Properties

Label 352.2.c.a.177.6
Level 352352
Weight 22
Character 352.177
Analytic conductor 2.8112.811
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [352,2,Mod(177,352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("352.177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 352=2511 352 = 2^{5} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 352.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.810734151152.81073415115
Analytic rank: 00
Dimension: 1010
Coefficient field: 10.0.578281160704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x10+2x82x73x66x56x48x3+16x2+32 x^{10} + 2x^{8} - 2x^{7} - 3x^{6} - 6x^{5} - 6x^{4} - 8x^{3} + 16x^{2} + 32 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 26 2^{6}
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 177.6
Root 1.41363+0.0406696i1.41363 + 0.0406696i of defining polynomial
Character χ\chi == 352.177
Dual form 352.2.c.a.177.5

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.229967iq32.51595iq51.47743q7+2.94712q91.00000iq113.47743iq13+0.578585q153.31475q177.13195iq190.339760iq21+6.45332q231.33001q25+1.36764iq27+1.41480iq290.636125q31+0.229967q33+3.71715iq35+6.97588iq37+0.799694q39+6.72955q413.21471iq437.41480iq450.862328q474.81719q490.762283iq51+13.2515iq532.51595q55+1.64011q57+2.63236iq596.45993iq614.35416q638.74905q65+7.66426iq67+1.48405iq6912.2900q7113.2440q730.305858iq75+1.47743iq77+16.3409q79+8.52683q81+13.8040iq83+8.33976iq850.325357q871.04979q89+5.13767iq910.146288iq9317.9436q95+16.2110q972.94712iq99+O(q100)q+0.229967i q^{3} -2.51595i q^{5} -1.47743 q^{7} +2.94712 q^{9} -1.00000i q^{11} -3.47743i q^{13} +0.578585 q^{15} -3.31475 q^{17} -7.13195i q^{19} -0.339760i q^{21} +6.45332 q^{23} -1.33001 q^{25} +1.36764i q^{27} +1.41480i q^{29} -0.636125 q^{31} +0.229967 q^{33} +3.71715i q^{35} +6.97588i q^{37} +0.799694 q^{39} +6.72955 q^{41} -3.21471i q^{43} -7.41480i q^{45} -0.862328 q^{47} -4.81719 q^{49} -0.762283i q^{51} +13.2515i q^{53} -2.51595 q^{55} +1.64011 q^{57} +2.63236i q^{59} -6.45993i q^{61} -4.35416 q^{63} -8.74905 q^{65} +7.66426i q^{67} +1.48405i q^{69} -12.2900 q^{71} -13.2440 q^{73} -0.305858i q^{75} +1.47743i q^{77} +16.3409 q^{79} +8.52683 q^{81} +13.8040i q^{83} +8.33976i q^{85} -0.325357 q^{87} -1.04979 q^{89} +5.13767i q^{91} -0.146288i q^{93} -17.9436 q^{95} +16.2110 q^{97} -2.94712i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q10q98q154q17+12q236q25+4q3124q39+4q41+4q476q49+8q55+16q57+40q63+16q65+12q714q7316q796q81+20q97+O(q100) 10 q - 10 q^{9} - 8 q^{15} - 4 q^{17} + 12 q^{23} - 6 q^{25} + 4 q^{31} - 24 q^{39} + 4 q^{41} + 4 q^{47} - 6 q^{49} + 8 q^{55} + 16 q^{57} + 40 q^{63} + 16 q^{65} + 12 q^{71} - 4 q^{73} - 16 q^{79} - 6 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/352Z)×\left(\mathbb{Z}/352\mathbb{Z}\right)^\times.

nn 133133 287287 321321
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0.229967i 0.132771i 0.997794 + 0.0663857i 0.0211468π0.0211468\pi
−0.997794 + 0.0663857i 0.978853π0.978853\pi
44 0 0
55 − 2.51595i − 1.12517i −0.826740 0.562584i 0.809807π-0.809807\pi
0.826740 0.562584i 0.190193π-0.190193\pi
66 0 0
77 −1.47743 −0.558417 −0.279209 0.960230i 0.590072π-0.590072\pi
−0.279209 + 0.960230i 0.590072π0.590072\pi
88 0 0
99 2.94712 0.982372
1010 0 0
1111 − 1.00000i − 0.301511i
1212 0 0
1313 − 3.47743i − 0.964466i −0.876043 0.482233i 0.839826π-0.839826\pi
0.876043 0.482233i 0.160174π-0.160174\pi
1414 0 0
1515 0.578585 0.149390
1616 0 0
1717 −3.31475 −0.803946 −0.401973 0.915652i 0.631675π-0.631675\pi
−0.401973 + 0.915652i 0.631675π0.631675\pi
1818 0 0
1919 − 7.13195i − 1.63618i −0.575090 0.818090i 0.695033π-0.695033\pi
0.575090 0.818090i 0.304967π-0.304967\pi
2020 0 0
2121 − 0.339760i − 0.0741418i
2222 0 0
2323 6.45332 1.34561 0.672805 0.739820i 0.265089π-0.265089\pi
0.672805 + 0.739820i 0.265089π0.265089\pi
2424 0 0
2525 −1.33001 −0.266002
2626 0 0
2727 1.36764i 0.263202i
2828 0 0
2929 1.41480i 0.262722i 0.991335 + 0.131361i 0.0419346π0.0419346\pi
−0.991335 + 0.131361i 0.958065π0.958065\pi
3030 0 0
3131 −0.636125 −0.114251 −0.0571257 0.998367i 0.518194π-0.518194\pi
−0.0571257 + 0.998367i 0.518194π0.518194\pi
3232 0 0
3333 0.229967 0.0400321
3434 0 0
3535 3.71715i 0.628313i
3636 0 0
3737 6.97588i 1.14683i 0.819266 + 0.573414i 0.194381π0.194381\pi
−0.819266 + 0.573414i 0.805619π0.805619\pi
3838 0 0
3939 0.799694 0.128054
4040 0 0
4141 6.72955 1.05098 0.525490 0.850800i 0.323882π-0.323882\pi
0.525490 + 0.850800i 0.323882π0.323882\pi
4242 0 0
4343 − 3.21471i − 0.490239i −0.969493 0.245119i 0.921173π-0.921173\pi
0.969493 0.245119i 0.0788271π-0.0788271\pi
4444 0 0
4545 − 7.41480i − 1.10533i
4646 0 0
4747 −0.862328 −0.125783 −0.0628917 0.998020i 0.520032π-0.520032\pi
