Properties

Label 792.2.f.g.397.10
Level $792$
Weight $2$
Character 792.397
Analytic conductor $6.324$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [792,2,Mod(397,792)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(792, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("792.397");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.578281160704.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 2x^{8} - 2x^{7} - 3x^{6} - 6x^{5} - 6x^{4} - 8x^{3} + 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 397.10
Root \(1.41363 - 0.0406696i\) of defining polynomial
Character \(\chi\) \(=\) 792.397
Dual form 792.2.f.g.397.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29865 + 0.559929i) q^{2} +(1.37296 + 1.45430i) q^{4} -2.51595i q^{5} +1.47743 q^{7} +(0.968683 + 2.65738i) q^{8} +(1.40875 - 3.26733i) q^{10} +1.00000i q^{11} +3.47743i q^{13} +(1.91866 + 0.827257i) q^{14} +(-0.229967 + 3.99338i) q^{16} +3.31475 q^{17} -7.13195i q^{19} +(3.65894 - 3.45430i) q^{20} +(-0.559929 + 1.29865i) q^{22} +6.45332 q^{23} -1.33001 q^{25} +(-1.94712 + 4.51595i) q^{26} +(2.02845 + 2.14863i) q^{28} +1.41480i q^{29} +0.636125 q^{31} +(-2.53466 + 5.05722i) q^{32} +(4.30469 + 1.85603i) q^{34} -3.71715i q^{35} -6.97588i q^{37} +(3.99338 - 9.26187i) q^{38} +(6.68583 - 2.43716i) q^{40} -6.72955 q^{41} -3.21471i q^{43} +(-1.45430 + 1.37296i) q^{44} +(8.38057 + 3.61340i) q^{46} -0.862328 q^{47} -4.81719 q^{49} +(-1.72721 - 0.744712i) q^{50} +(-5.05722 + 4.77437i) q^{52} +13.2515i q^{53} +2.51595 q^{55} +(1.43116 + 3.92610i) q^{56} +(-0.792187 + 1.83732i) q^{58} -2.63236i q^{59} +6.45993i q^{61} +(0.826100 + 0.356185i) q^{62} +(-6.12331 + 5.14831i) q^{64} +8.74905 q^{65} +7.66426i q^{67} +(4.55102 + 4.82064i) q^{68} +(2.08134 - 4.82726i) q^{70} -12.2900 q^{71} -13.2440 q^{73} +(3.90600 - 9.05920i) q^{74} +(10.3720 - 9.79187i) q^{76} +1.47743i q^{77} -16.3409 q^{79} +(10.0472 + 0.578585i) q^{80} +(-8.73930 - 3.76807i) q^{82} -13.8040i q^{83} -8.33976i q^{85} +(1.80001 - 4.17477i) q^{86} +(-2.65738 + 0.968683i) q^{88} +1.04979 q^{89} +5.13767i q^{91} +(8.86014 + 9.38505i) q^{92} +(-1.11986 - 0.482842i) q^{94} -17.9436 q^{95} +16.2110 q^{97} +(-6.25582 - 2.69729i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 4 q^{4} + 10 q^{10} + 12 q^{14} + 4 q^{17} - 12 q^{20} + 12 q^{23} - 6 q^{25} + 20 q^{26} - 12 q^{28} - 4 q^{31} + 20 q^{32} - 8 q^{38} + 20 q^{40} - 4 q^{41} - 4 q^{44} + 2 q^{46} + 4 q^{47} - 6 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29865 + 0.559929i 0.918281 + 0.395930i
\(3\) 0 0
\(4\) 1.37296 + 1.45430i 0.686480 + 0.727149i
\(5\) 2.51595i 1.12517i −0.826740 0.562584i \(-0.809807\pi\)
0.826740 0.562584i \(-0.190193\pi\)
\(6\) 0 0
\(7\) 1.47743 0.558417 0.279209 0.960230i \(-0.409928\pi\)
0.279209 + 0.960230i \(0.409928\pi\)
\(8\) 0.968683 + 2.65738i 0.342481 + 0.939525i
\(9\) 0 0
\(10\) 1.40875 3.26733i 0.445487 1.03322i
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 3.47743i 0.964466i 0.876043 + 0.482233i \(0.160174\pi\)
−0.876043 + 0.482233i \(0.839826\pi\)
\(14\) 1.91866 + 0.827257i 0.512784 + 0.221094i
\(15\) 0 0
\(16\) −0.229967 + 3.99338i −0.0574917 + 0.998346i
\(17\) 3.31475 0.803946 0.401973 0.915652i \(-0.368325\pi\)
0.401973 + 0.915652i \(0.368325\pi\)
\(18\) 0 0
\(19\) 7.13195i 1.63618i −0.575090 0.818090i \(-0.695033\pi\)
0.575090 0.818090i \(-0.304967\pi\)
\(20\) 3.65894 3.45430i 0.818165 0.772405i
\(21\) 0 0
\(22\) −0.559929 + 1.29865i −0.119377 + 0.276872i
\(23\) 6.45332 1.34561 0.672805 0.739820i \(-0.265089\pi\)
0.672805 + 0.739820i \(0.265089\pi\)
\(24\) 0 0
\(25\) −1.33001 −0.266002
\(26\) −1.94712 + 4.51595i −0.381861 + 0.885651i
\(27\) 0 0
\(28\) 2.02845 + 2.14863i 0.383342 + 0.406052i
\(29\) 1.41480i 0.262722i 0.991335 + 0.131361i \(0.0419346\pi\)
−0.991335 + 0.131361i \(0.958065\pi\)
\(30\) 0 0
\(31\) 0.636125 0.114251 0.0571257 0.998367i \(-0.481806\pi\)
0.0571257 + 0.998367i \(0.481806\pi\)
\(32\) −2.53466 + 5.05722i −0.448068 + 0.893999i
\(33\) 0 0
\(34\) 4.30469 + 1.85603i 0.738248 + 0.318306i
\(35\) 3.71715i 0.628313i
\(36\) 0 0
\(37\) 6.97588i 1.14683i −0.819266 0.573414i \(-0.805619\pi\)
0.819266 0.573414i \(-0.194381\pi\)
\(38\) 3.99338 9.26187i 0.647812 1.50247i
\(39\) 0 0
\(40\) 6.68583 2.43716i 1.05712 0.385349i
\(41\) −6.72955 −1.05098 −0.525490 0.850800i \(-0.676118\pi\)
−0.525490 + 0.850800i \(0.676118\pi\)
\(42\) 0 0
\(43\) 3.21471i 0.490239i −0.969493 0.245119i \(-0.921173\pi\)
0.969493 0.245119i \(-0.0788271\pi\)
\(44\) −1.45430 + 1.37296i −0.219244 + 0.206981i
\(45\) 0 0
\(46\) 8.38057 + 3.61340i 1.23565 + 0.532767i
\(47\) −0.862328 −0.125783 −0.0628917 0.998020i \(-0.520032\pi\)
−0.0628917 + 0.998020i \(0.520032\pi\)
\(48\) 0 0
\(49\) −4.81719 −0.688170
\(50\) −1.72721 0.744712i −0.244265 0.105318i
\(51\) 0 0
\(52\) −5.05722 + 4.77437i −0.701311 + 0.662086i
\(53\) 13.2515i 1.82023i 0.414353 + 0.910116i \(0.364008\pi\)
−0.414353 + 0.910116i \(0.635992\pi\)
\(54\) 0 0
\(55\) 2.51595 0.339251
\(56\) 1.43116 + 3.92610i 0.191247 + 0.524647i
\(57\) 0 0
\(58\) −0.792187 + 1.83732i −0.104019 + 0.241252i
\(59\) 2.63236i 0.342704i −0.985210 0.171352i \(-0.945186\pi\)
0.985210 0.171352i \(-0.0548136\pi\)
\(60\) 0 0
\(61\) 6.45993i 0.827110i 0.910479 + 0.413555i \(0.135713\pi\)
−0.910479 + 0.413555i \(0.864287\pi\)
\(62\) 0.826100 + 0.356185i 0.104915 + 0.0452355i
\(63\) 0 0
\(64\) −6.12331 + 5.14831i −0.765413 + 0.643539i
\(65\) 8.74905 1.08519
\(66\) 0 0
\(67\) 7.66426i 0.936339i 0.883639 + 0.468169i \(0.155086\pi\)
−0.883639 + 0.468169i \(0.844914\pi\)
\(68\) 4.55102 + 4.82064i 0.551892 + 0.584589i
\(69\) 0 0
\(70\) 2.08134 4.82726i 0.248768 0.576968i
\(71\) −12.2900 −1.45856 −0.729278 0.684218i \(-0.760144\pi\)
