Properties

Label 352.2.c.a.177.6
Level $352$
Weight $2$
Character 352.177
Analytic conductor $2.811$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(177,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.578281160704.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 2x^{8} - 2x^{7} - 3x^{6} - 6x^{5} - 6x^{4} - 8x^{3} + 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 177.6
Root \(1.41363 + 0.0406696i\) of defining polynomial
Character \(\chi\) \(=\) 352.177
Dual form 352.2.c.a.177.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.229967i q^{3} -2.51595i q^{5} -1.47743 q^{7} +2.94712 q^{9} -1.00000i q^{11} -3.47743i q^{13} +0.578585 q^{15} -3.31475 q^{17} -7.13195i q^{19} -0.339760i q^{21} +6.45332 q^{23} -1.33001 q^{25} +1.36764i q^{27} +1.41480i q^{29} -0.636125 q^{31} +0.229967 q^{33} +3.71715i q^{35} +6.97588i q^{37} +0.799694 q^{39} +6.72955 q^{41} -3.21471i q^{43} -7.41480i q^{45} -0.862328 q^{47} -4.81719 q^{49} -0.762283i q^{51} +13.2515i q^{53} -2.51595 q^{55} +1.64011 q^{57} +2.63236i q^{59} -6.45993i q^{61} -4.35416 q^{63} -8.74905 q^{65} +7.66426i q^{67} +1.48405i q^{69} -12.2900 q^{71} -13.2440 q^{73} -0.305858i q^{75} +1.47743i q^{77} +16.3409 q^{79} +8.52683 q^{81} +13.8040i q^{83} +8.33976i q^{85} -0.325357 q^{87} -1.04979 q^{89} +5.13767i q^{91} -0.146288i q^{93} -17.9436 q^{95} +16.2110 q^{97} -2.94712i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{9} - 8 q^{15} - 4 q^{17} + 12 q^{23} - 6 q^{25} + 4 q^{31} - 24 q^{39} + 4 q^{41} + 4 q^{47} - 6 q^{49} + 8 q^{55} + 16 q^{57} + 40 q^{63} + 16 q^{65} + 12 q^{71} - 4 q^{73} - 16 q^{79} - 6 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.229967i 0.132771i 0.997794 + 0.0663857i \(0.0211468\pi\)
−0.997794 + 0.0663857i \(0.978853\pi\)
\(4\) 0 0
\(5\) − 2.51595i − 1.12517i −0.826740 0.562584i \(-0.809807\pi\)
0.826740 0.562584i \(-0.190193\pi\)
\(6\) 0 0
\(7\) −1.47743 −0.558417 −0.279209 0.960230i \(-0.590072\pi\)
−0.279209 + 0.960230i \(0.590072\pi\)
\(8\) 0 0
\(9\) 2.94712 0.982372
\(10\) 0 0
\(11\) − 1.00000i − 0.301511i
\(12\) 0 0
\(13\) − 3.47743i − 0.964466i −0.876043 0.482233i \(-0.839826\pi\)
0.876043 0.482233i \(-0.160174\pi\)
\(14\) 0 0
\(15\) 0.578585 0.149390
\(16\) 0 0
\(17\) −3.31475 −0.803946 −0.401973 0.915652i \(-0.631675\pi\)
−0.401973 + 0.915652i \(0.631675\pi\)
\(18\) 0 0
\(19\) − 7.13195i − 1.63618i −0.575090 0.818090i \(-0.695033\pi\)
0.575090 0.818090i \(-0.304967\pi\)
\(20\) 0 0
\(21\) − 0.339760i − 0.0741418i
\(22\) 0 0
\(23\) 6.45332 1.34561 0.672805 0.739820i \(-0.265089\pi\)
0.672805 + 0.739820i \(0.265089\pi\)
\(24\) 0 0
\(25\) −1.33001 −0.266002
\(26\) 0 0
\(27\) 1.36764i 0.263202i
\(28\) 0 0
\(29\) 1.41480i 0.262722i 0.991335 + 0.131361i \(0.0419346\pi\)
−0.991335 + 0.131361i \(0.958065\pi\)
\(30\) 0 0
\(31\) −0.636125 −0.114251 −0.0571257 0.998367i \(-0.518194\pi\)
−0.0571257 + 0.998367i \(0.518194\pi\)
\(32\) 0 0
\(33\) 0.229967 0.0400321
\(34\) 0 0
\(35\) 3.71715i 0.628313i
\(36\) 0 0
\(37\) 6.97588i 1.14683i 0.819266 + 0.573414i \(0.194381\pi\)
−0.819266 + 0.573414i \(0.805619\pi\)
\(38\) 0 0
\(39\) 0.799694 0.128054
\(40\) 0 0
\(41\) 6.72955 1.05098 0.525490 0.850800i \(-0.323882\pi\)
0.525490 + 0.850800i \(0.323882\pi\)
\(42\) 0 0
\(43\) − 3.21471i − 0.490239i −0.969493 0.245119i \(-0.921173\pi\)
0.969493 0.245119i \(-0.0788271\pi\)
\(44\) 0 0
\(45\) − 7.41480i − 1.10533i
\(46\) 0 0
\(47\) −0.862328 −0.125783 −0.0628917 0.998020i \(-0.520032\pi\)
−0.0628917 + 0.998020i \(0.520032\pi\)
\(48\) 0 0
\(49\) −4.81719 −0.688170
\(50\) 0 0
\(51\) − 0.762283i − 0.106741i
\(52\) 0 0
\(53\) 13.2515i 1.82023i 0.414353 + 0.910116i \(0.364008\pi\)
−0.414353 + 0.910116i \(0.635992\pi\)
\(54\) 0 0
\(55\) −2.51595 −0.339251
\(56\) 0 0
\(57\) 1.64011 0.217238
\(58\) 0 0
\(59\) 2.63236i 0.342704i 0.985210 + 0.171352i \(0.0548136\pi\)
−0.985210 + 0.171352i \(0.945186\pi\)
\(60\) 0 0
\(61\) − 6.45993i − 0.827110i −0.910479 0.413555i \(-0.864287\pi\)
0.910479 0.413555i \(-0.135713\pi\)
\(62\) 0 0
\(63\) −4.35416 −0.548573
\(64\) 0 0
\(65\) −8.74905 −1.08519
\(66\) 0 0
\(67\) 7.66426i 0.936339i 0.883639 + 0.468169i \(0.155086\pi\)
−0.883639 + 0.468169i \(0.844914\pi\)
\(68\) 0 0
\(69\) 1.48405i 0.178658i
\(70\) 0 0
\(71\) −12.2900 −1.45856 −0.729278 0.684218i \(-0.760144\pi\)
−0.729278 + 0.684218i \(0.760144\pi\)
\(72\) 0 0
\(73\) −13.2440 −1.55009 −0.775045 0.631905i \(-0.782273\pi\)
−0.775045 + 0.631905i \(0.782273\pi\)
\(74\) 0 0
\(75\) − 0.305858i − 0.0353175i
\(76\) 0 0
