 255.984 + 147.792i 0.941118 + 0.543355i
\(273\) 0 0
\(274\) 17.2165 + 29.8198i 0.0628339 + 0.108832i
\(275\) −137.295 237.802i −0.499254 0.864733i
\(276\) 0 0
\(277\) 13.4558 23.3061i 0.0485769 0.0841376i −0.840715 0.541479i \(-0.817865\pi\)
0.889291 + 0.457341i \(0.151198\pi\)
\(278\) −75.3372 −0.270997
\(279\) 0 0
\(280\) 101.606i 0.362877i
\(281\) −36.6045 + 63.4009i −0.130265 + 0.225626i −0.923779 0.382927i \(-0.874916\pi\)
0.793514 + 0.608553i \(0.208250\pi\)
\(282\) 0 0
\(283\) 127.130 + 220.196i 0.449223 + 0.778077i 0.998336 0.0576712i \(-0.0183675\pi\)
−0.549113 + 0.835748i \(0.685034\pi\)
\(284\) 55.5957 + 96.2945i 0.195759 + 0.339065i
\(285\) 0 0
\(286\) 68.3559 + 72.1520i 0.239006 + 0.252280i
\(287\) 719.479i 2.50690i
\(288\) 0 0
\(289\) −215.897 −0.747049
\(290\) 2.83334 + 1.63583i 0.00977012 + 0.00564078i
\(291\) 0 0
\(292\) −92.1709 + 53.2149i −0.315654 + 0.182243i
\(293\) 21.1134 + 36.5695i 0.0720594 + 0.124810i 0.899804 0.436295i \(-0.143710\pi\)
−0.827744 + 0.561105i \(0.810376\pi\)
\(294\) 0 0
\(295\) −89.1770 + 154.459i −0.302295 + 0.523590i
\(296\) 39.6085i 0.133812i
\(297\) 0 0
\(298\) −15.9914 −0.0536623
\(299\) 23.8259 22.5724i 0.0796853 0.0754928i
\(300\) 0 0
\(301\) 391.062 225.780i 1.29921 0.750099i
\(302\) −14.5417 + 8.39564i −0.0481512 + 0.0278001i
\(303\) 0 0
\(304\) 120.136 + 69.3606i 0.395184 + 0.228160i
\(305\) −220.319 −0.722356
\(306\) 0 0
\(307\) 136.458i 0.444490i 0.974991 + 0.222245i \(0.0713385\pi\)
−0.974991 + 0.222245i \(0.928662\pi\)
\(308\) −497.328 287.132i −1.61470 0.932248i
\(309\) 0 0
\(310\) −43.8916 + 25.3409i −0.141586 + 0.0817447i
\(311\) −272.833 + 157.520i −0.877277 + 0.506496i −0.869759 0.493476i \(-0.835726\pi\)
−0.00751707 + 0.999972i \(0.502393\pi\)
\(312\) 0 0
\(313\) 261.082 452.207i 0.834127 1.44475i −0.0606123 0.998161i \(-0.519305\pi\)
0.894739 0.446589i \(-0.147361\pi\)
\(314\) 108.571 0.345768
\(315\) 0 0
\(316\) −273.541 −0.865635
\(317\) 41.1674 71.3040i 0.129866 0.224934i −0.793759 0.608233i \(-0.791879\pi\)
0.923624 + 0.383299i \(0.125212\pi\)
\(318\) 0 0
\(319\) −33.0586 + 19.0864i −0.103632 + 0.0598320i
\(320\) 56.7640 + 98.3181i 0.177387 + 0.307244i
\(321\) 0 0
\(322\) 6.10549 10.5750i 0.0189612 0.0328417i
\(323\) −236.954 −0.733603
\(324\) 0 0
\(325\) −65.4158 + 220.168i −0.201279 + 0.677440i
\(326\) −18.1362 10.4709i −0.0556325 0.0321194i
\(327\) 0 0
\(328\) −139.632 241.850i −0.425707 0.737347i
\(329\) 232.966 134.503i 0.708104 0.408824i
\(330\) 0 0
\(331\) −130.559 75.3781i −0.394437 0.227728i 0.289644 0.957135i \(-0.406463\pi\)
−0.684081 + 0.729406i \(0.739797\pi\)
\(332\) −540.678 −1.62855
\(333\) 0 0
\(334\) −102.299 −0.306283
\(335\) 152.182 + 87.8620i 0.454273 + 0.262275i
\(336\) 0 0
\(337\) 120.680 + 209.024i 0.358100 + 0.620248i 0.987643 0.156718i \(-0.0500912\pi\)
−0.629543 + 0.776966i \(0.716758\pi\)
\(338\) 4.48889 83.0138i 0.0132807 0.245603i
\(339\) 0 0
\(340\) −198.020 114.327i −0.582411 0.336255i
\(341\) 591.341i 1.73414i
\(342\) 0 0
\(343\) 13.0537i 0.0380573i
\(344\) −87.6359 + 151.790i −0.254756 + 0.441250i
\(345\) 0 0
\(346\) −23.1367 + 13.3580i −0.0668690 + 0.0386068i
\(347\) 449.622 259.590i 1.29574 0.748097i 0.316076 0.948734i \(-0.397634\pi\)
0.979666 + 0.200637i \(0.0643011\pi\)
\(348\) 0 0
\(349\) 313.905 + 181.233i 0.899442 + 0.519293i 0.877019 0.480456i \(-0.159529\pi\)
0.0224227 + 0.999749i \(0.492862\pi\)
\(350\) 85.4535i 0.244153i
\(351\) 0 0
\(352\) 337.826 0.959732
\(353\) −31.9628 + 55.3612i −0.0905462 + 0.156831i −0.907741 0.419531i \(-0.862195\pi\)
0.817195 + 0.576361i \(0.195528\pi\)
\(354\) 0 0
\(355\) −40.0591 69.3844i −0.112843 0.195449i
\(356\) 151.419 + 262.265i 0.425334 + 0.736700i
\(357\) 0 0
\(358\) 35.1665 + 20.3034i 0.0982305 + 0.0567134i
\(359\) 359.930 1.00259 0.501295 0.865276i \(-0.332857\pi\)
0.501295 + 0.865276i \(0.332857\pi\)
\(360\) 0 0
\(361\) 249.795 0.691953
\(362\) 41.0708 71.1368i 0.113455 0.196510i
\(363\) 0 0
\(364\) 111.746 + 467.165i 0.306995 + 1.28342i
