Properties

Label 352.2.m.c.289.2
Level $352$
Weight $2$
Character 352.289
Analytic conductor $2.811$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(97,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.484000000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} + 16x^{4} + 66x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 289.2
Root \(0.476925 + 1.46782i\) of defining polynomial
Character \(\chi\) \(=\) 352.289
Dual form 352.2.m.c.257.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.476925 + 1.46782i) q^{3} +(0.309017 + 0.224514i) q^{5} +(-0.476925 + 1.46782i) q^{7} +(0.500000 - 0.363271i) q^{9} +(1.54336 + 2.93565i) q^{11} +(-1.30902 + 0.951057i) q^{13} +(-0.182169 + 0.560659i) q^{15} +(0.690983 + 0.502029i) q^{17} +(1.43078 + 4.40347i) q^{19} -2.38197 q^{21} -4.99442 q^{23} +(-1.50000 - 4.61653i) q^{25} +(4.51750 + 3.28216i) q^{27} +(-0.0450850 + 0.138757i) q^{29} +(1.72553 - 1.25367i) q^{31} +(-3.57295 + 3.66547i) q^{33} +(-0.476925 + 0.346506i) q^{35} +(0.572949 - 1.76336i) q^{37} +(-2.02029 - 1.46782i) q^{39} +(0.190983 + 0.587785i) q^{41} +1.90770 q^{43} +0.236068 q^{45} +(-2.97414 - 9.15345i) q^{47} +(3.73607 + 2.71441i) q^{49} +(-0.407343 + 1.25367i) q^{51} +(6.92705 - 5.03280i) q^{53} +(-0.182169 + 1.25367i) q^{55} +(-5.78115 + 4.20025i) q^{57} +(3.19931 - 9.84647i) q^{59} +(10.1631 + 7.38394i) q^{61} +(0.294756 + 0.907165i) q^{63} -0.618034 q^{65} -8.08115 q^{67} +(-2.38197 - 7.33094i) q^{69} +(-8.85283 - 6.43196i) q^{71} +(3.04508 - 9.37181i) q^{73} +(6.06086 - 4.40347i) q^{75} +(-5.04508 + 0.865300i) q^{77} +(12.8934 - 9.36761i) q^{79} +(-2.09017 + 6.43288i) q^{81} +(-8.85283 - 6.43196i) q^{83} +(0.100813 + 0.310271i) q^{85} -0.225173 q^{87} +8.18034 q^{89} +(-0.771681 - 2.37499i) q^{91} +(2.66312 + 1.93487i) q^{93} +(-0.546507 + 1.68198i) q^{95} +(2.54508 - 1.84911i) q^{97} +(1.83812 + 0.907165i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} + 4 q^{9} - 6 q^{13} + 10 q^{17} - 28 q^{21} - 12 q^{25} + 22 q^{29} - 42 q^{33} + 18 q^{37} + 6 q^{41} - 16 q^{45} + 12 q^{49} + 42 q^{53} - 6 q^{57} + 50 q^{61} + 4 q^{65} - 28 q^{69} + 2 q^{73}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.476925 + 1.46782i 0.275353 + 0.847449i 0.989126 + 0.147072i \(0.0469848\pi\)
−0.713773 + 0.700377i \(0.753015\pi\)
\(4\) 0 0
\(5\) 0.309017 + 0.224514i 0.138197 + 0.100406i 0.654736 0.755858i \(-0.272780\pi\)
−0.516539 + 0.856264i \(0.672780\pi\)
\(6\) 0 0
\(7\) −0.476925 + 1.46782i −0.180261 + 0.554785i −0.999835 0.0181881i \(-0.994210\pi\)
0.819574 + 0.572974i \(0.194210\pi\)
\(8\) 0 0
\(9\) 0.500000 0.363271i 0.166667 0.121090i
\(10\) 0 0
\(11\) 1.54336 + 2.93565i 0.465341 + 0.885131i
\(12\) 0 0
\(13\) −1.30902 + 0.951057i −0.363056 + 0.263776i −0.754326 0.656500i \(-0.772036\pi\)
0.391270 + 0.920276i \(0.372036\pi\)
\(14\) 0 0
\(15\) −0.182169 + 0.560659i −0.0470359 + 0.144762i
\(16\) 0 0
\(17\) 0.690983 + 0.502029i 0.167588 + 0.121760i 0.668418 0.743786i \(-0.266972\pi\)
−0.500830 + 0.865546i \(0.666972\pi\)
\(18\) 0 0
\(19\) 1.43078 + 4.40347i 0.328242 + 1.01023i 0.969956 + 0.243282i \(0.0782239\pi\)
−0.641713 + 0.766945i \(0.721776\pi\)
\(20\) 0 0
\(21\) −2.38197 −0.519788
\(22\) 0 0
\(23\) −4.99442 −1.04141 −0.520705 0.853737i \(-0.674331\pi\)
−0.520705 + 0.853737i \(0.674331\pi\)
\(24\) 0 0
\(25\) −1.50000 4.61653i −0.300000 0.923305i
\(26\) 0 0
\(27\) 4.51750 + 3.28216i 0.869393 + 0.631651i
\(28\) 0 0
\(29\) −0.0450850 + 0.138757i −0.00837207 + 0.0257666i −0.955155 0.296105i \(-0.904312\pi\)
0.946783 + 0.321872i \(0.104312\pi\)
\(30\) 0 0
\(31\) 1.72553 1.25367i 0.309915 0.225166i −0.421945 0.906621i \(-0.638653\pi\)
0.731860 + 0.681455i \(0.238653\pi\)
\(32\) 0 0
\(33\) −3.57295 + 3.66547i −0.621971 + 0.638076i
\(34\) 0 0
\(35\) −0.476925 + 0.346506i −0.0806150 + 0.0585703i
\(36\) 0 0
\(37\) 0.572949 1.76336i 0.0941922 0.289894i −0.892850 0.450354i \(-0.851298\pi\)
0.987042 + 0.160460i \(0.0512978\pi\)
\(38\) 0 0
\(39\) −2.02029 1.46782i −0.323505 0.235040i
\(40\) 0 0
\(41\) 0.190983 + 0.587785i 0.0298265 + 0.0917966i 0.964862 0.262759i \(-0.0846323\pi\)
−0.935035 + 0.354555i \(0.884632\pi\)
\(42\) 0 0
\(43\) 1.90770 0.290922 0.145461 0.989364i \(-0.453534\pi\)
0.145461 + 0.989364i \(0.453534\pi\)
\(44\) 0 0
\(45\) 0.236068 0.0351909
\(46\) 0 0
\(47\) −2.97414 9.15345i −0.433822 1.33517i −0.894288 0.447491i \(-0.852318\pi\)
0.460466 0.887677i \(-0.347682\pi\)
\(48\) 0 0
\(49\) 3.73607 + 2.71441i 0.533724 + 0.387773i
\(50\) 0 0
\(51\) −0.407343 + 1.25367i −0.0570394 + 0.175549i
\(52\) 0 0
\(53\) 6.92705 5.03280i 0.951504 0.691308i 0.000341607 1.00000i \(-0.499891\pi\)
0.951162 + 0.308692i \(0.0998913\pi\)
\(54\) 0 0
\(55\) −0.182169 + 1.25367i −0.0245637 + 0.169045i
\(56\) 0 0
\(57\) −5.78115 + 4.20025i −0.765732 + 0.556337i
\(58\) 0 0
\(59\) 3.19931 9.84647i 0.416515 1.28190i −0.494374 0.869249i \(-0.664603\pi\)
0.910889 0.412651i \(-0.135397\pi\)
\(60\) 0 0
\(61\) 10.1631 + 7.38394i 1.30125 + 0.945416i 0.999967 0.00811711i \(-0.00258378\pi\)
0.301287 + 0.953534i \(0.402584\pi\)
\(62\) 0 0
\(63\) 0.294756 + 0.907165i 0.0371358 + 0.114292i
\(64\) 0 0
\(65\) −0.618034 −0.0766577
\(66\) 0 0
\(67\) −8.08115 −0.987269 −0.493635 0.869669i \(-0.664332\pi\)
−0.493635 + 0.869669i \(0.664332\pi\)
\(68\) 0 0
\(69\) −2.38197 7.33094i −0.286755 0.882541i
\(70\) 0 0
\(71\) −8.85283 6.43196i −1.05064 0.763333i −0.0783039 0.996930i \(-0.524950\pi\)
−0.972334 + 0.233597i \(0.924950\pi\)
\(72\) 0 0