\(77\) 1.47743i 0.168369i
\(78\) 0 0
\(79\) 16.3409 1.83850 0.919249 0.393676i \(-0.128797\pi\)
0.919249 + 0.393676i \(0.128797\pi\)
\(80\) 0 0
\(81\) 8.52683 0.947426
\(82\) 0 0
\(83\) 13.8040i 1.51518i 0.652730 + 0.757591i \(0.273624\pi\)
−0.652730 + 0.757591i \(0.726376\pi\)
\(84\) 0 0
\(85\) 8.33976i 0.904574i
\(86\) 0 0
\(87\) −0.325357 −0.0348819
\(88\) 0 0
\(89\) −1.04979 −0.111277 −0.0556387 0.998451i \(-0.517720\pi\)
−0.0556387 + 0.998451i \(0.517720\pi\)
\(90\) 0 0
\(91\) 5.13767i 0.538574i
\(92\) 0 0
\(93\) − 0.146288i − 0.0151693i
\(94\) 0 0
\(95\) −17.9436 −1.84098
\(96\) 0 0
\(97\) 16.2110 1.64598 0.822989 0.568057i \(-0.192305\pi\)
0.822989 + 0.568057i \(0.192305\pi\)
\(98\) 0 0
\(99\) − 2.94712i − 0.296196i
\(100\) 0 0
\(101\) 8.63460i 0.859175i 0.903025 + 0.429588i \(0.141341\pi\)
−0.903025 + 0.429588i \(0.858659\pi\)
\(102\) 0 0
\(103\) 4.95487 0.488217 0.244109 0.969748i \(-0.421505\pi\)
0.244109 + 0.969748i \(0.421505\pi\)
\(104\) 0 0
\(105\) −0.854821 −0.0834220
\(106\) 0 0
\(107\) 6.34666i 0.613554i 0.951781 + 0.306777i \(0.0992507\pi\)
−0.951781 + 0.306777i \(0.900749\pi\)
\(108\) 0 0
\(109\) − 7.94246i − 0.760750i −0.924832 0.380375i \(-0.875795\pi\)
0.924832 0.380375i \(-0.124205\pi\)
\(110\) 0 0
\(111\) −1.60422 −0.152266
\(112\) 0 0
\(113\) 4.88248 0.459305 0.229653 0.973273i \(-0.426241\pi\)
0.229653 + 0.973273i \(0.426241\pi\)
\(114\) 0 0
\(115\) − 16.2362i − 1.51404i
\(116\) 0 0
\(117\) − 10.2484i − 0.947464i
\(118\) 0 0
\(119\) 4.89733 0.448937
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 1.54757i 0.139540i
\(124\) 0 0
\(125\) − 9.23351i − 0.825871i
\(126\) 0 0
\(127\) 4.12017 0.365606 0.182803 0.983150i \(-0.441483\pi\)
0.182803 + 0.983150i \(0.441483\pi\)
\(128\) 0 0
\(129\) 0.739276 0.0650897
\(130\) 0 0
\(131\) 13.3015i 1.16216i 0.813847 + 0.581080i \(0.197370\pi\)
−0.813847 + 0.581080i \(0.802630\pi\)
\(132\) 0 0
\(133\) 10.5370i 0.913671i
\(134\) 0 0
\(135\) 3.44091 0.296147
\(136\) 0 0
\(137\) −6.84444 −0.584760 −0.292380 0.956302i \(-0.594447\pi\)
−0.292380 + 0.956302i \(0.594447\pi\)
\(138\) 0 0
\(139\) − 12.1966i − 1.03450i −0.855834 0.517250i \(-0.826956\pi\)
0.855834 0.517250i \(-0.173044\pi\)
\(140\) 0 0
\(141\) − 0.198307i − 0.0167004i
\(142\) 0 0
\(143\) −3.47743 −0.290798
\(144\) 0 0
\(145\) 3.55956 0.295606
\(146\) 0 0
\(147\) − 1.10779i − 0.0913693i
\(148\) 0 0
\(149\) 3.04004i 0.249050i 0.992216 + 0.124525i \(0.0397407\pi\)
−0.992216 + 0.124525i \(0.960259\pi\)
\(150\) 0 0
\(151\) 1.83669 0.149468 0.0747339 0.997204i \(-0.476189\pi\)
0.0747339 + 0.997204i \(0.476189\pi\)
\(152\) 0 0
\(153\) −9.76896 −0.789774
\(154\) 0 0
\(155\) 1.60046i 0.128552i
\(156\) 0 0
\(157\) − 10.0560i − 0.802558i −0.915956 0.401279i \(-0.868566\pi\)
0.915956 0.401279i \(-0.131434\pi\)
\(158\) 0 0
\(159\) −3.04740 −0.241675
\(160\) 0 0
\(161\) −9.53434 −0.751411
\(162\) 0 0
\(163\) − 12.8934i − 1.00989i −0.863152 0.504945i \(-0.831513\pi\)
0.863152 0.504945i \(-0.168487\pi\)
\(164\) 0 0
\(165\) − 0.578585i − 0.0450428i
\(166\) 0 0
\(167\) −4.47434 −0.346235 −0.173117 0.984901i \(-0.555384\pi\)
−0.173117 + 0.984901i \(0.555384\pi\)
\(168\) 0 0
\(169\) 0.907463 0.0698048
\(170\) 0 0
\(171\) − 21.0187i − 1.60734i
\(172\) 0 0
\(173\) − 0.182807i − 0.0138986i −0.999976 0.00694928i \(-0.997788\pi\)
0.999976 0.00694928i \(-0.00221204\pi\)
\(174\) 0 0
\(175\) 1.96500 0.148540
\(176\) 0 0
\(177\) −0.605356 −0.0455013
\(178\) 0 0
\(179\) − 20.0915i − 1.50171i −0.660469 0.750853i \(-0.729642\pi\)
0.660469 0.750853i \(-0.270358\pi\)
\(180\) 0 0
\(181\) 7.63413i 0.567440i 0.958907 + 0.283720i \(0.0915686\pi\)
−0.958907 + 0.283720i \(0.908431\pi\)
\(182\) 0 0
\(183\) 1.48557 0.109817
\(184\) 0 0
\(185\) 17.5510 1.29037
\(186\) 0 0
\(187\) 3.31475i 0.242399i
\(188\) 0 0
\(189\) − 2.02059i − 0.146977i
\(190\) 0 0
\(191\) 22.9943 1.66381 0.831906 0.554917i \(-0.187250\pi\)
0.831906 + 0.554917i \(0.187250\pi\)
\(192\) 0 0
\(193\) 0.735278 0.0529265 0.0264632 0.999650i \(-0.491576\pi\)
0.0264632 + 0.999650i \(0.491576\pi\)
\(194\) 0 0
\(195\) − 2.01199i − 0.144082i
\(196\) 0 0
\(197\) − 11.1665i − 0.795579i −0.917477 0.397789i \(-0.869777\pi\)
0.917477 0.397789i \(-0.130223\pi\)
\(198\) 0 0
\(199\) 18.1315 1.28531 0.642655 0.766156i \(-0.277833\pi\)
0.642655 + 0.766156i \(0.277833\pi\)
\(200\) 0 0
\(201\) −1.76253 −0.124319
\(202\) 0 0
\(203\) − 2.09027i − 0.146708i
\(204\) 0 0
\(205\) − 16.9312i − 1.18253i
\(206\) 0 0
\(207\) 19.0187 1.32189
\(208\) 0 0
\(209\) −7.13195 −0.493327