\(365\) 66.4132 38.3437i 0.181954 0.105051i
\(366\) 0 0
\(367\) 73.7089 127.668i 0.200842 0.347868i −0.747958 0.663746i \(-0.768966\pi\)
0.948800 + 0.315878i \(0.102299\pi\)
\(368\) 33.2110i 0.0902474i
\(369\) 0 0
\(370\) 13.8247i 0.0373641i
\(371\) 0.181911 0.315079i 0.000490325 0.000849268i
\(372\) 0 0
\(373\) −285.025 493.678i −0.764143 1.32353i −0.940699 0.339243i \(-0.889829\pi\)
0.176556 0.984291i \(-0.443504\pi\)
\(374\) −148.776 + 85.8959i −0.397797 + 0.229668i
\(375\) 0 0
\(376\) −52.2071 + 90.4253i −0.138849 + 0.240493i
\(377\) 30.6073 + 9.09395i 0.0811864 + 0.0241219i
\(378\) 0 0
\(379\) 333.547i 0.880071i 0.897980 + 0.440036i \(0.145034\pi\)
−0.897980 + 0.440036i \(0.854966\pi\)
\(380\) −92.9329 53.6548i −0.244560 0.141197i
\(381\) 0 0
\(382\) −30.0690 + 17.3603i −0.0787146 + 0.0454459i
\(383\) 226.922 + 393.041i 0.592486 + 1.02622i 0.993896 + 0.110318i \(0.0351868\pi\)
−0.401410 + 0.915898i \(0.631480\pi\)
\(384\) 0 0
\(385\) 358.347 + 206.892i 0.930771 + 0.537381i
\(386\) 22.9535i 0.0594650i
\(387\) 0 0
\(388\) 423.969i 1.09270i
\(389\) 331.803 + 191.567i 0.852965 + 0.492460i 0.861650 0.507503i \(-0.169431\pi\)
−0.00868524 + 0.999962i \(0.502765\pi\)
\(390\) 0 0
\(391\) 28.3644 + 49.1286i 0.0725432 + 0.125648i
\(392\) 90.9672 + 157.560i 0.232059 + 0.401938i
\(393\) 0 0
\(394\) 47.8206 82.8278i 0.121372 0.210223i
\(395\) 197.098 0.498983
\(396\) 0 0
\(397\) 114.607i 0.288682i −0.989528 0.144341i \(-0.953894\pi\)
0.989528 0.144341i \(-0.0461062\pi\)
\(398\) −5.47730 + 9.48696i −0.0137621 + 0.0238366i
\(399\) 0 0
\(400\) 116.207 + 201.276i 0.290517 + 0.503191i
\(401\) 168.468 + 291.795i 0.420119 + 0.727667i 0.995951 0.0899009i \(-0.0286550\pi\)
−0.575832 + 0.817568i \(0.695322\pi\)
\(402\) 0 0
\(403\) −359.073 + 340.181i −0.891000 + 0.844121i
\(404\) 743.044i 1.83922i
\(405\) 0 0
\(406\) 11.8795 0.0292600
\(407\) 139.693 + 80.6516i 0.343225 + 0.198161i
\(408\) 0 0
\(409\) 537.500 310.326i 1.31418 0.758742i 0.331395 0.943492i \(-0.392481\pi\)
0.982786 + 0.184750i \(0.0591475\pi\)
\(410\) 48.7364 + 84.4139i 0.118869 + 0.205888i
\(411\) 0 0
\(412\) −40.9981 + 71.0108i −0.0995100 + 0.172356i
\(413\) 647.613i 1.56807i
\(414\) 0 0
\(415\) 389.582 0.938753
\(416\) −194.341 205.134i −0.467166 0.493110i
\(417\) 0 0
\(418\) −69.8222 + 40.3119i −0.167039 + 0.0964398i
\(419\) −217.694 + 125.686i −0.519557 + 0.299966i −0.736753 0.676162i \(-0.763642\pi\)
0.217196 + 0.976128i \(0.430309\pi\)
\(420\) 0 0
\(421\) 643.709 + 371.645i 1.52900 + 0.882768i 0.999404 + 0.0345179i \(0.0109896\pi\)
0.529595 + 0.848250i \(0.322344\pi\)
\(422\) −95.1997 −0.225592
\(423\) 0 0
\(424\) 0.141216i 0.000333058i
\(425\) −343.806 198.496i −0.808955 0.467050i
\(426\) 0 0
\(427\) −692.810 + 399.994i −1.62251 + 0.936755i
\(428\) 585.839 338.234i 1.36878 0.790267i
\(429\) 0 0
\(430\) 30.5880 52.9799i 0.0711348 0.123209i
\(431\) −649.249 −1.50638 −0.753189 0.657804i \(-0.771485\pi\)
−0.753189 + 0.657804i \(0.771485\pi\)
\(432\) 0 0
\(433\) 245.607 0.567222 0.283611 0.958939i \(-0.408468\pi\)
0.283611 + 0.958939i \(0.408468\pi\)
\(434\) −92.0140 + 159.373i −0.212014 + 0.367219i
\(435\) 0 0
\(436\) −381.034 + 219.990i −0.873931 + 0.504564i
\(437\) 13.3117 + 23.0566i 0.0304616 + 0.0527610i
\(438\) 0 0
\(439\) 15.0625 26.0889i 0.0343108 0.0594281i −0.848360 0.529420i \(-0.822410\pi\)
0.882671 + 0.469992i \(0.155743\pi\)
\(440\) −160.609 −0.365020
\(441\) 0 0
\(442\) 137.744 + 40.9261i 0.311638 + 0.0925930i
\(443\) −152.079 87.8030i −0.343294 0.198201i 0.318434 0.947945i \(-0.396843\pi\)
−0.661728 + 0.749744i \(0.730176\pi\)
\(444\) 0 0
\(445\) −109.104 188.974i −0.245178 0.424660i
\(446\) 97.7715 56.4484i 0.219219 0.126566i
\(447\) 0 0
\(448\) 356.998 + 206.113i 0.796871 + 0.460074i
\(449\) 126.404 0.281523 0.140762 0.990044i \(-0.455045\pi\)
0.140762 + 0.990044i \(0.455045\pi\)
\(450\) 0 0
\(451\) −1137.29 −2.52170
\(452\) 224.227 + 129.458i 0.496077 + 0.286410i
\(453\) 0 0
\(454\) −61.2966 106.169i −0.135015 0.233852i