\(73\) 3.04508 9.37181i 0.356400 1.09689i −0.598793 0.800904i \(-0.704353\pi\)
0.955193 0.295983i \(-0.0956473\pi\)
\(74\) 0 0
\(75\) 6.06086 4.40347i 0.699848 0.508469i
\(76\) 0 0
\(77\) −5.04508 + 0.865300i −0.574941 + 0.0986101i
\(78\) 0 0
\(79\) 12.8934 9.36761i 1.45062 1.05394i 0.464935 0.885345i \(-0.346078\pi\)
0.985686 0.168593i \(-0.0539225\pi\)
\(80\) 0 0
\(81\) −2.09017 + 6.43288i −0.232241 + 0.714765i
\(82\) 0 0
\(83\) −8.85283 6.43196i −0.971724 0.705999i −0.0158803 0.999874i \(-0.505055\pi\)
−0.955844 + 0.293875i \(0.905055\pi\)
\(84\) 0 0
\(85\) 0.100813 + 0.310271i 0.0109347 + 0.0336536i
\(86\) 0 0
\(87\) −0.225173 −0.0241411
\(88\) 0 0
\(89\) 8.18034 0.867114 0.433557 0.901126i \(-0.357258\pi\)
0.433557 + 0.901126i \(0.357258\pi\)
\(90\) 0 0
\(91\) −0.771681 2.37499i −0.0808941 0.248967i
\(92\) 0 0
\(93\) 2.66312 + 1.93487i 0.276153 + 0.200637i
\(94\) 0 0
\(95\) −0.546507 + 1.68198i −0.0560705 + 0.172567i
\(96\) 0 0
\(97\) 2.54508 1.84911i 0.258414 0.187749i −0.451033 0.892507i \(-0.648944\pi\)
0.709448 + 0.704758i \(0.248944\pi\)
\(98\) 0 0
\(99\) 1.83812 + 0.907165i 0.184738 + 0.0911736i
\(100\) 0 0
\(101\) −12.1631 + 8.83702i −1.21028 + 0.879317i −0.995256 0.0972930i \(-0.968982\pi\)
−0.215020 + 0.976610i \(0.568982\pi\)
\(102\) 0 0
\(103\) −2.24546 + 6.91082i −0.221252 + 0.680943i 0.777399 + 0.629008i \(0.216539\pi\)
−0.998650 + 0.0519348i \(0.983461\pi\)
\(104\) 0 0
\(105\) −0.736068 0.534785i −0.0718329 0.0521896i
\(106\) 0 0
\(107\) −2.02029 6.21780i −0.195309 0.601098i −0.999973 0.00736781i \(-0.997655\pi\)
0.804664 0.593730i \(-0.202345\pi\)
\(108\) 0 0
\(109\) −14.4721 −1.38618 −0.693090 0.720851i \(-0.743751\pi\)
−0.693090 + 0.720851i \(0.743751\pi\)
\(110\) 0 0
\(111\) 2.86155 0.271606
\(112\) 0 0
\(113\) −6.04508 18.6049i −0.568674 1.75020i −0.656775 0.754086i \(-0.728080\pi\)
0.0881015 0.996112i \(-0.471920\pi\)
\(114\) 0 0
\(115\) −1.54336 1.12132i −0.143919 0.104563i
\(116\) 0 0
\(117\) −0.309017 + 0.951057i −0.0285686 + 0.0879252i
\(118\) 0 0
\(119\) −1.06644 + 0.774812i −0.0977601 + 0.0710269i
\(120\) 0 0
\(121\) −6.23607 + 9.06154i −0.566915 + 0.823776i
\(122\) 0 0
\(123\) −0.771681 + 0.560659i −0.0695801 + 0.0505529i
\(124\) 0 0
\(125\) 1.16312 3.57971i 0.104033 0.320179i
\(126\) 0 0
\(127\) 13.8473 + 10.0606i 1.22875 + 0.892736i 0.996795 0.0799923i \(-0.0254896\pi\)
0.231950 + 0.972728i \(0.425490\pi\)
\(128\) 0 0
\(129\) 0.909830 + 2.80017i 0.0801061 + 0.246541i
\(130\) 0 0
\(131\) −8.80982 −0.769718 −0.384859 0.922975i \(-0.625750\pi\)
−0.384859 + 0.922975i \(0.625750\pi\)
\(132\) 0 0
\(133\) −7.14590 −0.619628
\(134\) 0 0
\(135\) 0.659094 + 2.02848i 0.0567258 + 0.174584i
\(136\) 0 0
\(137\) 8.16312 + 5.93085i 0.697422 + 0.506707i 0.879092 0.476653i \(-0.158150\pi\)
−0.181669 + 0.983360i \(0.558150\pi\)
\(138\) 0 0
\(139\) 1.65595 5.09649i 0.140456 0.432278i −0.855943 0.517070i \(-0.827023\pi\)
0.996399 + 0.0847920i \(0.0270226\pi\)
\(140\) 0 0
\(141\) 12.0172 8.73102i 1.01203 0.735285i
\(142\) 0 0
\(143\) −4.81225 2.37499i −0.402421 0.198607i
\(144\) 0 0
\(145\) −0.0450850 + 0.0327561i −0.00374410 + 0.00272025i
\(146\) 0 0
\(147\) −2.20246 + 6.77846i −0.181656 + 0.559078i
\(148\) 0 0
\(149\) 16.6353 + 12.0862i 1.36281 + 0.990142i 0.998260 + 0.0589590i \(0.0187781\pi\)
0.364553 + 0.931183i \(0.381222\pi\)
\(150\) 0 0
\(151\) 5.10701 + 15.7178i 0.415603 + 1.27909i 0.911711 + 0.410833i \(0.134762\pi\)
−0.496108 + 0.868261i \(0.665238\pi\)
\(152\) 0 0
\(153\) 0.527864 0.0426753
\(154\) 0 0
\(155\) 0.814685 0.0654371
\(156\) 0 0
\(157\) −4.13525 12.7270i −0.330029 1.01573i −0.969119 0.246593i \(-0.920689\pi\)
0.639090 0.769132i \(-0.279311\pi\)
\(158\) 0 0
\(159\) 10.6909 + 7.76743i 0.847847 + 0.615997i
\(160\) 0 0
\(161\) 2.38197 7.33094i 0.187725 0.577759i
\(162\) 0 0
\(163\) −7.30947 + 5.31064i −0.572522 + 0.415961i −0.836020 0.548698i \(-0.815124\pi\)
0.263499 + 0.964660i \(0.415124\pi\)
\(164\) 0 0
\(165\) −1.92705 + 0.330515i −0.150021 + 0.0257306i
\(166\) 0 0
\(167\) −4.81225 + 3.49631i −0.372383 + 0.270552i −0.758199 0.652024i \(-0.773920\pi\)
0.385815 + 0.922576i \(0.373920\pi\)
\(168\) 0 0
\(169\) −3.20820 + 9.87384i −0.246785 + 0.759526i
\(170\) 0 0
\(171\) 2.31504 + 1.68198i 0.177036 + 0.128624i
\(172\) 0 0
\(173\) −0.517221 1.59184i −0.0393236 0.121026i 0.929468 0.368904i \(-0.120267\pi\)
−0.968791 + 0.247878i \(0.920267\pi\)
\(174\) 0 0
\(175\) 7.49164 0.566314
\(176\) 0 0
\(177\) 15.9787 1.20103
\(178\) 0 0
\(179\) 0.476925 + 1.46782i 0.0356471 + 0.109710i 0.967297 0.253647i \(-0.0816303\pi\)
−0.931650 + 0.363358i \(0.881630\pi\)
\(180\) 0 0
\(181\) 16.4894 + 11.9802i 1.22564 + 0.890483i 0.996556 0.0829230i \(-0.0264255\pi\)
0.229088 + 0.973406i \(0.426426\pi\)
\(182\) 0 0
\(183\) −5.99128 + 18.4393i −0.442888 + 1.36307i
\(184\) 0 0
\(185\) 0.572949 0.416272i 0.0421240 0.0306049i
\(186\) 0 0
\(187\) −0.407343 + 2.80330i −0.0297878 + 0.204997i
\(188\) 0 0
\(189\) −6.97214 + 5.06555i −0.507148 + 0.368465i
\(190\) 0 0
\(191\) −1.06644 + 3.28216i −0.0771647 + 0.237488i −0.982197 0.187855i \(-0.939847\pi\)
0.905032 + 0.425343i \(0.139847\pi\)
\(192\) 0 0
\(193\) −2.69098 1.95511i −0.193701 0.140732i 0.486708 0.873565i \(-0.338198\pi\)
−0.680409 + 0.732833i \(0.738198\pi\)
\(194\) 0 0
\(195\) −0.294756 0.907165i −0.0211079 0.0649635i
\(196\) 0 0
\(197\) −14.1803 −1.01031 −0.505154 0.863029i \(-0.668564\pi\)
−0.505154 + 0.863029i \(0.668564\pi\)
\(198\) 0 0
\(199\) 18.0700 1.28095 0.640474 0.767980i \(-0.278738\pi\)