\(210\) 0 0
\(211\) 18.4180i 1.26795i 0.773355 + 0.633973i \(0.218577\pi\)
−0.773355 + 0.633973i \(0.781423\pi\)
\(212\) 0 0
\(213\) − 2.82629i − 0.193654i
\(214\) 0 0
\(215\) −8.08805 −0.551601
\(216\) 0 0
\(217\) 0.939831 0.0637999
\(218\) 0 0
\(219\) − 3.04568i − 0.205808i
\(220\) 0 0
\(221\) 11.5268i 0.775379i
\(222\) 0 0
\(223\) −14.5654 −0.975368 −0.487684 0.873020i \(-0.662158\pi\)
−0.487684 + 0.873020i \(0.662158\pi\)
\(224\) 0 0
\(225\) −3.91970 −0.261313
\(226\) 0 0
\(227\) − 7.15145i − 0.474658i −0.971429 0.237329i \(-0.923728\pi\)
0.971429 0.237329i \(-0.0762720\pi\)
\(228\) 0 0
\(229\) − 6.48500i − 0.428541i −0.976774 0.214271i \(-0.931263\pi\)
0.976774 0.214271i \(-0.0687374\pi\)
\(230\) 0 0
\(231\) −0.339760 −0.0223546
\(232\) 0 0
\(233\) 11.4786 0.751988 0.375994 0.926622i \(-0.377301\pi\)
0.375994 + 0.926622i \(0.377301\pi\)
\(234\) 0 0
\(235\) 2.16957i 0.141527i
\(236\) 0 0
\(237\) 3.75787i 0.244100i
\(238\) 0 0
\(239\) −0.112036 −0.00724698 −0.00362349 0.999993i \(-0.501153\pi\)
−0.00362349 + 0.999993i \(0.501153\pi\)
\(240\) 0 0
\(241\) 2.93937 0.189341 0.0946706 0.995509i \(-0.469820\pi\)
0.0946706 + 0.995509i \(0.469820\pi\)
\(242\) 0 0
\(243\) 6.06381i 0.388993i
\(244\) 0 0
\(245\) 12.1198i 0.774307i
\(246\) 0 0
\(247\) −24.8009 −1.57804
\(248\) 0 0
\(249\) −3.17445 −0.201173
\(250\) 0 0
\(251\) 31.2199i 1.97058i 0.170882 + 0.985291i \(0.445338\pi\)
−0.170882 + 0.985291i \(0.554662\pi\)
\(252\) 0 0
\(253\) − 6.45332i − 0.405717i
\(254\) 0 0
\(255\) −1.91787 −0.120102
\(256\) 0 0
\(257\) 7.09741 0.442725 0.221362 0.975192i \(-0.428950\pi\)
0.221362 + 0.975192i \(0.428950\pi\)
\(258\) 0 0
\(259\) − 10.3064i − 0.640409i
\(260\) 0 0
\(261\) 4.16957i 0.258090i
\(262\) 0 0
\(263\) −16.3863 −1.01042 −0.505211 0.862996i \(-0.668585\pi\)
−0.505211 + 0.862996i \(0.668585\pi\)
\(264\) 0 0
\(265\) 33.3401 2.04807
\(266\) 0 0
\(267\) − 0.241417i − 0.0147745i
\(268\) 0 0
\(269\) − 17.1262i − 1.04420i −0.852883 0.522102i \(-0.825148\pi\)
0.852883 0.522102i \(-0.174852\pi\)
\(270\) 0 0
\(271\) −19.5142 −1.18540 −0.592702 0.805422i \(-0.701939\pi\)
−0.592702 + 0.805422i \(0.701939\pi\)
\(272\) 0 0
\(273\) −1.18149 −0.0715073
\(274\) 0 0
\(275\) 1.33001i 0.0802027i
\(276\) 0 0
\(277\) − 10.5618i − 0.634596i −0.948326 0.317298i \(-0.897224\pi\)
0.948326 0.317298i \(-0.102776\pi\)
\(278\) 0 0
\(279\) −1.87473 −0.112237
\(280\) 0 0
\(281\) −11.5994 −0.691961 −0.345981 0.938242i \(-0.612454\pi\)
−0.345981 + 0.938242i \(0.612454\pi\)
\(282\) 0 0
\(283\) 21.6234i 1.28538i 0.766128 + 0.642688i \(0.222181\pi\)
−0.766128 + 0.642688i \(0.777819\pi\)
\(284\) 0 0
\(285\) − 4.12644i − 0.244429i
\(286\) 0 0
\(287\) −9.94246 −0.586885
\(288\) 0 0
\(289\) −6.01240 −0.353671
\(290\) 0 0
\(291\) 3.72799i 0.218539i
\(292\) 0 0
\(293\) 20.1305i 1.17604i 0.808848 + 0.588018i \(0.200092\pi\)
−0.808848 + 0.588018i \(0.799908\pi\)
\(294\) 0 0
\(295\) 6.62289 0.385600
\(296\) 0 0
\(297\) 1.36764 0.0793585
\(298\) 0 0
\(299\) − 22.4410i − 1.29780i
\(300\) 0 0
\(301\) 4.74952i 0.273758i
\(302\) 0 0
\(303\) −1.98567 −0.114074
\(304\) 0 0
\(305\) −16.2529 −0.930637
\(306\) 0 0
\(307\) 2.24089i 0.127894i 0.997953 + 0.0639471i \(0.0203689\pi\)
−0.997953 + 0.0639471i \(0.979631\pi\)
\(308\) 0 0
\(309\) 1.13945i 0.0648213i
\(310\) 0 0
\(311\) 15.6919 0.889807 0.444904 0.895578i \(-0.353238\pi\)
0.444904 + 0.895578i \(0.353238\pi\)
\(312\) 0 0
\(313\) −12.1167 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(314\) 0 0
\(315\) 10.9549i 0.617237i
\(316\) 0 0
\(317\) 11.8958i 0.668132i 0.942550 + 0.334066i \(0.108421\pi\)
−0.942550 + 0.334066i \(0.891579\pi\)
\(318\) 0 0
\(319\) 1.41480 0.0792135
\(320\) 0 0
\(321\) −1.45952 −0.0814625
\(322\) 0 0
\(323\) 23.6407i 1.31540i
\(324\) 0 0
\(325\) 4.62502i 0.256550i
\(326\) 0 0
\(327\) 1.82650 0.101006
\(328\) 0 0
\(329\) 1.27403 0.0702396
\(330\) 0 0
\(331\) − 24.7692i − 1.36144i −0.732544 0.680719i \(-0.761667\pi\)
0.732544 0.680719i \(-0.238333\pi\)
\(332\) 0 0
\(333\) 20.5587i 1.12661i
\(334\) 0 0
\(335\) 19.2829 1.05354
\(336\) 0 0
\(337\) −11.2285 −0.611654 −0.305827 0.952087i \(-0.598933\pi\)
−0.305827 + 0.952087i \(0.598933\pi\)
\(338\) 0 0
\(339\) 1.12281i 0.0609826i
\(340\) 0 0
\(341\) 0.636125i 0.0344481i
\(342\) 0 0
\(343\) 17.4591 0.942703
\(344\) 0 0
\(345\) 3.73379 0.201021
\(346\) 0 0
\(347\) 16.0230i 0.860160i 0.902791 + 0.430080i \(0.141515\pi\)
−0.902791 + 0.430080i \(0.858485\pi\)
\(348\) 0 0
\(349\) − 9.27513i − 0.496486i −0.968698 0.248243i \(-0.920147\pi\)