−0.0628917 + 0.998020i 0.520032π0.520032\pi
4848 0 0
4949 −4.81719 −0.688170
5050 0 0
5151 − 0.762283i − 0.106741i
5252 0 0
5353 13.2515i 1.82023i 0.414353 + 0.910116i 0.364008π0.364008\pi
−0.414353 + 0.910116i 0.635992π0.635992\pi
5454 0 0
5555 −2.51595 −0.339251
5656 0 0
5757 1.64011 0.217238
5858 0 0
5959 2.63236i 0.342704i 0.985210 + 0.171352i 0.0548136π0.0548136\pi
−0.985210 + 0.171352i 0.945186π0.945186\pi
6060 0 0
6161 − 6.45993i − 0.827110i −0.910479 0.413555i 0.864287π-0.864287\pi
0.910479 0.413555i 0.135713π-0.135713\pi
6262 0 0
6363 −4.35416 −0.548573
6464 0 0
6565 −8.74905 −1.08519
6666 0 0
6767 7.66426i 0.936339i 0.883639 + 0.468169i 0.155086π0.155086\pi
−0.883639 + 0.468169i 0.844914π0.844914\pi
6868 0 0
6969 1.48405i 0.178658i
7070 0 0
7171 −12.2900 −1.45856 −0.729278 0.684218i 0.760144π-0.760144\pi
−0.729278 + 0.684218i 0.760144π0.760144\pi
7272 0 0
7373 −13.2440 −1.55009 −0.775045 0.631905i 0.782273π-0.782273\pi
−0.775045 + 0.631905i 0.782273π0.782273\pi
7474 0 0
7575 − 0.305858i − 0.0353175i
7676 0 0
7777 1.47743i 0.168369i
7878 0 0
7979 16.3409 1.83850 0.919249 0.393676i 0.128797π-0.128797\pi
0.919249 + 0.393676i 0.128797π0.128797\pi
8080 0 0
8181 8.52683 0.947426
8282 0 0
8383 13.8040i 1.51518i 0.652730 + 0.757591i 0.273624π0.273624\pi
−0.652730 + 0.757591i 0.726376π0.726376\pi
8484 0 0
8585 8.33976i 0.904574i
8686 0 0
8787 −0.325357 −0.0348819
8888 0 0
8989 −1.04979 −0.111277 −0.0556387 0.998451i 0.517720π-0.517720\pi
−0.0556387 + 0.998451i 0.517720π0.517720\pi
9090 0 0
9191 5.13767i 0.538574i
9292 0 0
9393 − 0.146288i − 0.0151693i
9494 0 0
9595 −17.9436 −1.84098
9696 0 0
9797 16.2110 1.64598 0.822989 0.568057i 0.192305π-0.192305\pi
0.822989 + 0.568057i 0.192305π0.192305\pi
9898 0 0
9999 − 2.94712i − 0.296196i
100100 0 0
101101 8.63460i 0.859175i 0.903025 + 0.429588i 0.141341π0.141341\pi
−0.903025 + 0.429588i 0.858659π0.858659\pi
102102 0 0
103103 4.95487 0.488217 0.244109 0.969748i 0.421505π-0.421505\pi
0.244109 + 0.969748i 0.421505π0.421505\pi
104104 0 0
105105 −0.854821 −0.0834220
106106 0 0
107107 6.34666i 0.613554i 0.951781 + 0.306777i 0.0992507π0.0992507\pi
−0.951781 + 0.306777i 0.900749π0.900749\pi
108108 0 0
109109 − 7.94246i − 0.760750i −0.924832 0.380375i 0.875795π-0.875795\pi
0.924832 0.380375i 0.124205π-0.124205\pi
110110 0 0
111111 −1.60422 −0.152266
112112 0 0
113113 4.88248 0.459305 0.229653 0.973273i 0.426241π-0.426241\pi
0.229653 + 0.973273i 0.426241π0.426241\pi
114114 0 0
115115 − 16.2362i − 1.51404i
116116 0 0
117117 − 10.2484i − 0.947464i
118118 0 0
119119 4.89733 0.448937
120120 0 0
121121 −1.00000 −0.0909091
122122 0 0
123123 1.54757i 0.139540i
124124 0 0
125125 − 9.23351i − 0.825871i
126126 0 0
127127 4.12017 0.365606 0.182803 0.983150i 0.441483π-0.441483\pi
0.182803 + 0.983150i 0.441483π0.441483\pi
128128 0 0
129129 0.739276 0.0650897
130130 0 0
131131 13.3015i 1.16216i 0.813847 + 0.581080i 0.197370π0.197370\pi
−0.813847 + 0.581080i 0.802630π0.802630\pi
132132 0 0
133133 10.5370i 0.913671i
134134 0 0
135135 3.44091 0.296147
136136 0 0
137137 −6.84444 −0.584760 −0.292380 0.956302i 0.594447π-0.594447\pi
−0.292380 + 0.956302i 0.594447π0.594447\pi
138138 0 0
139139 − 12.1966i − 1.03450i −0.855834 0.517250i 0.826956π-0.826956\pi
0.855834 0.517250i 0.173044π-0.173044\pi
140140 0 0
141141 − 0.198307i − 0.0167004i
142142 0 0
143143 −3.47743 −0.290798
144144 0 0
145145 3.55956 0.295606
146146 0 0
147147 − 1.10779i − 0.0913693i
148148 0 0
149149 3.04004i 0.249050i 0.992216 + 0.124525i 0.0397407π0.0397407\pi
−0.992216 + 0.124525i 0.960259π0.960259\pi
150150 0 0
151151 1.83669 0.149468 0.0747339 0.997204i 0.476189π-0.476189\pi
0.0747339 + 0.997204i 0.476189π0.476189\pi
152152 0 0
153153 −9.76896 −0.789774
154154 0 0
155155 1.60046i 0.128552i
156156 0 0
157157 − 10.0560i − 0.802558i −0.915956 0.401279i 0.868566π-0.868566\pi
0.915956 0.401279i 0.131434π-0.131434\pi
158158 0 0
159159 −3.04740 −0.241675
160160 0 0
161161 −9.53434 −0.751411
162162 0 0
163163 − 12.8934i − 1.00989i −0.863152 0.504945i 0.831513π-0.831513\pi
0.863152 0.504945i 0.168487π-0.168487\pi
164164 0 0
165165 − 0.578585i − 0.0450428i
166166 0 0
167167 −4.47434 −0.346235 −0.173117 0.984901i 0.555384π-0.555384\pi
−0.173117 + 0.984901i 0.555384π0.555384\pi
168168 0 0
169169 0.907463 0.0698048
170170 0 0
171171 − 21.0187i − 1.60734i
172172 0 0
173173 − 0.182807i − 0.0138986i −0.999976 0.00694928i 0.997788π-0.997788\pi
0.999976 0.00694928i 0.00221204π-0.00221204\pi
174174 0 0
175175 1.96500 0.148540
176176 0 0
177177 −0.605356 −0.0455013
178178 0 0
179179 − 20.0915i − 1.50171i −0.660469 0.750853i 0.729642π-0.729642\pi
0.660469 0.750853i 0.270358π-0.270358\pi
180180 0 0
181181 7.63413i 0.567440i 0.958907 + 0.283720i 0.0915686π0.0915686\pi