0.640474 + 0.767980i \(0.278738\pi\)
\(200\) 0 0
\(201\) −3.85410 11.8617i −0.271847 0.836660i
\(202\) 0 0
\(203\) −0.182169 0.132354i −0.0127858 0.00928940i
\(204\) 0 0
\(205\) −0.0729490 + 0.224514i −0.00509498 + 0.0156807i
\(206\) 0 0
\(207\) −2.49721 + 1.81433i −0.173568 + 0.126105i
\(208\) 0 0
\(209\) −10.7188 + 10.9964i −0.741438 + 0.760637i
\(210\) 0 0
\(211\) −19.4312 + 14.1176i −1.33770 + 0.971895i −0.338173 + 0.941084i \(0.609809\pi\)
−0.999525 + 0.0308107i \(0.990191\pi\)
\(212\) 0 0
\(213\) 5.21885 16.0620i 0.357590 1.10055i
\(214\) 0 0
\(215\) 0.589512 + 0.428305i 0.0402044 + 0.0292102i
\(216\) 0 0
\(217\) 1.01722 + 3.13068i 0.0690535 + 0.212525i
\(218\) 0 0
\(219\) 15.2084 1.02769
\(220\) 0 0
\(221\) −1.38197 −0.0929611
\(222\) 0 0
\(223\) 6.65037 + 20.4677i 0.445342 + 1.37062i 0.882108 + 0.471047i \(0.156124\pi\)
−0.436766 + 0.899575i \(0.643876\pi\)
\(224\) 0 0
\(225\) −2.42705 1.76336i −0.161803 0.117557i
\(226\) 0 0
\(227\) 2.97414 9.15345i 0.197400 0.607536i −0.802540 0.596599i \(-0.796518\pi\)
0.999940 0.0109374i \(-0.00348155\pi\)
\(228\) 0 0
\(229\) 7.01722 5.09831i 0.463711 0.336906i −0.331274 0.943535i \(-0.607479\pi\)
0.794985 + 0.606629i \(0.207479\pi\)
\(230\) 0 0
\(231\) −3.67624 6.99262i −0.241879 0.460080i
\(232\) 0 0
\(233\) −13.0172 + 9.45756i −0.852786 + 0.619586i −0.925913 0.377737i \(-0.876702\pi\)
0.0731264 + 0.997323i \(0.476702\pi\)
\(234\) 0 0
\(235\) 1.13602 3.49631i 0.0741057 0.228074i
\(236\) 0 0
\(237\) 19.8992 + 14.4576i 1.29259 + 0.939122i
\(238\) 0 0
\(239\) −4.88184 15.0248i −0.315780 0.971870i −0.975432 0.220300i \(-0.929297\pi\)
0.659652 0.751571i \(-0.270703\pi\)
\(240\) 0 0
\(241\) −7.41641 −0.477733 −0.238866 0.971052i \(-0.576776\pi\)
−0.238866 + 0.971052i \(0.576776\pi\)
\(242\) 0 0
\(243\) 6.31261 0.404954
\(244\) 0 0
\(245\) 0.545085 + 1.67760i 0.0348242 + 0.107178i
\(246\) 0 0
\(247\) −6.06086 4.40347i −0.385643 0.280186i
\(248\) 0 0
\(249\) 5.21885 16.0620i 0.330731 1.01789i
\(250\) 0 0
\(251\) −11.7144 + 8.51099i −0.739405 + 0.537209i −0.892525 0.450998i \(-0.851068\pi\)
0.153120 + 0.988208i \(0.451068\pi\)
\(252\) 0 0
\(253\) −7.70820 14.6619i −0.484611 0.921784i
\(254\) 0 0
\(255\) −0.407343 + 0.295952i −0.0255088 + 0.0185332i
\(256\) 0 0
\(257\) −4.42705 + 13.6251i −0.276152 + 0.849908i 0.712760 + 0.701408i \(0.247445\pi\)
−0.988912 + 0.148500i \(0.952555\pi\)
\(258\) 0 0
\(259\) 2.31504 + 1.68198i 0.143850 + 0.104513i
\(260\) 0 0
\(261\) 0.0278640 + 0.0857567i 0.00172474 + 0.00530821i
\(262\) 0 0
\(263\) −15.7119 −0.968840 −0.484420 0.874835i \(-0.660969\pi\)
−0.484420 + 0.874835i \(0.660969\pi\)
\(264\) 0 0
\(265\) 3.27051 0.200906
\(266\) 0 0
\(267\) 3.90141 + 12.0073i 0.238762 + 0.734835i
\(268\) 0 0
\(269\) −11.1631 8.11048i −0.680627 0.494505i 0.192938 0.981211i \(-0.438198\pi\)
−0.873566 + 0.486706i \(0.838198\pi\)
\(270\) 0 0
\(271\) 7.96856 24.5247i 0.484056 1.48977i −0.349288 0.937015i \(-0.613577\pi\)
0.833344 0.552755i \(-0.186423\pi\)
\(272\) 0 0
\(273\) 3.11803 2.26538i 0.188712 0.137107i
\(274\) 0 0
\(275\) 11.2375 11.5284i 0.677644 0.695191i
\(276\) 0 0
\(277\) −9.16312 + 6.65740i −0.550558 + 0.400004i −0.827991 0.560741i \(-0.810516\pi\)
0.277433 + 0.960745i \(0.410516\pi\)
\(278\) 0 0
\(279\) 0.407343 1.25367i 0.0243870 0.0750554i
\(280\) 0 0
\(281\) −11.6353 8.45351i −0.694101 0.504294i 0.183905 0.982944i \(-0.441126\pi\)
−0.878006 + 0.478650i \(0.841126\pi\)
\(282\) 0 0
\(283\) −6.28603 19.3464i −0.373666 1.15003i −0.944374 0.328873i \(-0.893331\pi\)
0.570708 0.821153i \(-0.306669\pi\)
\(284\) 0 0
\(285\) −2.72949 −0.161681
\(286\) 0 0
\(287\) −0.953850 −0.0563040
\(288\) 0 0
\(289\) −5.02786 15.4742i −0.295757 0.910246i
\(290\) 0 0
\(291\) 3.92799 + 2.85385i 0.230263 + 0.167296i
\(292\) 0 0
\(293\) −2.33688 + 7.19218i −0.136522 + 0.420172i −0.995824 0.0912975i \(-0.970899\pi\)
0.859302 + 0.511469i \(0.170899\pi\)
\(294\) 0 0
\(295\) 3.19931 2.32444i 0.186271 0.135334i
\(296\) 0 0
\(297\) −2.66312 + 18.3273i −0.154530 + 1.06346i
\(298\) 0 0
\(299\) 6.53779 4.74998i 0.378090 0.274698i
\(300\) 0 0
\(301\) −0.909830 + 2.80017i −0.0524417 + 0.161399i
\(302\) 0 0
\(303\) −18.7721 13.6387i −1.07843 0.783524i
\(304\) 0 0
\(305\) 1.48278 + 4.56352i 0.0849037 + 0.261307i
\(306\) 0 0
\(307\) −8.80982 −0.502803 −0.251402 0.967883i \(-0.580891\pi\)
−0.251402 + 0.967883i \(0.580891\pi\)
\(308\) 0 0
\(309\) −11.2148 −0.637987
\(310\) 0 0
\(311\) −3.78882 11.6608i −0.214844 0.661223i −0.999165 0.0408669i \(-0.986988\pi\)
0.784320 0.620356i \(-0.213012\pi\)
\(312\) 0 0
\(313\) 18.8713 + 13.7108i 1.06667 + 0.774981i 0.975311 0.220837i \(-0.0708788\pi\)
0.0913594 + 0.995818i \(0.470879\pi\)
\(314\) 0 0
\(315\) −0.112587 + 0.346506i −0.00634354 + 0.0195234i
\(316\) 0 0
\(317\) 10.5451 7.66145i 0.592271 0.430310i −0.250856 0.968024i \(-0.580712\pi\)
0.843127 + 0.537714i \(0.180712\pi\)
\(318\) 0 0
\(319\) −0.476925 + 0.0817991i −0.0267027 + 0.00457987i
\(320\) 0 0
\(321\) 8.16312 5.93085i 0.455621 0.331028i
\(322\) 0 0
\(323\) −1.22203 + 3.76102i −0.0679955 + 0.209268i
\(324\) 0 0
\(325\) 6.35410 + 4.61653i 0.352462 + 0.256079i
\(326\) 0 0
\(327\) −6.90212 21.2426i −0.381688 1.17472i
\(328\) 0 0
\(329\) 14.8541 0.818933
\(330\) 0 0
\(331\) 3.81540 0.209713 0.104857 0.994487i \(-0.466562\pi\)
0.104857 + 0.994487i \(0.466562\pi\)
\(332\) 0 0
\(333\) −0.354102 1.08981i −0.0194047 0.0597214i
\(334\) 0 0
\(335\) −2.49721 1.81433i −0.136437 0.0991275i
\(336\) 0 0