\(455\) −80.5180 336.613i −0.176963 0.739809i
\(456\) 0 0
\(457\) −574.817 331.871i −1.25781 0.726194i −0.285158 0.958481i \(-0.592046\pi\)
−0.972647 + 0.232286i \(0.925379\pi\)
\(458\) 26.3165i 0.0574597i
\(459\) 0 0
\(460\) 25.6909i 0.0558497i
\(461\) −15.6227 + 27.0593i −0.0338887 + 0.0586969i −0.882472 0.470364i \(-0.844123\pi\)
0.848584 + 0.529061i \(0.177456\pi\)
\(462\) 0 0
\(463\) 558.193 322.273i 1.20560 0.696053i 0.243805 0.969824i \(-0.421604\pi\)
0.961795 + 0.273771i \(0.0882710\pi\)
\(464\) 27.9810 16.1548i 0.0603038 0.0348164i
\(465\) 0 0
\(466\) 47.4720 + 27.4080i 0.101871 + 0.0588154i
\(467\) 594.979i 1.27405i −0.770845 0.637023i \(-0.780166\pi\)
0.770845 0.637023i \(-0.219834\pi\)
\(468\) 0 0
\(469\) 638.063 1.36048
\(470\) 18.2221 31.5615i 0.0387703 0.0671522i
\(471\) 0 0
\(472\) −125.685 217.692i −0.266281 0.461212i
\(473\) 356.892 + 618.156i 0.754529 + 1.30688i
\(474\) 0 0
\(475\) −161.352 93.1565i −0.339688 0.196119i
\(476\) −830.254 −1.74423
\(477\) 0 0
\(478\) −115.740 −0.242133
\(479\) −31.4715 + 54.5102i −0.0657025 + 0.113800i −0.897005 0.442020i \(-0.854262\pi\)
0.831303 + 0.555820i \(0.187595\pi\)
\(480\) 0 0
\(481\) −31.3880 131.220i −0.0652556 0.272808i
\(482\) −108.570 + 62.6828i −0.225249 + 0.130047i
\(483\) 0 0
\(484\) 226.513 392.332i 0.468002 0.810604i
\(485\) 305.488i 0.629873i
\(486\) 0 0
\(487\) 143.450i 0.294558i 0.989095 + 0.147279i \(0.0470516\pi\)
−0.989095 + 0.147279i \(0.952948\pi\)
\(488\) 155.257 268.913i 0.318149 0.551051i
\(489\) 0 0
\(490\) −31.7507 54.9938i −0.0647973 0.112232i
\(491\) −824.274 + 475.895i −1.67877 + 0.969236i −0.716316 + 0.697776i \(0.754173\pi\)
−0.962450 + 0.271460i \(0.912494\pi\)
\(492\) 0 0
\(493\) −27.5945 + 47.7951i −0.0559726 + 0.0969474i
\(494\) 64.6447 + 19.2071i 0.130860 + 0.0388807i
\(495\) 0 0
\(496\) 500.513i 1.00910i
\(497\) −251.939 145.457i −0.506919 0.292670i
\(498\) 0 0
\(499\) 56.3465 32.5317i 0.112919 0.0651937i −0.442477 0.896780i \(-0.645900\pi\)
0.555396 + 0.831586i \(0.312567\pi\)
\(500\) −217.093 376.017i −0.434187 0.752033i
\(501\) 0 0
\(502\) −94.9546 54.8221i −0.189153 0.109207i
\(503\) 493.047i 0.980213i −0.871662 0.490107i \(-0.836958\pi\)
0.871662 0.490107i \(-0.163042\pi\)
\(504\) 0 0
\(505\) 535.396i 1.06019i
\(506\) 16.7160 + 9.65101i 0.0330356 + 0.0190731i
\(507\) 0 0
\(508\) 133.196 + 230.702i 0.262196 + 0.454137i
\(509\) 288.131 + 499.058i 0.566073 + 0.980468i 0.996949 + 0.0780566i \(0.0248715\pi\)
−0.430875 + 0.902411i \(0.641795\pi\)
\(510\) 0 0
\(511\) 139.228 241.150i 0.272462 0.471918i
\(512\) −486.749 −0.950681
\(513\) 0 0
\(514\) 115.859i 0.225408i
\(515\) 29.5410 51.1664i 0.0573611 0.0993523i
\(516\) 0 0
\(517\) 212.610 + 368.252i 0.411238 + 0.712286i
\(518\) −25.0991 43.4730i −0.0484540 0.0839247i
\(519\) 0 0
\(520\) 92.3936 + 97.5246i 0.177680 + 0.187547i
\(521\) 501.004i 0.961620i 0.876825 + 0.480810i \(0.159657\pi\)
−0.876825 + 0.480810i \(0.840343\pi\)
\(522\) 0 0
\(523\) −400.933 −0.766602 −0.383301 0.923624i \(-0.625213\pi\)
−0.383301 + 0.923624i \(0.625213\pi\)
\(524\) 477.599 + 275.742i 0.911449 + 0.526225i
\(525\) 0 0
\(526\) 22.2590 12.8512i 0.0423175 0.0244320i
\(527\) −427.471 740.401i −0.811140 1.40494i
\(528\) 0 0
\(529\) −261.313 + 452.607i −0.493976 + 0.855591i
\(530\) 0.0492894i 9.29988e-5i
\(531\) 0 0
\(532\) −389.647 −0.732419
\(533\) 654.247 + 690.581i 1.22748 + 1.29565i
\(534\) 0 0
\(535\) −422.123 + 243.713i −0.789014 + 0.455538i
\(536\) −214.482 + 123.831i −0.400153 + 0.231029i
\(537\) 0 0
\(538\) −185.464 107.077i −0.344728 0.199029i
\(539\) 740.917 1.37461
\(540\) 0 0
\(541\) 73.5254i 0.135906i 0.997689 + 0.0679532i \(0.0216469\pi\)
−0.997689 + 0.0679532i \(0.978353\pi\)
\(542\) −228.269 131.791i −0.421161 0.243158i
\(543\) 0 0
\(544\) 422.982 244.209i 0.777540 0.448913i
\(545\) 274.552 158.513i 0.503765 0.290849i
\(546\) 0 0
\(547\) −20.0152 + 34.6674i −0.0365909 + 0.0633774i −0.883741 0.467976i \(-0.844983\pi\)
0.847150 + 0.531354i \(0.178317\pi\)