−0.958907 + 0.283720i 0.908431π0.908431\pi
182182 0 0
183183 1.48557 0.109817
184184 0 0
185185 17.5510 1.29037
186186 0 0
187187 3.31475i 0.242399i
188188 0 0
189189 − 2.02059i − 0.146977i
190190 0 0
191191 22.9943 1.66381 0.831906 0.554917i 0.187250π-0.187250\pi
0.831906 + 0.554917i 0.187250π0.187250\pi
192192 0 0
193193 0.735278 0.0529265 0.0264632 0.999650i 0.491576π-0.491576\pi
0.0264632 + 0.999650i 0.491576π0.491576\pi
194194 0 0
195195 − 2.01199i − 0.144082i
196196 0 0
197197 − 11.1665i − 0.795579i −0.917477 0.397789i 0.869777π-0.869777\pi
0.917477 0.397789i 0.130223π-0.130223\pi
198198 0 0
199199 18.1315 1.28531 0.642655 0.766156i 0.277833π-0.277833\pi
0.642655 + 0.766156i 0.277833π0.277833\pi
200200 0 0
201201 −1.76253 −0.124319
202202 0 0
203203 − 2.09027i − 0.146708i
204204 0 0
205205 − 16.9312i − 1.18253i
206206 0 0
207207 19.0187 1.32189
208208 0 0
209209 −7.13195 −0.493327
210210 0 0
211211 18.4180i 1.26795i 0.773355 + 0.633973i 0.218577π0.218577\pi
−0.773355 + 0.633973i 0.781423π0.781423\pi
212212 0 0
213213 − 2.82629i − 0.193654i
214214 0 0
215215 −8.08805 −0.551601
216216 0 0
217217 0.939831 0.0637999
218218 0 0
219219 − 3.04568i − 0.205808i
220220 0 0
221221 11.5268i 0.775379i
222222 0 0
223223 −14.5654 −0.975368 −0.487684 0.873020i 0.662158π-0.662158\pi
−0.487684 + 0.873020i 0.662158π0.662158\pi
224224 0 0
225225 −3.91970 −0.261313
226226 0 0
227227 − 7.15145i − 0.474658i −0.971429 0.237329i 0.923728π-0.923728\pi
0.971429 0.237329i 0.0762720π-0.0762720\pi
228228 0 0
229229 − 6.48500i − 0.428541i −0.976774 0.214271i 0.931263π-0.931263\pi
0.976774 0.214271i 0.0687374π-0.0687374\pi
230230 0 0
231231 −0.339760 −0.0223546
232232 0 0
233233 11.4786 0.751988 0.375994 0.926622i 0.377301π-0.377301\pi
0.375994 + 0.926622i 0.377301π0.377301\pi
234234 0 0
235235 2.16957i 0.141527i
236236 0 0
237237 3.75787i 0.244100i
238238 0 0
239239 −0.112036 −0.00724698 −0.00362349 0.999993i 0.501153π-0.501153\pi
−0.00362349 + 0.999993i 0.501153π0.501153\pi
240240 0 0
241241 2.93937 0.189341 0.0946706 0.995509i 0.469820π-0.469820\pi
0.0946706 + 0.995509i 0.469820π0.469820\pi
242242 0 0
243243 6.06381i 0.388993i
244244 0 0
245245 12.1198i 0.774307i
246246 0 0
247247 −24.8009 −1.57804
248248 0 0
249249 −3.17445 −0.201173
250250 0 0
251251 31.2199i 1.97058i 0.170882 + 0.985291i 0.445338π0.445338\pi
−0.170882 + 0.985291i 0.554662π0.554662\pi
252252 0 0
253253 − 6.45332i − 0.405717i
254254 0 0
255255 −1.91787 −0.120102
256256 0 0
257257 7.09741 0.442725 0.221362 0.975192i 0.428950π-0.428950\pi
0.221362 + 0.975192i 0.428950π0.428950\pi
258258 0 0
259259 − 10.3064i − 0.640409i
260260 0 0
261261 4.16957i 0.258090i
262262 0 0
263263 −16.3863 −1.01042 −0.505211 0.862996i 0.668585π-0.668585\pi
−0.505211 + 0.862996i 0.668585π0.668585\pi
264264 0 0
265265 33.3401 2.04807
266266 0 0
267267 − 0.241417i − 0.0147745i
268268 0 0
269269 − 17.1262i − 1.04420i −0.852883 0.522102i 0.825148π-0.825148\pi
0.852883 0.522102i 0.174852π-0.174852\pi
270270 0 0
271271 −19.5142 −1.18540 −0.592702 0.805422i 0.701939π-0.701939\pi
−0.592702 + 0.805422i 0.701939π0.701939\pi
272272 0 0
273273 −1.18149 −0.0715073
274274 0 0
275275 1.33001i 0.0802027i
276276 0 0
277277 − 10.5618i − 0.634596i −0.948326 0.317298i 0.897224π-0.897224\pi
0.948326 0.317298i 0.102776π-0.102776\pi
278278 0 0
279279 −1.87473 −0.112237
280280 0 0
281281 −11.5994 −0.691961 −0.345981 0.938242i 0.612454π-0.612454\pi
−0.345981 + 0.938242i 0.612454π0.612454\pi
282282 0 0
283283 21.6234i 1.28538i 0.766128 + 0.642688i 0.222181π0.222181\pi
−0.766128 + 0.642688i 0.777819π0.777819\pi
284284 0 0
285285 − 4.12644i − 0.244429i
286286 0 0
287287 −9.94246 −0.586885
288288 0 0
289289 −6.01240 −0.353671
290290 0 0
291291 3.72799i 0.218539i
292292 0 0
293293 20.1305i 1.17604i 0.808848 + 0.588018i 0.200092π0.200092\pi
−0.808848 + 0.588018i 0.799908π0.799908\pi
294294 0 0
295295 6.62289 0.385600
296296 0 0
297297 1.36764 0.0793585
298298 0 0
299299 − 22.4410i − 1.29780i
300300 0 0
301301 4.74952i 0.273758i
302302 0 0
303303 −1.98567 −0.114074
304304 0 0
305305 −16.2529 −0.930637
306306 0 0
307307 2.24089i 0.127894i 0.997953 + 0.0639471i 0.0203689π0.0203689\pi
−0.997953 + 0.0639471i 0.979631π0.979631\pi
308308 0 0
309309 1.13945i 0.0648213i
310310 0 0
311311 15.6919 0.889807 0.444904 0.895578i 0.353238π-0.353238\pi
0.444904 + 0.895578i 0.353238π0.353238\pi
312312 0 0
313313 −12.1167 −0.684876 −0.342438 0.939540i 0.611253π-0.611253\pi
−0.342438 + 0.939540i 0.611253π0.611253\pi
314314 0 0
315315 10.9549i 0.617237i
316316 0 0
317317 11.8958i 0.668132i 0.942550 + 0.334066i 0.108421π0.108421\pi
−0.942550 + 0.334066i 0.891579π0.891579\pi
318318 0 0
319319 1.41480 0.0792135
320320 0 0
321321 −1.45952 −0.0814625