0.968698 0.248243i \(-0.0798532\pi\)
\(350\) 0 0
\(351\) 4.75587 0.253850
\(352\) 0 0
\(353\) −9.58150 −0.509972 −0.254986 0.966945i \(-0.582071\pi\)
−0.254986 + 0.966945i \(0.582071\pi\)
\(354\) 0 0
\(355\) 30.9211i 1.64112i
\(356\) 0 0
\(357\) 1.12622i 0.0596060i
\(358\) 0 0
\(359\) 7.80501 0.411932 0.205966 0.978559i \(-0.433966\pi\)
0.205966 + 0.978559i \(0.433966\pi\)
\(360\) 0 0
\(361\) −31.8647 −1.67709
\(362\) 0 0
\(363\) − 0.229967i − 0.0120701i
\(364\) 0 0
\(365\) 33.3212i 1.74411i
\(366\) 0 0
\(367\) −31.4393 −1.64112 −0.820558 0.571563i \(-0.806337\pi\)
−0.820558 + 0.571563i \(0.806337\pi\)
\(368\) 0 0
\(369\) 19.8328 1.03245
\(370\) 0 0
\(371\) − 19.5782i − 1.01645i
\(372\) 0 0
\(373\) 32.0424i 1.65909i 0.558437 + 0.829547i \(0.311401\pi\)
−0.558437 + 0.829547i \(0.688599\pi\)
\(374\) 0 0
\(375\) 2.12340 0.109652
\(376\) 0 0
\(377\) 4.91987 0.253386
\(378\) 0 0
\(379\) 11.4465i 0.587965i 0.955811 + 0.293983i \(0.0949808\pi\)
−0.955811 + 0.293983i \(0.905019\pi\)
\(380\) 0 0
\(381\) 0.947503i 0.0485420i
\(382\) 0 0
\(383\) 6.82520 0.348751 0.174376 0.984679i \(-0.444209\pi\)
0.174376 + 0.984679i \(0.444209\pi\)
\(384\) 0 0
\(385\) 3.71715 0.189443
\(386\) 0 0
\(387\) − 9.47412i − 0.481597i
\(388\) 0 0
\(389\) 6.65984i 0.337667i 0.985645 + 0.168834i \(0.0540000\pi\)
−0.985645 + 0.168834i \(0.946000\pi\)
\(390\) 0 0
\(391\) −21.3912 −1.08180
\(392\) 0 0
\(393\) −3.05891 −0.154302
\(394\) 0 0
\(395\) − 41.1130i − 2.06862i
\(396\) 0 0
\(397\) 2.42189i 0.121551i 0.998151 + 0.0607757i \(0.0193574\pi\)
−0.998151 + 0.0607757i \(0.980643\pi\)
\(398\) 0 0
\(399\) −2.42315 −0.121309
\(400\) 0 0
\(401\) −9.09122 −0.453994 −0.226997 0.973895i \(-0.572891\pi\)
−0.226997 + 0.973895i \(0.572891\pi\)
\(402\) 0 0
\(403\) 2.21208i 0.110192i
\(404\) 0 0
\(405\) − 21.4531i − 1.06601i
\(406\) 0 0
\(407\) 6.97588 0.345782
\(408\) 0 0
\(409\) 9.08013 0.448984 0.224492 0.974476i \(-0.427928\pi\)
0.224492 + 0.974476i \(0.427928\pi\)
\(410\) 0 0
\(411\) − 1.57399i − 0.0776394i
\(412\) 0 0
\(413\) − 3.88914i − 0.191372i
\(414\) 0 0
\(415\) 34.7301 1.70483
\(416\) 0 0
\(417\) 2.80481 0.137352
\(418\) 0 0
\(419\) 2.99512i 0.146321i 0.997320 + 0.0731607i \(0.0233086\pi\)
−0.997320 + 0.0731607i \(0.976691\pi\)
\(420\) 0 0
\(421\) − 26.6646i − 1.29955i −0.760126 0.649776i \(-0.774863\pi\)
0.760126 0.649776i \(-0.225137\pi\)
\(422\) 0 0
\(423\) −2.54138 −0.123566
\(424\) 0 0
\(425\) 4.40866 0.213851
\(426\) 0 0
\(427\) 9.54412i 0.461872i
\(428\) 0 0
\(429\) − 0.799694i − 0.0386096i
\(430\) 0 0
\(431\) −19.5700 −0.942656 −0.471328 0.881958i \(-0.656225\pi\)
−0.471328 + 0.881958i \(0.656225\pi\)
\(432\) 0 0
\(433\) −6.49028 −0.311903 −0.155951 0.987765i \(-0.549844\pi\)
−0.155951 + 0.987765i \(0.549844\pi\)
\(434\) 0 0
\(435\) 0.818582i 0.0392480i
\(436\) 0 0
\(437\) − 46.0247i − 2.20166i
\(438\) 0 0
\(439\) −25.3338 −1.20912 −0.604559 0.796560i \(-0.706651\pi\)
−0.604559 + 0.796560i \(0.706651\pi\)
\(440\) 0 0
\(441\) −14.1968 −0.676039
\(442\) 0 0
\(443\) − 1.46196i − 0.0694597i −0.999397 0.0347299i \(-0.988943\pi\)
0.999397 0.0347299i \(-0.0110571\pi\)
\(444\) 0 0
\(445\) 2.64122i 0.125206i
\(446\) 0 0
\(447\) −0.699108 −0.0330667
\(448\) 0 0
\(449\) −6.00066 −0.283188 −0.141594 0.989925i \(-0.545223\pi\)
−0.141594 + 0.989925i \(0.545223\pi\)
\(450\) 0 0
\(451\) − 6.72955i − 0.316882i
\(452\) 0 0
\(453\) 0.422378i 0.0198450i
\(454\) 0 0
\(455\) 12.9261 0.605986
\(456\) 0 0
\(457\) 17.5689 0.821837 0.410919 0.911672i \(-0.365208\pi\)
0.410919 + 0.911672i \(0.365208\pi\)
\(458\) 0 0
\(459\) − 4.53339i − 0.211600i
\(460\) 0 0
\(461\) 26.1231i 1.21668i 0.793678 + 0.608338i \(0.208163\pi\)
−0.793678 + 0.608338i \(0.791837\pi\)
\(462\) 0 0
\(463\) −20.3258 −0.944619 −0.472310 0.881433i \(-0.656580\pi\)
−0.472310 + 0.881433i \(0.656580\pi\)
\(464\) 0 0
\(465\) −0.368052 −0.0170680
\(466\) 0 0
\(467\) 1.29764i 0.0600478i 0.999549 + 0.0300239i \(0.00955833\pi\)
−0.999549 + 0.0300239i \(0.990442\pi\)
\(468\) 0 0
\(469\) − 11.3234i − 0.522868i
\(470\) 0 0
\(471\) 2.31255 0.106557
\(472\) 0 0
\(473\) −3.21471 −0.147813
\(474\) 0 0
\(475\) 9.48557i 0.435228i
\(476\) 0 0
\(477\) 39.0537i 1.78814i
\(478\) 0 0
\(479\) 28.5133 1.30281 0.651404 0.758731i \(-0.274180\pi\)
0.651404 + 0.758731i \(0.274180\pi\)
\(480\) 0 0
\(481\) 24.2582 1.10608
\(482\) 0 0
\(483\) − 2.19258i − 0.0997659i
\(484\) 0 0
\(485\) − 40.7861i − 1.85200i
\(486\) 0 0
\(487\) 6.03364 0.273410 0.136705 0.990612i \(-0.456349\pi\)
