Properties

Label 7744.2.a.dq.1.3
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.54336\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.54336 q^{3} +0.381966 q^{5} -1.54336 q^{7} -0.618034 q^{9} +1.61803 q^{13} +0.589512 q^{15} +0.854102 q^{17} -4.63009 q^{19} -2.38197 q^{21} +4.99442 q^{23} -4.85410 q^{25} -5.58394 q^{27} -0.145898 q^{29} +2.13287 q^{31} -0.589512 q^{35} -1.85410 q^{37} +2.49721 q^{39} -0.618034 q^{41} -1.90770 q^{43} -0.236068 q^{45} +9.62451 q^{47} -4.61803 q^{49} +1.31819 q^{51} +8.56231 q^{53} -7.14590 q^{57} +10.3532 q^{59} -12.5623 q^{61} +0.953850 q^{63} +0.618034 q^{65} -8.08115 q^{67} +7.70820 q^{69} -10.9427 q^{71} -9.85410 q^{73} -7.49164 q^{75} -15.9371 q^{79} -6.76393 q^{81} -10.9427 q^{83} +0.326238 q^{85} -0.225173 q^{87} +8.18034 q^{89} -2.49721 q^{91} +3.29180 q^{93} -1.76854 q^{95} -3.14590 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{5} + 2 q^{9} + 2 q^{13} - 10 q^{17} - 14 q^{21} - 6 q^{25} - 14 q^{29} + 6 q^{37} + 2 q^{41} + 8 q^{45} - 14 q^{49} - 6 q^{53} - 42 q^{57} - 10 q^{61} - 2 q^{65} + 4 q^{69} - 26 q^{73} - 36 q^{81}+ \cdots - 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.54336 0.891060 0.445530 0.895267i \(-0.353015\pi\)
0.445530 + 0.895267i \(0.353015\pi\)
\(4\) 0 0
\(5\) 0.381966 0.170820 0.0854102 0.996346i \(-0.472780\pi\)
0.0854102 + 0.996346i \(0.472780\pi\)
\(6\) 0 0
\(7\) −1.54336 −0.583336 −0.291668 0.956520i \(-0.594210\pi\)
−0.291668 + 0.956520i \(0.594210\pi\)
\(8\) 0 0
\(9\) −0.618034 −0.206011
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.61803 0.448762 0.224381 0.974502i \(-0.427964\pi\)
0.224381 + 0.974502i \(0.427964\pi\)
\(14\) 0 0
\(15\) 0.589512 0.152211
\(16\) 0 0
\(17\) 0.854102 0.207150 0.103575 0.994622i \(-0.466972\pi\)
0.103575 + 0.994622i \(0.466972\pi\)
\(18\) 0 0
\(19\) −4.63009 −1.06221 −0.531107 0.847305i \(-0.678224\pi\)
−0.531107 + 0.847305i \(0.678224\pi\)
\(20\) 0 0
\(21\) −2.38197 −0.519788
\(22\) 0 0
\(23\) 4.99442 1.04141 0.520705 0.853737i \(-0.325669\pi\)
0.520705 + 0.853737i \(0.325669\pi\)
\(24\) 0 0
\(25\) −4.85410 −0.970820
\(26\) 0 0
\(27\) −5.58394 −1.07463
\(28\) 0 0
\(29\) −0.145898 −0.0270926 −0.0135463 0.999908i \(-0.504312\pi\)
−0.0135463 + 0.999908i \(0.504312\pi\)
\(30\) 0 0
\(31\) 2.13287 0.383075 0.191538 0.981485i \(-0.438653\pi\)
0.191538 + 0.981485i \(0.438653\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.589512 −0.0996457
\(36\) 0 0
\(37\) −1.85410 −0.304812 −0.152406 0.988318i \(-0.548702\pi\)
−0.152406 + 0.988318i \(0.548702\pi\)
\(38\) 0 0
\(39\) 2.49721 0.399874
\(40\) 0 0
\(41\) −0.618034 −0.0965207 −0.0482603 0.998835i \(-0.515368\pi\)
−0.0482603 + 0.998835i \(0.515368\pi\)
\(42\) 0 0
\(43\) −1.90770 −0.290922 −0.145461 0.989364i \(-0.546466\pi\)
−0.145461 + 0.989364i \(0.546466\pi\)
\(44\) 0 0
\(45\) −0.236068 −0.0351909
\(46\) 0 0
\(47\) 9.62451 1.40388 0.701940 0.712237i \(-0.252318\pi\)
0.701940 + 0.712237i \(0.252318\pi\)
\(48\) 0 0
\(49\) −4.61803 −0.659719
\(50\) 0 0
\(51\) 1.31819 0.184583
\(52\) 0 0
\(53\) 8.56231 1.17612 0.588062 0.808816i \(-0.299891\pi\)
0.588062 + 0.808816i \(0.299891\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −7.14590 −0.946497
\(58\) 0 0
\(59\) 10.3532 1.34787 0.673935 0.738791i \(-0.264603\pi\)
0.673935 + 0.738791i \(0.264603\pi\)
\(60\) 0 0
\(61\) −12.5623 −1.60844 −0.804219 0.594333i \(-0.797416\pi\)
−0.804219 + 0.594333i \(0.797416\pi\)
\(62\) 0 0
\(63\) 0.953850 0.120174
\(64\) 0 0
\(65\) 0.618034 0.0766577
\(66\) 0 0
\(67\) −8.08115 −0.987269 −0.493635 0.869669i \(-0.664332\pi\)
−0.493635 + 0.869669i \(0.664332\pi\)
\(68\) 0 0
\(69\) 7.70820 0.927959
\(70\) 0 0
\(71\) −10.9427 −1.29866 −0.649330 0.760507i \(-0.724950\pi\)
−0.649330 + 0.760507i \(0.724950\pi\)
\(72\) 0 0
\(73\) −9.85410 −1.15334 −0.576668 0.816979i \(-0.695647\pi\)
−0.576668 + 0.816979i \(0.695647\pi\)
\(74\) 0 0
\(75\) −7.49164 −0.865060
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −15.9371 −1.79307 −0.896533 0.442977i \(-0.853922\pi\)
−0.896533 + 0.442977i \(0.853922\pi\)
\(80\) 0 0
\(81\) −6.76393 −0.751548
\(82\) 0 0
\(83\) −10.9427 −1.20112 −0.600559 0.799581i \(-0.705055\pi\)