−0.729278 + 0.684218i \(0.760144\pi\)
\(72\) 0 0
\(73\) −13.2440 −1.55009 −0.775045 0.631905i \(-0.782273\pi\)
−0.775045 + 0.631905i \(0.782273\pi\)
\(74\) 3.90600 9.05920i 0.454063 1.05311i
\(75\) 0 0
\(76\) 10.3720 9.79187i 1.18975 1.12320i
\(77\) 1.47743i 0.168369i
\(78\) 0 0
\(79\) −16.3409 −1.83850 −0.919249 0.393676i \(-0.871203\pi\)
−0.919249 + 0.393676i \(0.871203\pi\)
\(80\) 10.0472 + 0.578585i 1.12331 + 0.0646878i
\(81\) 0 0
\(82\) −8.73930 3.76807i −0.965094 0.416114i
\(83\) 13.8040i 1.51518i −0.652730 0.757591i \(-0.726376\pi\)
0.652730 0.757591i \(-0.273624\pi\)
\(84\) 0 0
\(85\) 8.33976i 0.904574i
\(86\) 1.80001 4.17477i 0.194100 0.450177i
\(87\) 0 0
\(88\) −2.65738 + 0.968683i −0.283277 + 0.103262i
\(89\) 1.04979 0.111277 0.0556387 0.998451i \(-0.482280\pi\)
0.0556387 + 0.998451i \(0.482280\pi\)
\(90\) 0 0
\(91\) 5.13767i 0.538574i
\(92\) 8.86014 + 9.38505i 0.923734 + 0.978459i
\(93\) 0 0
\(94\) −1.11986 0.482842i −0.115505 0.0498014i
\(95\) −17.9436 −1.84098
\(96\) 0 0
\(97\) 16.2110 1.64598 0.822989 0.568057i \(-0.192305\pi\)
0.822989 + 0.568057i \(0.192305\pi\)
\(98\) −6.25582 2.69729i −0.631934 0.272467i
\(99\) 0 0
\(100\) −1.82605 1.93423i −0.182605 0.193423i
\(101\) 8.63460i 0.859175i 0.903025 + 0.429588i \(0.141341\pi\)
−0.903025 + 0.429588i \(0.858659\pi\)
\(102\) 0 0
\(103\) −4.95487 −0.488217 −0.244109 0.969748i \(-0.578495\pi\)
−0.244109 + 0.969748i \(0.578495\pi\)
\(104\) −9.24085 + 3.36853i −0.906140 + 0.330312i
\(105\) 0 0
\(106\) −7.41989 + 17.2090i −0.720684 + 1.67148i
\(107\) 6.34666i 0.613554i −0.951781 0.306777i \(-0.900749\pi\)
0.951781 0.306777i \(-0.0992507\pi\)
\(108\) 0 0
\(109\) 7.94246i 0.760750i 0.924832 + 0.380375i \(0.124205\pi\)
−0.924832 + 0.380375i \(0.875795\pi\)
\(110\) 3.26733 + 1.40875i 0.311528 + 0.134319i
\(111\) 0 0
\(112\) −0.339760 + 5.89996i −0.0321043 + 0.557493i
\(113\) −4.88248 −0.459305 −0.229653 0.973273i \(-0.573759\pi\)
−0.229653 + 0.973273i \(0.573759\pi\)
\(114\) 0 0
\(115\) 16.2362i 1.51404i
\(116\) −2.05754 + 1.94246i −0.191038 + 0.180353i
\(117\) 0 0
\(118\) 1.47394 3.41850i 0.135687 0.314699i
\(119\) 4.89733 0.448937
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) −3.61710 + 8.38916i −0.327477 + 0.759519i
\(123\) 0 0
\(124\) 0.873373 + 0.925115i 0.0784312 + 0.0830778i
\(125\) 9.23351i 0.825871i
\(126\) 0 0
\(127\) −4.12017 −0.365606 −0.182803 0.983150i \(-0.558517\pi\)
−0.182803 + 0.983150i \(0.558517\pi\)
\(128\) −10.8347 + 3.25721i −0.957661 + 0.287900i
\(129\) 0 0
\(130\) 11.3619 + 4.89885i 0.996506 + 0.429657i
\(131\) 13.3015i 1.16216i −0.813847 0.581080i \(-0.802630\pi\)
0.813847 0.581080i \(-0.197370\pi\)
\(132\) 0 0
\(133\) 10.5370i 0.913671i
\(134\) −4.29144 + 9.95316i −0.370724 + 0.859822i
\(135\) 0 0
\(136\) 3.21095 + 8.80855i 0.275336 + 0.755327i
\(137\) 6.84444 0.584760 0.292380 0.956302i \(-0.405553\pi\)
0.292380 + 0.956302i \(0.405553\pi\)
\(138\) 0 0
\(139\) 12.1966i 1.03450i −0.855834 0.517250i \(-0.826956\pi\)
0.855834 0.517250i \(-0.173044\pi\)
\(140\) 5.40584 5.10349i 0.456877 0.431324i
\(141\) 0 0
\(142\) −15.9604 6.88153i −1.33936 0.577485i
\(143\) −3.47743 −0.290798
\(144\) 0 0
\(145\) 3.55956 0.295606
\(146\) −17.1992 7.41569i −1.42342 0.613727i
\(147\) 0 0
\(148\) 10.1450 9.57760i 0.833915 0.787274i
\(149\) 3.04004i 0.249050i 0.992216 + 0.124525i \(0.0397407\pi\)
−0.992216 + 0.124525i \(0.960259\pi\)
\(150\) 0 0
\(151\) −1.83669 −0.149468 −0.0747339 0.997204i \(-0.523811\pi\)
−0.0747339 + 0.997204i \(0.523811\pi\)
\(152\) 18.9523 6.90860i 1.53723 0.560361i
\(153\) 0 0
\(154\) −0.827257 + 1.91866i −0.0666623 + 0.154610i
\(155\) 1.60046i 0.128552i
\(156\) 0 0
\(157\) 10.0560i 0.802558i 0.915956 + 0.401279i \(0.131434\pi\)
−0.915956 + 0.401279i \(0.868566\pi\)
\(158\) −21.2211 9.14976i −1.68826 0.727916i
\(159\) 0 0
\(160\) 12.7237 + 6.37707i 1.00590 + 0.504152i
\(161\) 9.53434 0.751411
\(162\) 0 0
\(163\) 12.8934i 1.00989i −0.863152 0.504945i \(-0.831513\pi\)
0.863152 0.504945i \(-0.168487\pi\)
\(164\) −9.23940 9.78678i −0.721476 0.764219i
\(165\) 0 0
\(166\) 7.72924 17.9264i 0.599905 1.39136i
\(167\) −4.47434 −0.346235 −0.173117 0.984901i \(-0.555384\pi\)
−0.173117 + 0.984901i \(0.555384\pi\)
\(168\) 0 0
\(169\) 0.907463 0.0698048
\(170\) 4.66967 10.8304i 0.358148 0.830653i
\(171\) 0 0
\(172\) 4.67515 4.41366i 0.356477 0.336539i
\(173\) 0.182807i 0.0138986i −0.999976 0.00694928i \(-0.997788\pi\)
0.999976 0.00694928i \(-0.00221204\pi\)
\(174\) 0 0
\(175\) −1.96500 −0.148540
\(176\) −3.99338 0.229967i −0.301013 0.0173344i
\(177\) 0 0
\(178\) 1.36330 + 0.587808i 0.102184 + 0.0440580i
\(179\) 20.0915i 1.50171i 0.660469 + 0.750853i \(0.270358\pi\)
−0.660469 + 0.750853i \(0.729642\pi\)
\(180\) 0 0
\(181\) 7.63413i 0.567440i −0.958907 0.283720i \(-0.908431\pi\)
0.958907 0.283720i \(-0.0915686\pi\)
\(182\) −2.87673 + 6.67201i −0.213238 + 0.494563i
\(183\) 0 0
\(184\) 6.25122 + 17.1489i 0.460846 + 1.26423i
\(185\) −17.5510 −1.29037
\(186\) 0 0
\(187\) 3.31475i 0.242399i
\(188\) −1.18394 1.25408i −0.0863478 0.0914633i
\(189\) 0 0
\(190\) −23.3024 10.0472i −1.69053 0.728898i
\(191\) 22.9943 1.66381 0.831906 0.554917i \(-0.187250\pi\)
0.831906 + 0.554917i \(0.187250\pi\)
\(192\) 0 0
\(193\) 0.735278 0.0529265 0.0264632 0.999650i \(-0.491576\pi\)
0.0264632 + 0.999650i \(0.491576\pi\)
\(194\) 21.0524 + 9.07701i 1.51147 + 0.651692i
\(195\) 0 0
\(196\) −6.61381 7.00564i −0.472415 0.500403i
\(197\) 11.1665i 0.795579i −0.917477 0.397789i \(-0.869777\pi\)
0.917477 0.397789i \(-0.130223\pi\)
\(198\) 0 0
\(199\) −18.1315 −1.28531 −0.642655 0.766156i \(-0.722167\pi\)
−0.642655 + 0.766156i \(0.722167\pi\)
\(200\) −1.28836 3.53434i −0.0911008 0.249916i
\(201\) 0 0