0.136705 + 0.990612i \(0.456349\pi\)
\(488\) 0 0
\(489\) 2.96505 0.134084
\(490\) 0 0
\(491\) 4.15408i 0.187471i 0.995597 + 0.0937354i \(0.0298808\pi\)
−0.995597 + 0.0937354i \(0.970119\pi\)
\(492\) 0 0
\(493\) − 4.68971i − 0.211214i
\(494\) 0 0
\(495\) −7.41480 −0.333270
\(496\) 0 0
\(497\) 18.1577 0.814482
\(498\) 0 0
\(499\) − 30.1028i − 1.34759i −0.738920 0.673793i \(-0.764664\pi\)
0.738920 0.673793i \(-0.235336\pi\)
\(500\) 0 0
\(501\) − 1.02895i − 0.0459700i
\(502\) 0 0
\(503\) −14.0368 −0.625869 −0.312935 0.949775i \(-0.601312\pi\)
−0.312935 + 0.949775i \(0.601312\pi\)
\(504\) 0 0
\(505\) 21.7242 0.966716
\(506\) 0 0
\(507\) 0.208686i 0.00926808i
\(508\) 0 0
\(509\) − 16.9844i − 0.752821i −0.926453 0.376411i \(-0.877158\pi\)
0.926453 0.376411i \(-0.122842\pi\)
\(510\) 0 0
\(511\) 19.5671 0.865597
\(512\) 0 0
\(513\) 9.75393 0.430646
\(514\) 0 0
\(515\) − 12.4662i − 0.549326i
\(516\) 0 0
\(517\) 0.862328i 0.0379251i
\(518\) 0 0
\(519\) 0.0420395 0.00184533
\(520\) 0 0
\(521\) −3.66607 −0.160613 −0.0803066 0.996770i \(-0.525590\pi\)
−0.0803066 + 0.996770i \(0.525590\pi\)
\(522\) 0 0
\(523\) − 2.91807i − 0.127598i −0.997963 0.0637990i \(-0.979678\pi\)
0.997963 0.0637990i \(-0.0203217\pi\)
\(524\) 0 0
\(525\) 0.451885i 0.0197219i
\(526\) 0 0
\(527\) 2.10860 0.0918519
\(528\) 0 0
\(529\) 18.6453 0.810666
\(530\) 0 0
\(531\) 7.75787i 0.336663i
\(532\) 0 0
\(533\) − 23.4016i − 1.01363i
\(534\) 0 0
\(535\) 15.9679 0.690352
\(536\) 0 0
\(537\) 4.62037 0.199384
\(538\) 0 0
\(539\) 4.81719i 0.207491i
\(540\) 0 0
\(541\) − 16.4673i − 0.707984i −0.935248 0.353992i \(-0.884824\pi\)
0.935248 0.353992i \(-0.115176\pi\)
\(542\) 0 0
\(543\) −1.75560 −0.0753398
\(544\) 0 0
\(545\) −19.9828 −0.855971
\(546\) 0 0
\(547\) 25.9536i 1.10969i 0.831952 + 0.554847i \(0.187223\pi\)
−0.831952 + 0.554847i \(0.812777\pi\)
\(548\) 0 0
\(549\) − 19.0382i − 0.812529i
\(550\) 0 0
\(551\) 10.0903 0.429860
\(552\) 0 0
\(553\) −24.1426 −1.02665
\(554\) 0 0
\(555\) 4.03614i 0.171325i
\(556\) 0 0
\(557\) 13.0152i 0.551473i 0.961233 + 0.275737i \(0.0889217\pi\)
−0.961233 + 0.275737i \(0.911078\pi\)
\(558\) 0 0
\(559\) −11.1789 −0.472819
\(560\) 0 0
\(561\) −0.762283 −0.0321836
\(562\) 0 0
\(563\) − 27.9837i − 1.17937i −0.807632 0.589687i \(-0.799251\pi\)
0.807632 0.589687i \(-0.200749\pi\)
\(564\) 0 0
\(565\) − 12.2841i − 0.516795i
\(566\) 0 0
\(567\) −12.5978 −0.529059
\(568\) 0 0
\(569\) −10.6048 −0.444574 −0.222287 0.974981i \(-0.571352\pi\)
−0.222287 + 0.974981i \(0.571352\pi\)
\(570\) 0 0
\(571\) − 1.82472i − 0.0763622i −0.999271 0.0381811i \(-0.987844\pi\)
0.999271 0.0381811i \(-0.0121564\pi\)
\(572\) 0 0
\(573\) 5.28793i 0.220907i
\(574\) 0 0
\(575\) −8.58298 −0.357935
\(576\) 0 0
\(577\) 23.3377 0.971560 0.485780 0.874081i \(-0.338536\pi\)
0.485780 + 0.874081i \(0.338536\pi\)
\(578\) 0 0
\(579\) 0.169089i 0.00702712i
\(580\) 0 0
\(581\) − 20.3944i − 0.846103i
\(582\) 0 0
\(583\) 13.2515 0.548821
\(584\) 0 0
\(585\) −25.7845 −1.06606
\(586\) 0 0
\(587\) − 30.3967i − 1.25461i −0.778775 0.627303i \(-0.784159\pi\)
0.778775 0.627303i \(-0.215841\pi\)
\(588\) 0 0
\(589\) 4.53681i 0.186936i
\(590\) 0 0
\(591\) 2.56792 0.105630
\(592\) 0 0
\(593\) 39.3809 1.61718 0.808590 0.588373i \(-0.200231\pi\)
0.808590 + 0.588373i \(0.200231\pi\)
\(594\) 0 0
\(595\) − 12.3214i − 0.505130i
\(596\) 0 0
\(597\) 4.16965i 0.170652i
\(598\) 0 0
\(599\) 35.9183 1.46758 0.733792 0.679374i \(-0.237749\pi\)
0.733792 + 0.679374i \(0.237749\pi\)
\(600\) 0 0
\(601\) 13.8292 0.564104 0.282052 0.959399i \(-0.408985\pi\)
0.282052 + 0.959399i \(0.408985\pi\)
\(602\) 0 0
\(603\) 22.5875i 0.919833i
\(604\) 0 0
\(605\) 2.51595i 0.102288i
\(606\) 0 0
\(607\) −19.7004 −0.799615 −0.399807 0.916599i \(-0.630923\pi\)
−0.399807 + 0.916599i \(0.630923\pi\)
\(608\) 0 0
\(609\) 0.480693 0.0194786
\(610\) 0 0
\(611\) 2.99869i 0.121314i
\(612\) 0 0
\(613\) 31.7465i 1.28223i 0.767445 + 0.641114i \(0.221528\pi\)
−0.767445 + 0.641114i \(0.778472\pi\)
\(614\) 0 0
\(615\) 3.89362 0.157006
\(616\) 0 0
\(617\) −27.5402 −1.10873 −0.554363 0.832275i \(-0.687038\pi\)
−0.554363 + 0.832275i \(0.687038\pi\)
\(618\) 0 0
\(619\) − 19.6108i − 0.788224i −0.919063 0.394112i \(-0.871052\pi\)
0.919063 0.394112i \(-0.128948\pi\)
\(620\) 0 0
\(621\) 8.82581i 0.354167i
\(622\) 0 0
\(623\) 1.55099 0.0621392
\(624\) 0 0
\(625\) −29.8811 −1.19525
\(626\) 0 0
\(627\) − 1.64011i − 0.0654997i
\(628\) 0 0
\(629\) − 23.1233i − 0.921988i
\(630\) 0 0
\(631\) −17.6518 −0.702705 −0.351353 0.936243i \(-0.614278\pi\)