\(337\) 4.33688 13.3475i 0.236245 0.727087i −0.760709 0.649093i \(-0.775148\pi\)
0.996954 0.0779940i \(-0.0248515\pi\)
\(338\) 0 0
\(339\) 24.4256 17.7462i 1.32662 0.963844i
\(340\) 0 0
\(341\) 6.34346 + 3.13068i 0.343518 + 0.169536i
\(342\) 0 0
\(343\) −14.5063 + 10.5395i −0.783269 + 0.569078i
\(344\) 0 0
\(345\) 0.909830 2.80017i 0.0489836 0.150756i
\(346\) 0 0
\(347\) 14.2116 + 10.3253i 0.762918 + 0.554293i 0.899804 0.436294i \(-0.143709\pi\)
−0.136886 + 0.990587i \(0.543709\pi\)
\(348\) 0 0
\(349\) 3.10081 + 9.54332i 0.165983 + 0.510842i 0.999107 0.0422430i \(-0.0134504\pi\)
−0.833125 + 0.553085i \(0.813450\pi\)
\(350\) 0 0
\(351\) −9.03500 −0.482253
\(352\) 0 0
\(353\) 19.7082 1.04896 0.524481 0.851422i \(-0.324259\pi\)
0.524481 + 0.851422i \(0.324259\pi\)
\(354\) 0 0
\(355\) −1.29161 3.97517i −0.0685516 0.210980i
\(356\) 0 0
\(357\) −1.64590 1.19581i −0.0871102 0.0632892i
\(358\) 0 0
\(359\) 9.14758 28.1534i 0.482791 1.48588i −0.352364 0.935863i \(-0.614622\pi\)
0.835155 0.550015i \(-0.185378\pi\)
\(360\) 0 0
\(361\) −1.97214 + 1.43284i −0.103797 + 0.0754127i
\(362\) 0 0
\(363\) −16.2749 4.83178i −0.854210 0.253603i
\(364\) 0 0
\(365\) 3.04508 2.21238i 0.159387 0.115801i
\(366\) 0 0
\(367\) 8.33290 25.6460i 0.434974 1.33871i −0.458140 0.888880i \(-0.651484\pi\)
0.893113 0.449832i \(-0.148516\pi\)
\(368\) 0 0
\(369\) 0.309017 + 0.224514i 0.0160868 + 0.0116877i
\(370\) 0 0
\(371\) 4.08358 + 12.5680i 0.212009 + 0.652496i
\(372\) 0 0
\(373\) −6.29180 −0.325777 −0.162888 0.986644i \(-0.552081\pi\)
−0.162888 + 0.986644i \(0.552081\pi\)
\(374\) 0 0
\(375\) 5.80911 0.299981
\(376\) 0 0
\(377\) −0.0729490 0.224514i −0.00375707 0.0115631i
\(378\) 0 0
\(379\) −2.67938 1.94668i −0.137631 0.0999945i 0.516840 0.856082i \(-0.327108\pi\)
−0.654470 + 0.756088i \(0.727108\pi\)
\(380\) 0 0
\(381\) −8.16312 + 25.1235i −0.418209 + 1.28712i
\(382\) 0 0
\(383\) −21.3389 + 15.5036i −1.09037 + 0.792197i −0.979461 0.201633i \(-0.935375\pi\)
−0.110905 + 0.993831i \(0.535375\pi\)
\(384\) 0 0
\(385\) −1.75329 0.865300i −0.0893559 0.0440998i
\(386\) 0 0
\(387\) 0.953850 0.693013i 0.0484869 0.0352278i
\(388\) 0 0
\(389\) 7.28115 22.4091i 0.369169 1.13619i −0.578160 0.815924i \(-0.696229\pi\)
0.947329 0.320262i \(-0.103771\pi\)
\(390\) 0 0
\(391\) −3.45106 2.50734i −0.174528 0.126802i
\(392\) 0 0
\(393\) −4.20163 12.9313i −0.211944 0.652297i
\(394\) 0 0
\(395\) 6.08744 0.306292
\(396\) 0 0
\(397\) −14.1803 −0.711691 −0.355845 0.934545i \(-0.615807\pi\)
−0.355845 + 0.934545i \(0.615807\pi\)
\(398\) 0 0
\(399\) −3.40806 10.4889i −0.170616 0.525103i
\(400\) 0 0
\(401\) −11.8713 8.62502i −0.592826 0.430713i 0.250500 0.968117i \(-0.419405\pi\)
−0.843325 + 0.537404i \(0.819405\pi\)
\(402\) 0 0
\(403\) −1.06644 + 3.28216i −0.0531230 + 0.163496i
\(404\) 0 0
\(405\) −2.09017 + 1.51860i −0.103861 + 0.0754597i
\(406\) 0 0
\(407\) 6.06086 1.03952i 0.300426 0.0515270i
\(408\) 0 0
\(409\) 3.69098 2.68166i 0.182507 0.132599i −0.492780 0.870154i \(-0.664019\pi\)
0.675288 + 0.737554i \(0.264019\pi\)
\(410\) 0 0
\(411\) −4.81225 + 14.8106i −0.237371 + 0.730553i
\(412\) 0 0
\(413\) 12.9271 + 9.39205i 0.636099 + 0.462153i
\(414\) 0 0
\(415\) −1.29161 3.97517i −0.0634027 0.195133i
\(416\) 0 0
\(417\) 8.27051 0.405009
\(418\) 0 0
\(419\) 27.3302 1.33517 0.667583 0.744535i \(-0.267329\pi\)
0.667583 + 0.744535i \(0.267329\pi\)
\(420\) 0 0
\(421\) 2.57295 + 7.91872i 0.125398 + 0.385935i 0.993973 0.109622i \(-0.0349640\pi\)
−0.868575 + 0.495557i \(0.834964\pi\)
\(422\) 0 0
\(423\) −4.81225 3.49631i −0.233980 0.169996i
\(424\) 0 0
\(425\) 1.28115 3.94298i 0.0621450 0.191263i
\(426\) 0 0
\(427\) −15.6854 + 11.3961i −0.759068 + 0.551495i
\(428\) 0 0
\(429\) 1.19098 8.19624i 0.0575012 0.395718i
\(430\) 0 0
\(431\) −7.67381 + 5.57535i −0.369634 + 0.268555i −0.757059 0.653346i \(-0.773365\pi\)
0.387425 + 0.921901i \(0.373365\pi\)
\(432\) 0 0
\(433\) −10.2254 + 31.4706i −0.491403 + 1.51238i 0.331086 + 0.943600i \(0.392585\pi\)
−0.822489 + 0.568781i \(0.807415\pi\)
\(434\) 0 0
\(435\) −0.0695824 0.0505546i −0.00333622 0.00242391i
\(436\) 0 0
\(437\) −7.14590 21.9928i −0.341835 1.05206i
\(438\) 0 0
\(439\) 19.6994 0.940199 0.470100 0.882613i \(-0.344218\pi\)
0.470100 + 0.882613i \(0.344218\pi\)
\(440\) 0 0
\(441\) 2.85410 0.135910
\(442\) 0 0
\(443\) 1.79511 + 5.52479i 0.0852884 + 0.262491i 0.984601 0.174815i \(-0.0559327\pi\)
−0.899313 + 0.437306i \(0.855933\pi\)
\(444\) 0 0
\(445\) 2.52786 + 1.83660i 0.119832 + 0.0870632i
\(446\) 0 0
\(447\) −9.80668 + 30.1819i −0.463840 + 1.42755i
\(448\) 0 0
\(449\) −20.8713 + 15.1639i −0.984979 + 0.715629i −0.958816 0.284029i \(-0.908329\pi\)
−0.0261629 + 0.999658i \(0.508329\pi\)
\(450\) 0 0
\(451\) −1.43078 + 1.46782i −0.0673726 + 0.0691172i
\(452\) 0 0
\(453\) −20.6353 + 14.9924i −0.969529 + 0.704404i
\(454\) 0 0
\(455\) 0.294756 0.907165i 0.0138184 0.0425286i
\(456\) 0 0
\(457\) −23.2533 16.8945i −1.08774 0.790292i −0.108726 0.994072i \(-0.534677\pi\)
−0.979017 + 0.203780i \(0.934677\pi\)
\(458\) 0 0
\(459\) 1.47378 + 4.53583i 0.0687901 + 0.211714i
\(460\) 0 0
\(461\) −2.76393 −0.128729 −0.0643646 0.997926i \(-0.520502\pi\)
−0.0643646 + 0.997926i \(0.520502\pi\)
\(462\) 0 0
\(463\) −31.8742 −1.48132 −0.740661 0.671879i \(-0.765487\pi\)
−0.740661 + 0.671879i \(0.765487\pi\)
\(464\) 0 0
\(465\) 0.388544 + 1.19581i 0.0180183 + 0.0554546i
\(466\) 0 0
\(467\) −3.26889 2.37499i −0.151266 0.109901i 0.509578 0.860425i \(-0.329802\pi\)
−0.660844 + 0.750523i \(0.729802\pi\)