\(202\) −4.83476 + 11.2133i −0.340173 + 0.788964i
\(203\) 2.09027i 0.146708i
\(204\) 0 0
\(205\) 16.9312i 1.18253i
\(206\) −6.43461 2.77437i −0.448321 0.193300i
\(207\) 0 0
\(208\) −13.8867 0.799694i −0.962871 0.0554488i
\(209\) 7.13195 0.493327
\(210\) 0 0
\(211\) 18.4180i 1.26795i 0.773355 + 0.633973i \(0.218577\pi\)
−0.773355 + 0.633973i \(0.781423\pi\)
\(212\) −19.2716 + 18.1938i −1.32358 + 1.24955i
\(213\) 0 0
\(214\) 3.55368 8.24206i 0.242924 0.563415i
\(215\) −8.08805 −0.551601
\(216\) 0 0
\(217\) 0.939831 0.0637999
\(218\) −4.44721 + 10.3144i −0.301203 + 0.698582i
\(219\) 0 0
\(220\) 3.45430 + 3.65894i 0.232889 + 0.246686i
\(221\) 11.5268i 0.775379i
\(222\) 0 0
\(223\) 14.5654 0.975368 0.487684 0.873020i \(-0.337842\pi\)
0.487684 + 0.873020i \(0.337842\pi\)
\(224\) −3.74478 + 7.47171i −0.250209 + 0.499224i
\(225\) 0 0
\(226\) −6.34061 2.73384i −0.421771 0.181853i
\(227\) 7.15145i 0.474658i 0.971429 + 0.237329i \(0.0762720\pi\)
−0.971429 + 0.237329i \(0.923728\pi\)
\(228\) 0 0
\(229\) 6.48500i 0.428541i 0.976774 + 0.214271i \(0.0687374\pi\)
−0.976774 + 0.214271i \(0.931263\pi\)
\(230\) 9.09114 21.0851i 0.599452 1.39031i
\(231\) 0 0
\(232\) −3.75965 + 1.37049i −0.246833 + 0.0899772i
\(233\) −11.4786 −0.751988 −0.375994 0.926622i \(-0.622699\pi\)
−0.375994 + 0.926622i \(0.622699\pi\)
\(234\) 0 0
\(235\) 2.16957i 0.141527i
\(236\) 3.82824 3.61412i 0.249197 0.235259i
\(237\) 0 0
\(238\) 6.35989 + 2.74215i 0.412250 + 0.177747i
\(239\) −0.112036 −0.00724698 −0.00362349 0.999993i \(-0.501153\pi\)
−0.00362349 + 0.999993i \(0.501153\pi\)
\(240\) 0 0
\(241\) 2.93937 0.189341 0.0946706 0.995509i \(-0.469820\pi\)
0.0946706 + 0.995509i \(0.469820\pi\)
\(242\) −1.29865 0.559929i −0.0834801 0.0359936i
\(243\) 0 0
\(244\) −9.39467 + 8.86922i −0.601432 + 0.567794i
\(245\) 12.1198i 0.774307i
\(246\) 0 0
\(247\) 24.8009 1.57804
\(248\) 0.616203 + 1.69042i 0.0391289 + 0.107342i
\(249\) 0 0
\(250\) 5.17011 11.9911i 0.326987 0.758381i
\(251\) 31.2199i 1.97058i −0.170882 0.985291i \(-0.554662\pi\)
0.170882 0.985291i \(-0.445338\pi\)
\(252\) 0 0
\(253\) 6.45332i 0.405717i
\(254\) −5.35064 2.30700i −0.335729 0.144754i
\(255\) 0 0
\(256\) −15.8942 1.83669i −0.993389 0.114793i
\(257\) −7.09741 −0.442725 −0.221362 0.975192i \(-0.571050\pi\)
−0.221362 + 0.975192i \(0.571050\pi\)
\(258\) 0 0
\(259\) 10.3064i 0.640409i
\(260\) 12.0121 + 12.7237i 0.744958 + 0.789092i
\(261\) 0 0
\(262\) 7.44791 17.2740i 0.460133 1.06719i
\(263\) −16.3863 −1.01042 −0.505211 0.862996i \(-0.668585\pi\)
−0.505211 + 0.862996i \(0.668585\pi\)
\(264\) 0 0
\(265\) 33.3401 2.04807
\(266\) 5.89996 13.6838i 0.361749 0.839007i
\(267\) 0 0
\(268\) −11.1461 + 10.5227i −0.680858 + 0.642777i
\(269\) 17.1262i 1.04420i −0.852883 0.522102i \(-0.825148\pi\)
0.852883 0.522102i \(-0.174852\pi\)
\(270\) 0 0
\(271\) 19.5142 1.18540 0.592702 0.805422i \(-0.298061\pi\)
0.592702 + 0.805422i \(0.298061\pi\)
\(272\) −0.762283 + 13.2371i −0.0462202 + 0.802616i
\(273\) 0 0
\(274\) 8.88850 + 3.83240i 0.536974 + 0.231524i
\(275\) 1.33001i 0.0802027i
\(276\) 0 0
\(277\) 10.5618i 0.634596i 0.948326 + 0.317298i \(0.102776\pi\)
−0.948326 + 0.317298i \(0.897224\pi\)
\(278\) 6.82922 15.8390i 0.409589 0.949962i
\(279\) 0 0
\(280\) 9.87787 3.60074i 0.590315 0.215185i
\(281\) 11.5994 0.691961 0.345981 0.938242i \(-0.387546\pi\)
0.345981 + 0.938242i \(0.387546\pi\)
\(282\) 0 0
\(283\) 21.6234i 1.28538i 0.766128 + 0.642688i \(0.222181\pi\)
−0.766128 + 0.642688i \(0.777819\pi\)
\(284\) −16.8737 17.8733i −1.00127 1.06059i
\(285\) 0 0
\(286\) −4.51595 1.94712i −0.267034 0.115135i
\(287\) −9.94246 −0.586885
\(288\) 0 0
\(289\) −6.01240 −0.353671
\(290\) 4.62261 + 1.99310i 0.271449 + 0.117039i
\(291\) 0 0
\(292\) −18.1834 19.2607i −1.06411 1.12715i
\(293\) 20.1305i 1.17604i 0.808848 + 0.588018i \(0.200092\pi\)
−0.808848 + 0.588018i \(0.799908\pi\)
\(294\) 0 0
\(295\) −6.62289 −0.385600
\(296\) 18.5376 6.75742i 1.07747 0.392767i
\(297\) 0 0
\(298\) −1.70221 + 3.94793i −0.0986062 + 0.228698i
\(299\) 22.4410i 1.29780i
\(300\) 0 0
\(301\) 4.74952i 0.273758i
\(302\) −2.38521 1.02842i −0.137253 0.0591787i
\(303\) 0 0
\(304\) 28.4806 + 1.64011i 1.63347 + 0.0940668i
\(305\) 16.2529 0.930637
\(306\) 0 0
\(307\) 2.24089i 0.127894i 0.997953 + 0.0639471i \(0.0203689\pi\)
−0.997953 + 0.0639471i \(0.979631\pi\)
\(308\) −2.14863 + 2.02845i −0.122429 + 0.115582i
\(309\) 0 0
\(310\) 0.896143 2.07843i 0.0508975 0.118047i
\(311\) 15.6919 0.889807 0.444904 0.895578i \(-0.353238\pi\)
0.444904 + 0.895578i \(0.353238\pi\)
\(312\) 0 0
\(313\) −12.1167 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(314\) −5.63066 + 13.0592i −0.317756 + 0.736973i
\(315\) 0 0
\(316\) −22.4354 23.7646i −1.26209 1.33686i
\(317\) 11.8958i 0.668132i 0.942550 + 0.334066i \(0.108421\pi\)
−0.942550 + 0.334066i \(0.891579\pi\)
\(318\) 0 0
\(319\) −1.41480 −0.0792135
\(320\) 12.9529 + 15.4059i 0.724089 + 0.861218i
\(321\) 0 0
\(322\) 12.3817 + 5.33855i 0.690007 + 0.297506i
\(323\) 23.6407i 1.31540i
\(324\) 0 0
\(325\) 4.62502i 0.256550i
\(326\) 7.21939 16.7440i 0.399845 0.927362i
\(327\) 0 0
\(328\) −6.51880 17.8830i −0.359941 0.987421i
\(329\) −1.27403 −0.0702396
\(330\) 0 0
\(331\) 24.7692i 1.36144i −0.732544 0.680719i \(-0.761667\pi\)
0.732544 0.680719i \(-0.238333\pi\)
\(332\) 20.0751 18.9523i 1.10176 1.04014i
\(333\) 0 0
\(334\) −5.81058 2.50531i −0.317941 0.137085i
\(335\) 19.2829 1.05354
\(336\) 0 0
\(337\) −11.2285 −0.611654 −0.305827 0.952087i \(-0.598933\pi\)
−0.305827 + 0.952087i \(0.598933\pi\)
\(338\) 1.17847 + 0.508115i 0.0641004 + 0.0276378i
\(339\) 0 0
\(340\) 12.1285 11.4501i 0.657760 0.620972i
\(341\) 0.636125i 0.0344481i
\(342\) 0 0
\(343\) −17.4591 −0.942703
\(344\) 8.54270 3.11403i 0.460591 0.167898i