322322 0 0
323323 23.6407i 1.31540i
324324 0 0
325325 4.62502i 0.256550i
326326 0 0
327327 1.82650 0.101006
328328 0 0
329329 1.27403 0.0702396
330330 0 0
331331 − 24.7692i − 1.36144i −0.732544 0.680719i 0.761667π-0.761667\pi
0.732544 0.680719i 0.238333π-0.238333\pi
332332 0 0
333333 20.5587i 1.12661i
334334 0 0
335335 19.2829 1.05354
336336 0 0
337337 −11.2285 −0.611654 −0.305827 0.952087i 0.598933π-0.598933\pi
−0.305827 + 0.952087i 0.598933π0.598933\pi
338338 0 0
339339 1.12281i 0.0609826i
340340 0 0
341341 0.636125i 0.0344481i
342342 0 0
343343 17.4591 0.942703
344344 0 0
345345 3.73379 0.201021
346346 0 0
347347 16.0230i 0.860160i 0.902791 + 0.430080i 0.141515π0.141515\pi
−0.902791 + 0.430080i 0.858485π0.858485\pi
348348 0 0
349349 − 9.27513i − 0.496486i −0.968698 0.248243i 0.920147π-0.920147\pi
0.968698 0.248243i 0.0798532π-0.0798532\pi
350350 0 0
351351 4.75587 0.253850
352352 0 0
353353 −9.58150 −0.509972 −0.254986 0.966945i 0.582071π-0.582071\pi
−0.254986 + 0.966945i 0.582071π0.582071\pi
354354 0 0
355355 30.9211i 1.64112i
356356 0 0
357357 1.12622i 0.0596060i
358358 0 0
359359 7.80501 0.411932 0.205966 0.978559i 0.433966π-0.433966\pi
0.205966 + 0.978559i 0.433966π0.433966\pi
360360 0 0
361361 −31.8647 −1.67709
362362 0 0
363363 − 0.229967i − 0.0120701i
364364 0 0
365365 33.3212i 1.74411i
366366 0 0
367367 −31.4393 −1.64112 −0.820558 0.571563i 0.806337π-0.806337\pi
−0.820558 + 0.571563i 0.806337π0.806337\pi
368368 0 0
369369 19.8328 1.03245
370370 0 0
371371 − 19.5782i − 1.01645i
372372 0 0
373373 32.0424i 1.65909i 0.558437 + 0.829547i 0.311401π0.311401\pi
−0.558437 + 0.829547i 0.688599π0.688599\pi
374374 0 0
375375 2.12340 0.109652
376376 0 0
377377 4.91987 0.253386
378378 0 0
379379 11.4465i 0.587965i 0.955811 + 0.293983i 0.0949808π0.0949808\pi
−0.955811 + 0.293983i 0.905019π0.905019\pi
380380 0 0
381381 0.947503i 0.0485420i
382382 0 0
383383 6.82520 0.348751 0.174376 0.984679i 0.444209π-0.444209\pi
0.174376 + 0.984679i 0.444209π0.444209\pi
384384 0 0
385385 3.71715 0.189443
386386 0 0
387387 − 9.47412i − 0.481597i
388388 0 0
389389 6.65984i 0.337667i 0.985645 + 0.168834i 0.0540000π0.0540000\pi
−0.985645 + 0.168834i 0.946000π0.946000\pi
390390 0 0
391391 −21.3912 −1.08180
392392 0 0
393393 −3.05891 −0.154302
394394 0 0
395395 − 41.1130i − 2.06862i
396396 0 0
397397 2.42189i 0.121551i 0.998151 + 0.0607757i 0.0193574π0.0193574\pi
−0.998151 + 0.0607757i 0.980643π0.980643\pi
398398 0 0
399399 −2.42315 −0.121309
400400 0 0
401401 −9.09122 −0.453994 −0.226997 0.973895i 0.572891π-0.572891\pi
−0.226997 + 0.973895i 0.572891π0.572891\pi
402402 0 0
403403 2.21208i 0.110192i
404404 0 0
405405 − 21.4531i − 1.06601i
406406 0 0
407407 6.97588 0.345782
408408 0 0
409409 9.08013 0.448984 0.224492 0.974476i 0.427928π-0.427928\pi
0.224492 + 0.974476i 0.427928π0.427928\pi
410410 0 0
411411 − 1.57399i − 0.0776394i
412412 0 0
413413 − 3.88914i − 0.191372i
414414 0 0
415415 34.7301 1.70483
416416 0 0
417417 2.80481 0.137352
418418 0 0
419419 2.99512i 0.146321i 0.997320 + 0.0731607i 0.0233086π0.0233086\pi
−0.997320 + 0.0731607i 0.976691π0.976691\pi
420420 0 0
421421 − 26.6646i − 1.29955i −0.760126 0.649776i 0.774863π-0.774863\pi
0.760126 0.649776i 0.225137π-0.225137\pi
422422 0 0
423423 −2.54138 −0.123566
424424 0 0
425425 4.40866 0.213851
426426 0 0
427427 9.54412i 0.461872i
428428 0 0
429429 − 0.799694i − 0.0386096i
430430 0 0
431431 −19.5700 −0.942656 −0.471328 0.881958i 0.656225π-0.656225\pi
−0.471328 + 0.881958i 0.656225π0.656225\pi
432432 0 0
433433 −6.49028 −0.311903 −0.155951 0.987765i 0.549844π-0.549844\pi
−0.155951 + 0.987765i 0.549844π0.549844\pi
434434 0 0
435435 0.818582i 0.0392480i
436436 0 0
437437 − 46.0247i − 2.20166i
438438 0 0
439439 −25.3338 −1.20912 −0.604559 0.796560i 0.706651π-0.706651\pi
−0.604559 + 0.796560i 0.706651π0.706651\pi
440440 0 0
441441 −14.1968 −0.676039
442442 0 0
443443 − 1.46196i − 0.0694597i −0.999397 0.0347299i 0.988943π-0.988943\pi
0.999397 0.0347299i 0.0110571π-0.0110571\pi
444444 0 0
445445 2.64122i 0.125206i
446446 0 0
447447 −0.699108 −0.0330667
448448 0 0
449449 −6.00066 −0.283188 −0.141594 0.989925i 0.545223π-0.545223\pi
−0.141594 + 0.989925i 0.545223π0.545223\pi
450450 0 0
451451 − 6.72955i − 0.316882i
452452 0 0
453453 0.422378i 0.0198450i
454454 0 0
455455 12.9261 0.605986
456456 0 0
457457 17.5689 0.821837 0.410919 0.911672i 0.365208π-0.365208\pi
0.410919 + 0.911672i 0.365208π0.365208\pi
458458 0 0
459459 − 4.53339i − 0.211600i
460460 0 0
461461 26.1231i 1.21668i 0.793678 + 0.608338i 0.208163π0.208163\pi
−0.793678 + 0.608338i 0.791837π0.791837\pi
462462 0 0
463463 −20.3258 −0.944619 −0.472310 0.881433i 0.656580π-0.656580\pi
−0.472310 + 0.881433i 0.656580π0.656580\pi
464464 0 0