−0.600559 + 0.799581i \(0.705055\pi\)
\(84\) 0 0
\(85\) 0.326238 0.0353855
\(86\) 0 0
\(87\) −0.225173 −0.0241411
\(88\) 0 0
\(89\) 8.18034 0.867114 0.433557 0.901126i \(-0.357258\pi\)
0.433557 + 0.901126i \(0.357258\pi\)
\(90\) 0 0
\(91\) −2.49721 −0.261779
\(92\) 0 0
\(93\) 3.29180 0.341343
\(94\) 0 0
\(95\) −1.76854 −0.181448
\(96\) 0 0
\(97\) −3.14590 −0.319418 −0.159709 0.987164i \(-0.551056\pi\)
−0.159709 + 0.987164i \(0.551056\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.0344 1.49598 0.747991 0.663708i \(-0.231018\pi\)
0.747991 + 0.663708i \(0.231018\pi\)
\(102\) 0 0
\(103\) 7.26646 0.715986 0.357993 0.933724i \(-0.383461\pi\)
0.357993 + 0.933724i \(0.383461\pi\)
\(104\) 0 0
\(105\) −0.909830 −0.0887903
\(106\) 0 0
\(107\) 6.53779 0.632032 0.316016 0.948754i \(-0.397655\pi\)
0.316016 + 0.948754i \(0.397655\pi\)
\(108\) 0 0
\(109\) −14.4721 −1.38618 −0.693090 0.720851i \(-0.743751\pi\)
−0.693090 + 0.720851i \(0.743751\pi\)
\(110\) 0 0
\(111\) −2.86155 −0.271606
\(112\) 0 0
\(113\) −19.5623 −1.84027 −0.920133 0.391605i \(-0.871920\pi\)
−0.920133 + 0.391605i \(0.871920\pi\)
\(114\) 0 0
\(115\) 1.90770 0.177894
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) −1.31819 −0.120838
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −0.953850 −0.0860058
\(124\) 0 0
\(125\) −3.76393 −0.336656
\(126\) 0 0
\(127\) −17.1161 −1.51881 −0.759406 0.650617i \(-0.774510\pi\)
−0.759406 + 0.650617i \(0.774510\pi\)
\(128\) 0 0
\(129\) −2.94427 −0.259229
\(130\) 0 0
\(131\) 8.80982 0.769718 0.384859 0.922975i \(-0.374250\pi\)
0.384859 + 0.922975i \(0.374250\pi\)
\(132\) 0 0
\(133\) 7.14590 0.619628
\(134\) 0 0
\(135\) −2.13287 −0.183569
\(136\) 0 0
\(137\) −10.0902 −0.862061 −0.431031 0.902337i \(-0.641850\pi\)
−0.431031 + 0.902337i \(0.641850\pi\)
\(138\) 0 0
\(139\) −5.35876 −0.454524 −0.227262 0.973834i \(-0.572977\pi\)
−0.227262 + 0.973834i \(0.572977\pi\)
\(140\) 0 0
\(141\) 14.8541 1.25094
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.0557281 −0.00462797
\(146\) 0 0
\(147\) −7.12730 −0.587850
\(148\) 0 0
\(149\) −20.5623 −1.68453 −0.842265 0.539064i \(-0.818778\pi\)
−0.842265 + 0.539064i \(0.818778\pi\)
\(150\) 0 0
\(151\) 16.5266 1.34492 0.672459 0.740134i \(-0.265238\pi\)
0.672459 + 0.740134i \(0.265238\pi\)
\(152\) 0 0
\(153\) −0.527864 −0.0426753
\(154\) 0 0
\(155\) 0.814685 0.0654371
\(156\) 0 0
\(157\) 13.3820 1.06800 0.533999 0.845485i \(-0.320689\pi\)
0.533999 + 0.845485i \(0.320689\pi\)
\(158\) 0 0
\(159\) 13.2147 1.04800
\(160\) 0 0
\(161\) −7.70820 −0.607492
\(162\) 0 0
\(163\) 9.03500 0.707676 0.353838 0.935307i \(-0.384876\pi\)
0.353838 + 0.935307i \(0.384876\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.94827 0.460291 0.230146 0.973156i \(-0.426080\pi\)
0.230146 + 0.973156i \(0.426080\pi\)
\(168\) 0 0
\(169\) −10.3820 −0.798613
\(170\) 0 0
\(171\) 2.86155 0.218828
\(172\) 0 0
\(173\) −1.67376 −0.127254 −0.0636269 0.997974i \(-0.520267\pi\)
−0.0636269 + 0.997974i \(0.520267\pi\)
\(174\) 0 0
\(175\) 7.49164 0.566314
\(176\) 0 0
\(177\) 15.9787 1.20103
\(178\) 0 0
\(179\) 1.54336 0.115356 0.0576781 0.998335i \(-0.481630\pi\)
0.0576781 + 0.998335i \(0.481630\pi\)
\(180\) 0 0
\(181\) 20.3820 1.51498 0.757490 0.652847i \(-0.226426\pi\)
0.757490 + 0.652847i \(0.226426\pi\)
\(182\) 0 0
\(183\) −19.3882 −1.43322
\(184\) 0 0
\(185\) −0.708204 −0.0520682
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 8.61803 0.626870
\(190\) 0 0
\(191\) 3.45106 0.249710 0.124855 0.992175i \(-0.460153\pi\)
0.124855 + 0.992175i \(0.460153\pi\)
\(192\) 0 0
\(193\) −3.32624 −0.239428 −0.119714 0.992808i \(-0.538198\pi\)
−0.119714 + 0.992808i \(0.538198\pi\)
\(194\) 0 0
\(195\) 0.953850 0.0683066
\(196\) 0 0
\(197\) −14.1803 −1.01031 −0.505154 0.863029i \(-0.668564\pi\)
−0.505154 + 0.863029i \(0.668564\pi\)
\(198\) 0 0
\(199\) −18.0700 −1.28095 −0.640474 0.767980i \(-0.721262\pi\)
−0.640474 + 0.767980i \(0.721262\pi\)
\(200\) 0 0
\(201\) −12.4721 −0.879717
\(202\) 0 0
\(203\) 0.225173 0.0158041
\(204\) 0 0
\(205\) −0.236068 −0.0164877
\(206\) 0 0
\(207\) −3.08672 −0.214542
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −24.0183 −1.65349 −0.826743 0.562580i \(-0.809809\pi\)