\(345\) 0 0
\(346\) 0.102359 0.237401i 0.00550285 0.0127628i
\(347\) 16.0230i 0.860160i −0.902791 0.430080i \(-0.858485\pi\)
0.902791 0.430080i \(-0.141515\pi\)
\(348\) 0 0
\(349\) 9.27513i 0.496486i 0.968698 + 0.248243i \(0.0798532\pi\)
−0.968698 + 0.248243i \(0.920147\pi\)
\(350\) −2.55184 1.10026i −0.136402 0.0588115i
\(351\) 0 0
\(352\) −5.05722 2.53466i −0.269551 0.135098i
\(353\) 9.58150 0.509972 0.254986 0.966945i \(-0.417929\pi\)
0.254986 + 0.966945i \(0.417929\pi\)
\(354\) 0 0
\(355\) 30.9211i 1.64112i
\(356\) 1.44132 + 1.52671i 0.0763897 + 0.0809153i
\(357\) 0 0
\(358\) −11.2498 + 26.0917i −0.594570 + 1.37899i
\(359\) 7.80501 0.411932 0.205966 0.978559i \(-0.433966\pi\)
0.205966 + 0.978559i \(0.433966\pi\)
\(360\) 0 0
\(361\) −31.8647 −1.67709
\(362\) 4.27457 9.91402i 0.224666 0.521069i
\(363\) 0 0
\(364\) −7.47171 + 7.05381i −0.391624 + 0.369720i
\(365\) 33.3212i 1.74411i
\(366\) 0 0
\(367\) 31.4393 1.64112 0.820558 0.571563i \(-0.193663\pi\)
0.820558 + 0.571563i \(0.193663\pi\)
\(368\) −1.48405 + 25.7706i −0.0773614 + 1.34338i
\(369\) 0 0
\(370\) −22.7925 9.82731i −1.18493 0.510897i
\(371\) 19.5782i 1.01645i
\(372\) 0 0
\(373\) 32.0424i 1.65909i −0.558437 0.829547i \(-0.688599\pi\)
0.558437 0.829547i \(-0.311401\pi\)
\(374\) −1.85603 + 4.30469i −0.0959729 + 0.222590i
\(375\) 0 0
\(376\) −0.835322 2.29153i −0.0430785 0.118177i
\(377\) −4.91987 −0.253386
\(378\) 0 0
\(379\) 11.4465i 0.587965i 0.955811 + 0.293983i \(0.0949808\pi\)
−0.955811 + 0.293983i \(0.905019\pi\)
\(380\) −24.6359 26.0954i −1.26379 1.33867i
\(381\) 0 0
\(382\) 29.8615 + 12.8752i 1.52785 + 0.658752i
\(383\) 6.82520 0.348751 0.174376 0.984679i \(-0.444209\pi\)
0.174376 + 0.984679i \(0.444209\pi\)
\(384\) 0 0
\(385\) 3.71715 0.189443
\(386\) 0.954865 + 0.411703i 0.0486014 + 0.0209552i
\(387\) 0 0
\(388\) 22.2571 + 23.5756i 1.12993 + 1.19687i
\(389\) 6.65984i 0.337667i 0.985645 + 0.168834i \(0.0540000\pi\)
−0.985645 + 0.168834i \(0.946000\pi\)
\(390\) 0 0
\(391\) 21.3912 1.08180
\(392\) −4.66633 12.8011i −0.235685 0.646553i
\(393\) 0 0
\(394\) 6.25244 14.5013i 0.314993 0.730565i
\(395\) 41.1130i 2.06862i
\(396\) 0 0
\(397\) 2.42189i 0.121551i −0.998151 0.0607757i \(-0.980643\pi\)
0.998151 0.0607757i \(-0.0193574\pi\)
\(398\) −23.5464 10.1524i −1.18028 0.508892i
\(399\) 0 0
\(400\) 0.305858 5.31125i 0.0152929 0.265562i
\(401\) 9.09122 0.453994 0.226997 0.973895i \(-0.427109\pi\)
0.226997 + 0.973895i \(0.427109\pi\)
\(402\) 0 0
\(403\) 2.21208i 0.110192i
\(404\) −12.5573 + 11.8550i −0.624748 + 0.589806i
\(405\) 0 0
\(406\) −1.17040 + 2.71452i −0.0580861 + 0.134719i
\(407\) 6.97588 0.345782
\(408\) 0 0
\(409\) 9.08013 0.448984 0.224492 0.974476i \(-0.427928\pi\)
0.224492 + 0.974476i \(0.427928\pi\)
\(410\) −9.48029 + 21.9877i −0.468198 + 1.08589i
\(411\) 0 0
\(412\) −6.80283 7.20585i −0.335151 0.355007i
\(413\) 3.88914i 0.191372i
\(414\) 0 0
\(415\) −34.7301 −1.70483
\(416\) −17.5862 8.81410i −0.862232 0.432147i
\(417\) 0 0
\(418\) 9.26187 + 3.99338i 0.453013 + 0.195323i
\(419\) 2.99512i 0.146321i −0.997320 0.0731607i \(-0.976691\pi\)
0.997320 0.0731607i \(-0.0233086\pi\)
\(420\) 0 0
\(421\) 26.6646i 1.29955i 0.760126 + 0.649776i \(0.225137\pi\)
−0.760126 + 0.649776i \(0.774863\pi\)
\(422\) −10.3128 + 23.9184i −0.502017 + 1.16433i
\(423\) 0 0
\(424\) −35.2142 + 12.8365i −1.71015 + 0.623395i
\(425\) −4.40866 −0.213851
\(426\) 0 0
\(427\) 9.54412i 0.461872i
\(428\) 9.22993 8.71370i 0.446146 0.421193i
\(429\) 0 0
\(430\) −10.5035 4.52874i −0.506524 0.218395i
\(431\) −19.5700 −0.942656 −0.471328 0.881958i \(-0.656225\pi\)
−0.471328 + 0.881958i \(0.656225\pi\)
\(432\) 0 0
\(433\) −6.49028 −0.311903 −0.155951 0.987765i \(-0.549844\pi\)
−0.155951 + 0.987765i \(0.549844\pi\)
\(434\) 1.22051 + 0.526239i 0.0585862 + 0.0252603i
\(435\) 0 0
\(436\) −11.5507 + 10.9047i −0.553179 + 0.522239i
\(437\) 46.0247i 2.20166i
\(438\) 0 0
\(439\) 25.3338 1.20912 0.604559 0.796560i \(-0.293349\pi\)
0.604559 + 0.796560i \(0.293349\pi\)
\(440\) 2.43716 + 6.68583i 0.116187 + 0.318735i
\(441\) 0 0
\(442\) −6.45421 + 14.9693i −0.306995 + 0.712016i
\(443\) 1.46196i 0.0694597i 0.999397 + 0.0347299i \(0.0110571\pi\)
−0.999397 + 0.0347299i \(0.988943\pi\)
\(444\) 0 0
\(445\) 2.64122i 0.125206i
\(446\) 18.9152 + 8.15556i 0.895662 + 0.386177i
\(447\) 0 0
\(448\) −9.04677 + 7.60628i −0.427420 + 0.359363i
\(449\) 6.00066 0.283188 0.141594 0.989925i \(-0.454777\pi\)
0.141594 + 0.989925i \(0.454777\pi\)
\(450\) 0 0
\(451\) 6.72955i 0.316882i
\(452\) −6.70345 7.10059i −0.315304 0.333983i
\(453\) 0 0
\(454\) −4.00430 + 9.28719i −0.187931 + 0.435869i
\(455\) 12.9261 0.605986
\(456\) 0 0
\(457\) 17.5689 0.821837 0.410919 0.911672i \(-0.365208\pi\)
0.410919 + 0.911672i \(0.365208\pi\)
\(458\) −3.63114 + 8.42172i −0.169672 + 0.393521i
\(459\) 0 0
\(460\) 23.6123 22.2917i 1.10093 1.03936i
\(461\) 26.1231i 1.21668i 0.793678 + 0.608338i \(0.208163\pi\)
−0.793678 + 0.608338i \(0.791837\pi\)
\(462\) 0 0
\(463\) 20.3258 0.944619 0.472310 0.881433i \(-0.343420\pi\)
0.472310 + 0.881433i \(0.343420\pi\)
\(464\) −5.64983 0.325357i −0.262287 0.0151043i
\(465\) 0 0
\(466\) −14.9066 6.42720i −0.690537 0.297734i
\(467\) 1.29764i 0.0600478i −0.999549 0.0300239i \(-0.990442\pi\)
0.999549 0.0300239i \(-0.00955833\pi\)
\(468\) 0 0
\(469\) 11.3234i 0.522868i
\(470\) −1.21481 + 2.81751i −0.0560349 + 0.129962i
\(471\) 0 0
\(472\) 6.99518 2.54992i 0.321979 0.117370i
\(473\) 3.21471 0.147813
\(474\) 0 0
\(475\) 9.48557i 0.435228i
\(476\) 6.72383 + 7.12217i 0.308186 + 0.326444i
\(477\) 0 0
\(478\) −0.145495 0.0627320i −0.00665476 0.00286929i
\(479\) 28.5133 1.30281 0.651404 0.758731i \(-0.274180\pi\)
0.651404 + 0.758731i \(0.274180\pi\)