465465 −0.368052 −0.0170680
466466 0 0
467467 1.29764i 0.0600478i 0.999549 + 0.0300239i 0.00955833π0.00955833\pi
−0.999549 + 0.0300239i 0.990442π0.990442\pi
468468 0 0
469469 − 11.3234i − 0.522868i
470470 0 0
471471 2.31255 0.106557
472472 0 0
473473 −3.21471 −0.147813
474474 0 0
475475 9.48557i 0.435228i
476476 0 0
477477 39.0537i 1.78814i
478478 0 0
479479 28.5133 1.30281 0.651404 0.758731i 0.274180π-0.274180\pi
0.651404 + 0.758731i 0.274180π0.274180\pi
480480 0 0
481481 24.2582 1.10608
482482 0 0
483483 − 2.19258i − 0.0997659i
484484 0 0
485485 − 40.7861i − 1.85200i
486486 0 0
487487 6.03364 0.273410 0.136705 0.990612i 0.456349π-0.456349\pi
0.136705 + 0.990612i 0.456349π0.456349\pi
488488 0 0
489489 2.96505 0.134084
490490 0 0
491491 4.15408i 0.187471i 0.995597 + 0.0937354i 0.0298808π0.0298808\pi
−0.995597 + 0.0937354i 0.970119π0.970119\pi
492492 0 0
493493 − 4.68971i − 0.211214i
494494 0 0
495495 −7.41480 −0.333270
496496 0 0
497497 18.1577 0.814482
498498 0 0
499499 − 30.1028i − 1.34759i −0.738920 0.673793i 0.764664π-0.764664\pi
0.738920 0.673793i 0.235336π-0.235336\pi
500500 0 0
501501 − 1.02895i − 0.0459700i
502502 0 0
503503 −14.0368 −0.625869 −0.312935 0.949775i 0.601312π-0.601312\pi
−0.312935 + 0.949775i 0.601312π0.601312\pi
504504 0 0
505505 21.7242 0.966716
506506 0 0
507507 0.208686i 0.00926808i
508508 0 0
509509 − 16.9844i − 0.752821i −0.926453 0.376411i 0.877158π-0.877158\pi
0.926453 0.376411i 0.122842π-0.122842\pi
510510 0 0
511511 19.5671 0.865597
512512 0 0
513513 9.75393 0.430646
514514 0 0
515515 − 12.4662i − 0.549326i
516516 0 0
517517 0.862328i 0.0379251i
518518 0 0
519519 0.0420395 0.00184533
520520 0 0
521521 −3.66607 −0.160613 −0.0803066 0.996770i 0.525590π-0.525590\pi
−0.0803066 + 0.996770i 0.525590π0.525590\pi
522522 0 0
523523 − 2.91807i − 0.127598i −0.997963 0.0637990i 0.979678π-0.979678\pi
0.997963 0.0637990i 0.0203217π-0.0203217\pi
524524 0 0
525525 0.451885i 0.0197219i
526526 0 0
527527 2.10860 0.0918519
528528 0 0
529529 18.6453 0.810666
530530 0 0
531531 7.75787i 0.336663i
532532 0 0
533533 − 23.4016i − 1.01363i
534534 0 0
535535 15.9679 0.690352
536536 0 0
537537 4.62037 0.199384
538538 0 0
539539 4.81719i 0.207491i
540540 0 0
541541 − 16.4673i − 0.707984i −0.935248 0.353992i 0.884824π-0.884824\pi
0.935248 0.353992i 0.115176π-0.115176\pi
542542 0 0
543543 −1.75560 −0.0753398
544544 0 0
545545 −19.9828 −0.855971
546546 0 0
547547 25.9536i 1.10969i 0.831952 + 0.554847i 0.187223π0.187223\pi
−0.831952 + 0.554847i 0.812777π0.812777\pi
548548 0 0
549549 − 19.0382i − 0.812529i
550550 0 0
551551 10.0903 0.429860
552552 0 0
553553 −24.1426 −1.02665
554554 0 0
555555 4.03614i 0.171325i
556556 0 0
557557 13.0152i 0.551473i 0.961233 + 0.275737i 0.0889217π0.0889217\pi
−0.961233 + 0.275737i 0.911078π0.911078\pi
558558 0 0
559559 −11.1789 −0.472819
560560 0 0
561561 −0.762283 −0.0321836
562562 0 0
563563 − 27.9837i − 1.17937i −0.807632 0.589687i 0.799251π-0.799251\pi
0.807632 0.589687i 0.200749π-0.200749\pi
564564 0 0
565565 − 12.2841i − 0.516795i
566566 0 0
567567 −12.5978 −0.529059
568568 0 0
569569 −10.6048 −0.444574 −0.222287 0.974981i 0.571352π-0.571352\pi
−0.222287 + 0.974981i 0.571352π0.571352\pi
570570 0 0
571571 − 1.82472i − 0.0763622i −0.999271 0.0381811i 0.987844π-0.987844\pi
0.999271 0.0381811i 0.0121564π-0.0121564\pi
572572 0 0
573573 5.28793i 0.220907i
574574 0 0
575575 −8.58298 −0.357935
576576 0 0
577577 23.3377 0.971560 0.485780 0.874081i 0.338536π-0.338536\pi
0.485780 + 0.874081i 0.338536π0.338536\pi
578578 0 0
579579 0.169089i 0.00702712i
580580 0 0
581581 − 20.3944i − 0.846103i
582582 0 0
583583 13.2515 0.548821
584584 0 0
585585 −25.7845 −1.06606
586586 0 0
587587 − 30.3967i − 1.25461i −0.778775 0.627303i 0.784159π-0.784159\pi
0.778775 0.627303i 0.215841π-0.215841\pi
588588 0 0
589589 4.53681i 0.186936i
590590 0 0
591591 2.56792 0.105630
592592 0 0
593593 39.3809 1.61718 0.808590 0.588373i 0.200231π-0.200231\pi
0.808590 + 0.588373i 0.200231π0.200231\pi
594594 0 0
595595 − 12.3214i − 0.505130i
596596 0 0
597597 4.16965i 0.170652i
598598 0 0
599599 35.9183 1.46758 0.733792 0.679374i 0.237749π-0.237749\pi
0.733792 + 0.679374i 0.237749π0.237749\pi
600600 0 0
601601 13.8292 0.564104 0.282052 0.959399i 0.408985π-0.408985\pi
0.282052 + 0.959399i 0.408985π0.408985\pi
602602 0 0
603603 22.5875i 0.919833i
604604 0 0
605605 2.51595i 0.102288i
606606 0 0
607607 −19.7004 −0.799615 −0.399807 0.916599i 0.630923π-0.630923\pi
−0.399807 + 0.916599i 0.630923π0.630923\pi
608608 0 0
609609 0.480693 0.0194786
610610 0 0
611611 2.99869i 0.121314i
612612 0 0
613613 31.7465i 1.28223i 0.767445 + 0.641114i 0.221528π0.221528\pi
−0.767445 + 0.641114i 0.778472π0.778472\pi
614614 0 0
615615 3.89362 0.157006