\(468\) 0 0
\(469\) 3.85410 11.8617i 0.177966 0.547723i
\(470\) 0 0
\(471\) 16.7088 12.1397i 0.769901 0.559366i
\(472\) 0 0
\(473\) 2.94427 + 5.60034i 0.135378 + 0.257504i
\(474\) 0 0
\(475\) 18.1826 13.2104i 0.834274 0.606136i
\(476\) 0 0
\(477\) 1.63525 5.03280i 0.0748732 0.230436i
\(478\) 0 0
\(479\) 15.3906 + 11.1819i 0.703215 + 0.510916i 0.880978 0.473158i \(-0.156886\pi\)
−0.177763 + 0.984073i \(0.556886\pi\)
\(480\) 0 0
\(481\) 0.927051 + 2.85317i 0.0422699 + 0.130093i
\(482\) 0 0
\(483\) 11.8965 0.541312
\(484\) 0 0
\(485\) 1.20163 0.0545630
\(486\) 0 0
\(487\) 2.97414 + 9.15345i 0.134771 + 0.414783i 0.995554 0.0941891i \(-0.0300258\pi\)
−0.860783 + 0.508972i \(0.830026\pi\)
\(488\) 0 0
\(489\) −11.2812 8.19624i −0.510151 0.370647i
\(490\) 0 0
\(491\) −10.2406 + 31.5173i −0.462152 + 1.42236i 0.400378 + 0.916350i \(0.368879\pi\)
−0.862530 + 0.506007i \(0.831121\pi\)
\(492\) 0 0
\(493\) −0.100813 + 0.0732450i −0.00454039 + 0.00329879i
\(494\) 0 0
\(495\) 0.364338 + 0.693013i 0.0163758 + 0.0311486i
\(496\) 0 0
\(497\) 13.6631 9.92684i 0.612875 0.445279i
\(498\) 0 0
\(499\) −2.74896 + 8.46044i −0.123061 + 0.378741i −0.993543 0.113459i \(-0.963807\pi\)
0.870482 + 0.492200i \(0.163807\pi\)
\(500\) 0 0
\(501\) −7.42705 5.39607i −0.331816 0.241079i
\(502\) 0 0
\(503\) 12.1483 + 37.3886i 0.541666 + 1.66708i 0.728788 + 0.684740i \(0.240084\pi\)
−0.187122 + 0.982337i \(0.559916\pi\)
\(504\) 0 0
\(505\) −5.74265 −0.255544
\(506\) 0 0
\(507\) −16.0231 −0.711612
\(508\) 0 0
\(509\) 3.42705 + 10.5474i 0.151901 + 0.467504i 0.997834 0.0657858i \(-0.0209554\pi\)
−0.845932 + 0.533290i \(0.820955\pi\)
\(510\) 0 0
\(511\) 12.3039 + 8.93930i 0.544292 + 0.395451i
\(512\) 0 0
\(513\) −7.98936 + 24.5887i −0.352739 + 1.08562i
\(514\) 0 0
\(515\) −2.24546 + 1.63142i −0.0989468 + 0.0718891i
\(516\) 0 0
\(517\) 22.2812 22.8581i 0.979924 1.00530i
\(518\) 0 0
\(519\) 2.08987 1.51838i 0.0917351 0.0666494i
\(520\) 0 0
\(521\) 4.13525 12.7270i 0.181169 0.557580i −0.818693 0.574232i \(-0.805301\pi\)
0.999861 + 0.0166519i \(0.00530070\pi\)
\(522\) 0 0
\(523\) −2.90455 2.11028i −0.127007 0.0922762i 0.522468 0.852659i \(-0.325011\pi\)
−0.649475 + 0.760383i \(0.725011\pi\)
\(524\) 0 0
\(525\) 3.57295 + 10.9964i 0.155936 + 0.479923i
\(526\) 0 0
\(527\) 1.82169 0.0793541
\(528\) 0 0
\(529\) 1.94427 0.0845336
\(530\) 0 0
\(531\) −1.97728 6.08545i −0.0858068 0.264086i
\(532\) 0 0
\(533\) −0.809017 0.587785i −0.0350424 0.0254598i
\(534\) 0 0
\(535\) 0.771681 2.37499i 0.0333627 0.102680i
\(536\) 0 0
\(537\) −1.92705 + 1.40008i −0.0831584 + 0.0604181i
\(538\) 0 0
\(539\) −2.20246 + 15.1571i −0.0948665 + 0.652863i
\(540\) 0 0
\(541\) 29.9615 21.7683i 1.28815 0.935892i 0.288379 0.957516i \(-0.406884\pi\)
0.999766 + 0.0216241i \(0.00688369\pi\)
\(542\) 0 0
\(543\) −9.72067 + 29.9171i −0.417154 + 1.28387i
\(544\) 0 0
\(545\) −4.47214 3.24920i −0.191565 0.139180i
\(546\) 0 0
\(547\) 9.59793 + 29.5394i 0.410378 + 1.26301i 0.916320 + 0.400446i \(0.131145\pi\)
−0.505942 + 0.862567i \(0.668855\pi\)
\(548\) 0 0
\(549\) 7.76393 0.331357
\(550\) 0 0
\(551\) −0.675520 −0.0287781
\(552\) 0 0
\(553\) 7.60081 + 23.3929i 0.323219 + 0.994767i
\(554\) 0 0
\(555\) 0.884268 + 0.642458i 0.0375351 + 0.0272708i
\(556\) 0 0
\(557\) −6.13525 + 18.8824i −0.259959 + 0.800072i 0.732853 + 0.680387i \(0.238188\pi\)
−0.992812 + 0.119685i \(0.961812\pi\)
\(558\) 0 0
\(559\) −2.49721 + 1.81433i −0.105621 + 0.0767380i
\(560\) 0 0
\(561\) −4.30902 + 0.739054i −0.181927 + 0.0312029i
\(562\) 0 0
\(563\) 29.4200 21.3749i 1.23991 0.900845i 0.242315 0.970198i \(-0.422093\pi\)
0.997592 + 0.0693528i \(0.0220934\pi\)
\(564\) 0 0
\(565\) 2.30902 7.10642i 0.0971411 0.298969i
\(566\) 0 0
\(567\) −8.44549 6.13600i −0.354677 0.257688i
\(568\) 0 0
\(569\) 1.98936 + 6.12261i 0.0833982 + 0.256673i 0.984057 0.177854i \(-0.0569155\pi\)
−0.900659 + 0.434527i \(0.856915\pi\)
\(570\) 0 0
\(571\) −39.6771 −1.66043 −0.830217 0.557441i \(-0.811783\pi\)
−0.830217 + 0.557441i \(0.811783\pi\)
\(572\) 0 0
\(573\) −5.32624 −0.222507
\(574\) 0 0
\(575\) 7.49164 + 23.0569i 0.312423 + 0.961539i
\(576\) 0 0
\(577\) −0.309017 0.224514i −0.0128645 0.00934664i 0.581334 0.813665i \(-0.302531\pi\)
−0.594199 + 0.804318i \(0.702531\pi\)
\(578\) 0 0
\(579\) 1.58637 4.88233i 0.0659271 0.202903i
\(580\) 0 0
\(581\) 13.6631 9.92684i 0.566842 0.411835i
\(582\) 0 0
\(583\) 25.4655 + 12.5680i 1.05467 + 0.520512i
\(584\) 0 0
\(585\) −0.309017 + 0.224514i −0.0127763 + 0.00928251i
\(586\) 0 0
\(587\) −0.476925 + 1.46782i −0.0196848 + 0.0605836i −0.960416 0.278568i \(-0.910140\pi\)
0.940732 + 0.339152i \(0.110140\pi\)
\(588\) 0 0
\(589\) 7.98936 + 5.80461i 0.329196 + 0.239175i
\(590\) 0 0
\(591\) −6.76296 20.8142i −0.278191 0.856184i
\(592\) 0 0
\(593\) 38.6525 1.58727 0.793633 0.608396i \(-0.208187\pi\)
0.793633 + 0.608396i \(0.208187\pi\)
\(594\) 0 0
\(595\) −0.503503 −0.0206416
\(596\) 0 0
\(597\) 8.61803 + 26.5236i 0.352713 + 1.08554i
\(598\) 0 0
\(599\) 21.3389 + 15.5036i 0.871883 + 0.633460i 0.931092 0.364785i \(-0.118858\pi\)
−0.0592083 + 0.998246i \(0.518858\pi\)
\(600\) 0 0
\(601\) 8.31559 25.5928i 0.339200 1.04395i −0.625416 0.780292i \(-0.715071\pi\)
0.964616 0.263659i \(-0.0849294\pi\)
\(602\) 0 0
\(603\) −4.04057 + 2.93565i −0.164545 + 0.119549i
\(604\) 0 0
\(605\) −3.96149 + 1.40008i −0.161058 + 0.0569215i
\(606\) 0 0
\(607\) −0.771681 + 0.560659i −0.0313216 + 0.0227564i −0.603336 0.797487i \(-0.706162\pi\)
0.572014 + 0.820244i \(0.306162\pi\)