\(548\) −263.048 −0.480015
\(549\) 0 0
\(550\) −135.077 −0.245595
\(551\) −12.9504 + 22.4308i −0.0235034 + 0.0407092i
\(552\) 0 0
\(553\) 619.791 357.837i 1.12078 0.647083i
\(554\) −6.61922 11.4648i −0.0119481 0.0206946i
\(555\) 0 0
\(556\) 287.766 498.426i 0.517565 0.896449i
\(557\) 475.662 0.853972 0.426986 0.904258i \(-0.359575\pi\)
0.426986 + 0.904258i \(0.359575\pi\)
\(558\) 0 0
\(559\) 170.046 572.318i 0.304196 1.02382i
\(560\) −303.306 175.114i −0.541618 0.312703i
\(561\) 0 0
\(562\) 18.0066 + 31.1884i 0.0320403 + 0.0554954i
\(563\) −494.852 + 285.703i −0.878955 + 0.507465i −0.870314 0.492498i \(-0.836084\pi\)
−0.00864136 + 0.999963i \(0.502751\pi\)
\(564\) 0 0
\(565\) −161.565 93.2798i −0.285957 0.165097i
\(566\) 125.077 0.220983
\(567\) 0 0
\(568\) 112.917 0.198798
\(569\) 334.478 + 193.111i 0.587835 + 0.339387i 0.764241 0.644931i \(-0.223114\pi\)
−0.176406 + 0.984318i \(0.556447\pi\)
\(570\) 0 0
\(571\) 440.436 + 762.858i 0.771342 + 1.33600i 0.936828 + 0.349791i \(0.113748\pi\)
−0.165486 + 0.986212i \(0.552919\pi\)
\(572\) −738.452 + 176.638i −1.29100 + 0.308808i
\(573\) 0 0
\(574\) 306.511 + 176.964i 0.533992 + 0.308300i
\(575\) 44.6050i 0.0775738i
\(576\) 0 0
\(577\) 583.864i 1.01190i −0.862564 0.505948i \(-0.831143\pi\)
0.862564 0.505948i \(-0.168857\pi\)
\(578\) −53.1025 + 91.9762i −0.0918728 + 0.159128i
\(579\) 0 0
\(580\) −21.6450 + 12.4968i −0.0373190 + 0.0215462i
\(581\) 1225.07 707.297i 2.10856 1.21738i
\(582\) 0 0
\(583\) 0.498047 + 0.287548i 0.000854284 + 0.000493221i
\(584\) 108.082i 0.185072i
\(585\) 0 0
\(586\) 20.7724 0.0354477
\(587\) 375.099 649.690i 0.639010 1.10680i −0.346640 0.937998i \(-0.612678\pi\)
0.985650 0.168800i \(-0.0539892\pi\)
\(588\) 0 0
\(589\) −200.617 347.478i −0.340605 0.589946i
\(590\) 43.8683 + 75.9821i 0.0743530 + 0.128783i
\(591\) 0 0
\(592\) −118.236 68.2639i −0.199724 0.115311i
\(593\) 1077.16 1.81646 0.908231 0.418469i \(-0.137433\pi\)
0.908231 + 0.418469i \(0.137433\pi\)
\(594\) 0 0
\(595\) 598.234 1.00544
\(596\) 61.0823 105.798i 0.102487 0.177513i
\(597\) 0 0
\(598\) −3.75597 15.7022i −0.00628089 0.0262579i
\(599\) 245.190 141.561i 0.409333 0.236329i −0.281170 0.959658i \(-0.590723\pi\)
0.690503 + 0.723329i \(0.257389\pi\)
\(600\) 0 0
\(601\) 66.0237 114.356i 0.109856 0.190277i −0.805856 0.592112i \(-0.798294\pi\)
0.915712 + 0.401835i \(0.131628\pi\)
\(602\) 222.133i 0.368992i
\(603\) 0 0
\(604\) 128.276i 0.212377i
\(605\) −163.213 + 282.693i −0.269773 + 0.467260i
\(606\) 0 0
\(607\) −120.206 208.203i −0.198033 0.343003i 0.749858 0.661599i \(-0.230122\pi\)
−0.947891 + 0.318596i \(0.896789\pi\)
\(608\) 198.510 114.610i 0.326497 0.188503i
\(609\) 0 0
\(610\) −54.1900 + 93.8598i −0.0888360 + 0.153868i
\(611\) 101.301 340.945i 0.165795 0.558012i
\(612\) 0 0
\(613\) 822.777i 1.34221i −0.741360 0.671107i \(-0.765819\pi\)
0.741360 0.671107i \(-0.234181\pi\)
\(614\) 58.1338 + 33.5636i 0.0946804 + 0.0546638i
\(615\) 0 0
\(616\) −505.048 + 291.590i −0.819884 + 0.473360i
\(617\) −275.955 477.968i −0.447253 0.774665i 0.550953 0.834536i \(-0.314264\pi\)
−0.998206 + 0.0598711i \(0.980931\pi\)
\(618\) 0 0
\(619\) −350.084 202.121i −0.565564 0.326529i 0.189812 0.981821i \(-0.439212\pi\)
−0.755376 + 0.655292i \(0.772546\pi\)
\(620\) 387.179i 0.624482i
\(621\) 0 0
\(622\) 154.976i 0.249157i
\(623\) −686.173 396.162i −1.10140 0.635895i
\(624\) 0 0
\(625\) −64.4216 111.581i −0.103074 0.178530i
\(626\) −128.432 222.451i −0.205163 0.355353i
\(627\) 0 0
\(628\) −414.710 + 718.298i −0.660366 + 1.14379i
\(629\) 233.207 0.370758
\(630\) 0 0
\(631\) 443.670i 0.703123i 0.936165 + 0.351561i \(0.114349\pi\)
−0.936165 + 0.351561i \(0.885651\pi\)
\(632\) −138.893 + 240.571i −0.219768 + 0.380650i
\(633\) 0 0
\(634\) −20.2512 35.0761i −0.0319420 0.0553251i
\(635\) −95.9733 166.231i −0.151139 0.261780i
\(636\) 0 0
\(637\) −426.228 449.898i −0.669117 0.706277i
\(638\) 18.7781i 0.0294328i
\(639\) 0 0
\(640\) 291.281 0.455126