616616 0 0
617617 −27.5402 −1.10873 −0.554363 0.832275i 0.687038π-0.687038\pi
−0.554363 + 0.832275i 0.687038π0.687038\pi
618618 0 0
619619 − 19.6108i − 0.788224i −0.919063 0.394112i 0.871052π-0.871052\pi
0.919063 0.394112i 0.128948π-0.128948\pi
620620 0 0
621621 8.82581i 0.354167i
622622 0 0
623623 1.55099 0.0621392
624624 0 0
625625 −29.8811 −1.19525
626626 0 0
627627 − 1.64011i − 0.0654997i
628628 0 0
629629 − 23.1233i − 0.921988i
630630 0 0
631631 −17.6518 −0.702705 −0.351353 0.936243i 0.614278π-0.614278\pi
−0.351353 + 0.936243i 0.614278π0.614278\pi
632632 0 0
633633 −4.23552 −0.168347
634634 0 0
635635 − 10.3662i − 0.411368i
636636 0 0
637637 16.7515i 0.663717i
638638 0 0
639639 −36.2201 −1.43284
640640 0 0
641641 16.7617 0.662047 0.331024 0.943622i 0.392606π-0.392606\pi
0.331024 + 0.943622i 0.392606π0.392606\pi
642642 0 0
643643 22.1367i 0.872984i 0.899708 + 0.436492i 0.143779π0.143779\pi
−0.899708 + 0.436492i 0.856221π0.856221\pi
644644 0 0
645645 − 1.85998i − 0.0732368i
646646 0 0
647647 −22.7792 −0.895544 −0.447772 0.894148i 0.647782π-0.647782\pi
−0.447772 + 0.894148i 0.647782π0.647782\pi
648648 0 0
649649 2.63236 0.103329
650650 0 0
651651 0.216130i 0.00847080i
652652 0 0
653653 − 35.9327i − 1.40615i −0.711114 0.703077i 0.751809π-0.751809\pi
0.711114 0.703077i 0.248191π-0.248191\pi
654654 0 0
655655 33.4660 1.30762
656656 0 0
657657 −39.0315 −1.52277
658658 0 0
659659 − 1.49362i − 0.0581831i −0.999577 0.0290916i 0.990739π-0.990739\pi
0.999577 0.0290916i 0.00926144π-0.00926144\pi
660660 0 0
661661 44.3160i 1.72369i 0.507170 + 0.861846i 0.330692π0.330692\pi
−0.507170 + 0.861846i 0.669308π0.669308\pi
662662 0 0
663663 −2.65079 −0.102948
664664 0 0
665665 26.5105 1.02803
666666 0 0
667667 9.13015i 0.353521i
668668 0 0
669669 − 3.34955i − 0.129501i
670670 0 0
671671 −6.45993 −0.249383
672672 0 0
673673 −33.8921 −1.30644 −0.653222 0.757166i 0.726583π-0.726583\pi
−0.653222 + 0.757166i 0.726583π0.726583\pi
674674 0 0
675675 − 1.81898i − 0.0700124i
676676 0 0
677677 − 7.57568i − 0.291157i −0.989347 0.145578i 0.953496π-0.953496\pi
0.989347 0.145578i 0.0465043π-0.0465043\pi
678678 0 0
679679 −23.9507 −0.919143
680680 0 0
681681 1.64459 0.0630210
682682 0 0
683683 16.1346i 0.617374i 0.951164 + 0.308687i 0.0998896π0.0998896\pi
−0.951164 + 0.308687i 0.900110π0.900110\pi
684684 0 0
685685 17.2203i 0.657953i
686686 0 0
687687 1.49134 0.0568980
688688 0 0
689689 46.0812 1.75555
690690 0 0
691691 − 10.5531i − 0.401457i −0.979647 0.200729i 0.935669π-0.935669\pi
0.979647 0.200729i 0.0643309π-0.0643309\pi
692692 0 0
693693 4.35416i 0.165401i
694694 0 0
695695 −30.6860 −1.16399
696696 0 0
697697 −22.3068 −0.844931
698698 0 0
699699 2.63970i 0.0998425i
700700 0 0
701701 43.8782i 1.65726i 0.559800 + 0.828628i 0.310878π0.310878\pi
−0.559800 + 0.828628i 0.689122π0.689122\pi
702702 0 0
703703 49.7516 1.87642
704704 0 0
705705 −0.498930 −0.0187908
706706 0 0
707707 − 12.7570i − 0.479778i
708708 0 0
709709 4.31359i 0.162000i 0.996714 + 0.0810002i 0.0258115π0.0258115\pi
−0.996714 + 0.0810002i 0.974189π0.974189\pi
710710 0 0
711711 48.1586 1.80609
712712 0 0
713713 −4.10511 −0.153738
714714 0 0
715715 8.74905i 0.327196i
716716 0 0
717717 − 0.0257645i 0 0.000962192i
718718 0 0
719719 0.793243 0.0295830 0.0147915 0.999891i 0.495292π-0.495292\pi
0.0147915 + 0.999891i 0.495292π0.495292\pi
720720 0 0
721721 −7.32048 −0.272629
722722 0 0
723723 0.675956i 0.0251391i
724724 0 0
725725 − 1.88170i − 0.0698845i
726726 0 0
727727 38.5654 1.43031 0.715155 0.698966i 0.246356π-0.246356\pi
0.715155 + 0.698966i 0.246356π0.246356\pi
728728 0 0
729729 24.1860 0.895779
730730 0 0
731731 10.6560i 0.394125i
732732 0 0
733733 35.3659i 1.30627i 0.757242 + 0.653134i 0.226546π0.226546\pi
−0.757242 + 0.653134i 0.773454π0.773454\pi
734734 0 0
735735 −2.78716 −0.102806
736736 0 0
737737 7.66426 0.282317
738738 0 0
739739 41.6624i 1.53258i 0.642497 + 0.766288i 0.277899π0.277899\pi
−0.642497 + 0.766288i 0.722101π0.722101\pi
740740 0 0
741741 − 5.70338i − 0.209519i
742742 0 0
743743 −33.2692 −1.22053 −0.610264 0.792198i 0.708937π-0.708937\pi
−0.610264 + 0.792198i 0.708937π0.708937\pi
744744 0 0
745745 7.64859 0.280223
746746 0 0
747747 40.6819i 1.48847i
748748 0 0
749749 − 9.37676i − 0.342619i
750750 0 0
751751 3.69284 0.134754 0.0673768 0.997728i 0.478537π-0.478537\pi
0.0673768 + 0.997728i 0.478537π0.478537\pi
752752 0 0
753753 −7.17954 −0.261637
754754 0 0
755755 − 4.62103i − 0.168176i
756756 0 0
757757 19.2210i 0.698600i 0.937011 + 0.349300i 0.113581π0.113581\pi
−0.937011 + 0.349300i 0.886419π0.886419\pi
758758 0 0
759759 1.48405 0.0538676
760760 0 0
761761 −9.79341 −0.355011 −0.177505 0.984120i 0.556803π-0.556803\pi
−0.177505 + 0.984120i 0.556803π0.556803\pi