\(480\) 0 0
\(481\) 24.2582 1.10608
\(482\) 3.81719 + 1.64584i 0.173868 + 0.0749658i
\(483\) 0 0
\(484\) −1.37296 1.45430i −0.0624072 0.0661045i
\(485\) 40.7861i 1.85200i
\(486\) 0 0
\(487\) −6.03364 −0.273410 −0.136705 0.990612i \(-0.543651\pi\)
−0.136705 + 0.990612i \(0.543651\pi\)
\(488\) −17.1665 + 6.25763i −0.777090 + 0.283270i
\(489\) 0 0
\(490\) −6.78624 + 15.7394i −0.306571 + 0.711031i
\(491\) 4.15408i 0.187471i −0.995597 0.0937354i \(-0.970119\pi\)
0.995597 0.0937354i \(-0.0298808\pi\)
\(492\) 0 0
\(493\) 4.68971i 0.211214i
\(494\) 32.2075 + 13.8867i 1.44909 + 0.624793i
\(495\) 0 0
\(496\) −0.146288 + 2.54029i −0.00656850 + 0.114062i
\(497\) −18.1577 −0.814482
\(498\) 0 0
\(499\) 30.1028i 1.34759i −0.738920 0.673793i \(-0.764664\pi\)
0.738920 0.673793i \(-0.235336\pi\)
\(500\) 13.4283 12.6772i 0.600531 0.566943i
\(501\) 0 0
\(502\) 17.4809 40.5436i 0.780212 1.80955i
\(503\) −14.0368 −0.625869 −0.312935 0.949775i \(-0.601312\pi\)
−0.312935 + 0.949775i \(0.601312\pi\)
\(504\) 0 0
\(505\) 21.7242 0.966716
\(506\) −3.61340 + 8.38057i −0.160635 + 0.372562i
\(507\) 0 0
\(508\) −5.65683 5.99196i −0.250981 0.265850i
\(509\) 16.9844i 0.752821i −0.926453 0.376411i \(-0.877158\pi\)
0.926453 0.376411i \(-0.122842\pi\)
\(510\) 0 0
\(511\) −19.5671 −0.865597
\(512\) −19.6126 11.2849i −0.866760 0.498725i
\(513\) 0 0
\(514\) −9.21702 3.97405i −0.406546 0.175288i
\(515\) 12.4662i 0.549326i
\(516\) 0 0
\(517\) 0.862328i 0.0379251i
\(518\) 5.77085 13.3844i 0.253557 0.588075i
\(519\) 0 0
\(520\) 8.47506 + 23.2495i 0.371656 + 1.01956i
\(521\) 3.66607 0.160613 0.0803066 0.996770i \(-0.474410\pi\)
0.0803066 + 0.996770i \(0.474410\pi\)
\(522\) 0 0
\(523\) 2.91807i 0.127598i −0.997963 0.0637990i \(-0.979678\pi\)
0.997963 0.0637990i \(-0.0203217\pi\)
\(524\) 19.3444 18.2624i 0.845063 0.797799i
\(525\) 0 0
\(526\) −21.2800 9.17516i −0.927851 0.400056i
\(527\) 2.10860 0.0918519
\(528\) 0 0
\(529\) 18.6453 0.810666
\(530\) 43.2970 + 18.6681i 1.88070 + 0.810890i
\(531\) 0 0
\(532\) 15.3239 14.4668i 0.664375 0.627217i
\(533\) 23.4016i 1.01363i
\(534\) 0 0
\(535\) −15.9679 −0.690352
\(536\) −20.3668 + 7.42424i −0.879713 + 0.320678i
\(537\) 0 0
\(538\) 9.58947 22.2409i 0.413431 0.958873i
\(539\) 4.81719i 0.207491i
\(540\) 0 0
\(541\) 16.4673i 0.707984i 0.935248 + 0.353992i \(0.115176\pi\)
−0.935248 + 0.353992i \(0.884824\pi\)
\(542\) 25.3420 + 10.9266i 1.08853 + 0.469337i
\(543\) 0 0
\(544\) −8.40176 + 16.7635i −0.360223 + 0.718727i
\(545\) 19.9828 0.855971
\(546\) 0 0
\(547\) 25.9536i 1.10969i 0.831952 + 0.554847i \(0.187223\pi\)
−0.831952 + 0.554847i \(0.812777\pi\)
\(548\) 9.39714 + 9.95386i 0.401426 + 0.425208i
\(549\) 0 0
\(550\) 0.744712 1.72721i 0.0317546 0.0736486i
\(551\) 10.0903 0.429860
\(552\) 0 0
\(553\) −24.1426 −1.02665
\(554\) −5.91385 + 13.7160i −0.251255 + 0.582737i
\(555\) 0 0
\(556\) 17.7375 16.7454i 0.752236 0.710163i
\(557\) 13.0152i 0.551473i 0.961233 + 0.275737i \(0.0889217\pi\)
−0.961233 + 0.275737i \(0.911078\pi\)
\(558\) 0 0
\(559\) 11.1789 0.472819
\(560\) 14.8440 + 0.854821i 0.627274 + 0.0361228i
\(561\) 0 0
\(562\) 15.0635 + 6.49483i 0.635415 + 0.273968i
\(563\) 27.9837i 1.17937i 0.807632 + 0.589687i \(0.200749\pi\)
−0.807632 + 0.589687i \(0.799251\pi\)
\(564\) 0 0
\(565\) 12.2841i 0.516795i
\(566\) −12.1076 + 28.0811i −0.508918 + 1.18034i
\(567\) 0 0
\(568\) −11.9051 32.6592i −0.499528 1.37035i
\(569\) 10.6048 0.444574 0.222287 0.974981i \(-0.428648\pi\)
0.222287 + 0.974981i \(0.428648\pi\)
\(570\) 0 0
\(571\) 1.82472i 0.0763622i −0.999271 0.0381811i \(-0.987844\pi\)
0.999271 0.0381811i \(-0.0121564\pi\)
\(572\) −4.77437 5.05722i −0.199627 0.211453i
\(573\) 0 0
\(574\) −12.9117 5.56707i −0.538925 0.232365i
\(575\) −8.58298 −0.357935
\(576\) 0 0
\(577\) 23.3377 0.971560 0.485780 0.874081i \(-0.338536\pi\)
0.485780 + 0.874081i \(0.338536\pi\)
\(578\) −7.80798 3.36652i −0.324769 0.140029i
\(579\) 0 0
\(580\) 4.88714 + 5.17667i 0.202927 + 0.214949i
\(581\) 20.3944i 0.846103i
\(582\) 0 0
\(583\) −13.2515 −0.548821
\(584\) −12.8292 35.1943i −0.530877 1.45635i
\(585\) 0 0
\(586\) −11.2716 + 26.1424i −0.465627 + 1.07993i
\(587\) 30.3967i 1.25461i 0.778775 + 0.627303i \(0.215841\pi\)
−0.778775 + 0.627303i \(0.784159\pi\)
\(588\) 0 0
\(589\) 4.53681i 0.186936i
\(590\) −8.60079 3.70835i −0.354089 0.152670i
\(591\) 0 0
\(592\) 27.8574 + 1.60422i 1.14493 + 0.0659331i
\(593\) −39.3809 −1.61718 −0.808590 0.588373i \(-0.799769\pi\)
−0.808590 + 0.588373i \(0.799769\pi\)
\(594\) 0 0
\(595\) 12.3214i 0.505130i
\(596\) −4.42113 + 4.17385i −0.181096 + 0.170968i
\(597\) 0 0
\(598\) −12.5654 + 29.1429i −0.513835 + 1.19174i
\(599\) 35.9183 1.46758 0.733792 0.679374i \(-0.237749\pi\)
0.733792 + 0.679374i \(0.237749\pi\)
\(600\) 0 0
\(601\) 13.8292 0.564104 0.282052 0.959399i \(-0.408985\pi\)
0.282052 + 0.959399i \(0.408985\pi\)
\(602\) 2.65939 6.16794i 0.108389 0.251386i
\(603\) 0 0
\(604\) −2.52170 2.67110i −0.102607 0.108685i
\(605\) 2.51595i 0.102288i
\(606\) 0 0
\(607\) 19.7004 0.799615 0.399807 0.916599i \(-0.369077\pi\)
0.399807 + 0.916599i \(0.369077\pi\)
\(608\) 36.0679 + 18.0770i 1.46274 + 0.733121i
\(609\) 0 0
\(610\) 21.1067 + 9.10046i 0.854586 + 0.368467i
\(611\) 2.99869i 0.121314i
\(612\) 0 0
\(613\) 31.7465i 1.28223i −0.767445 0.641114i \(-0.778472\pi\)
0.767445 0.641114i \(-0.221528\pi\)
\(614\) −1.25474 + 2.91012i −0.0506371 + 0.117443i
\(615\) 0 0
\(616\) −3.92610 + 1.43116i −0.158187 + 0.0576632i
\(617\) 27.5402 1.10873 0.554363 0.832275i \(-0.312962\pi\)
0.554363 + 0.832275i \(0.312962\pi\)
\(618\) 0 0
\(619\) 19.6108i 0.788224i −0.919063 0.394112i \(-0.871052\pi\)
0.919063 0.394112i \(-0.128948\pi\)
\(620\) 2.32754 2.19736i 0.0934764 0.0882483i
\(621\) 0 0