\(608\) 0 0
\(609\) 0.107391 0.330515i 0.00435170 0.0133931i
\(610\) 0 0
\(611\) 12.5986 + 9.15345i 0.509687 + 0.370309i
\(612\) 0 0
\(613\) 5.51722 + 16.9803i 0.222838 + 0.685826i 0.998504 + 0.0546819i \(0.0174145\pi\)
−0.775665 + 0.631144i \(0.782586\pi\)
\(614\) 0 0
\(615\) −0.364338 −0.0146915
\(616\) 0 0
\(617\) −10.0689 −0.405358 −0.202679 0.979245i \(-0.564965\pi\)
−0.202679 + 0.979245i \(0.564965\pi\)
\(618\) 0 0
\(619\) −11.2805 34.7177i −0.453400 1.39542i −0.873003 0.487714i \(-0.837831\pi\)
0.419604 0.907707i \(-0.362169\pi\)
\(620\) 0 0
\(621\) −22.5623 16.3925i −0.905394 0.657807i
\(622\) 0 0
\(623\) −3.90141 + 12.0073i −0.156307 + 0.481062i
\(624\) 0 0
\(625\) −18.4721 + 13.4208i −0.738885 + 0.536832i
\(626\) 0 0
\(627\) −21.2529 10.4889i −0.848758 0.418887i
\(628\) 0 0
\(629\) 1.28115 0.930812i 0.0510829 0.0371139i
\(630\) 0 0
\(631\) 1.29161 3.97517i 0.0514182 0.158249i −0.922050 0.387070i \(-0.873487\pi\)
0.973468 + 0.228821i \(0.0734871\pi\)
\(632\) 0 0
\(633\) −29.9894 21.7885i −1.19197 0.866017i
\(634\) 0 0
\(635\) 2.02029 + 6.21780i 0.0801726 + 0.246746i
\(636\) 0 0
\(637\) −7.47214 −0.296057
\(638\) 0 0
\(639\) −6.76296 −0.267539
\(640\) 0 0
\(641\) 3.39261 + 10.4414i 0.134000 + 0.412410i 0.995433 0.0954614i \(-0.0304327\pi\)
−0.861433 + 0.507871i \(0.830433\pi\)
\(642\) 0 0
\(643\) −35.9578 26.1249i −1.41804 1.03026i −0.992092 0.125517i \(-0.959941\pi\)
−0.425947 0.904748i \(-0.640059\pi\)
\(644\) 0 0
\(645\) −0.347524 + 1.06957i −0.0136838 + 0.0421143i
\(646\) 0 0
\(647\) 37.5012 27.2462i 1.47432 1.07116i 0.494992 0.868897i \(-0.335171\pi\)
0.979332 0.202261i \(-0.0648291\pi\)
\(648\) 0 0
\(649\) 33.8435 5.80461i 1.32847 0.227851i
\(650\) 0 0
\(651\) −4.11016 + 2.98620i −0.161090 + 0.117039i
\(652\) 0 0
\(653\) −3.33688 + 10.2699i −0.130582 + 0.401891i −0.994877 0.101095i \(-0.967765\pi\)
0.864295 + 0.502986i \(0.167765\pi\)
\(654\) 0 0
\(655\) −2.72239 1.97793i −0.106372 0.0772841i
\(656\) 0 0
\(657\) −1.88197 5.79210i −0.0734225 0.225971i
\(658\) 0 0
\(659\) 11.1679 0.435039 0.217519 0.976056i \(-0.430204\pi\)
0.217519 + 0.976056i \(0.430204\pi\)
\(660\) 0 0
\(661\) −31.4164 −1.22196 −0.610978 0.791647i \(-0.709224\pi\)
−0.610978 + 0.791647i \(0.709224\pi\)
\(662\) 0 0
\(663\) −0.659094 2.02848i −0.0255971 0.0787798i
\(664\) 0 0
\(665\) −2.20820 1.60435i −0.0856305 0.0622142i
\(666\) 0 0
\(667\) 0.225173 0.693013i 0.00871875 0.0268336i
\(668\) 0 0
\(669\) −26.8713 + 19.5232i −1.03891 + 0.754809i
\(670\) 0 0
\(671\) −5.99128 + 41.2314i −0.231291 + 1.59172i
\(672\) 0 0
\(673\) 35.9058 26.0871i 1.38407 1.00558i 0.387578 0.921837i \(-0.373312\pi\)
0.996487 0.0837457i \(-0.0266883\pi\)
\(674\) 0 0
\(675\) 8.37590 25.7784i 0.322389 0.992210i
\(676\) 0 0
\(677\) −19.3992 14.0943i −0.745571 0.541689i 0.148880 0.988855i \(-0.452433\pi\)
−0.894451 + 0.447166i \(0.852433\pi\)
\(678\) 0 0
\(679\) 1.50036 + 4.61763i 0.0575784 + 0.177208i
\(680\) 0 0
\(681\) 14.8541 0.569210
\(682\) 0 0
\(683\) −26.1511 −1.00065 −0.500323 0.865839i \(-0.666785\pi\)
−0.500323 + 0.865839i \(0.666785\pi\)
\(684\) 0 0
\(685\) 1.19098 + 3.66547i 0.0455051 + 0.140050i
\(686\) 0 0
\(687\) 10.8301 + 7.86854i 0.413195 + 0.300203i
\(688\) 0 0
\(689\) −4.28115 + 13.1760i −0.163099 + 0.501967i
\(690\) 0 0
\(691\) 16.3445 11.8749i 0.621773 0.451744i −0.231768 0.972771i \(-0.574451\pi\)
0.853540 + 0.521027i \(0.174451\pi\)
\(692\) 0 0
\(693\) −2.20820 + 2.26538i −0.0838827 + 0.0860548i
\(694\) 0 0
\(695\) 1.65595 1.20312i 0.0628137 0.0456368i
\(696\) 0 0
\(697\) −0.163119 + 0.502029i −0.00617857 + 0.0190157i
\(698\) 0 0
\(699\) −20.0903 14.5964i −0.759884 0.552088i
\(700\) 0 0
\(701\) −7.33688 22.5806i −0.277110 0.852857i −0.988653 0.150215i \(-0.952003\pi\)
0.711543 0.702642i \(-0.247997\pi\)
\(702\) 0 0
\(703\) 8.58465 0.323776
\(704\) 0 0
\(705\) 5.67376 0.213686
\(706\) 0 0
\(707\) −7.17030 22.0679i −0.269667 0.829950i
\(708\) 0 0
\(709\) 9.39919 + 6.82891i 0.352994 + 0.256465i 0.750124 0.661297i \(-0.229994\pi\)
−0.397130 + 0.917762i \(0.629994\pi\)
\(710\) 0 0
\(711\) 3.04372 9.36761i 0.114148 0.351313i
\(712\) 0 0
\(713\) −8.61803 + 6.26137i −0.322748 + 0.234490i
\(714\) 0 0
\(715\) −0.953850 1.81433i −0.0356720 0.0678521i
\(716\) 0 0
\(717\) 19.7254 14.3314i 0.736659 0.535214i
\(718\) 0 0
\(719\) 7.37905 22.7104i 0.275192 0.846954i −0.713976 0.700170i \(-0.753108\pi\)
0.989169 0.146784i \(-0.0468924\pi\)
\(720\) 0 0
\(721\) −9.07295 6.59188i −0.337894 0.245495i
\(722\) 0 0
\(723\) −3.53707 10.8860i −0.131545 0.404854i
\(724\) 0 0
\(725\) 0.708204 0.0263020
\(726\) 0 0
\(727\) −11.4462 −0.424516 −0.212258 0.977214i \(-0.568082\pi\)
−0.212258 + 0.977214i \(0.568082\pi\)
\(728\) 0 0
\(729\) 9.28115 + 28.5645i 0.343746 + 1.05794i
\(730\) 0 0
\(731\) 1.31819 + 0.957720i 0.0487550 + 0.0354226i
\(732\) 0 0
\(733\) −1.98936 + 6.12261i −0.0734786 + 0.226144i −0.981050 0.193753i \(-0.937934\pi\)
0.907572 + 0.419897i \(0.137934\pi\)
\(734\) 0 0
\(735\) −2.20246 + 1.60018i −0.0812388 + 0.0590235i
\(736\) 0 0
\(737\) −12.4721 23.7234i −0.459417 0.873863i
\(738\) 0 0
\(739\) 14.0724 10.2242i 0.517663 0.376104i −0.298060 0.954547i \(-0.596340\pi\)
0.815723 + 0.578443i \(0.196340\pi\)
\(740\) 0 0
\(741\) 3.57295 10.9964i 0.131256 0.403963i
\(742\) 0 0
\(743\) −10.0319 7.28857i −0.368033 0.267392i 0.388362 0.921507i \(-0.373041\pi\)
−0.756395 + 0.654115i \(0.773041\pi\)
\(744\) 0 0
\(745\) 2.42705 + 7.46969i 0.0889203 + 0.273668i
\(746\) 0 0