762762 0 0
763763 11.7345i 0.424816i
764764 0 0
765765 24.5782i 0.888628i
766766 0 0
767767 9.15386 0.330527
768768 0 0
769769 −48.2853 −1.74121 −0.870606 0.491981i 0.836273π-0.836273\pi
−0.870606 + 0.491981i 0.836273π0.836273\pi
770770 0 0
771771 1.63217i 0.0587812i
772772 0 0
773773 − 21.0475i − 0.757025i −0.925596 0.378513i 0.876436π-0.876436\pi
0.925596 0.378513i 0.123564π-0.123564\pi
774774 0 0
775775 0.846053 0.0303911
776776 0 0
777777 2.37013 0.0850279
778778 0 0
779779 − 47.9948i − 1.71959i
780780 0 0
781781 12.2900i 0.439771i
782782 0 0
783783 −1.93493 −0.0691489
784784 0 0
785785 −25.3005 −0.903012
786786 0 0
787787 − 18.2077i − 0.649034i −0.945880 0.324517i 0.894798π-0.894798\pi
0.945880 0.324517i 0.105202π-0.105202\pi
788788 0 0
789789 − 3.76830i − 0.134155i
790790 0 0
791791 −7.21354 −0.256484
792792 0 0
793793 −22.4640 −0.797719
794794 0 0
795795 7.66712i 0.271925i
796796 0 0
797797 40.2274i 1.42493i 0.701709 + 0.712463i 0.252421π0.252421\pi
−0.701709 + 0.712463i 0.747579π0.747579\pi
798798 0 0
799799 2.85840 0.101123
800800 0 0
801801 −3.09385 −0.109316
802802 0 0
803803 13.2440i 0.467370i
804804 0 0
805805 23.9879i 0.845464i
806806 0 0
807807 3.93846 0.138640
808808 0 0
809809 27.8044 0.977552 0.488776 0.872409i 0.337444π-0.337444\pi
0.488776 + 0.872409i 0.337444π0.337444\pi
810810 0 0
811811 − 7.59987i − 0.266868i −0.991058 0.133434i 0.957400π-0.957400\pi
0.991058 0.133434i 0.0426004π-0.0426004\pi
812812 0 0
813813 − 4.48762i − 0.157388i
814814 0 0
815815 −32.4392 −1.13629
816816 0 0
817817 −22.9271 −0.802119
818818 0 0
819819 15.1413i 0.529080i
820820 0 0
821821 − 26.6456i − 0.929937i −0.885327 0.464968i 0.846066π-0.846066\pi
0.885327 0.464968i 0.153934π-0.153934\pi
822822 0 0
823823 −35.5588 −1.23950 −0.619751 0.784799i 0.712766π-0.712766\pi
−0.619751 + 0.784799i 0.712766π0.712766\pi
824824 0 0
825825 −0.305858 −0.0106486
826826 0 0
827827 − 3.03188i − 0.105429i −0.998610 0.0527145i 0.983213π-0.983213\pi
0.998610 0.0527145i 0.0167873π-0.0167873\pi
828828 0 0
829829 − 35.0569i − 1.21758i −0.793332 0.608789i 0.791656π-0.791656\pi
0.793332 0.608789i 0.208344π-0.208344\pi
830830 0 0
831831 2.42886 0.0842562
832832 0 0
833833 15.9678 0.553252
834834 0 0
835835 11.2572i 0.389572i
836836 0 0
837837 − 0.869989i − 0.0300712i
838838 0 0
839839 6.41520 0.221477 0.110739 0.993850i 0.464678π-0.464678\pi
0.110739 + 0.993850i 0.464678π0.464678\pi
840840 0 0
841841 26.9983 0.930977
842842 0 0
843843 − 2.66747i − 0.0918727i
844844 0 0
845845 − 2.28313i − 0.0785421i
846846 0 0
847847 1.47743 0.0507652
848848 0 0
849849 −4.97266 −0.170661
850850 0 0
851851 45.0176i 1.54318i
852852 0 0
853853 − 10.5605i − 0.361585i −0.983521 0.180793i 0.942134π-0.942134\pi
0.983521 0.180793i 0.0578663π-0.0578663\pi
854854 0 0
855855 −52.8820 −1.80852
856856 0 0
857857 −5.03900 −0.172129 −0.0860644 0.996290i 0.527429π-0.527429\pi
−0.0860644 + 0.996290i 0.527429π0.527429\pi
858858 0 0
859859 24.5174i 0.836521i 0.908327 + 0.418261i 0.137360π0.137360\pi
−0.908327 + 0.418261i 0.862640π0.862640\pi
860860 0 0
861861 − 2.28644i − 0.0779215i
862862 0 0
863863 −17.8155 −0.606448 −0.303224 0.952919i 0.598063π-0.598063\pi
−0.303224 + 0.952919i 0.598063π0.598063\pi
864864 0 0
865865 −0.459934 −0.0156382
866866 0 0
867867 − 1.38265i − 0.0469574i
868868 0 0
869869 − 16.3409i − 0.554328i
870870 0 0
871871 26.6520 0.903067
872872 0 0
873873 47.7757 1.61696
874874 0 0
875875 13.6419i 0.461180i
876876 0 0
877877 − 22.4071i − 0.756634i −0.925676 0.378317i 0.876503π-0.876503\pi
0.925676 0.378317i 0.123497π-0.123497\pi
878878 0 0
879879 −4.62934 −0.156144
880880 0 0
881881 −12.0016 −0.404345 −0.202172 0.979350i 0.564800π-0.564800\pi
−0.202172 + 0.979350i 0.564800π0.564800\pi
882882 0 0
883883 − 27.9363i − 0.940130i −0.882632 0.470065i 0.844230π-0.844230\pi
0.882632 0.470065i 0.155770π-0.155770\pi
884884 0 0
885885 1.52305i 0.0511966i
886886 0 0
887887 48.6903 1.63486 0.817430 0.576028i 0.195398π-0.195398\pi
0.817430 + 0.576028i 0.195398π0.195398\pi
888888 0 0
889889 −6.08728 −0.204161
890890 0 0
891891 − 8.52683i − 0.285660i
892892 0 0
893893 6.15008i 0.205804i
894894 0 0
895895 −50.5492 −1.68967
896896 0 0
897897 5.16068 0.172310
898898 0 0
899899 − 0.899988i − 0.0300163i
900900 0 0
901901 − 43.9254i − 1.46337i
902902 0 0
903903 −1.09223 −0.0363472
904904 0 0
905905 19.2071 0.638465
906906 0 0
907907 − 48.2773i − 1.60302i −0.597981 0.801510i 0.704030π-0.704030\pi
0.597981 0.801510i 0.295970π-0.295970\pi
908908 0 0
909909 25.4472i 0.844029i
910910 0 0
911911 −43.1688 −1.43025 −0.715123 0.698998i 0.753630π-0.753630\pi
−0.715123 + 0.698998i 0.753630π0.753630\pi
912912 0 0
913913 13.8040 0.456844
914914 0 0
915915 − 3.73762i − 0.123562i
916916 0 0