\(641\) −543.758 313.939i −0.848297 0.489764i 0.0117791 0.999931i \(-0.496251\pi\)
−0.860076 + 0.510166i \(0.829584\pi\)
\(642\) 0 0
\(643\) −618.928 + 357.338i −0.962563 + 0.555736i −0.896961 0.442110i \(-0.854230\pi\)
−0.0656022 + 0.997846i \(0.520897\pi\)
\(644\) 46.6424 + 80.7870i 0.0724261 + 0.125446i
\(645\) 0 0
\(646\) −58.2816 + 100.947i −0.0902192 + 0.156264i
\(647\) 50.9073i 0.0786820i 0.999226 + 0.0393410i \(0.0125259\pi\)
−0.999226 + 0.0393410i \(0.987474\pi\)
\(648\) 0 0
\(649\) −1023.69 −1.57733
\(650\) 77.7059 + 82.0213i 0.119548 + 0.126187i
\(651\) 0 0
\(652\) 138.550 79.9918i 0.212500 0.122687i
\(653\) −370.592 + 213.962i −0.567523 + 0.327659i −0.756159 0.654388i \(-0.772926\pi\)
0.188637 + 0.982047i \(0.439593\pi\)
\(654\) 0 0
\(655\) −344.131 198.684i −0.525391 0.303335i
\(656\) 962.604 1.46738
\(657\) 0 0
\(658\) 132.331i 0.201110i
\(659\) −472.394 272.737i −0.716835 0.413865i 0.0967518 0.995309i \(-0.469155\pi\)
−0.813587 + 0.581444i \(0.802488\pi\)
\(660\) 0 0
\(661\) 72.4148 41.8087i 0.109553 0.0632507i −0.444222 0.895917i \(-0.646520\pi\)
0.553776 + 0.832666i \(0.313187\pi\)
\(662\) −64.2249 + 37.0803i −0.0970165 + 0.0560125i
\(663\) 0 0
\(664\) −274.536 + 475.510i −0.413457 + 0.716129i
\(665\) 280.758 0.422192
\(666\) 0 0
\(667\) 6.20088 0.00929667
\(668\) 390.751 676.801i 0.584957 1.01318i
\(669\) 0 0
\(670\) 74.8617 43.2214i 0.111734 0.0645096i
\(671\) −632.274 1095.13i −0.942287 1.63209i
\(672\) 0 0
\(673\) −65.7751 + 113.926i −0.0977341 + 0.169280i −0.910746 0.412966i \(-0.864493\pi\)
0.813012 + 0.582247i \(0.197826\pi\)
\(674\) 118.730 0.176158
\(675\) 0 0
\(676\) 532.067 + 346.787i 0.787082 + 0.512998i
\(677\) −151.765 87.6217i −0.224173 0.129426i 0.383708 0.923454i \(-0.374647\pi\)
−0.607881 + 0.794028i \(0.707980\pi\)
\(678\) 0 0
\(679\) −554.622 960.633i −0.816822 1.41478i
\(680\) −201.094 + 116.102i −0.295726 + 0.170738i
\(681\) 0 0
\(682\) −251.922 145.447i −0.369387 0.213266i
\(683\) 960.521 1.40633 0.703163 0.711029i \(-0.251770\pi\)
0.703163 + 0.711029i \(0.251770\pi\)
\(684\) 0 0
\(685\) 189.538 0.276697
\(686\) 5.56110 + 3.21070i 0.00810656 + 0.00468032i
\(687\) 0 0
\(688\) −302.075 523.209i −0.439063 0.760479i
\(689\) −0.111908 0.467841i −0.000162421 0.000679015i
\(690\) 0 0
\(691\) −398.707 230.194i −0.577000 0.333131i 0.182940 0.983124i \(-0.441438\pi\)
−0.759940 + 0.649993i \(0.774772\pi\)
\(692\) 204.094i 0.294934i
\(693\) 0 0
\(694\) 255.397i 0.368007i
\(695\) −207.348 + 359.138i −0.298343 + 0.516745i
\(696\) 0 0
\(697\) −1423.96 + 822.126i −2.04299 + 1.17952i
\(698\) 154.417 89.1529i 0.221228 0.127726i
\(699\) 0 0
\(700\) −565.355 326.408i −0.807650 0.466297i
\(701\) 704.086i 1.00440i 0.864751 + 0.502201i \(0.167476\pi\)
−0.864751 + 0.502201i \(0.832524\pi\)
\(702\) 0 0
\(703\) 109.447 0.155685
\(704\) −325.805 + 564.310i −0.462791 + 0.801577i
\(705\) 0 0
\(706\) 15.7233 + 27.2335i 0.0222709 + 0.0385743i
\(707\) −972.026 1683.60i −1.37486 2.38133i
\(708\) 0 0
\(709\) 1153.90 + 666.202i 1.62750 + 0.939636i 0.984837 + 0.173484i \(0.0555026\pi\)
0.642660 + 0.766151i \(0.277831\pi\)
\(710\) −39.4121 −0.0555099
\(711\) 0 0
\(712\) 307.539 0.431937
\(713\) −48.0294 + 83.1893i −0.0673624 + 0.116675i
\(714\) 0 0
\(715\) 532.087 127.275i 0.744178 0.178008i
\(716\) −268.652 + 155.106i −0.375212 + 0.216629i
\(717\) 0 0
\(718\) 88.5290 153.337i 0.123299 0.213561i
\(719\) 761.577i 1.05922i −0.848242 0.529608i \(-0.822339\pi\)
0.848242 0.529608i \(-0.177661\pi\)
\(720\) 0 0
\(721\) 214.529i 0.297544i
\(722\) 61.4400 106.417i 0.0850970 0.147392i
\(723\) 0 0
\(724\) 313.757 + 543.444i 0.433367 + 0.750613i
\(725\) −37.5805 + 21.6971i −0.0518352 + 0.0299271i
\(726\) 0 0
\(727\) −482.133 + 835.078i −0.663181 + 1.14866i 0.316594 + 0.948561i \(0.397461\pi\)
−0.979775 + 0.200102i \(0.935873\pi\)
\(728\) 467.598 + 138.931i 0.642305 + 0.190840i
\(729\) 0 0
\(730\) 37.7243i 0.0516772i
\(731\) 893.709 + 515.983i 1.22258 + 0.705859i
\(732\) 0 0
\(733\) 884.929 510.914i 1.20727 0.697018i 0.245108 0.969496i \(-0.421177\pi\)