−0.826743 + 0.562580i \(0.809809\pi\)
\(212\) 0 0
\(213\) −16.8885 −1.15718
\(214\) 0 0
\(215\) −0.728677 −0.0496953
\(216\) 0 0
\(217\) −3.29180 −0.223462
\(218\) 0 0
\(219\) −15.2084 −1.02769
\(220\) 0 0
\(221\) 1.38197 0.0929611
\(222\) 0 0
\(223\) −21.5211 −1.44116 −0.720578 0.693374i \(-0.756124\pi\)
−0.720578 + 0.693374i \(0.756124\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 0 0
\(227\) −9.62451 −0.638801 −0.319401 0.947620i \(-0.603482\pi\)
−0.319401 + 0.947620i \(0.603482\pi\)
\(228\) 0 0
\(229\) 8.67376 0.573178 0.286589 0.958054i \(-0.407479\pi\)
0.286589 + 0.958054i \(0.407479\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.0902 −1.05410 −0.527051 0.849834i \(-0.676702\pi\)
−0.527051 + 0.849834i \(0.676702\pi\)
\(234\) 0 0
\(235\) 3.67624 0.239811
\(236\) 0 0
\(237\) −24.5967 −1.59773
\(238\) 0 0
\(239\) −15.7980 −1.02188 −0.510942 0.859615i \(-0.670703\pi\)
−0.510942 + 0.859615i \(0.670703\pi\)
\(240\) 0 0
\(241\) 7.41641 0.477733 0.238866 0.971052i \(-0.423224\pi\)
0.238866 + 0.971052i \(0.423224\pi\)
\(242\) 0 0
\(243\) 6.31261 0.404954
\(244\) 0 0
\(245\) −1.76393 −0.112693
\(246\) 0 0
\(247\) −7.49164 −0.476681
\(248\) 0 0
\(249\) −16.8885 −1.07027
\(250\) 0 0
\(251\) 14.4798 0.913955 0.456977 0.889478i \(-0.348932\pi\)
0.456977 + 0.889478i \(0.348932\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.503503 0.0315306
\(256\) 0 0
\(257\) −14.3262 −0.893646 −0.446823 0.894622i \(-0.647445\pi\)
−0.446823 + 0.894622i \(0.647445\pi\)
\(258\) 0 0
\(259\) 2.86155 0.177808
\(260\) 0 0
\(261\) 0.0901699 0.00558138
\(262\) 0 0
\(263\) −15.7119 −0.968840 −0.484420 0.874835i \(-0.660969\pi\)
−0.484420 + 0.874835i \(0.660969\pi\)
\(264\) 0 0
\(265\) 3.27051 0.200906
\(266\) 0 0
\(267\) 12.6252 0.772651
\(268\) 0 0
\(269\) −13.7984 −0.841302 −0.420651 0.907223i \(-0.638198\pi\)
−0.420651 + 0.907223i \(0.638198\pi\)
\(270\) 0 0
\(271\) 25.7868 1.56644 0.783218 0.621747i \(-0.213577\pi\)
0.783218 + 0.621747i \(0.213577\pi\)
\(272\) 0 0
\(273\) −3.85410 −0.233261
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.3262 0.680528 0.340264 0.940330i \(-0.389484\pi\)
0.340264 + 0.940330i \(0.389484\pi\)
\(278\) 0 0
\(279\) −1.31819 −0.0789179
\(280\) 0 0
\(281\) −14.3820 −0.857956 −0.428978 0.903315i \(-0.641126\pi\)
−0.428978 + 0.903315i \(0.641126\pi\)
\(282\) 0 0
\(283\) 20.3420 1.20921 0.604604 0.796526i \(-0.293331\pi\)
0.604604 + 0.796526i \(0.293331\pi\)
\(284\) 0 0
\(285\) −2.72949 −0.161681
\(286\) 0 0
\(287\) 0.953850 0.0563040
\(288\) 0 0
\(289\) −16.2705 −0.957089
\(290\) 0 0
\(291\) −4.85526 −0.284620
\(292\) 0 0
\(293\) −7.56231 −0.441795 −0.220897 0.975297i \(-0.570899\pi\)
−0.220897 + 0.975297i \(0.570899\pi\)
\(294\) 0 0
\(295\) 3.95457 0.230244
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.08115 0.467345
\(300\) 0 0
\(301\) 2.94427 0.169705
\(302\) 0 0
\(303\) 23.2036 1.33301
\(304\) 0 0
\(305\) −4.79837 −0.274754
\(306\) 0 0
\(307\) 8.80982 0.502803 0.251402 0.967883i \(-0.419109\pi\)
0.251402 + 0.967883i \(0.419109\pi\)
\(308\) 0 0
\(309\) 11.2148 0.637987
\(310\) 0 0
\(311\) 12.2609 0.695251 0.347626 0.937633i \(-0.386988\pi\)
0.347626 + 0.937633i \(0.386988\pi\)
\(312\) 0 0
\(313\) −23.3262 −1.31848 −0.659238 0.751934i \(-0.729121\pi\)
−0.659238 + 0.751934i \(0.729121\pi\)
\(314\) 0 0
\(315\) 0.364338 0.0205281
\(316\) 0 0
\(317\) 13.0344 0.732087 0.366044 0.930598i \(-0.380712\pi\)
0.366044 + 0.930598i \(0.380712\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 10.0902 0.563178
\(322\) 0 0
\(323\) −3.95457 −0.220038
\(324\) 0 0
\(325\) −7.85410 −0.435667
\(326\) 0 0
\(327\) −22.3357 −1.23517
\(328\) 0 0
\(329\) −14.8541 −0.818933
\(330\) 0 0
\(331\) 3.81540 0.209713 0.104857 0.994487i \(-0.466562\pi\)
0.104857 + 0.994487i \(0.466562\pi\)
\(332\) 0 0
\(333\) 1.14590 0.0627948
\(334\) 0 0
\(335\) −3.08672 −0.168646
\(336\) 0 0
\(337\) −14.0344 −0.764505 −0.382252 0.924058i \(-0.624852\pi\)
−0.382252 + 0.924058i \(0.624852\pi\)
\(338\) 0 0
\(339\) −30.1917 −1.63979
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 17.9308 0.968174
\(344\) 0 0
\(345\) 2.94427 0.158514
\(346\) 0 0
