Properties

Label 352.2.s.a.79.2
Level 352352
Weight 22
Character 352.79
Analytic conductor 2.8112.811
Analytic rank 00
Dimension 88
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(79,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 352=2511 352 = 2^{5} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 352.s (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.810734151152.81073415115
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x6+4x48x2+16 x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: U(1)[D10]\mathrm{U}(1)[D_{10}]

Embedding invariants

Embedding label 79.2
Root 1.345000.437016i1.34500 - 0.437016i of defining polynomial
Character χ\chi == 352.79
Dual form 352.2.s.a.303.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(2.676251.94441i)q3+(2.454547.55429i)q9+(3.25830+0.619233i)q11+(0.9984000.324400i)q17+(4.72597+6.50475i)q19+(4.04508+2.93893i)q25+(5.0529715.5514i)q27+(7.51600+7.99270i)q33+(1.29913+1.78810i)q41+6.88847iq43+(2.163126.65740i)q49+(2.041202.80947i)q51+(25.2958+8.21910i)q57+(2.797932.03282i)q59+16.3138q67+(4.20049+5.78148i)q73+(5.11118+15.7306i)q75+(24.483217.7881i)q81+(15.4499+5.01998i)q83+0.182318q89+(4.03261+12.4111i)q97+(3.31977+26.1341i)q99+O(q100)q+(2.67625 - 1.94441i) q^{3} +(2.45454 - 7.55429i) q^{9} +(-3.25830 + 0.619233i) q^{11} +(0.998400 - 0.324400i) q^{17} +(4.72597 + 6.50475i) q^{19} +(-4.04508 + 2.93893i) q^{25} +(-5.05297 - 15.5514i) q^{27} +(-7.51600 + 7.99270i) q^{33} +(1.29913 + 1.78810i) q^{41} +6.88847i q^{43} +(-2.16312 - 6.65740i) q^{49} +(2.04120 - 2.80947i) q^{51} +(25.2958 + 8.21910i) q^{57} +(-2.79793 - 2.03282i) q^{59} +16.3138 q^{67} +(-4.20049 + 5.78148i) q^{73} +(-5.11118 + 15.7306i) q^{75} +(-24.4832 - 17.7881i) q^{81} +(-15.4499 + 5.01998i) q^{83} +0.182318 q^{89} +(-4.03261 + 12.4111i) q^{97} +(-3.31977 + 26.1341i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q32q96q11+10q1910q2538q2738q33+14q49+70q51+70q57+18q59+28q6730q758q8190q8336q89+30q97+6q99+O(q100) 8 q + 4 q^{3} - 2 q^{9} - 6 q^{11} + 10 q^{19} - 10 q^{25} - 38 q^{27} - 38 q^{33} + 14 q^{49} + 70 q^{51} + 70 q^{57} + 18 q^{59} + 28 q^{67} - 30 q^{75} - 8 q^{81} - 90 q^{83} - 36 q^{89} + 30 q^{97}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/352Z)×\left(\mathbb{Z}/352\mathbb{Z}\right)^\times.