0.962162 + 0.272478i \(0.0878432\pi\)
\(734\) −36.2591 62.8027i −0.0493994 0.0855622i
\(735\) 0 0
\(736\) −47.5250 27.4386i −0.0645720 0.0372807i
\(737\) 1008.59i 1.36851i
\(738\) 0 0
\(739\) 791.607i 1.07119i 0.844476 + 0.535593i \(0.179912\pi\)
−0.844476 + 0.535593i \(0.820088\pi\)
\(740\) 91.4634 + 52.8064i 0.123599 + 0.0713600i
\(741\) 0 0
\(742\) −0.0894862 0.154995i −0.000120601 0.000208888i
\(743\) 186.552 + 323.118i 0.251080 + 0.434883i 0.963823 0.266542i \(-0.0858809\pi\)
−0.712743 + 0.701425i \(0.752548\pi\)
\(744\) 0 0
\(745\) −44.0125 + 76.2319i −0.0590772 + 0.102325i
\(746\) −280.421 −0.375900
\(747\) 0 0
\(748\) 1312.39i 1.75453i
\(749\) −884.933 + 1532.75i −1.18149 + 2.04639i
\(750\) 0 0
\(751\) 446.787 + 773.858i 0.594923 + 1.03044i 0.993558 + 0.113327i \(0.0361507\pi\)
−0.398635 + 0.917110i \(0.630516\pi\)
\(752\) −179.954 311.690i −0.239301 0.414481i
\(753\) 0 0
\(754\) 11.4024 10.8025i 0.0151226 0.0143269i
\(755\) 92.4282i 0.122421i
\(756\) 0 0
\(757\) −121.247 −0.160168 −0.0800839 0.996788i \(-0.525519\pi\)
−0.0800839 + 0.996788i \(0.525519\pi\)
\(758\) 142.097 + 82.0398i 0.187463 + 0.108232i
\(759\) 0 0
\(760\) −94.3755 + 54.4877i −0.124178 + 0.0716944i
\(761\) 342.786 + 593.723i 0.450442 + 0.780189i 0.998413 0.0563086i \(-0.0179331\pi\)
−0.547971 + 0.836497i \(0.684600\pi\)
\(762\) 0 0
\(763\) 575.567 996.912i 0.754348 1.30657i
\(764\) 265.246i 0.347180i
\(765\) 0 0
\(766\) 223.257 0.291458
\(767\) 588.897 + 621.601i 0.767792 + 0.810432i
\(768\) 0 0
\(769\) 907.453 523.918i 1.18004 0.681298i 0.224019 0.974585i \(-0.428082\pi\)
0.956025 + 0.293287i \(0.0947490\pi\)
\(770\) 176.279 101.775i 0.228934 0.132175i
\(771\) 0 0
\(772\) 151.859 + 87.6756i 0.196708 + 0.113569i
\(773\) −1233.81 −1.59613 −0.798065 0.602571i \(-0.794143\pi\)
−0.798065 + 0.602571i \(0.794143\pi\)
\(774\) 0 0
\(775\) 672.227i 0.867390i
\(776\) 372.868 + 215.275i 0.480499 + 0.277416i
\(777\) 0 0
\(778\) 163.222 94.2362i 0.209797 0.121126i
\(779\) −668.282 + 385.833i −0.857871 + 0.495292i
\(780\) 0 0
\(781\) 229.925 398.241i 0.294398 0.509912i
\(782\) 27.9062 0.0356857
\(783\) 0 0
\(784\) −627.115 −0.799892
\(785\) 298.817 517.566i 0.380658 0.659319i
\(786\) 0 0
\(787\) −519.807 + 300.111i −0.660492 + 0.381335i −0.792465 0.609918i \(-0.791202\pi\)
0.131972 + 0.991253i \(0.457869\pi\)
\(788\) 365.322 + 632.756i 0.463607 + 0.802990i
\(789\) 0 0
\(790\) 48.4786 83.9674i 0.0613653 0.106288i
\(791\) −677.408 −0.856394
\(792\) 0 0
\(793\) −301.255 + 1013.92i −0.379892 + 1.27859i
\(794\) −48.8246 28.1889i −0.0614919 0.0355024i
\(795\) 0 0
\(796\) −41.8434 72.4749i −0.0525671 0.0910488i
\(797\) −894.237 + 516.288i −1.12200 + 0.647789i −0.941912 0.335860i \(-0.890973\pi\)
−0.180092 + 0.983650i \(0.557640\pi\)
\(798\) 0 0
\(799\) 532.406 + 307.385i 0.666341 + 0.384712i
\(800\) 384.035 0.480044
\(801\) 0 0
\(802\) 165.746 0.206666
\(803\) 381.188 + 220.079i 0.474705 + 0.274071i
\(804\) 0 0
\(805\) −33.6079 58.2106i −0.0417490 0.0723113i
\(806\) 56.6051 + 236.643i 0.0702297 + 0.293602i
\(807\) 0 0
\(808\) 653.484 + 377.289i 0.808768 + 0.466942i
\(809\) 1119.42i 1.38371i −0.722036 0.691856i \(-0.756793\pi\)
0.722036 0.691856i \(-0.243207\pi\)
\(810\) 0 0
\(811\) 998.606i 1.23133i 0.788009 + 0.615663i \(0.211112\pi\)
−0.788009 + 0.615663i \(0.788888\pi\)
\(812\) −45.3764 + 78.5943i −0.0558823 + 0.0967910i
\(813\) 0 0
\(814\) 68.7181 39.6744i 0.0844203 0.0487401i
\(815\) −99.8313 + 57.6376i −0.122492 + 0.0707210i
\(816\) 0 0
\(817\) 419.427 + 242.157i 0.513375 + 0.296397i
\(818\) 305.313i 0.373243i
\(819\) 0 0
\(820\) −744.635 −0.908092
\(821\) −98.4510 + 170.522i −0.119916 + 0.207701i −0.919734 0.392542i \(-0.871596\pi\)
0.799818 + 0.600242i \(0.204929\pi\)
\(822\) 0 0
\(823\) 207.026 + 358.580i 0.251551 + 0.435699i 0.963953 0.266073i \(-0.0857261\pi\)
−0.712402 + 0.701771i \(0.752393\pi\)
\(824\) 41.6346 + 72.1132i 0.0505274 + 0.0875160i
\(825\) 0 0
\(826\) 275.895 + 159.288i 0.334013 + 0.192843i