\(347\) 17.5665 0.943019 0.471509 0.881861i \(-0.343709\pi\)
0.471509 + 0.881861i \(0.343709\pi\)
\(348\) 0 0
\(349\) 10.0344 0.537131 0.268566 0.963261i \(-0.413450\pi\)
0.268566 + 0.963261i \(0.413450\pi\)
\(350\) 0 0
\(351\) −9.03500 −0.482253
\(352\) 0 0
\(353\) 19.7082 1.04896 0.524481 0.851422i \(-0.324259\pi\)
0.524481 + 0.851422i \(0.324259\pi\)
\(354\) 0 0
\(355\) −4.17974 −0.221838
\(356\) 0 0
\(357\) −2.03444 −0.107674
\(358\) 0 0
\(359\) 29.6022 1.56234 0.781172 0.624315i \(-0.214622\pi\)
0.781172 + 0.624315i \(0.214622\pi\)
\(360\) 0 0
\(361\) 2.43769 0.128300
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.76393 −0.197013
\(366\) 0 0
\(367\) −26.9658 −1.40760 −0.703802 0.710396i \(-0.748516\pi\)
−0.703802 + 0.710396i \(0.748516\pi\)
\(368\) 0 0
\(369\) 0.381966 0.0198844
\(370\) 0 0
\(371\) −13.2147 −0.686075
\(372\) 0 0
\(373\) −6.29180 −0.325777 −0.162888 0.986644i \(-0.552081\pi\)
−0.162888 + 0.986644i \(0.552081\pi\)
\(374\) 0 0
\(375\) −5.80911 −0.299981
\(376\) 0 0
\(377\) −0.236068 −0.0121581
\(378\) 0 0
\(379\) 3.31190 0.170121 0.0850604 0.996376i \(-0.472892\pi\)
0.0850604 + 0.996376i \(0.472892\pi\)
\(380\) 0 0
\(381\) −26.4164 −1.35335
\(382\) 0 0
\(383\) −26.3763 −1.34777 −0.673883 0.738838i \(-0.735375\pi\)
−0.673883 + 0.738838i \(0.735375\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.17902 0.0599331
\(388\) 0 0
\(389\) −23.5623 −1.19466 −0.597328 0.801997i \(-0.703771\pi\)
−0.597328 + 0.801997i \(0.703771\pi\)
\(390\) 0 0
\(391\) 4.26575 0.215728
\(392\) 0 0
\(393\) 13.5967 0.685865
\(394\) 0 0
\(395\) −6.08744 −0.306292
\(396\) 0 0
\(397\) 14.1803 0.711691 0.355845 0.934545i \(-0.384193\pi\)
0.355845 + 0.934545i \(0.384193\pi\)
\(398\) 0 0
\(399\) 11.0287 0.552126
\(400\) 0 0
\(401\) 14.6738 0.732773 0.366386 0.930463i \(-0.380595\pi\)
0.366386 + 0.930463i \(0.380595\pi\)
\(402\) 0 0
\(403\) 3.45106 0.171910
\(404\) 0 0
\(405\) −2.58359 −0.128380
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 4.56231 0.225592 0.112796 0.993618i \(-0.464019\pi\)
0.112796 + 0.993618i \(0.464019\pi\)
\(410\) 0 0
\(411\) −15.5728 −0.768149
\(412\) 0 0
\(413\) −15.9787 −0.786261
\(414\) 0 0
\(415\) −4.17974 −0.205175
\(416\) 0 0
\(417\) −8.27051 −0.405009
\(418\) 0 0
\(419\) 27.3302 1.33517 0.667583 0.744535i \(-0.267329\pi\)
0.667583 + 0.744535i \(0.267329\pi\)
\(420\) 0 0
\(421\) −8.32624 −0.405796 −0.202898 0.979200i \(-0.565036\pi\)
−0.202898 + 0.979200i \(0.565036\pi\)
\(422\) 0 0
\(423\) −5.94827 −0.289215
\(424\) 0 0
\(425\) −4.14590 −0.201106
\(426\) 0 0
\(427\) 19.3882 0.938260
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.48534 0.456893 0.228446 0.973556i \(-0.426635\pi\)
0.228446 + 0.973556i \(0.426635\pi\)
\(432\) 0 0
\(433\) −33.0902 −1.59021 −0.795106 0.606470i \(-0.792585\pi\)
−0.795106 + 0.606470i \(0.792585\pi\)
\(434\) 0 0
\(435\) −0.0860086 −0.00412380
\(436\) 0 0
\(437\) −23.1246 −1.10620
\(438\) 0 0
\(439\) 19.6994 0.940199 0.470100 0.882613i \(-0.344218\pi\)
0.470100 + 0.882613i \(0.344218\pi\)
\(440\) 0 0
\(441\) 2.85410 0.135910
\(442\) 0 0
\(443\) 5.80911 0.275999 0.138000 0.990432i \(-0.455933\pi\)
0.138000 + 0.990432i \(0.455933\pi\)
\(444\) 0 0
\(445\) 3.12461 0.148121
\(446\) 0 0
\(447\) −31.7351 −1.50102
\(448\) 0 0
\(449\) 25.7984 1.21750 0.608750 0.793362i \(-0.291671\pi\)
0.608750 + 0.793362i \(0.291671\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 25.5066 1.19840
\(454\) 0 0
\(455\) −0.953850 −0.0447172
\(456\) 0 0
\(457\) −28.7426 −1.34452 −0.672262 0.740313i \(-0.734677\pi\)
−0.672262 + 0.740313i \(0.734677\pi\)
\(458\) 0 0
\(459\) −4.76925 −0.222610
\(460\) 0 0
\(461\) −2.76393 −0.128729 −0.0643646 0.997926i \(-0.520502\pi\)
−0.0643646 + 0.997926i \(0.520502\pi\)
\(462\) 0 0
\(463\) 31.8742 1.48132 0.740661 0.671879i \(-0.234513\pi\)
0.740661 + 0.671879i \(0.234513\pi\)
\(464\) 0 0
\(465\) 1.25735 0.0583084
\(466\) 0 0
\(467\) 4.04057 0.186975 0.0934877 0.995620i \(-0.470198\pi\)
0.0934877 + 0.995620i \(0.470198\pi\)
\(468\) 0 0
\(469\) 12.4721 0.575910
\(470\) 0 0
\(471\) 20.6532 0.951650
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 22.4749 1.03122
\(476\) 0 0
\(477\) −5.29180 −0.242295
\(478\) 0 0