−0.351353 + 0.936243i \(0.614278\pi\)
\(632\) 0 0
\(633\) −4.23552 −0.168347
\(634\) 0 0
\(635\) − 10.3662i − 0.411368i
\(636\) 0 0
\(637\) 16.7515i 0.663717i
\(638\) 0 0
\(639\) −36.2201 −1.43284
\(640\) 0 0
\(641\) 16.7617 0.662047 0.331024 0.943622i \(-0.392606\pi\)
0.331024 + 0.943622i \(0.392606\pi\)
\(642\) 0 0
\(643\) 22.1367i 0.872984i 0.899708 + 0.436492i \(0.143779\pi\)
−0.899708 + 0.436492i \(0.856221\pi\)
\(644\) 0 0
\(645\) − 1.85998i − 0.0732368i
\(646\) 0 0
\(647\) −22.7792 −0.895544 −0.447772 0.894148i \(-0.647782\pi\)
−0.447772 + 0.894148i \(0.647782\pi\)
\(648\) 0 0
\(649\) 2.63236 0.103329
\(650\) 0 0
\(651\) 0.216130i 0.00847080i
\(652\) 0 0
\(653\) − 35.9327i − 1.40615i −0.711114 0.703077i \(-0.751809\pi\)
0.711114 0.703077i \(-0.248191\pi\)
\(654\) 0 0
\(655\) 33.4660 1.30762
\(656\) 0 0
\(657\) −39.0315 −1.52277
\(658\) 0 0
\(659\) − 1.49362i − 0.0581831i −0.999577 0.0290916i \(-0.990739\pi\)
0.999577 0.0290916i \(-0.00926144\pi\)
\(660\) 0 0
\(661\) 44.3160i 1.72369i 0.507170 + 0.861846i \(0.330692\pi\)
−0.507170 + 0.861846i \(0.669308\pi\)
\(662\) 0 0
\(663\) −2.65079 −0.102948
\(664\) 0 0
\(665\) 26.5105 1.02803
\(666\) 0 0
\(667\) 9.13015i 0.353521i
\(668\) 0 0
\(669\) − 3.34955i − 0.129501i
\(670\) 0 0
\(671\) −6.45993 −0.249383
\(672\) 0 0
\(673\) −33.8921 −1.30644 −0.653222 0.757166i \(-0.726583\pi\)
−0.653222 + 0.757166i \(0.726583\pi\)
\(674\) 0 0
\(675\) − 1.81898i − 0.0700124i
\(676\) 0 0
\(677\) − 7.57568i − 0.291157i −0.989347 0.145578i \(-0.953496\pi\)
0.989347 0.145578i \(-0.0465043\pi\)
\(678\) 0 0
\(679\) −23.9507 −0.919143
\(680\) 0 0
\(681\) 1.64459 0.0630210
\(682\) 0 0
\(683\) 16.1346i 0.617374i 0.951164 + 0.308687i \(0.0998896\pi\)
−0.951164 + 0.308687i \(0.900110\pi\)
\(684\) 0 0
\(685\) 17.2203i 0.657953i
\(686\) 0 0
\(687\) 1.49134 0.0568980
\(688\) 0 0
\(689\) 46.0812 1.75555
\(690\) 0 0
\(691\) − 10.5531i − 0.401457i −0.979647 0.200729i \(-0.935669\pi\)
0.979647 0.200729i \(-0.0643309\pi\)
\(692\) 0 0
\(693\) 4.35416i 0.165401i
\(694\) 0 0
\(695\) −30.6860 −1.16399
\(696\) 0 0
\(697\) −22.3068 −0.844931
\(698\) 0 0
\(699\) 2.63970i 0.0998425i
\(700\) 0 0
\(701\) 43.8782i 1.65726i 0.559800 + 0.828628i \(0.310878\pi\)
−0.559800 + 0.828628i \(0.689122\pi\)
\(702\) 0 0
\(703\) 49.7516 1.87642
\(704\) 0 0
\(705\) −0.498930 −0.0187908
\(706\) 0 0
\(707\) − 12.7570i − 0.479778i
\(708\) 0 0
\(709\) 4.31359i 0.162000i 0.996714 + 0.0810002i \(0.0258115\pi\)
−0.996714 + 0.0810002i \(0.974189\pi\)
\(710\) 0 0
\(711\) 48.1586 1.80609
\(712\) 0 0
\(713\) −4.10511 −0.153738
\(714\) 0 0
\(715\) 8.74905i 0.327196i
\(716\) 0 0
\(717\) − 0.0257645i 0 0.000962192i
\(718\) 0 0
\(719\) 0.793243 0.0295830 0.0147915 0.999891i \(-0.495292\pi\)
0.0147915 + 0.999891i \(0.495292\pi\)
\(720\) 0 0
\(721\) −7.32048 −0.272629
\(722\) 0 0
\(723\) 0.675956i 0.0251391i
\(724\) 0 0
\(725\) − 1.88170i − 0.0698845i
\(726\) 0 0
\(727\) 38.5654 1.43031 0.715155 0.698966i \(-0.246356\pi\)
0.715155 + 0.698966i \(0.246356\pi\)
\(728\) 0 0
\(729\) 24.1860 0.895779
\(730\) 0 0
\(731\) 10.6560i 0.394125i
\(732\) 0 0
\(733\) 35.3659i 1.30627i 0.757242 + 0.653134i \(0.226546\pi\)
−0.757242 + 0.653134i \(0.773454\pi\)
\(734\) 0 0
\(735\) −2.78716 −0.102806
\(736\) 0 0
\(737\) 7.66426 0.282317
\(738\) 0 0
\(739\) 41.6624i 1.53258i 0.642497 + 0.766288i \(0.277899\pi\)
−0.642497 + 0.766288i \(0.722101\pi\)
\(740\) 0 0
\(741\) − 5.70338i − 0.209519i
\(742\) 0 0
\(743\) −33.2692 −1.22053 −0.610264 0.792198i \(-0.708937\pi\)
−0.610264 + 0.792198i \(0.708937\pi\)
\(744\) 0 0
\(745\) 7.64859 0.280223
\(746\) 0 0
\(747\) 40.6819i 1.48847i
\(748\) 0 0
\(749\) − 9.37676i − 0.342619i
\(750\) 0 0
\(751\) 3.69284 0.134754 0.0673768 0.997728i \(-0.478537\pi\)
0.0673768 + 0.997728i \(0.478537\pi\)
\(752\) 0 0
\(753\) −7.17954 −0.261637
\(754\) 0 0
\(755\) − 4.62103i − 0.168176i
\(756\) 0 0
\(757\) 19.2210i 0.698600i 0.937011 + 0.349300i \(0.113581\pi\)
−0.937011 + 0.349300i \(0.886419\pi\)
\(758\) 0 0
\(759\) 1.48405 0.0538676
\(760\) 0 0
\(761\) −9.79341 −0.355011 −0.177505 0.984120i \(-0.556803\pi\)
−0.177505 + 0.984120i \(0.556803\pi\)
\(762\) 0 0
\(763\) 11.7345i 0.424816i
\(764\) 0 0
\(765\) 24.5782i 0.888628i
\(766\) 0 0
\(767\) 9.15386 0.330527
\(768\) 0 0
\(769\) −48.2853 −1.74121 −0.870606 0.491981i \(-0.836273\pi\)
−0.870606 + 0.491981i \(0.836273\pi\)
\(770\) 0 0
\(771\) 1.63217i 0.0587812i
\(772\) 0 0
\(773\) − 21.0475i − 0.757025i −0.925596 0.378513i \(-0.876436\pi\)