\(827\) 519.406 0.628061 0.314030 0.949413i \(-0.398321\pi\)
0.314030 + 0.949413i \(0.398321\pi\)
\(828\) 0 0
\(829\) −89.7267 −0.108235 −0.0541175 0.998535i \(-0.517235\pi\)
−0.0541175 + 0.998535i \(0.517235\pi\)
\(830\) 95.8224 165.969i 0.115449 0.199963i
\(831\) 0 0
\(832\) 530.085 126.796i 0.637121 0.152400i
\(833\) 927.681 535.597i 1.11366 0.642974i
\(834\) 0 0
\(835\) −281.554 + 487.665i −0.337190 + 0.584030i
\(836\) 615.918i 0.736744i
\(837\) 0 0
\(838\) 123.656i 0.147561i
\(839\) −434.792 + 753.083i −0.518227 + 0.897596i 0.481549 + 0.876419i \(0.340074\pi\)
−0.999776 + 0.0211762i \(0.993259\pi\)
\(840\) 0 0
\(841\) −417.484 723.103i −0.496413 0.859813i
\(842\) 316.656 182.821i 0.376075 0.217127i
\(843\) 0 0
\(844\) 363.635 629.835i 0.430847 0.746250i
\(845\) −383.378 249.875i −0.453702 0.295710i
\(846\) 0 0
\(847\) 1185.27i 1.39937i
\(848\) −0.421549 0.243382i −0.000497110 0.000287007i
\(849\) 0 0
\(850\) −169.126 + 97.6451i −0.198972 + 0.114877i
\(851\) −13.1012 22.6920i −0.0153951 0.0266651i
\(852\) 0 0
\(853\) 429.724 + 248.101i 0.503780 + 0.290857i 0.730273 0.683155i \(-0.239393\pi\)
−0.226493 + 0.974013i \(0.572726\pi\)
\(854\) 393.533i 0.460812i
\(855\) 0 0
\(856\) 686.969i 0.802534i
\(857\) −1249.94 721.652i −1.45850 0.842068i −0.459566 0.888144i \(-0.651995\pi\)
−0.998938 + 0.0460758i \(0.985328\pi\)
\(858\) 0 0
\(859\) 19.8064 + 34.3056i 0.0230575 + 0.0399367i 0.877324 0.479899i \(-0.159327\pi\)
−0.854266 + 0.519835i \(0.825993\pi\)
\(860\) 233.674 + 404.736i 0.271714 + 0.470623i
\(861\) 0 0
\(862\) −159.690 + 276.592i −0.185256 + 0.320872i
\(863\) −661.701 −0.766745 −0.383373 0.923594i \(-0.625238\pi\)
−0.383373 + 0.923594i \(0.625238\pi\)
\(864\) 0 0
\(865\) 147.059i 0.170010i
\(866\) 60.4099 104.633i 0.0697574 0.120823i
\(867\) 0 0
\(868\) −702.933 1217.52i −0.809831 1.40267i
\(869\) 565.636 + 979.710i 0.650904 + 1.12740i
\(870\) 0 0
\(871\) 612.435 580.213i 0.703141 0.666146i
\(872\) 446.810i 0.512397i
\(873\) 0 0
\(874\) 13.0967 0.0149848
\(875\) 983.785 + 567.988i 1.12433 + 0.649130i
\(876\) 0 0
\(877\) −469.408 + 271.013i −0.535243 + 0.309022i −0.743149 0.669126i \(-0.766668\pi\)
0.207906 + 0.978149i \(0.433335\pi\)
\(878\) −7.40958 12.8338i −0.00843915 0.0146170i
\(879\) 0 0
\(880\) 276.804 479.439i 0.314550 0.544817i
\(881\) 923.968i 1.04877i 0.851481 + 0.524386i \(0.175705\pi\)
−0.851481 + 0.524386i \(0.824295\pi\)
\(882\) 0 0
\(883\) 1126.68 1.27597 0.637986 0.770048i \(-0.279768\pi\)
0.637986 + 0.770048i \(0.279768\pi\)
\(884\) −796.906 + 754.979i −0.901478 + 0.854048i
\(885\) 0 0
\(886\) −74.8114 + 43.1924i −0.0844372 + 0.0487498i
\(887\) −43.5445 + 25.1404i −0.0490919 + 0.0283432i −0.524345 0.851506i \(-0.675690\pi\)
0.475253 + 0.879849i \(0.342356\pi\)
\(888\) 0 0
\(889\) −603.592 348.484i −0.678956 0.391996i
\(890\) −107.342 −0.120609
\(891\) 0 0
\(892\) 862.466i 0.966890i
\(893\) 249.864 + 144.259i 0.279803 + 0.161544i
\(894\) 0 0
\(895\) 193.576 111.761i 0.216286 0.124872i
\(896\) 915.956 528.828i 1.02227 0.590209i
\(897\) 0 0
\(898\) 31.0905 53.8504i 0.0346220 0.0599670i
\(899\) −93.4514 −0.103950
\(900\) 0 0
\(901\) 0.831455 0.000922813
\(902\) −279.729 + 484.505i −0.310121 + 0.537145i
\(903\) 0 0
\(904\) 227.708 131.467i 0.251889 0.145428i
\(905\) −226.076 391.575i −0.249808 0.432680i
\(906\) 0 0
\(907\) −353.741 + 612.697i −0.390012 + 0.675521i −0.992451 0.122645i \(-0.960862\pi\)
0.602439 + 0.798165i \(0.294196\pi\)
\(908\) 936.541 1.03143
\(909\) 0 0
\(910\) −163.208 48.4919i −0.179349 0.0532878i
\(911\) −528.262 304.992i −0.579870 0.334788i 0.181211 0.983444i \(-0.441998\pi\)
−0.761082 + 0.648656i \(0.775331\pi\)
\(912\) 0 0
\(913\) 1118.03 + 1936.49i 1.22457 + 2.12101i
\(914\) −282.766 + 163.255i −0.309372 + 0.178616i
\(915\) 0 0
\(916\) −174.108 100.522i −0.190075 0.109740i
\(917\) −1442.87 −1.57346
\(918\) 0 0
\(919\) 750.201 0.816323 0.408162 0.912910i \(-0.366170\pi\)
0.408162 + 0.912910i \(0.366170\pi\)