917917 − 19.6521i − 0.648970i
918918 0 0
919919 −36.1457 −1.19234 −0.596168 0.802860i 0.703311π-0.703311\pi
−0.596168 + 0.802860i 0.703311π0.703311\pi
920920 0 0
921921 −0.515330 −0.0169807
922922 0 0
923923 42.7377i 1.40673i
924924 0 0
925925 − 9.27801i − 0.305059i
926926 0 0
927927 14.6026 0.479611
928928 0 0
929929 26.1901 0.859269 0.429634 0.903003i 0.358642π-0.358642\pi
0.429634 + 0.903003i 0.358642π0.358642\pi
930930 0 0
931931 34.3560i 1.12597i
932932 0 0
933933 3.60862i 0.118141i
934934 0 0
935935 8.33976 0.272739
936936 0 0
937937 −14.6547 −0.478749 −0.239375 0.970927i 0.576942π-0.576942\pi
−0.239375 + 0.970927i 0.576942π0.576942\pi
938938 0 0
939939 − 2.78644i − 0.0909319i
940940 0 0
941941 − 5.50159i − 0.179347i −0.995971 0.0896734i 0.971418π-0.971418\pi
0.995971 0.0896734i 0.0285823π-0.0285823\pi
942942 0 0
943943 43.4279 1.41421
944944 0 0
945945 −5.08372 −0.165373
946946 0 0
947947 − 1.00019i − 0.0325019i −0.999868 0.0162509i 0.994827π-0.994827\pi
0.999868 0.0162509i 0.00517306π-0.00517306\pi
948948 0 0
949949 46.0551i 1.49501i
950950 0 0
951951 −2.73563 −0.0887088
952952 0 0
953953 55.6770 1.80356 0.901778 0.432200i 0.142263π-0.142263\pi
0.901778 + 0.432200i 0.142263π0.142263\pi
954954 0 0
955955 − 57.8526i − 1.87207i
956956 0 0
957957 0.325357i 0.0105173i
958958 0 0
959959 10.1122 0.326540
960960 0 0
961961 −30.5953 −0.986947
962962 0 0
963963 18.7043i 0.602739i
964964 0 0
965965 − 1.84992i − 0.0595511i
966966 0 0
967967 25.9869 0.835682 0.417841 0.908520i 0.362787π-0.362787\pi
0.417841 + 0.908520i 0.362787π0.362787\pi
968968 0 0
969969 −5.43656 −0.174648
970970 0 0
971971 16.0587i 0.515349i 0.966232 + 0.257675i 0.0829563π0.0829563\pi
−0.966232 + 0.257675i 0.917044π0.917044\pi
972972 0 0
973973 18.0196i 0.577683i
974974 0 0
975975 −1.06360 −0.0340625
976976 0 0
977977 −5.40488 −0.172918 −0.0864588 0.996255i 0.527555π-0.527555\pi
−0.0864588 + 0.996255i 0.527555π0.527555\pi
978978 0 0
979979 1.04979i 0.0335514i
980980 0 0
981981 − 23.4073i − 0.747339i
982982 0 0
983983 36.4792 1.16350 0.581752 0.813366i 0.302367π-0.302367\pi
0.581752 + 0.813366i 0.302367π0.302367\pi
984984 0 0
985985 −28.0943 −0.895159
986986 0 0
987987 0.292985i 0.00932581i
988988 0 0
989989 − 20.7455i − 0.659670i
990990 0 0
991991 −48.2714 −1.53339 −0.766696 0.642010i 0.778101π-0.778101\pi
−0.766696 + 0.642010i 0.778101π0.778101\pi
992992 0 0
993993 5.69609 0.180760
994994 0 0
995995 − 45.6181i − 1.44619i
996996 0 0
997997 8.78994i 0.278380i 0.990266 + 0.139190i 0.0444499π0.0444499\pi
−0.990266 + 0.139190i 0.955550π0.955550\pi
998998 0 0
999999 −9.54049 −0.301848
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.c.a.177.6 10
3.2 odd 2 3168.2.f.g.1585.9 10
4.3 odd 2 88.2.c.a.45.2 yes 10
8.3 odd 2 88.2.c.a.45.1 10
8.5 even 2 inner 352.2.c.a.177.5 10
11.10 odd 2 3872.2.c.f.1937.6 10
12.11 even 2 792.2.f.g.397.9 10
16.3 odd 4 2816.2.a.r.1.3 5
16.5 even 4 2816.2.a.p.1.3 5
16.11 odd 4 2816.2.a.o.1.3 5
16.13 even 4 2816.2.a.q.1.3 5
24.5 odd 2 3168.2.f.g.1585.2 10
24.11 even 2 792.2.f.g.397.10 10
44.3 odd 10 968.2.o.g.493.6 40
44.7 even 10 968.2.o.h.269.8 40
44.15 odd 10 968.2.o.g.269.3 40
44.19 even 10 968.2.o.h.493.5 40
44.27 odd 10 968.2.o.g.245.7 40
44.31 odd 10 968.2.o.g.565.10 40
44.35 even 10 968.2.o.h.565.1 40
44.39 even 10 968.2.o.h.245.4 40
44.43 even 2 968.2.c.d.485.9 10
88.3 odd 10 968.2.o.g.493.3 40
88.19 even 10 968.2.o.h.493.8 40
88.21 odd 2 3872.2.c.f.1937.5 10
88.27 odd 10 968.2.o.g.245.10 40
88.35 even 10 968.2.o.h.565.4 40
88.43 even 2 968.2.c.d.485.10 10
88.51 even 10 968.2.o.h.269.5 40
88.59 odd 10 968.2.o.g.269.6 40
88.75 odd 10 968.2.o.g.565.7 40
88.83 even 10 968.2.o.h.245.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.1 10 8.3 odd 2
88.2.c.a.45.2 yes 10 4.3 odd 2
352.2.c.a.177.5 10 8.5 even 2 inner
352.2.c.a.177.6 10 1.1 even 1 trivial
792.2.f.g.397.9 10 12.11 even 2
792.2.f.g.397.10 10 24.11 even 2
968.2.c.d.485.9 10 44.43 even 2
968.2.c.d.485.10 10 88.43 even 2
968.2.o.g.245.7 40 44.27 odd 10
968.2.o.g.245.10 40 88.27 odd 10
968.2.o.g.269.3 40 44.15 odd 10
968.2.o.g.269.6 40 88.59 odd 10
968.2.o.g.493.3 40 88.3 odd 10
968.2.o.g.493.6 40 44.3 odd 10
968.2.o.g.565.7 40 88.75 odd 10
968.2.o.g.565.10 40 44.31 odd 10
968.2.o.h.245.1 40 88.83 even 10
968.2.o.h.245.4 40 44.39 even 10
968.2.o.h.269.5 40 88.51 even 10
968.2.o.h.269.8 40 44.7 even 10
968.2.o.h.493.5 40 44.19 even 10
968.2.o.h.493.8 40 88.19 even 10
968.2.o.h.565.1 40 44.35 even 10
968.2.o.h.565.4 40 88.35 even 10
2816.2.a.o.1.3 5 16.11 odd 4
2816.2.a.p.1.3 5 16.5 even 4
2816.2.a.q.1.3 5 16.13 even 4
2816.2.a.r.1.3 5 16.3 odd 4
3168.2.f.g.1585.2 10 24.5 odd 2
3168.2.f.g.1585.9 10 3.2 odd 2
3872.2.c.f.1937.5 10 88.21 odd 2
3872.2.c.f.1937.6 10 11.10 odd 2