\(747\) −6.76296 −0.247444
\(748\) 0 0
\(749\) 10.0902 0.368687
\(750\) 0 0
\(751\) −13.7777 42.4033i −0.502754 1.54732i −0.804513 0.593935i \(-0.797574\pi\)
0.301759 0.953384i \(-0.402426\pi\)
\(752\) 0 0
\(753\) −18.0795 13.1355i −0.658855 0.478686i
\(754\) 0 0
\(755\) −1.95070 + 6.00365i −0.0709934 + 0.218495i
\(756\) 0 0
\(757\) −26.0172 + 18.9026i −0.945612 + 0.687027i −0.949765 0.312964i \(-0.898678\pi\)
0.00415299 + 0.999991i \(0.498678\pi\)
\(758\) 0 0
\(759\) 17.8448 18.3069i 0.647726 0.664499i
\(760\) 0 0
\(761\) −15.2533 + 11.0822i −0.552931 + 0.401728i −0.828865 0.559449i \(-0.811013\pi\)
0.275934 + 0.961177i \(0.411013\pi\)
\(762\) 0 0
\(763\) 6.90212 21.2426i 0.249874 0.769032i
\(764\) 0 0
\(765\) 0.163119 + 0.118513i 0.00589758 + 0.00428484i
\(766\) 0 0
\(767\) 5.17659 + 15.9319i 0.186916 + 0.575268i
\(768\) 0 0
\(769\) −25.1246 −0.906017 −0.453008 0.891506i \(-0.649649\pi\)
−0.453008 + 0.891506i \(0.649649\pi\)
\(770\) 0 0
\(771\) −22.1106 −0.796293
\(772\) 0 0
\(773\) 16.7533 + 51.5613i 0.602574 + 1.85453i 0.512679 + 0.858581i \(0.328653\pi\)
0.0898953 + 0.995951i \(0.471347\pi\)
\(774\) 0 0
\(775\) −8.37590 6.08545i −0.300871 0.218596i
\(776\) 0 0
\(777\) −1.36475 + 4.20025i −0.0489600 + 0.150683i
\(778\) 0 0
\(779\) −2.31504 + 1.68198i −0.0829450 + 0.0602631i
\(780\) 0 0
\(781\) 5.21885 35.9156i 0.186745 1.28516i
\(782\) 0 0
\(783\) −0.659094 + 0.478860i −0.0235541 + 0.0171131i
\(784\) 0 0
\(785\) 1.57953 4.86128i 0.0563757 0.173507i
\(786\) 0 0
\(787\) −14.8011 10.7536i −0.527602 0.383326i 0.291858 0.956462i \(-0.405727\pi\)
−0.819460 + 0.573136i \(0.805727\pi\)
\(788\) 0 0
\(789\) −7.49342 23.0624i −0.266773 0.821043i
\(790\) 0 0
\(791\) 30.1917 1.07349
\(792\) 0 0
\(793\) −20.3262 −0.721806
\(794\) 0 0
\(795\) 1.55979 + 4.80053i 0.0553200 + 0.170257i
\(796\) 0 0
\(797\) −30.7254 22.3233i −1.08835 0.790733i −0.109230 0.994016i \(-0.534839\pi\)
−0.979120 + 0.203284i \(0.934839\pi\)
\(798\) 0 0
\(799\) 2.54022 7.81798i 0.0898664 0.276580i
\(800\) 0 0
\(801\) 4.09017 2.97168i 0.144519 0.104999i
\(802\) 0 0
\(803\) 32.2120 5.52479i 1.13674 0.194966i
\(804\) 0 0
\(805\) 2.38197 1.73060i 0.0839533 0.0609956i
\(806\) 0 0
\(807\) 6.58079 20.2536i 0.231655 0.712960i
\(808\) 0 0
\(809\) −6.30902 4.58377i −0.221813 0.161157i 0.471329 0.881957i \(-0.343774\pi\)
−0.693143 + 0.720801i \(0.743774\pi\)
\(810\) 0 0
\(811\) −6.56436 20.2030i −0.230506 0.709425i −0.997686 0.0679925i \(-0.978341\pi\)
0.767180 0.641432i \(-0.221659\pi\)
\(812\) 0 0
\(813\) 39.7984 1.39579
\(814\) 0 0
\(815\) −3.45106 −0.120885
\(816\) 0 0
\(817\) 2.72949 + 8.40051i 0.0954928 + 0.293897i
\(818\) 0 0
\(819\) −1.24861 0.907165i −0.0436298 0.0316989i
\(820\) 0 0
\(821\) −4.66312 + 14.3516i −0.162744 + 0.500874i −0.998863 0.0476737i \(-0.984819\pi\)
0.836119 + 0.548548i \(0.184819\pi\)
\(822\) 0 0
\(823\) −36.1830 + 26.2885i −1.26126 + 0.916359i −0.998819 0.0485890i \(-0.984528\pi\)
−0.262441 + 0.964948i \(0.584528\pi\)
\(824\) 0 0
\(825\) 22.2812 + 10.9964i 0.775730 + 0.382846i
\(826\) 0 0
\(827\) −14.8011 + 10.7536i −0.514685 + 0.373940i −0.814598 0.580026i \(-0.803042\pi\)
0.299913 + 0.953967i \(0.403042\pi\)
\(828\) 0 0
\(829\) −4.06637 + 12.5150i −0.141231 + 0.434664i −0.996507 0.0835084i \(-0.973387\pi\)
0.855276 + 0.518172i \(0.173387\pi\)
\(830\) 0 0
\(831\) −14.1420 10.2748i −0.490581 0.356428i
\(832\) 0 0
\(833\) 1.21885 + 3.75123i 0.0422305 + 0.129972i
\(834\) 0 0
\(835\) −2.27204 −0.0786271
\(836\) 0 0
\(837\) 11.9098 0.411664
\(838\) 0 0
\(839\) 5.24618 + 16.1461i 0.181118 + 0.557424i 0.999860 0.0167377i \(-0.00532801\pi\)
−0.818742 + 0.574162i \(0.805328\pi\)
\(840\) 0 0
\(841\) 23.4443 + 17.0333i 0.808423 + 0.587354i
\(842\) 0 0
\(843\) 6.85912 21.1102i 0.236241 0.727074i
\(844\) 0 0
\(845\) −3.20820 + 2.33090i −0.110366 + 0.0801853i
\(846\) 0 0
\(847\) −10.3266 13.4751i −0.354826 0.463011i
\(848\) 0 0
\(849\) 25.3992 18.4536i 0.871698 0.633326i
\(850\) 0 0
\(851\) −2.86155 + 8.80695i −0.0980927 + 0.301898i
\(852\) 0 0
\(853\) −28.1074 20.4212i −0.962379 0.699209i −0.00867675 0.999962i \(-0.502762\pi\)
−0.953702 + 0.300753i \(0.902762\pi\)
\(854\) 0 0
\(855\) 0.337760 + 1.03952i 0.0115512 + 0.0355508i
\(856\) 0 0
\(857\) 31.1246 1.06320 0.531598 0.846997i \(-0.321592\pi\)
0.531598 + 0.846997i \(0.321592\pi\)
\(858\) 0 0
\(859\) 3.81540 0.130180 0.0650899 0.997879i \(-0.479267\pi\)
0.0650899 + 0.997879i \(0.479267\pi\)
\(860\) 0 0
\(861\) −0.454915 1.40008i −0.0155035 0.0477148i
\(862\) 0 0
\(863\) −9.21717 6.69666i −0.313756 0.227957i 0.419750 0.907640i \(-0.362118\pi\)
−0.733506 + 0.679682i \(0.762118\pi\)
\(864\) 0 0
\(865\) 0.197561 0.608030i 0.00671727 0.0206736i
\(866\) 0 0
\(867\) 20.3155 14.7600i 0.689949 0.501277i
\(868\) 0 0
\(869\) 47.3992 + 23.3929i 1.60791 + 0.793550i
\(870\) 0 0
\(871\) 10.5784 7.68563i 0.358434 0.260418i
\(872\) 0 0
\(873\) 0.600813 1.84911i 0.0203344 0.0625830i
\(874\) 0 0
\(875\) 4.69967 + 3.41451i 0.158878 + 0.115431i
\(876\) 0 0
\(877\) 7.62868 + 23.4787i 0.257602 + 0.792818i 0.993306 + 0.115514i \(0.0368516\pi\)
−0.735704 + 0.677304i \(0.763148\pi\)
\(878\) 0 0
\(879\) −11.6714 −0.393666
\(880\) 0 0
\(881\) −1.23607 −0.0416442 −0.0208221 0.999783i \(-0.506628\pi\)
−0.0208221 + 0.999783i \(0.506628\pi\)
\(882\) 0 0
\(883\) 6.42520 + 19.7747i 0.216225 + 0.665473i 0.999064 + 0.0432485i \(0.0137707\pi\)
−0.782839 + 0.622224i \(0.786229\pi\)
\(884\) 0 0
\(885\) 4.93769 + 3.58744i 0.165979 + 0.120591i
\(886\) 0 0