\(479\) −19.0238 −0.869222 −0.434611 0.900618i \(-0.643114\pi\)
−0.434611 + 0.900618i \(0.643114\pi\)
\(480\) 0 0
\(481\) −3.00000 −0.136788
\(482\) 0 0
\(483\) −11.8965 −0.541312
\(484\) 0 0
\(485\) −1.20163 −0.0545630
\(486\) 0 0
\(487\) −9.62451 −0.436128 −0.218064 0.975934i \(-0.569974\pi\)
−0.218064 + 0.975934i \(0.569974\pi\)
\(488\) 0 0
\(489\) 13.9443 0.630582
\(490\) 0 0
\(491\) 33.1393 1.49555 0.747777 0.663950i \(-0.231121\pi\)
0.747777 + 0.663950i \(0.231121\pi\)
\(492\) 0 0
\(493\) −0.124612 −0.00561223
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16.8885 0.757555
\(498\) 0 0
\(499\) −8.89583 −0.398232 −0.199116 0.979976i \(-0.563807\pi\)
−0.199116 + 0.979976i \(0.563807\pi\)
\(500\) 0 0
\(501\) 9.18034 0.410147
\(502\) 0 0
\(503\) 39.3127 1.75287 0.876434 0.481522i \(-0.159916\pi\)
0.876434 + 0.481522i \(0.159916\pi\)
\(504\) 0 0
\(505\) 5.74265 0.255544
\(506\) 0 0
\(507\) −16.0231 −0.711612
\(508\) 0 0
\(509\) −11.0902 −0.491563 −0.245782 0.969325i \(-0.579045\pi\)
−0.245782 + 0.969325i \(0.579045\pi\)
\(510\) 0 0
\(511\) 15.2084 0.672782
\(512\) 0 0
\(513\) 25.8541 1.14149
\(514\) 0 0
\(515\) 2.77554 0.122305
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.58322 −0.113391
\(520\) 0 0
\(521\) 13.3820 0.586275 0.293137 0.956070i \(-0.405301\pi\)
0.293137 + 0.956070i \(0.405301\pi\)
\(522\) 0 0
\(523\) −3.59023 −0.156990 −0.0784948 0.996915i \(-0.525011\pi\)
−0.0784948 + 0.996915i \(0.525011\pi\)
\(524\) 0 0
\(525\) 11.5623 0.504620
\(526\) 0 0
\(527\) 1.82169 0.0793541
\(528\) 0 0
\(529\) 1.94427 0.0845336
\(530\) 0 0
\(531\) −6.39862 −0.277677
\(532\) 0 0
\(533\) −1.00000 −0.0433148
\(534\) 0 0
\(535\) 2.49721 0.107964
\(536\) 0 0
\(537\) 2.38197 0.102789
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −37.0344 −1.59224 −0.796118 0.605142i \(-0.793116\pi\)
−0.796118 + 0.605142i \(0.793116\pi\)
\(542\) 0 0
\(543\) 31.4568 1.34994
\(544\) 0 0
\(545\) −5.52786 −0.236788
\(546\) 0 0
\(547\) −31.0596 −1.32801 −0.664005 0.747728i \(-0.731145\pi\)
−0.664005 + 0.747728i \(0.731145\pi\)
\(548\) 0 0
\(549\) 7.76393 0.331357
\(550\) 0 0
\(551\) 0.675520 0.0287781
\(552\) 0 0
\(553\) 24.5967 1.04596
\(554\) 0 0
\(555\) −1.09301 −0.0463959
\(556\) 0 0
\(557\) −19.8541 −0.841245 −0.420623 0.907236i \(-0.638188\pi\)
−0.420623 + 0.907236i \(0.638188\pi\)
\(558\) 0 0
\(559\) −3.08672 −0.130555
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.3652 1.53261 0.766305 0.642478i \(-0.222093\pi\)
0.766305 + 0.642478i \(0.222093\pi\)
\(564\) 0 0
\(565\) −7.47214 −0.314355
\(566\) 0 0
\(567\) 10.4392 0.438405
\(568\) 0 0
\(569\) −6.43769 −0.269882 −0.134941 0.990854i \(-0.543085\pi\)
−0.134941 + 0.990854i \(0.543085\pi\)
\(570\) 0 0
\(571\) 39.6771 1.66043 0.830217 0.557441i \(-0.188217\pi\)
0.830217 + 0.557441i \(0.188217\pi\)
\(572\) 0 0
\(573\) 5.32624 0.222507
\(574\) 0 0
\(575\) −24.2434 −1.01102
\(576\) 0 0
\(577\) 0.381966 0.0159015 0.00795073 0.999968i \(-0.497469\pi\)
0.00795073 + 0.999968i \(0.497469\pi\)
\(578\) 0 0
\(579\) −5.13359 −0.213345
\(580\) 0 0
\(581\) 16.8885 0.700655
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.381966 −0.0157924
\(586\) 0 0
\(587\) −1.54336 −0.0637014 −0.0318507 0.999493i \(-0.510140\pi\)
−0.0318507 + 0.999493i \(0.510140\pi\)
\(588\) 0 0
\(589\) −9.87539 −0.406908
\(590\) 0 0
\(591\) −21.8854 −0.900245
\(592\) 0 0
\(593\) −38.6525 −1.58727 −0.793633 0.608396i \(-0.791813\pi\)
−0.793633 + 0.608396i \(0.791813\pi\)
\(594\) 0 0
\(595\) −0.503503 −0.0206416
\(596\) 0 0
\(597\) −27.8885 −1.14140
\(598\) 0 0
\(599\) 26.3763 1.07771 0.538854 0.842399i \(-0.318858\pi\)
0.538854 + 0.842399i \(0.318858\pi\)
\(600\) 0 0
\(601\) −26.9098 −1.09767 −0.548837 0.835929i \(-0.684929\pi\)
−0.548837 + 0.835929i \(0.684929\pi\)
\(602\) 0 0
\(603\) 4.99442 0.203389
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0.953850 0.0387156 0.0193578 0.999813i \(-0.493838\pi\)
0.0193578 + 0.999813i \(0.493838\pi\)
\(608\) 0 0
\(609\) 0.347524 0.0140824
\(610\) 0 0
\(611\) 15.5728 0.630007
\(612\) 0 0
\(613\) 17.8541 0.721120 0.360560 0.932736i \(-0.382586\pi\)
0.360560 + 0.932736i \(0.382586\pi\)
\(614\) 0 0
\(615\) −0.364338 −0.0146915