0.925596 0.378513i \(-0.123564\pi\)
\(774\) 0 0
\(775\) 0.846053 0.0303911
\(776\) 0 0
\(777\) 2.37013 0.0850279
\(778\) 0 0
\(779\) − 47.9948i − 1.71959i
\(780\) 0 0
\(781\) 12.2900i 0.439771i
\(782\) 0 0
\(783\) −1.93493 −0.0691489
\(784\) 0 0
\(785\) −25.3005 −0.903012
\(786\) 0 0
\(787\) − 18.2077i − 0.649034i −0.945880 0.324517i \(-0.894798\pi\)
0.945880 0.324517i \(-0.105202\pi\)
\(788\) 0 0
\(789\) − 3.76830i − 0.134155i
\(790\) 0 0
\(791\) −7.21354 −0.256484
\(792\) 0 0
\(793\) −22.4640 −0.797719
\(794\) 0 0
\(795\) 7.66712i 0.271925i
\(796\) 0 0
\(797\) 40.2274i 1.42493i 0.701709 + 0.712463i \(0.252421\pi\)
−0.701709 + 0.712463i \(0.747579\pi\)
\(798\) 0 0
\(799\) 2.85840 0.101123
\(800\) 0 0
\(801\) −3.09385 −0.109316
\(802\) 0 0
\(803\) 13.2440i 0.467370i
\(804\) 0 0
\(805\) 23.9879i 0.845464i
\(806\) 0 0
\(807\) 3.93846 0.138640
\(808\) 0 0
\(809\) 27.8044 0.977552 0.488776 0.872409i \(-0.337444\pi\)
0.488776 + 0.872409i \(0.337444\pi\)
\(810\) 0 0
\(811\) − 7.59987i − 0.266868i −0.991058 0.133434i \(-0.957400\pi\)
0.991058 0.133434i \(-0.0426004\pi\)
\(812\) 0 0
\(813\) − 4.48762i − 0.157388i
\(814\) 0 0
\(815\) −32.4392 −1.13629
\(816\) 0 0
\(817\) −22.9271 −0.802119
\(818\) 0 0
\(819\) 15.1413i 0.529080i
\(820\) 0 0
\(821\) − 26.6456i − 0.929937i −0.885327 0.464968i \(-0.846066\pi\)
0.885327 0.464968i \(-0.153934\pi\)
\(822\) 0 0
\(823\) −35.5588 −1.23950 −0.619751 0.784799i \(-0.712766\pi\)
−0.619751 + 0.784799i \(0.712766\pi\)
\(824\) 0 0
\(825\) −0.305858 −0.0106486
\(826\) 0 0
\(827\) − 3.03188i − 0.105429i −0.998610 0.0527145i \(-0.983213\pi\)
0.998610 0.0527145i \(-0.0167873\pi\)
\(828\) 0 0
\(829\) − 35.0569i − 1.21758i −0.793332 0.608789i \(-0.791656\pi\)
0.793332 0.608789i \(-0.208344\pi\)
\(830\) 0 0
\(831\) 2.42886 0.0842562
\(832\) 0 0
\(833\) 15.9678 0.553252
\(834\) 0 0
\(835\) 11.2572i 0.389572i
\(836\) 0 0
\(837\) − 0.869989i − 0.0300712i
\(838\) 0 0
\(839\) 6.41520 0.221477 0.110739 0.993850i \(-0.464678\pi\)
0.110739 + 0.993850i \(0.464678\pi\)
\(840\) 0 0
\(841\) 26.9983 0.930977
\(842\) 0 0
\(843\) − 2.66747i − 0.0918727i
\(844\) 0 0
\(845\) − 2.28313i − 0.0785421i
\(846\) 0 0
\(847\) 1.47743 0.0507652
\(848\) 0 0
\(849\) −4.97266 −0.170661
\(850\) 0 0
\(851\) 45.0176i 1.54318i
\(852\) 0 0
\(853\) − 10.5605i − 0.361585i −0.983521 0.180793i \(-0.942134\pi\)
0.983521 0.180793i \(-0.0578663\pi\)
\(854\) 0 0
\(855\) −52.8820 −1.80852
\(856\) 0 0
\(857\) −5.03900 −0.172129 −0.0860644 0.996290i \(-0.527429\pi\)
−0.0860644 + 0.996290i \(0.527429\pi\)
\(858\) 0 0
\(859\) 24.5174i 0.836521i 0.908327 + 0.418261i \(0.137360\pi\)
−0.908327 + 0.418261i \(0.862640\pi\)
\(860\) 0 0
\(861\) − 2.28644i − 0.0779215i
\(862\) 0 0
\(863\) −17.8155 −0.606448 −0.303224 0.952919i \(-0.598063\pi\)
−0.303224 + 0.952919i \(0.598063\pi\)
\(864\) 0 0
\(865\) −0.459934 −0.0156382
\(866\) 0 0
\(867\) − 1.38265i − 0.0469574i
\(868\) 0 0
\(869\) − 16.3409i − 0.554328i
\(870\) 0 0
\(871\) 26.6520 0.903067
\(872\) 0 0
\(873\) 47.7757 1.61696
\(874\) 0 0
\(875\) 13.6419i 0.461180i
\(876\) 0 0
\(877\) − 22.4071i − 0.756634i −0.925676 0.378317i \(-0.876503\pi\)
0.925676 0.378317i \(-0.123497\pi\)
\(878\) 0 0
\(879\) −4.62934 −0.156144
\(880\) 0 0
\(881\) −12.0016 −0.404345 −0.202172 0.979350i \(-0.564800\pi\)
−0.202172 + 0.979350i \(0.564800\pi\)
\(882\) 0 0
\(883\) − 27.9363i − 0.940130i −0.882632 0.470065i \(-0.844230\pi\)
0.882632 0.470065i \(-0.155770\pi\)
\(884\) 0 0
\(885\) 1.52305i 0.0511966i
\(886\) 0 0
\(887\) 48.6903 1.63486 0.817430 0.576028i \(-0.195398\pi\)
0.817430 + 0.576028i \(0.195398\pi\)
\(888\) 0 0
\(889\) −6.08728 −0.204161
\(890\) 0 0
\(891\) − 8.52683i − 0.285660i
\(892\) 0 0
\(893\) 6.15008i 0.205804i
\(894\) 0 0
\(895\) −50.5492 −1.68967
\(896\) 0 0
\(897\) 5.16068 0.172310
\(898\) 0 0
\(899\) − 0.899988i − 0.0300163i
\(900\) 0 0
\(901\) − 43.9254i − 1.46337i
\(902\) 0 0
\(903\) −1.09223 −0.0363472
\(904\) 0 0
\(905\) 19.2071 0.638465
\(906\) 0 0
\(907\) − 48.2773i − 1.60302i −0.597981 0.801510i \(-0.704030\pi\)
0.597981 0.801510i \(-0.295970\pi\)
\(908\) 0 0
\(909\) 25.4472i 0.844029i
\(910\) 0 0
\(911\) −43.1688 −1.43025 −0.715123 0.698998i \(-0.753630\pi\)
−0.715123 + 0.698998i \(0.753630\pi\)
\(912\) 0 0
\(913\) 13.8040 0.456844
\(914\) 0 0
\(915\) − 3.73762i − 0.123562i
\(916\) 0 0
\(917\) − 19.6521i − 0.648970i
\(918\) 0 0
\(919\) −36.1457 −1.19234 −0.596168 0.802860i \(-0.703311\pi\)
−0.596168 + 0.802860i \(0.703311\pi\)
\(920\) 0 0
\(921\) −0.515330 −0.0169807
\(922\) 0 0