\(887\) 4.65666 14.3317i 0.156355 0.481213i −0.841940 0.539571i \(-0.818587\pi\)
0.998296 + 0.0583581i \(0.0185865\pi\)
\(888\) 0 0
\(889\) −21.3713 + 15.5272i −0.716771 + 0.520765i
\(890\) 0 0
\(891\) −22.1106 + 3.79226i −0.740732 + 0.127045i
\(892\) 0 0
\(893\) 36.0517 26.1931i 1.20642 0.876518i
\(894\) 0 0
\(895\) −0.182169 + 0.560659i −0.00608924 + 0.0187408i
\(896\) 0 0
\(897\) 10.0902 + 7.33094i 0.336901 + 0.244773i
\(898\) 0 0
\(899\) 0.0961606 + 0.295952i 0.00320713 + 0.00987054i
\(900\) 0 0
\(901\) 7.31308 0.243634
\(902\) 0 0
\(903\) −4.54408 −0.151217
\(904\) 0 0
\(905\) 2.40576 + 7.40418i 0.0799703 + 0.246123i
\(906\) 0 0
\(907\) 35.3683 + 25.6966i 1.17439 + 0.853241i 0.991527 0.129898i \(-0.0414651\pi\)
0.182858 + 0.983139i \(0.441465\pi\)
\(908\) 0 0
\(909\) −2.87132 + 8.83702i −0.0952358 + 0.293106i
\(910\) 0 0
\(911\) 1.95070 1.41727i 0.0646297 0.0469562i −0.555001 0.831849i \(-0.687282\pi\)
0.619631 + 0.784893i \(0.287282\pi\)
\(912\) 0 0
\(913\) 5.21885 35.9156i 0.172719 1.18863i
\(914\) 0 0
\(915\) −5.99128 + 4.35292i −0.198066 + 0.143903i
\(916\) 0 0
\(917\) 4.20163 12.9313i 0.138750 0.427028i
\(918\) 0 0
\(919\) −1.13602 0.825366i −0.0374738 0.0272263i 0.568891 0.822413i \(-0.307373\pi\)
−0.606364 + 0.795187i \(0.707373\pi\)
\(920\) 0 0
\(921\) −4.20163 12.9313i −0.138448 0.426100i
\(922\) 0 0
\(923\) 17.7057 0.582789
\(924\) 0 0
\(925\) −9.00000 −0.295918
\(926\) 0 0
\(927\) 1.38777 + 4.27112i 0.0455804 + 0.140282i
\(928\) 0 0
\(929\) −40.9615 29.7603i −1.34390 0.976403i −0.999291 0.0376576i \(-0.988010\pi\)
−0.344612 0.938745i \(-0.611990\pi\)
\(930\) 0 0
\(931\) −6.60737 + 20.3354i −0.216548 + 0.666465i
\(932\) 0 0
\(933\) 15.3090 11.1227i 0.501195 0.364139i
\(934\) 0 0
\(935\) −0.755255 + 0.774812i −0.0246995 + 0.0253391i
\(936\) 0 0
\(937\) 0.163119 0.118513i 0.00532886 0.00387165i −0.585118 0.810948i \(-0.698952\pi\)
0.590446 + 0.807077i \(0.298952\pi\)
\(938\) 0 0
\(939\) −11.1249 + 34.2388i −0.363046 + 1.11734i
\(940\) 0 0
\(941\) −19.0172 13.8168i −0.619944 0.450415i 0.232958 0.972487i \(-0.425159\pi\)
−0.852902 + 0.522071i \(0.825159\pi\)
\(942\) 0 0
\(943\) −0.953850 2.93565i −0.0310616 0.0955979i
\(944\) 0 0
\(945\) −3.29180 −0.107082
\(946\) 0 0
\(947\) 23.7931 0.773172 0.386586 0.922253i \(-0.373654\pi\)
0.386586 + 0.922253i \(0.373654\pi\)
\(948\) 0 0
\(949\) 4.92705 + 15.1639i 0.159939 + 0.492241i
\(950\) 0 0
\(951\) 16.2749 + 11.8244i 0.527749 + 0.383432i
\(952\) 0 0
\(953\) −13.8647 + 42.6713i −0.449123 + 1.38226i 0.428775 + 0.903411i \(0.358945\pi\)
−0.877898 + 0.478848i \(0.841055\pi\)
\(954\) 0 0
\(955\) −1.06644 + 0.774812i −0.0345091 + 0.0250723i
\(956\) 0 0
\(957\) −0.347524 0.661030i −0.0112339 0.0213681i
\(958\) 0 0
\(959\) −12.5986 + 9.15345i −0.406832 + 0.295580i
\(960\) 0 0
\(961\) −8.17376 + 25.1563i −0.263670 + 0.811492i
\(962\) 0 0
\(963\) −3.26889 2.37499i −0.105339 0.0765330i
\(964\) 0 0
\(965\) −0.392609 1.20833i −0.0126385 0.0388974i
\(966\) 0 0
\(967\) −60.3834 −1.94180 −0.970900 0.239484i \(-0.923022\pi\)
−0.970900 + 0.239484i \(0.923022\pi\)
\(968\) 0 0
\(969\) −6.10333 −0.196067
\(970\) 0 0
\(971\) 5.69652 + 17.5321i 0.182810 + 0.562632i 0.999904 0.0138733i \(-0.00441615\pi\)
−0.817094 + 0.576505i \(0.804416\pi\)
\(972\) 0 0
\(973\) 6.69098 + 4.86128i 0.214503 + 0.155846i
\(974\) 0 0
\(975\) −3.74582 + 11.5284i −0.119962 + 0.369206i
\(976\) 0 0
\(977\) −7.30902 + 5.31031i −0.233836 + 0.169892i −0.698533 0.715578i \(-0.746163\pi\)
0.464697 + 0.885470i \(0.346163\pi\)
\(978\) 0 0
\(979\) 12.6252 + 24.0146i 0.403504 + 0.767510i
\(980\) 0 0
\(981\) −7.23607 + 5.25731i −0.231030 + 0.167853i
\(982\) 0 0
\(983\) 0.0265781 0.0817991i 0.000847710 0.00260898i −0.950632 0.310321i \(-0.899563\pi\)
0.951479 + 0.307712i \(0.0995634\pi\)
\(984\) 0 0
\(985\) −4.38197 3.18368i −0.139621 0.101441i
\(986\) 0 0
\(987\) 7.08429 + 21.8032i 0.225496 + 0.694004i
\(988\) 0 0
\(989\) −9.52786 −0.302968
\(990\) 0 0
\(991\) 15.2616 0.484801 0.242400 0.970176i \(-0.422065\pi\)
0.242400 + 0.970176i \(0.422065\pi\)
\(992\) 0 0
\(993\) 1.81966 + 5.60034i 0.0577452 + 0.177721i
\(994\) 0 0
\(995\) 5.58394 + 4.05697i 0.177023 + 0.128614i
\(996\) 0 0
\(997\) 8.40576 25.8703i 0.266213 0.819320i −0.725198 0.688540i \(-0.758252\pi\)
0.991411 0.130780i \(-0.0417481\pi\)
\(998\) 0 0
\(999\) 8.37590 6.08545i 0.265002 0.192535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.m.c.289.2 yes 8
4.3 odd 2 inner 352.2.m.c.289.1 yes 8
8.3 odd 2 704.2.m.k.641.2 8
8.5 even 2 704.2.m.k.641.1 8
11.2 odd 10 3872.2.a.bf.1.3 4
11.4 even 5 inner 352.2.m.c.257.2 yes 8
11.9 even 5 3872.2.a.bg.1.3 4
44.15 odd 10 inner 352.2.m.c.257.1 8
44.31 odd 10 3872.2.a.bg.1.2 4
44.35 even 10 3872.2.a.bf.1.2 4
88.13 odd 10 7744.2.a.dq.1.2 4
88.35 even 10 7744.2.a.dq.1.3 4
88.37 even 10 704.2.m.k.257.1 8
88.53 even 10 7744.2.a.dp.1.2 4
88.59 odd 10 704.2.m.k.257.2 8
88.75 odd 10 7744.2.a.dp.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.c.257.1 8 44.15 odd 10 inner
352.2.m.c.257.2 yes 8 11.4 even 5 inner
352.2.m.c.289.1 yes 8 4.3 odd 2 inner
352.2.m.c.289.2 yes 8 1.1 even 1 trivial
704.2.m.k.257.1 8 88.37 even 10
704.2.m.k.257.2 8 88.59 odd 10
704.2.m.k.641.1 8 8.5 even 2
704.2.m.k.641.2 8 8.3 odd 2
3872.2.a.bf.1.2 4 44.35 even 10
3872.2.a.bf.1.3 4 11.2 odd 10
3872.2.a.bg.1.2 4 44.31 odd 10
3872.2.a.bg.1.3 4 11.9 even 5
7744.2.a.dp.1.2 4 88.53 even 10
7744.2.a.dp.1.3 4 88.75 odd 10
7744.2.a.dq.1.2 4 88.13 odd 10
7744.2.a.dq.1.3 4 88.35 even 10