\(616\) 0 0
\(617\) −10.0689 −0.405358 −0.202679 0.979245i \(-0.564965\pi\)
−0.202679 + 0.979245i \(0.564965\pi\)
\(618\) 0 0
\(619\) −36.5043 −1.46723 −0.733616 0.679564i \(-0.762169\pi\)
−0.733616 + 0.679564i \(0.762169\pi\)
\(620\) 0 0
\(621\) −27.8885 −1.11913
\(622\) 0 0
\(623\) −12.6252 −0.505819
\(624\) 0 0
\(625\) 22.8328 0.913313
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.58359 −0.0631420
\(630\) 0 0
\(631\) −4.17974 −0.166393 −0.0831964 0.996533i \(-0.526513\pi\)
−0.0831964 + 0.996533i \(0.526513\pi\)
\(632\) 0 0
\(633\) −37.0689 −1.47336
\(634\) 0 0
\(635\) −6.53779 −0.259444
\(636\) 0 0
\(637\) −7.47214 −0.296057
\(638\) 0 0
\(639\) 6.76296 0.267539
\(640\) 0 0
\(641\) 10.9787 0.433633 0.216817 0.976212i \(-0.430433\pi\)
0.216817 + 0.976212i \(0.430433\pi\)
\(642\) 0 0
\(643\) 44.4463 1.75279 0.876396 0.481592i \(-0.159941\pi\)
0.876396 + 0.481592i \(0.159941\pi\)
\(644\) 0 0
\(645\) −1.12461 −0.0442815
\(646\) 0 0
\(647\) 46.3540 1.82236 0.911182 0.412004i \(-0.135171\pi\)
0.911182 + 0.412004i \(0.135171\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −5.08043 −0.199118
\(652\) 0 0
\(653\) 10.7984 0.422573 0.211287 0.977424i \(-0.432235\pi\)
0.211287 + 0.977424i \(0.432235\pi\)
\(654\) 0 0
\(655\) 3.36505 0.131484
\(656\) 0 0
\(657\) 6.09017 0.237600
\(658\) 0 0
\(659\) −11.1679 −0.435039 −0.217519 0.976056i \(-0.569796\pi\)
−0.217519 + 0.976056i \(0.569796\pi\)
\(660\) 0 0
\(661\) 31.4164 1.22196 0.610978 0.791647i \(-0.290776\pi\)
0.610978 + 0.791647i \(0.290776\pi\)
\(662\) 0 0
\(663\) 2.13287 0.0828340
\(664\) 0 0
\(665\) 2.72949 0.105845
\(666\) 0 0
\(667\) −0.728677 −0.0282145
\(668\) 0 0
\(669\) −33.2148 −1.28416
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 44.3820 1.71080 0.855400 0.517969i \(-0.173312\pi\)
0.855400 + 0.517969i \(0.173312\pi\)
\(674\) 0 0
\(675\) 27.1050 1.04327
\(676\) 0 0
\(677\) 23.9787 0.921577 0.460788 0.887510i \(-0.347567\pi\)
0.460788 + 0.887510i \(0.347567\pi\)
\(678\) 0 0
\(679\) 4.85526 0.186328
\(680\) 0 0
\(681\) −14.8541 −0.569210
\(682\) 0 0
\(683\) −26.1511 −1.00065 −0.500323 0.865839i \(-0.666785\pi\)
−0.500323 + 0.865839i \(0.666785\pi\)
\(684\) 0 0
\(685\) −3.85410 −0.147258
\(686\) 0 0
\(687\) 13.3868 0.510737
\(688\) 0 0
\(689\) 13.8541 0.527799
\(690\) 0 0
\(691\) −20.2029 −0.768553 −0.384277 0.923218i \(-0.625549\pi\)
−0.384277 + 0.923218i \(0.625549\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.04687 −0.0776420
\(696\) 0 0
\(697\) −0.527864 −0.0199943
\(698\) 0 0
\(699\) −24.8330 −0.939269
\(700\) 0 0
\(701\) −23.7426 −0.896747 −0.448374 0.893846i \(-0.647997\pi\)
−0.448374 + 0.893846i \(0.647997\pi\)
\(702\) 0 0
\(703\) 8.58465 0.323776
\(704\) 0 0
\(705\) 5.67376 0.213686
\(706\) 0 0
\(707\) −23.2036 −0.872661
\(708\) 0 0
\(709\) 11.6180 0.436324 0.218162 0.975913i \(-0.429994\pi\)
0.218162 + 0.975913i \(0.429994\pi\)
\(710\) 0 0
\(711\) 9.84968 0.369392
\(712\) 0 0
\(713\) 10.6525 0.398938
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.3820 −0.910561
\(718\) 0 0
\(719\) −23.8791 −0.890540 −0.445270 0.895396i \(-0.646892\pi\)
−0.445270 + 0.895396i \(0.646892\pi\)
\(720\) 0 0
\(721\) −11.2148 −0.417660
\(722\) 0 0
\(723\) 11.4462 0.425689
\(724\) 0 0
\(725\) 0.708204 0.0263020
\(726\) 0 0
\(727\) 11.4462 0.424516 0.212258 0.977214i \(-0.431918\pi\)
0.212258 + 0.977214i \(0.431918\pi\)
\(728\) 0 0
\(729\) 30.0344 1.11239
\(730\) 0 0
\(731\) −1.62937 −0.0602644
\(732\) 0 0
\(733\) −6.43769 −0.237782 −0.118891 0.992907i \(-0.537934\pi\)
−0.118891 + 0.992907i \(0.537934\pi\)
\(734\) 0 0
\(735\) −2.72239 −0.100417
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 17.3945 0.639866 0.319933 0.947440i \(-0.396340\pi\)
0.319933 + 0.947440i \(0.396340\pi\)
\(740\) 0 0
\(741\) −11.5623 −0.424752
\(742\) 0 0
\(743\) 12.4001 0.454914 0.227457 0.973788i \(-0.426959\pi\)
0.227457 + 0.973788i \(0.426959\pi\)
\(744\) 0 0
\(745\) −7.85410 −0.287752
\(746\) 0 0
\(747\) 6.76296 0.247444
\(748\) 0 0
\(749\) −10.0902 −0.368687
\(750\) 0 0
\(751\) 44.5855 1.62695 0.813474 0.581602i \(-0.197574\pi\)
0.813474 + 0.581602i \(0.197574\pi\)
\(752\) 0 0
\(753\) 22.3475 0.814389