\(622\) 20.3782 + 8.78636i 0.817093 + 0.352301i
\(623\) 1.55099 0.0621392
\(624\) 0 0
\(625\) −29.8811 −1.19525
\(626\) −15.7353 6.78449i −0.628908 0.271163i
\(627\) 0 0
\(628\) −14.6244 + 13.8065i −0.583579 + 0.550939i
\(629\) 23.1233i 0.921988i
\(630\) 0 0
\(631\) 17.6518 0.702705 0.351353 0.936243i \(-0.385722\pi\)
0.351353 + 0.936243i \(0.385722\pi\)
\(632\) −15.8292 43.4240i −0.629651 1.72731i
\(633\) 0 0
\(634\) −6.66078 + 15.4484i −0.264533 + 0.613533i
\(635\) 10.3662i 0.411368i
\(636\) 0 0
\(637\) 16.7515i 0.663717i
\(638\) −1.83732 0.792187i −0.0727403 0.0313630i
\(639\) 0 0
\(640\) 8.19499 + 27.2596i 0.323936 + 1.07753i
\(641\) −16.7617 −0.662047 −0.331024 0.943622i \(-0.607394\pi\)
−0.331024 + 0.943622i \(0.607394\pi\)
\(642\) 0 0
\(643\) 22.1367i 0.872984i 0.899708 + 0.436492i \(0.143779\pi\)
−0.899708 + 0.436492i \(0.856221\pi\)
\(644\) 13.0903 + 13.8658i 0.515829 + 0.546388i
\(645\) 0 0
\(646\) 13.2371 30.7008i 0.520806 1.20791i
\(647\) −22.7792 −0.895544 −0.447772 0.894148i \(-0.647782\pi\)
−0.447772 + 0.894148i \(0.647782\pi\)
\(648\) 0 0
\(649\) 2.63236 0.103329
\(650\) 2.58969 6.00627i 0.101576 0.235585i
\(651\) 0 0
\(652\) 18.7509 17.7021i 0.734340 0.693268i
\(653\) 35.9327i 1.40615i −0.711114 0.703077i \(-0.751809\pi\)
0.711114 0.703077i \(-0.248191\pi\)
\(654\) 0 0
\(655\) −33.4660 −1.30762
\(656\) 1.54757 26.8737i 0.0604226 1.04924i
\(657\) 0 0
\(658\) −1.65451 0.713367i −0.0644997 0.0278099i
\(659\) 1.49362i 0.0581831i 0.999577 + 0.0290916i \(0.00926144\pi\)
−0.999577 + 0.0290916i \(0.990739\pi\)
\(660\) 0 0
\(661\) 44.3160i 1.72369i −0.507170 0.861846i \(-0.669308\pi\)
0.507170 0.861846i \(-0.330692\pi\)
\(662\) 13.8690 32.1664i 0.539034 1.25018i
\(663\) 0 0
\(664\) 36.6823 13.3717i 1.42355 0.518921i
\(665\) −26.5105 −1.02803
\(666\) 0 0
\(667\) 9.13015i 0.353521i
\(668\) −6.14308 6.50702i −0.237683 0.251764i
\(669\) 0 0
\(670\) 25.0417 + 10.7971i 0.967444 + 0.417127i
\(671\) −6.45993 −0.249383
\(672\) 0 0
\(673\) −33.8921 −1.30644 −0.653222 0.757166i \(-0.726583\pi\)
−0.653222 + 0.757166i \(0.726583\pi\)
\(674\) −14.5818 6.28715i −0.561671 0.242172i
\(675\) 0 0
\(676\) 1.24591 + 1.31972i 0.0479196 + 0.0507585i
\(677\) 7.57568i 0.291157i −0.989347 0.145578i \(-0.953496\pi\)
0.989347 0.145578i \(-0.0465043\pi\)
\(678\) 0 0
\(679\) 23.9507 0.919143
\(680\) 22.1619 8.07858i 0.849870 0.309800i
\(681\) 0 0
\(682\) −0.356185 + 0.826100i −0.0136390 + 0.0316330i
\(683\) 16.1346i 0.617374i −0.951164 0.308687i \(-0.900110\pi\)
0.951164 0.308687i \(-0.0998896\pi\)
\(684\) 0 0
\(685\) 17.2203i 0.657953i
\(686\) −22.6732 9.77586i −0.865666 0.373244i
\(687\) 0 0
\(688\) 12.8376 + 0.739276i 0.489428 + 0.0281847i
\(689\) −46.0812 −1.75555
\(690\) 0 0
\(691\) 10.5531i 0.401457i −0.979647 0.200729i \(-0.935669\pi\)
0.979647 0.200729i \(-0.0643309\pi\)
\(692\) 0.265856 0.250987i 0.0101063 0.00954108i
\(693\) 0 0
\(694\) 8.97175 20.8082i 0.340563 0.789869i
\(695\) −30.6860 −1.16399
\(696\) 0 0
\(697\) −22.3068 −0.844931
\(698\) −5.19341 + 12.0451i −0.196574 + 0.455914i
\(699\) 0 0
\(700\) −2.69787 2.85770i −0.101970 0.108011i
\(701\) 43.8782i 1.65726i 0.559800 + 0.828628i \(0.310878\pi\)
−0.559800 + 0.828628i \(0.689122\pi\)
\(702\) 0 0
\(703\) −49.7516 −1.87642
\(704\) −5.14831 6.12331i −0.194034 0.230781i
\(705\) 0 0
\(706\) 12.4430 + 5.36496i 0.468297 + 0.201913i
\(707\) 12.7570i 0.479778i
\(708\) 0 0
\(709\) 4.31359i 0.162000i −0.996714 0.0810002i \(-0.974189\pi\)
0.996714 0.0810002i \(-0.0258115\pi\)
\(710\) −17.3136 + 40.1555i −0.649768 + 1.50701i
\(711\) 0 0
\(712\) 1.01691 + 2.78969i 0.0381104 + 0.104548i
\(713\) 4.10511 0.153738
\(714\) 0 0
\(715\) 8.74905i 0.327196i
\(716\) −29.2190 + 27.5848i −1.09196 + 1.03089i
\(717\) 0 0
\(718\) 10.1359 + 4.37025i 0.378270 + 0.163096i
\(719\) 0.793243 0.0295830 0.0147915 0.999891i \(-0.495292\pi\)
0.0147915 + 0.999891i \(0.495292\pi\)
\(720\) 0 0
\(721\) −7.32048 −0.272629
\(722\) −41.3809 17.8420i −1.54004 0.664009i
\(723\) 0 0
\(724\) 11.1023 10.4813i 0.412614 0.389536i
\(725\) 1.88170i 0.0698845i
\(726\) 0 0
\(727\) −38.5654 −1.43031 −0.715155 0.698966i \(-0.753644\pi\)
−0.715155 + 0.698966i \(0.753644\pi\)
\(728\) −13.6527 + 4.97678i −0.506004 + 0.184452i
\(729\) 0 0
\(730\) −18.6575 + 43.2724i −0.690546 + 1.60158i
\(731\) 10.6560i 0.394125i
\(732\) 0 0
\(733\) 35.3659i 1.30627i −0.757242 0.653134i \(-0.773454\pi\)
0.757242 0.653134i \(-0.226546\pi\)
\(734\) 40.8284 + 17.6038i 1.50701 + 0.649766i
\(735\) 0 0
\(736\) −16.3569 + 32.6359i −0.602925 + 1.20297i
\(737\) −7.66426 −0.282317
\(738\) 0 0
\(739\) 41.6624i 1.53258i 0.642497 + 0.766288i \(0.277899\pi\)
−0.642497 + 0.766288i \(0.722101\pi\)
\(740\) −24.0968 25.5244i −0.885816 0.938294i
\(741\) 0 0
\(742\) −10.9624 + 25.4251i −0.402442 + 0.933385i
\(743\) −33.2692 −1.22053 −0.610264 0.792198i \(-0.708937\pi\)
−0.610264 + 0.792198i \(0.708937\pi\)
\(744\) 0 0
\(745\) 7.64859 0.280223
\(746\) 17.9415 41.6118i 0.656885 1.52351i
\(747\) 0 0
\(748\) −4.82064 + 4.55102i −0.176260 + 0.166402i
\(749\) 9.37676i 0.342619i
\(750\) 0 0
\(751\) −3.69284 −0.134754 −0.0673768 0.997728i \(-0.521463\pi\)
−0.0673768 + 0.997728i \(0.521463\pi\)
\(752\) 0.198307 3.44361i 0.00723150 0.125575i
\(753\) 0 0
\(754\) −6.38916 2.75478i −0.232680 0.100323i
\(755\) 4.62103i 0.168176i
\(756\) 0 0
\(757\) 19.2210i 0.698600i −0.937011 0.349300i \(-0.886419\pi\)
0.937011 0.349300i \(-0.113581\pi\)
\(758\) −6.40920 + 14.8649i −0.232793 + 0.539917i
\(759\) 0 0
\(760\) −17.3817 47.6830i −0.630500 1.72964i
\(761\) 9.79341 0.355011 0.177505 0.984120i \(-0.443197\pi\)
0.177505 + 0.984120i \(0.443197\pi\)
\(762\) 0 0
\(763\) 11.7345i 0.424816i
\(764\) 31.5703 + 33.4406i 1.14217 + 1.20984i