\(920\) 22.5943 + 13.0448i 0.0245590 + 0.0141792i
\(921\) 0 0
\(922\) 7.68517 + 13.3111i 0.00833532 + 0.0144372i
\(923\) −374.088 + 89.4820i −0.405296 + 0.0969469i
\(924\) 0 0
\(925\) 158.801 + 91.6835i 0.171676 + 0.0991173i
\(926\) 317.067i 0.342405i
\(927\) 0 0
\(928\) 53.3876i 0.0575298i
\(929\) 248.612 430.609i 0.267613 0.463519i −0.700632 0.713523i \(-0.747098\pi\)
0.968245 + 0.250004i \(0.0804318\pi\)
\(930\) 0 0
\(931\) 435.371 251.361i 0.467638 0.269991i
\(932\) −362.658 + 209.381i −0.389118 + 0.224658i
\(933\) 0 0
\(934\) −253.472 146.342i −0.271383 0.156683i
\(935\) 945.634i 1.01137i
\(936\) 0 0
\(937\) −549.302 −0.586234 −0.293117 0.956077i \(-0.594693\pi\)
−0.293117 + 0.956077i \(0.594693\pi\)
\(938\) 156.939 271.827i 0.167313 0.289794i
\(939\) 0 0
\(940\) 139.206 + 241.112i 0.148091 + 0.256502i
\(941\) 727.049 + 1259.29i 0.772634 + 1.33824i 0.936114 + 0.351695i \(0.114395\pi\)
−0.163480 + 0.986547i \(0.552272\pi\)
\(942\) 0 0
\(943\) 159.992 + 92.3717i 0.169663 + 0.0979551i
\(944\) 866.453 0.917852
\(945\) 0 0
\(946\) 351.127 0.371171
\(947\) −579.533 + 1003.78i −0.611968 + 1.05996i 0.378941 + 0.925421i \(0.376288\pi\)
−0.990908 + 0.134538i \(0.957045\pi\)
\(948\) 0 0
\(949\) −85.6502 358.069i −0.0902531 0.377312i
\(950\) −79.3728 + 45.8259i −0.0835503 + 0.0482378i
\(951\) 0 0
\(952\) −421.571 + 730.182i −0.442827 + 0.766998i
\(953\) 1594.88i 1.67354i −0.547555 0.836770i \(-0.684441\pi\)
0.547555 0.836770i \(-0.315559\pi\)
\(954\) 0 0
\(955\) 191.121i 0.200127i
\(956\) 442.092 765.726i 0.462439 0.800968i
\(957\) 0 0
\(958\) 15.4816 + 26.8149i 0.0161603 + 0.0279905i
\(959\) 596.017 344.111i 0.621499 0.358822i
\(960\) 0 0
\(961\) 243.335 421.469i 0.253211 0.438574i
\(962\) −63.6226 18.9034i −0.0661357 0.0196501i
\(963\) 0 0
\(964\) 957.721i 0.993486i
\(965\) −109.421 63.1741i −0.113389 0.0654654i
\(966\) 0 0
\(967\) −757.971 + 437.615i −0.783837 + 0.452549i −0.837789 0.545995i \(-0.816152\pi\)
0.0539512 + 0.998544i \(0.482818\pi\)
\(968\) −230.029 398.423i −0.237634 0.411594i
\(969\) 0 0
\(970\) −130.144 75.1385i −0.134169 0.0774623i
\(971\) 1712.38i 1.76352i 0.471694 + 0.881762i \(0.343643\pi\)
−0.471694 + 0.881762i \(0.656357\pi\)
\(972\) 0 0
\(973\) 1505.78i 1.54757i
\(974\) 61.1123 + 35.2832i 0.0627436 + 0.0362250i
\(975\) 0 0
\(976\) 535.160 + 926.923i 0.548319 + 0.949717i
\(977\) −545.611 945.026i −0.558455 0.967273i −0.997626 0.0688692i \(-0.978061\pi\)
0.439170 0.898404i \(-0.355272\pi\)
\(978\) 0 0
\(979\) 626.217 1084.64i 0.639650 1.10791i
\(980\) 485.113 0.495014
\(981\) 0 0
\(982\) 468.208i 0.476790i
\(983\) 493.179 854.212i 0.501708 0.868984i −0.498290 0.867011i \(-0.666038\pi\)
0.999998 0.00197385i \(-0.000628296\pi\)
\(984\) 0 0
\(985\) −263.231 455.929i −0.267239 0.462872i
\(986\) 13.5744 + 23.5115i 0.0137671 + 0.0238454i
\(987\) 0 0
\(988\) −373.997 + 354.320i −0.378539 + 0.358623i
\(989\) 115.949i 0.117238i
\(990\) 0 0
\(991\) −232.458 −0.234569 −0.117285 0.993098i \(-0.537419\pi\)
−0.117285 + 0.993098i \(0.537419\pi\)
\(992\) 716.234 + 413.518i 0.722010 + 0.416853i
\(993\) 0 0
\(994\) −123.935 + 71.5536i −0.124683 + 0.0719855i
\(995\) 30.1500 + 52.2213i 0.0303015 + 0.0524838i
\(996\) 0 0
\(997\) 57.6711 99.8893i 0.0578446 0.100190i −0.835653 0.549258i \(-0.814911\pi\)
0.893498 + 0.449068i \(0.148244\pi\)
\(998\) 32.0062i 0.0320703i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.3.n.a.116.15 52
3.2 odd 2 117.3.n.a.38.12 52
9.4 even 3 117.3.n.a.77.15 yes 52
9.5 odd 6 inner 351.3.n.a.233.12 52
13.12 even 2 inner 351.3.n.a.116.12 52
39.38 odd 2 117.3.n.a.38.15 yes 52
117.77 odd 6 inner 351.3.n.a.233.15 52
117.103 even 6 117.3.n.a.77.12 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.n.a.38.12 52 3.2 odd 2
117.3.n.a.38.15 yes 52 39.38 odd 2
117.3.n.a.77.12 yes 52 117.103 even 6
117.3.n.a.77.15 yes 52 9.4 even 3
351.3.n.a.116.12 52 13.12 even 2 inner
351.3.n.a.116.15 52 1.1 even 1 trivial
351.3.n.a.233.12 52 9.5 odd 6 inner
351.3.n.a.233.15 52 117.77 odd 6 inner