\(754\) 0 0
\(755\) 6.31261 0.229739
\(756\) 0 0
\(757\) −32.1591 −1.16884 −0.584420 0.811451i \(-0.698678\pi\)
−0.584420 + 0.811451i \(0.698678\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.8541 −0.683461 −0.341730 0.939798i \(-0.611013\pi\)
−0.341730 + 0.939798i \(0.611013\pi\)
\(762\) 0 0
\(763\) 22.3357 0.808608
\(764\) 0 0
\(765\) −0.201626 −0.00728981
\(766\) 0 0
\(767\) 16.7518 0.604873
\(768\) 0 0
\(769\) 25.1246 0.906017 0.453008 0.891506i \(-0.350351\pi\)
0.453008 + 0.891506i \(0.350351\pi\)
\(770\) 0 0
\(771\) −22.1106 −0.796293
\(772\) 0 0
\(773\) −54.2148 −1.94997 −0.974985 0.222270i \(-0.928653\pi\)
−0.974985 + 0.222270i \(0.928653\pi\)
\(774\) 0 0
\(775\) −10.3532 −0.371897
\(776\) 0 0
\(777\) 4.41641 0.158438
\(778\) 0 0
\(779\) 2.86155 0.102526
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.814685 0.0291145
\(784\) 0 0
\(785\) 5.11146 0.182436
\(786\) 0 0
\(787\) −18.2952 −0.652152 −0.326076 0.945343i \(-0.605727\pi\)
−0.326076 + 0.945343i \(0.605727\pi\)
\(788\) 0 0
\(789\) −24.2492 −0.863295
\(790\) 0 0
\(791\) 30.1917 1.07349
\(792\) 0 0
\(793\) −20.3262 −0.721806
\(794\) 0 0
\(795\) 5.04758 0.179019
\(796\) 0 0
\(797\) −37.9787 −1.34528 −0.672638 0.739972i \(-0.734839\pi\)
−0.672638 + 0.739972i \(0.734839\pi\)
\(798\) 0 0
\(799\) 8.22031 0.290814
\(800\) 0 0
\(801\) −5.05573 −0.178635
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −2.94427 −0.103772
\(806\) 0 0
\(807\) −21.2959 −0.749651
\(808\) 0 0
\(809\) −7.79837 −0.274176 −0.137088 0.990559i \(-0.543774\pi\)
−0.137088 + 0.990559i \(0.543774\pi\)
\(810\) 0 0
\(811\) 21.2427 0.745933 0.372967 0.927845i \(-0.378341\pi\)
0.372967 + 0.927845i \(0.378341\pi\)
\(812\) 0 0
\(813\) 39.7984 1.39579
\(814\) 0 0
\(815\) 3.45106 0.120885
\(816\) 0 0
\(817\) 8.83282 0.309021
\(818\) 0 0
\(819\) 1.54336 0.0539294
\(820\) 0 0
\(821\) −15.0902 −0.526651 −0.263325 0.964707i \(-0.584819\pi\)
−0.263325 + 0.964707i \(0.584819\pi\)
\(822\) 0 0
\(823\) −44.7246 −1.55900 −0.779502 0.626400i \(-0.784528\pi\)
−0.779502 + 0.626400i \(0.784528\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.2952 −0.636185 −0.318093 0.948060i \(-0.603042\pi\)
−0.318093 + 0.948060i \(0.603042\pi\)
\(828\) 0 0
\(829\) 13.1591 0.457033 0.228516 0.973540i \(-0.426613\pi\)
0.228516 + 0.973540i \(0.426613\pi\)
\(830\) 0 0
\(831\) 17.4805 0.606391
\(832\) 0 0
\(833\) −3.94427 −0.136661
\(834\) 0 0
\(835\) 2.27204 0.0786271
\(836\) 0 0
\(837\) −11.9098 −0.411664
\(838\) 0 0
\(839\) −16.9770 −0.586110 −0.293055 0.956096i \(-0.594672\pi\)
−0.293055 + 0.956096i \(0.594672\pi\)
\(840\) 0 0
\(841\) −28.9787 −0.999266
\(842\) 0 0
\(843\) −22.1966 −0.764491
\(844\) 0 0
\(845\) −3.96556 −0.136419
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 31.3951 1.07748
\(850\) 0 0
\(851\) −9.26017 −0.317435
\(852\) 0 0
\(853\) 34.7426 1.18957 0.594783 0.803886i \(-0.297238\pi\)
0.594783 + 0.803886i \(0.297238\pi\)
\(854\) 0 0
\(855\) 1.09301 0.0373803
\(856\) 0 0
\(857\) −31.1246 −1.06320 −0.531598 0.846997i \(-0.678408\pi\)
−0.531598 + 0.846997i \(0.678408\pi\)
\(858\) 0 0
\(859\) 3.81540 0.130180 0.0650899 0.997879i \(-0.479267\pi\)
0.0650899 + 0.997879i \(0.479267\pi\)
\(860\) 0 0
\(861\) 1.47214 0.0501703
\(862\) 0 0
\(863\) −11.3930 −0.387824 −0.193912 0.981019i \(-0.562118\pi\)
−0.193912 + 0.981019i \(0.562118\pi\)
\(864\) 0 0
\(865\) −0.639320 −0.0217375
\(866\) 0 0
\(867\) −25.1113 −0.852824
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −13.0756 −0.443049
\(872\) 0 0
\(873\) 1.94427 0.0658036
\(874\) 0 0
\(875\) 5.80911 0.196384
\(876\) 0 0
\(877\) 24.6869 0.833618 0.416809 0.908994i \(-0.363148\pi\)
0.416809 + 0.908994i \(0.363148\pi\)
\(878\) 0 0
\(879\) −11.6714 −0.393666
\(880\) 0 0
\(881\) −1.23607 −0.0416442 −0.0208221 0.999783i \(-0.506628\pi\)
−0.0208221 + 0.999783i \(0.506628\pi\)
\(882\) 0 0
\(883\) 20.7924 0.699719 0.349860 0.936802i \(-0.386229\pi\)
0.349860 + 0.936802i \(0.386229\pi\)
\(884\) 0 0
\(885\) 6.10333 0.205161
\(886\) 0 0
\(887\) 15.0693 0.505977 0.252988 0.967469i \(-0.418587\pi\)
0.252988 + 0.967469i \(0.418587\pi\)
\(888\) 0 0
\(889\) 26.4164 0.885978
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −44.5623 −1.49122