\(765\) 0 0
\(766\) 8.86351 + 3.82163i 0.320252 + 0.138081i
\(767\) 9.15386 0.330527
\(768\) 0 0
\(769\) −48.2853 −1.74121 −0.870606 0.491981i \(-0.836273\pi\)
−0.870606 + 0.491981i \(0.836273\pi\)
\(770\) 4.82726 + 2.08134i 0.173962 + 0.0750063i
\(771\) 0 0
\(772\) 1.00951 + 1.06931i 0.0363329 + 0.0384854i
\(773\) 21.0475i 0.757025i −0.925596 0.378513i \(-0.876436\pi\)
0.925596 0.378513i \(-0.123564\pi\)
\(774\) 0 0
\(775\) −0.846053 −0.0303911
\(776\) 15.7033 + 43.0788i 0.563717 + 1.54644i
\(777\) 0 0
\(778\) −3.72904 + 8.64877i −0.133692 + 0.310073i
\(779\) 47.9948i 1.71959i
\(780\) 0 0
\(781\) 12.2900i 0.439771i
\(782\) 27.7795 + 11.9775i 0.993394 + 0.428316i
\(783\) 0 0
\(784\) 1.10779 19.2369i 0.0395641 0.687032i
\(785\) 25.3005 0.903012
\(786\) 0 0
\(787\) 18.2077i 0.649034i −0.945880 0.324517i \(-0.894798\pi\)
0.945880 0.324517i \(-0.105202\pi\)
\(788\) 16.2394 15.3311i 0.578504 0.546149i
\(789\) 0 0
\(790\) −23.0204 + 53.3912i −0.819027 + 1.89957i
\(791\) −7.21354 −0.256484
\(792\) 0 0
\(793\) −22.4640 −0.797719
\(794\) 1.35609 3.14518i 0.0481258 0.111618i
\(795\) 0 0
\(796\) −24.8939 26.3687i −0.882339 0.934612i
\(797\) 40.2274i 1.42493i 0.701709 + 0.712463i \(0.252421\pi\)
−0.701709 + 0.712463i \(0.747579\pi\)
\(798\) 0 0
\(799\) −2.85840 −0.101123
\(800\) 3.37112 6.72617i 0.119187 0.237806i
\(801\) 0 0
\(802\) 11.8063 + 5.09044i 0.416894 + 0.179750i
\(803\) 13.2440i 0.467370i
\(804\) 0 0
\(805\) 23.9879i 0.845464i
\(806\) −1.23861 + 2.87271i −0.0436281 + 0.101187i
\(807\) 0 0
\(808\) −22.9454 + 8.36419i −0.807216 + 0.294251i
\(809\) −27.8044 −0.977552 −0.488776 0.872409i \(-0.662556\pi\)
−0.488776 + 0.872409i \(0.662556\pi\)
\(810\) 0 0
\(811\) 7.59987i 0.266868i −0.991058 0.133434i \(-0.957400\pi\)
0.991058 0.133434i \(-0.0426004\pi\)
\(812\) −3.03988 + 2.86985i −0.106679 + 0.100712i
\(813\) 0 0
\(814\) 9.05920 + 3.90600i 0.317525 + 0.136905i
\(815\) −32.4392 −1.13629
\(816\) 0 0
\(817\) −22.9271 −0.802119
\(818\) 11.7919 + 5.08423i 0.412293 + 0.177766i
\(819\) 0 0
\(820\) −24.6231 + 23.2459i −0.859874 + 0.811781i
\(821\) 26.6456i 0.929937i −0.885327 0.464968i \(-0.846066\pi\)
0.885327 0.464968i \(-0.153934\pi\)
\(822\) 0 0
\(823\) 35.5588 1.23950 0.619751 0.784799i \(-0.287234\pi\)
0.619751 + 0.784799i \(0.287234\pi\)
\(824\) −4.79969 13.1669i −0.167205 0.458692i
\(825\) 0 0
\(826\) 2.17764 5.05061i 0.0757698 0.175733i
\(827\) 3.03188i 0.105429i 0.998610 + 0.0527145i \(0.0167873\pi\)
−0.998610 + 0.0527145i \(0.983213\pi\)
\(828\) 0 0
\(829\) 35.0569i 1.21758i 0.793332 + 0.608789i \(0.208344\pi\)
−0.793332 + 0.608789i \(0.791656\pi\)
\(830\) −45.1021 19.4464i −1.56552 0.674994i
\(831\) 0 0
\(832\) −17.9029 21.2934i −0.620672 0.738215i
\(833\) −15.9678 −0.553252
\(834\) 0 0
\(835\) 11.2572i 0.389572i
\(836\) 9.79187 + 10.3720i 0.338659 + 0.358722i
\(837\) 0 0
\(838\) 1.67706 3.88960i 0.0579329 0.134364i
\(839\) 6.41520 0.221477 0.110739 0.993850i \(-0.464678\pi\)
0.110739 + 0.993850i \(0.464678\pi\)
\(840\) 0 0
\(841\) 26.9983 0.930977
\(842\) −14.9303 + 34.6278i −0.514531 + 1.19335i
\(843\) 0 0
\(844\) −26.7852 + 25.2871i −0.921985 + 0.870419i
\(845\) 2.28313i 0.0785421i
\(846\) 0 0
\(847\) −1.47743 −0.0507652
\(848\) −52.9183 3.04740i −1.81722 0.104648i
\(849\) 0 0
\(850\) −5.72529 2.46854i −0.196376 0.0846701i
\(851\) 45.0176i 1.54318i
\(852\) 0 0
\(853\) 10.5605i 0.361585i 0.983521 + 0.180793i \(0.0578663\pi\)
−0.983521 + 0.180793i \(0.942134\pi\)
\(854\) −5.34403 + 12.3944i −0.182869 + 0.424128i
\(855\) 0 0
\(856\) 16.8655 6.14790i 0.576450 0.210131i
\(857\) 5.03900 0.172129 0.0860644 0.996290i \(-0.472571\pi\)
0.0860644 + 0.996290i \(0.472571\pi\)
\(858\) 0 0
\(859\) 24.5174i 0.836521i 0.908327 + 0.418261i \(0.137360\pi\)
−0.908327 + 0.418261i \(0.862640\pi\)
\(860\) −11.1046 11.7624i −0.378663 0.401096i
\(861\) 0 0
\(862\) −25.4145 10.9578i −0.865623 0.373225i
\(863\) −17.8155 −0.606448 −0.303224 0.952919i \(-0.598063\pi\)
−0.303224 + 0.952919i \(0.598063\pi\)
\(864\) 0 0
\(865\) −0.459934 −0.0156382
\(866\) −8.42857 3.63409i −0.286414 0.123492i
\(867\) 0 0
\(868\) 1.29035 + 1.36679i 0.0437973 + 0.0463920i
\(869\) 16.3409i 0.554328i
\(870\) 0 0
\(871\) −26.6520 −0.903067
\(872\) −21.1061 + 7.69373i −0.714743 + 0.260542i
\(873\) 0 0
\(874\) 25.7706 59.7698i 0.871703 2.02174i
\(875\) 13.6419i 0.461180i
\(876\) 0 0
\(877\) 22.4071i 0.756634i 0.925676 + 0.378317i \(0.123497\pi\)
−0.925676 + 0.378317i \(0.876503\pi\)
\(878\) 32.8997 + 14.1852i 1.11031 + 0.478726i
\(879\) 0 0
\(880\) −0.578585 + 10.0472i −0.0195041 + 0.338690i
\(881\) 12.0016 0.404345 0.202172 0.979350i \(-0.435200\pi\)
0.202172 + 0.979350i \(0.435200\pi\)
\(882\) 0 0
\(883\) 27.9363i 0.940130i −0.882632 0.470065i \(-0.844230\pi\)
0.882632 0.470065i \(-0.155770\pi\)
\(884\) −16.7635 + 15.8259i −0.563816 + 0.532282i
\(885\) 0 0
\(886\) −0.818593 + 1.89857i −0.0275012 + 0.0637836i
\(887\) 48.6903 1.63486 0.817430 0.576028i \(-0.195398\pi\)
0.817430 + 0.576028i \(0.195398\pi\)
\(888\) 0 0
\(889\) −6.08728 −0.204161
\(890\) 1.47890 3.43001i 0.0495727 0.114974i
\(891\) 0 0
\(892\) 19.9976 + 21.1824i 0.669570 + 0.709238i
\(893\) 6.15008i 0.205804i
\(894\) 0 0
\(895\) 50.5492 1.68967
\(896\) −16.0075 + 4.81232i −0.534774 + 0.160768i
\(897\) 0 0
\(898\) 7.79272 + 3.35994i 0.260047 + 0.112123i
\(899\) 0.899988i 0.0300163i
\(900\) 0 0
\(901\) 43.9254i 1.46337i
\(902\) 3.76807 8.73930i 0.125463 0.290987i
\(903\) 0 0
\(904\) −4.72958 12.9746i −0.157303 0.431529i
\(905\) −19.2071 −0.638465
\(906\) 0 0
\(907\) 48.2773i 1.60302i −0.597981 0.801510i \(-0.704030\pi\)
0.597981 0.801510i \(-0.295970\pi\)
\(908\) −10.4003 + 9.81864i −0.345147 + 0.325843i
\(909\) 0 0
\(910\) 16.7865 + 7.23772i 0.556466 + 0.239928i