\(923\) 42.7377i 1.40673i
\(924\) 0 0
\(925\) − 9.27801i − 0.305059i
\(926\) 0 0
\(927\) 14.6026 0.479611
\(928\) 0 0
\(929\) 26.1901 0.859269 0.429634 0.903003i \(-0.358642\pi\)
0.429634 + 0.903003i \(0.358642\pi\)
\(930\) 0 0
\(931\) 34.3560i 1.12597i
\(932\) 0 0
\(933\) 3.60862i 0.118141i
\(934\) 0 0
\(935\) 8.33976 0.272739
\(936\) 0 0
\(937\) −14.6547 −0.478749 −0.239375 0.970927i \(-0.576942\pi\)
−0.239375 + 0.970927i \(0.576942\pi\)
\(938\) 0 0
\(939\) − 2.78644i − 0.0909319i
\(940\) 0 0
\(941\) − 5.50159i − 0.179347i −0.995971 0.0896734i \(-0.971418\pi\)
0.995971 0.0896734i \(-0.0285823\pi\)
\(942\) 0 0
\(943\) 43.4279 1.41421
\(944\) 0 0
\(945\) −5.08372 −0.165373
\(946\) 0 0
\(947\) − 1.00019i − 0.0325019i −0.999868 0.0162509i \(-0.994827\pi\)
0.999868 0.0162509i \(-0.00517306\pi\)
\(948\) 0 0
\(949\) 46.0551i 1.49501i
\(950\) 0 0
\(951\) −2.73563 −0.0887088
\(952\) 0 0
\(953\) 55.6770 1.80356 0.901778 0.432200i \(-0.142263\pi\)
0.901778 + 0.432200i \(0.142263\pi\)
\(954\) 0 0
\(955\) − 57.8526i − 1.87207i
\(956\) 0 0
\(957\) 0.325357i 0.0105173i
\(958\) 0 0
\(959\) 10.1122 0.326540
\(960\) 0 0
\(961\) −30.5953 −0.986947
\(962\) 0 0
\(963\) 18.7043i 0.602739i
\(964\) 0 0
\(965\) − 1.84992i − 0.0595511i
\(966\) 0 0
\(967\) 25.9869 0.835682 0.417841 0.908520i \(-0.362787\pi\)
0.417841 + 0.908520i \(0.362787\pi\)
\(968\) 0 0
\(969\) −5.43656 −0.174648
\(970\) 0 0
\(971\) 16.0587i 0.515349i 0.966232 + 0.257675i \(0.0829563\pi\)
−0.966232 + 0.257675i \(0.917044\pi\)
\(972\) 0 0
\(973\) 18.0196i 0.577683i
\(974\) 0 0
\(975\) −1.06360 −0.0340625
\(976\) 0 0
\(977\) −5.40488 −0.172918 −0.0864588 0.996255i \(-0.527555\pi\)
−0.0864588 + 0.996255i \(0.527555\pi\)
\(978\) 0 0
\(979\) 1.04979i 0.0335514i
\(980\) 0 0
\(981\) − 23.4073i − 0.747339i
\(982\) 0 0
\(983\) 36.4792 1.16350 0.581752 0.813366i \(-0.302367\pi\)
0.581752 + 0.813366i \(0.302367\pi\)
\(984\) 0 0
\(985\) −28.0943 −0.895159
\(986\) 0 0
\(987\) 0.292985i 0.00932581i
\(988\) 0 0
\(989\) − 20.7455i − 0.659670i
\(990\) 0 0
\(991\) −48.2714 −1.53339 −0.766696 0.642010i \(-0.778101\pi\)
−0.766696 + 0.642010i \(0.778101\pi\)
\(992\) 0 0
\(993\) 5.69609 0.180760
\(994\) 0 0
\(995\) − 45.6181i − 1.44619i
\(996\) 0 0
\(997\) 8.78994i 0.278380i 0.990266 + 0.139190i \(0.0444499\pi\)
−0.990266 + 0.139190i \(0.955550\pi\)
\(998\) 0 0
\(999\) −9.54049 −0.301848
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.c.a.177.6 10
3.2 odd 2 3168.2.f.g.1585.9 10
4.3 odd 2 88.2.c.a.45.2 yes 10
8.3 odd 2 88.2.c.a.45.1 10
8.5 even 2 inner 352.2.c.a.177.5 10
11.10 odd 2 3872.2.c.f.1937.6 10
12.11 even 2 792.2.f.g.397.9 10
16.3 odd 4 2816.2.a.r.1.3 5
16.5 even 4 2816.2.a.p.1.3 5
16.11 odd 4 2816.2.a.o.1.3 5
16.13 even 4 2816.2.a.q.1.3 5
24.5 odd 2 3168.2.f.g.1585.2 10
24.11 even 2 792.2.f.g.397.10 10
44.3 odd 10 968.2.o.g.493.6 40
44.7 even 10 968.2.o.h.269.8 40
44.15 odd 10 968.2.o.g.269.3 40
44.19 even 10 968.2.o.h.493.5 40
44.27 odd 10 968.2.o.g.245.7 40
44.31 odd 10 968.2.o.g.565.10 40
44.35 even 10 968.2.o.h.565.1 40
44.39 even 10 968.2.o.h.245.4 40
44.43 even 2 968.2.c.d.485.9 10
88.3 odd 10 968.2.o.g.493.3 40
88.19 even 10 968.2.o.h.493.8 40
88.21 odd 2 3872.2.c.f.1937.5 10
88.27 odd 10 968.2.o.g.245.10 40
88.35 even 10 968.2.o.h.565.4 40
88.43 even 2 968.2.c.d.485.10 10
88.51 even 10 968.2.o.h.269.5 40
88.59 odd 10 968.2.o.g.269.6 40
88.75 odd 10 968.2.o.g.565.7 40
88.83 even 10 968.2.o.h.245.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.1 10 8.3 odd 2
88.2.c.a.45.2 yes 10 4.3 odd 2
352.2.c.a.177.5 10 8.5 even 2 inner
352.2.c.a.177.6 10 1.1 even 1 trivial
792.2.f.g.397.9 10 12.11 even 2
792.2.f.g.397.10 10 24.11 even 2
968.2.c.d.485.9 10 44.43 even 2
968.2.c.d.485.10 10 88.43 even 2
968.2.o.g.245.7 40 44.27 odd 10
968.2.o.g.245.10 40 88.27 odd 10
968.2.o.g.269.3 40 44.15 odd 10
968.2.o.g.269.6 40 88.59 odd 10
968.2.o.g.493.3 40 88.3 odd 10
968.2.o.g.493.6 40 44.3 odd 10
968.2.o.g.565.7 40 88.75 odd 10
968.2.o.g.565.10 40 44.31 odd 10
968.2.o.h.245.1 40 88.83 even 10
968.2.o.h.245.4 40 44.39 even 10
968.2.o.h.269.5 40 88.51 even 10
968.2.o.h.269.8 40 44.7 even 10
968.2.o.h.493.5 40 44.19 even 10
968.2.o.h.493.8 40 88.19 even 10
968.2.o.h.565.1 40 44.35 even 10
968.2.o.h.565.4 40 88.35 even 10
2816.2.a.o.1.3 5 16.11 odd 4
2816.2.a.p.1.3 5 16.5 even 4
2816.2.a.q.1.3 5 16.13 even 4
2816.2.a.r.1.3 5 16.3 odd 4
3168.2.f.g.1585.2 10 24.5 odd 2
3168.2.f.g.1585.9 10 3.2 odd 2
3872.2.c.f.1937.5 10 88.21 odd 2
3872.2.c.f.1937.6 10 11.10 odd 2