\(894\) 0 0
\(895\) 0.589512 0.0197052
\(896\) 0 0
\(897\) 12.4721 0.416432
\(898\) 0 0
\(899\) −0.311182 −0.0103785
\(900\) 0 0
\(901\) 7.31308 0.243634
\(902\) 0 0
\(903\) 4.54408 0.151217
\(904\) 0 0
\(905\) 7.78522 0.258789
\(906\) 0 0
\(907\) −43.7176 −1.45162 −0.725810 0.687895i \(-0.758535\pi\)
−0.725810 + 0.687895i \(0.758535\pi\)
\(908\) 0 0
\(909\) −9.29180 −0.308189
\(910\) 0 0
\(911\) 2.41120 0.0798867 0.0399434 0.999202i \(-0.487282\pi\)
0.0399434 + 0.999202i \(0.487282\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −7.40563 −0.244822
\(916\) 0 0
\(917\) −13.5967 −0.449004
\(918\) 0 0
\(919\) 1.40420 0.0463202 0.0231601 0.999732i \(-0.492627\pi\)
0.0231601 + 0.999732i \(0.492627\pi\)
\(920\) 0 0
\(921\) 13.5967 0.448028
\(922\) 0 0
\(923\) −17.7057 −0.582789
\(924\) 0 0
\(925\) 9.00000 0.295918
\(926\) 0 0
\(927\) −4.49092 −0.147501
\(928\) 0 0
\(929\) 50.6312 1.66116 0.830578 0.556903i \(-0.188010\pi\)
0.830578 + 0.556903i \(0.188010\pi\)
\(930\) 0 0
\(931\) 21.3819 0.700763
\(932\) 0 0
\(933\) 18.9230 0.619511
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0.201626 0.00658684 0.00329342 0.999995i \(-0.498952\pi\)
0.00329342 + 0.999995i \(0.498952\pi\)
\(938\) 0 0
\(939\) −36.0008 −1.17484
\(940\) 0 0
\(941\) 23.5066 0.766293 0.383146 0.923688i \(-0.374841\pi\)
0.383146 + 0.923688i \(0.374841\pi\)
\(942\) 0 0
\(943\) −3.08672 −0.100518
\(944\) 0 0
\(945\) 3.29180 0.107082
\(946\) 0 0
\(947\) 23.7931 0.773172 0.386586 0.922253i \(-0.373654\pi\)
0.386586 + 0.922253i \(0.373654\pi\)
\(948\) 0 0
\(949\) −15.9443 −0.517573
\(950\) 0 0
\(951\) 20.1169 0.652334
\(952\) 0 0
\(953\) 44.8673 1.45339 0.726697 0.686959i \(-0.241055\pi\)
0.726697 + 0.686959i \(0.241055\pi\)
\(954\) 0 0
\(955\) 1.31819 0.0426556
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.5728 0.502871
\(960\) 0 0
\(961\) −26.4508 −0.853253
\(962\) 0 0
\(963\) −4.04057 −0.130206
\(964\) 0 0
\(965\) −1.27051 −0.0408992
\(966\) 0 0
\(967\) −60.3834 −1.94180 −0.970900 0.239484i \(-0.923022\pi\)
−0.970900 + 0.239484i \(0.923022\pi\)
\(968\) 0 0
\(969\) −6.10333 −0.196067
\(970\) 0 0
\(971\) 18.4343 0.591586 0.295793 0.955252i \(-0.404416\pi\)
0.295793 + 0.955252i \(0.404416\pi\)
\(972\) 0 0
\(973\) 8.27051 0.265140
\(974\) 0 0
\(975\) −12.1217 −0.388206
\(976\) 0 0
\(977\) 9.03444 0.289037 0.144519 0.989502i \(-0.453837\pi\)
0.144519 + 0.989502i \(0.453837\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 8.94427 0.285569
\(982\) 0 0
\(983\) −0.0860086 −0.00274325 −0.00137162 0.999999i \(-0.500437\pi\)
−0.00137162 + 0.999999i \(0.500437\pi\)
\(984\) 0 0
\(985\) −5.41641 −0.172581
\(986\) 0 0
\(987\) −22.9253 −0.729719
\(988\) 0 0
\(989\) −9.52786 −0.302968
\(990\) 0 0
\(991\) −15.2616 −0.484801 −0.242400 0.970176i \(-0.577935\pi\)
−0.242400 + 0.970176i \(0.577935\pi\)
\(992\) 0 0
\(993\) 5.88854 0.186867
\(994\) 0 0
\(995\) −6.90212 −0.218812
\(996\) 0 0
\(997\) 27.2016 0.861484 0.430742 0.902475i \(-0.358252\pi\)
0.430742 + 0.902475i \(0.358252\pi\)
\(998\) 0 0
\(999\) 10.3532 0.327560
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.dq.1.3 4
4.3 odd 2 inner 7744.2.a.dq.1.2 4
8.3 odd 2 3872.2.a.bf.1.3 4
8.5 even 2 3872.2.a.bf.1.2 4
11.2 odd 10 704.2.m.k.257.2 8
11.6 odd 10 704.2.m.k.641.2 8
11.10 odd 2 7744.2.a.dp.1.3 4
44.35 even 10 704.2.m.k.257.1 8
44.39 even 10 704.2.m.k.641.1 8
44.43 even 2 7744.2.a.dp.1.2 4
88.13 odd 10 352.2.m.c.257.1 8
88.21 odd 2 3872.2.a.bg.1.2 4
88.35 even 10 352.2.m.c.257.2 yes 8
88.43 even 2 3872.2.a.bg.1.3 4
88.61 odd 10 352.2.m.c.289.1 yes 8
88.83 even 10 352.2.m.c.289.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.c.257.1 8 88.13 odd 10
352.2.m.c.257.2 yes 8 88.35 even 10
352.2.m.c.289.1 yes 8 88.61 odd 10
352.2.m.c.289.2 yes 8 88.83 even 10
704.2.m.k.257.1 8 44.35 even 10
704.2.m.k.257.2 8 11.2 odd 10
704.2.m.k.641.1 8 44.39 even 10
704.2.m.k.641.2 8 11.6 odd 10
3872.2.a.bf.1.2 4 8.5 even 2
3872.2.a.bf.1.3 4 8.3 odd 2
3872.2.a.bg.1.2 4 88.21 odd 2
3872.2.a.bg.1.3 4 88.43 even 2
7744.2.a.dp.1.2 4 44.43 even 2
7744.2.a.dp.1.3 4 11.10 odd 2
7744.2.a.dq.1.2 4 4.3 odd 2 inner
7744.2.a.dq.1.3 4 1.1 even 1 trivial