\(911\) −43.1688 −1.43025 −0.715123 0.698998i \(-0.753630\pi\)
−0.715123 + 0.698998i \(0.753630\pi\)
\(912\) 0 0
\(913\) 13.8040 0.456844
\(914\) 22.8157 + 9.83732i 0.754677 + 0.325390i
\(915\) 0 0
\(916\) −9.43113 + 8.90364i −0.311613 + 0.294185i
\(917\) 19.6521i 0.648970i
\(918\) 0 0
\(919\) 36.1457 1.19234 0.596168 0.802860i \(-0.296689\pi\)
0.596168 + 0.802860i \(0.296689\pi\)
\(920\) 43.1458 15.7278i 1.42247 0.518529i
\(921\) 0 0
\(922\) −14.6271 + 33.9247i −0.481718 + 1.11725i
\(923\) 42.7377i 1.40673i
\(924\) 0 0
\(925\) 9.27801i 0.305059i
\(926\) 26.3960 + 11.3810i 0.867426 + 0.374003i
\(927\) 0 0
\(928\) −7.15495 3.58603i −0.234873 0.117717i
\(929\) −26.1901 −0.859269 −0.429634 0.903003i \(-0.641358\pi\)
−0.429634 + 0.903003i \(0.641358\pi\)
\(930\) 0 0
\(931\) 34.3560i 1.12597i
\(932\) −15.7597 16.6933i −0.516225 0.546808i
\(933\) 0 0
\(934\) 0.726588 1.68518i 0.0237747 0.0551407i
\(935\) 8.33976 0.272739
\(936\) 0 0
\(937\) −14.6547 −0.478749 −0.239375 0.970927i \(-0.576942\pi\)
−0.239375 + 0.970927i \(0.576942\pi\)
\(938\) −6.34032 + 14.7051i −0.207019 + 0.480139i
\(939\) 0 0
\(940\) −3.15521 + 2.97874i −0.102912 + 0.0971557i
\(941\) 5.50159i 0.179347i −0.995971 0.0896734i \(-0.971418\pi\)
0.995971 0.0896734i \(-0.0285823\pi\)
\(942\) 0 0
\(943\) −43.4279 −1.41421
\(944\) 10.5120 + 0.605356i 0.342137 + 0.0197026i
\(945\) 0 0
\(946\) 4.17477 + 1.80001i 0.135733 + 0.0585233i
\(947\) 1.00019i 0.0325019i 0.999868 + 0.0162509i \(0.00517306\pi\)
−0.999868 + 0.0162509i \(0.994827\pi\)
\(948\) 0 0
\(949\) 46.0551i 1.49501i
\(950\) −5.31125 + 12.3184i −0.172320 + 0.399661i
\(951\) 0 0
\(952\) 4.74396 + 13.0140i 0.153753 + 0.421788i
\(953\) −55.6770 −1.80356 −0.901778 0.432200i \(-0.857737\pi\)
−0.901778 + 0.432200i \(0.857737\pi\)
\(954\) 0 0
\(955\) 57.8526i 1.87207i
\(956\) −0.153820 0.162933i −0.00497490 0.00526964i
\(957\) 0 0
\(958\) 37.0287 + 15.9654i 1.19634 + 0.515820i
\(959\) 10.1122 0.326540
\(960\) 0 0
\(961\) −30.5953 −0.986947
\(962\) 31.5028 + 13.5829i 1.01569 + 0.437929i
\(963\) 0 0
\(964\) 4.03563 + 4.27471i 0.129979 + 0.137679i
\(965\) 1.84992i 0.0595511i
\(966\) 0 0
\(967\) −25.9869 −0.835682 −0.417841 0.908520i \(-0.637213\pi\)
−0.417841 + 0.908520i \(0.637213\pi\)
\(968\) −0.968683 2.65738i −0.0311347 0.0854113i
\(969\) 0 0
\(970\) 22.8373 52.9667i 0.733262 1.70066i
\(971\) 16.0587i 0.515349i −0.966232 0.257675i \(-0.917044\pi\)
0.966232 0.257675i \(-0.0829563\pi\)
\(972\) 0 0
\(973\) 18.0196i 0.577683i
\(974\) −7.83556 3.37841i −0.251068 0.108251i
\(975\) 0 0
\(976\) −25.7970 1.48557i −0.825742 0.0475519i
\(977\) 5.40488 0.172918 0.0864588 0.996255i \(-0.472445\pi\)
0.0864588 + 0.996255i \(0.472445\pi\)
\(978\) 0 0
\(979\) 1.04979i 0.0335514i
\(980\) −17.6258 + 16.6400i −0.563037 + 0.531546i
\(981\) 0 0
\(982\) 2.32599 5.39467i 0.0742252 0.172151i
\(983\) 36.4792 1.16350 0.581752 0.813366i \(-0.302367\pi\)
0.581752 + 0.813366i \(0.302367\pi\)
\(984\) 0 0
\(985\) −28.0943 −0.895159
\(986\) −2.62590 + 6.09027i −0.0836258 + 0.193954i
\(987\) 0 0
\(988\) 34.0506 + 36.0679i 1.08329 + 1.14747i
\(989\) 20.7455i 0.659670i
\(990\) 0 0
\(991\) 48.2714 1.53339 0.766696 0.642010i \(-0.221899\pi\)
0.766696 + 0.642010i \(0.221899\pi\)
\(992\) −1.61236 + 3.21702i −0.0511924 + 0.102141i
\(993\) 0 0
\(994\) −23.5804 10.1670i −0.747924 0.322478i
\(995\) 45.6181i 1.44619i
\(996\) 0 0
\(997\) 8.78994i 0.278380i −0.990266 0.139190i \(-0.955550\pi\)
0.990266 0.139190i \(-0.0444499\pi\)
\(998\) 16.8554 39.0929i 0.533549 1.23746i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.f.g.397.10 10
3.2 odd 2 88.2.c.a.45.1 10
4.3 odd 2 3168.2.f.g.1585.2 10
8.3 odd 2 3168.2.f.g.1585.9 10
8.5 even 2 inner 792.2.f.g.397.9 10
12.11 even 2 352.2.c.a.177.5 10
24.5 odd 2 88.2.c.a.45.2 yes 10
24.11 even 2 352.2.c.a.177.6 10
33.2 even 10 968.2.o.h.565.4 40
33.5 odd 10 968.2.o.g.245.10 40
33.8 even 10 968.2.o.h.493.8 40
33.14 odd 10 968.2.o.g.493.3 40
33.17 even 10 968.2.o.h.245.1 40
33.20 odd 10 968.2.o.g.565.7 40
33.26 odd 10 968.2.o.g.269.6 40
33.29 even 10 968.2.o.h.269.5 40
33.32 even 2 968.2.c.d.485.10 10
48.5 odd 4 2816.2.a.r.1.3 5
48.11 even 4 2816.2.a.q.1.3 5
48.29 odd 4 2816.2.a.o.1.3 5
48.35 even 4 2816.2.a.p.1.3 5
132.131 odd 2 3872.2.c.f.1937.5 10
264.5 odd 10 968.2.o.g.245.7 40
264.29 even 10 968.2.o.h.269.8 40
264.53 odd 10 968.2.o.g.565.10 40
264.101 even 10 968.2.o.h.565.1 40
264.125 odd 10 968.2.o.g.269.3 40
264.131 odd 2 3872.2.c.f.1937.6 10
264.149 even 10 968.2.o.h.245.4 40
264.173 even 10 968.2.o.h.493.5 40
264.197 even 2 968.2.c.d.485.9 10
264.245 odd 10 968.2.o.g.493.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.1 10 3.2 odd 2
88.2.c.a.45.2 yes 10 24.5 odd 2
352.2.c.a.177.5 10 12.11 even 2
352.2.c.a.177.6 10 24.11 even 2
792.2.f.g.397.9 10 8.5 even 2 inner
792.2.f.g.397.10 10 1.1 even 1 trivial
968.2.c.d.485.9 10 264.197 even 2
968.2.c.d.485.10 10 33.32 even 2
968.2.o.g.245.7 40 264.5 odd 10
968.2.o.g.245.10 40 33.5 odd 10
968.2.o.g.269.3 40 264.125 odd 10
968.2.o.g.269.6 40 33.26 odd 10
968.2.o.g.493.3 40 33.14 odd 10
968.2.o.g.493.6 40 264.245 odd 10
968.2.o.g.565.7 40 33.20 odd 10
968.2.o.g.565.10 40 264.53 odd 10
968.2.o.h.245.1 40 33.17 even 10
968.2.o.h.245.4 40 264.149 even 10
968.2.o.h.269.5 40 33.29 even 10
968.2.o.h.269.8 40 264.29 even 10
968.2.o.h.493.5 40 264.173 even 10
968.2.o.h.493.8 40 33.8 even 10
968.2.o.h.565.1 40 264.101 even 10
968.2.o.h.565.4 40 33.2 even 10
2816.2.a.o.1.3 5 48.29 odd 4
2816.2.a.p.1.3 5 48.35 even 4
2816.2.a.q.1.3 5 48.11 even 4
2816.2.a.r.1.3 5 48.5 odd 4
3168.2.f.g.1585.2 10 4.3 odd 2
3168.2.f.g.1585.9 10 8.3 odd 2
3872.2.c.f.1937.5 10 132.131 odd 2
3872.2.c.f.1937.6 10 264.131 odd 2