nn 133133 287287 321321
χ(n)\chi(n) 1-1 1-1 e(110)e\left(\frac{1}{10}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.67625 1.94441i 1.54513 1.12261i 0.598123 0.801404i 0.295913π-0.295913\pi
0.947011 0.321202i 0.104087π-0.104087\pi
44 0 0
55 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
66 0 0
77 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
88 0 0
99 2.45454 7.55429i 0.818179 2.51810i
1010 0 0
1111 −3.25830 + 0.619233i −0.982416 + 0.186706i
1212 0 0
1313 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
1414 0 0
1515 0 0
1616 0 0
1717 0.998400 0.324400i 0.242148 0.0786785i −0.185429 0.982658i 0.559367π-0.559367\pi
0.427576 + 0.903979i 0.359367π0.359367\pi
1818 0 0
1919 4.72597 + 6.50475i 1.08421 + 1.49229i 0.854797 + 0.518962i 0.173682π0.173682\pi
0.229416 + 0.973329i 0.426318π0.426318\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 −4.04508 + 2.93893i −0.809017 + 0.587785i
2626 0 0
2727 −5.05297 15.5514i −0.972444 2.99288i
2828 0 0
2929 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
3030 0 0
3131 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3232 0 0
3333 −7.51600 + 7.99270i −1.30837 + 1.39135i
3434 0 0
3535 0 0
3636 0 0
3737 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
3838 0 0
3939 0 0
4040 0 0
4141 1.29913 + 1.78810i 0.202890 + 0.279254i 0.898322 0.439338i 0.144787π-0.144787\pi
−0.695432 + 0.718592i 0.744787π0.744787\pi
4242 0 0
4343 6.88847i 1.05048i 0.850954 + 0.525241i 0.176025π0.176025\pi
−0.850954 + 0.525241i 0.823975π0.823975\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
4848 0 0
4949 −2.16312 6.65740i −0.309017 0.951057i
5050 0 0
5151 2.04120 2.80947i 0.285825 0.393405i
5252 0 0
5353 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
5454 0 0
5555 0 0
5656 0 0
5757 25.2958 + 8.21910i 3.35051 + 1.08865i
5858 0 0
5959 −2.79793 2.03282i −0.364260 0.264650i 0.390567 0.920575i 0.372279π-0.372279\pi
−0.754827 + 0.655924i 0.772279π0.772279\pi
6060 0 0
6161 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 16.3138 1.99304 0.996522 0.0833352i 0.0265572π-0.0265572\pi
0.996522 + 0.0833352i 0.0265572π0.0265572\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
7272 0 0
7373 −4.20049 + 5.78148i −0.491631 + 0.676671i −0.980688 0.195580i 0.937341π-0.937341\pi
0.489057 + 0.872252i 0.337341π0.337341\pi
7474 0 0
7575 −5.11118 + 15.7306i −0.590189 + 1.81641i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
8080 0 0
8181 −24.4832 17.7881i −2.72035 1.97645i
8282 0 0
8383 −15.4499 + 5.01998i −1.69585 + 0.551014i −0.987878 0.155230i 0.950388π-0.950388\pi
−0.707968 + 0.706244i 0.750388π0.750388\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0.182318 0.0193256 0.00966282 0.999953i 0.496924π-0.496924\pi
0.00966282 + 0.999953i 0.496924π0.496924\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −4.03261 + 12.4111i −0.409449 + 1.26016i 0.507673 + 0.861550i 0.330506π0.330506\pi
−0.917122 + 0.398606i 0.869494π0.869494\pi
9898 0 0
9999 −3.31977 + 26.1341i −0.333649 + 2.62658i
100100 0 0
101101 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
102102 0 0
103103 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
104104 0 0
105105 0 0
106106 0 0
107107 −6.95030 9.56627i −0.671911 0.924806i 0.327891 0.944716i 0.393662π-0.393662\pi
−0.999802 + 0.0199092i 0.993662π0.993662\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 −6.40116 + 4.65072i −0.602171 + 0.437503i −0.846649 0.532152i 0.821383π-0.821383\pi
0.244478 + 0.969655i 0.421383π0.421383\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 10.2331 4.03530i 0.930282 0.366845i
122122 0 0
123123 6.95359 + 2.25936i 0.626984 + 0.203720i
124124 0 0
125125 0 0
126126 0 0
127127 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
128128 0 0
129129 13.3940 + 18.4353i 1.17928 + 1.62314i
130130 0 0
131131 22.0214i 1.92402i −0.273022 0.962008i 0.588023π-0.588023\pi
0.273022 0.962008i 0.411977π-0.411977\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −6.07708 18.7033i −0.519200 1.59793i −0.775507 0.631338i 0.782506π-0.782506\pi
0.256307 0.966595i 0.417494π-0.417494\pi
138138 0 0
139139 −4.98752 + 6.86474i −0.423036 + 0.582259i −0.966337 0.257279i 0.917174π-0.917174\pi
0.543301 + 0.839538i 0.317174π0.317174\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 −18.7338 13.6109i −1.54513 1.12261i
148148 0 0
149149 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
150150 0 0
151151 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
152152 0 0
153153 8.33845i 0.674124i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 4.12369 12.6914i 0.322992 0.994068i −0.649347 0.760493i 0.724958π-0.724958\pi
0.972339 0.233575i 0.0750425π-0.0750425\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
168168 0 0
169169 10.5172 + 7.64121i 0.809017 + 0.587785i
170170 0 0
171171 60.7388 19.7352i 4.64481 1.50919i
172172 0 0
173173 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
174174 0 0
175175 0 0
176176 0 0
177177 −11.4406 −0.859929
178178 0 0
179179 21.1961 15.3999i 1.58427 1.15104i 0.672692 0.739923i 0.265138π-0.265138\pi
0.911582 0.411119i 0.134862π-0.134862\pi
180180 0 0
181181 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −3.05221 + 1.67524i −0.223200 + 0.122505i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
192192 0 0
193193 16.1400 5.24419i 1.16178 0.377485i 0.336211 0.941787i 0.390854π-0.390854\pi
0.825569 + 0.564301i 0.190854π0.190854\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 43.6597 31.7206i 3.07952 2.23740i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 −19.4266 18.2680i −1.34377 1.26362i
210210 0 0
211211 −20.1444 6.54531i −1.38680 0.450598i −0.481900 0.876226i 0.660053π-0.660053\pi
−0.904898 + 0.425628i 0.860053π0.860053\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 23.6402i 1.59746i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
224224 0 0
225225 12.2727 + 37.7714i 0.818179 + 2.51810i
226226 0 0
227227 −11.7097 + 16.1171i −0.777203 + 1.06973i 0.218382 + 0.975863i 0.429922π0.429922\pi
−0.995585 + 0.0938647i 0.970078π0.970078\pi
228228 0 0
229229 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
230230 0 0
231231 0 0
232232 0 0
233233 −28.7978 9.35696i −1.88660 0.612995i −0.982683 0.185296i 0.940675π-0.940675\pi
−0.903921 0.427698i 0.859325π-0.859325\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
240240 0 0
241241 29.0119i 1.86882i −0.356199 0.934410i 0.615928π-0.615928\pi
0.356199 0.934410i 0.384072π-0.384072\pi
242242 0 0
243243 −51.0552 −3.27520
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 −31.5869 + 43.4757i −2.00174 + 2.75516i
250250 0 0
251251 −1.85410 + 5.70634i −0.117030 + 0.360181i −0.992365 0.123336i 0.960641π-0.960641\pi
0.875335 + 0.483517i 0.160641π0.160641\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 −16.2050 11.7736i −1.01084 0.734419i −0.0464552 0.998920i 0.514792π-0.514792\pi
−0.964385 + 0.264502i 0.914792π0.914792\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0.487928 0.354501i 0.0298607 0.0216951i
268268 0 0
269269 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
270270 0 0
271271 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
272272 0 0
273273 0 0
274274 0 0
275275 11.3602 12.0808i 0.685048 0.728498i
276276 0 0
277277 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
278278 0 0
279279 0 0
280280 0 0
281281 24.5937 7.99097i 1.46714 0.476702i 0.536895 0.843649i 0.319597π-0.319597\pi
0.930242 + 0.366947i 0.119597π0.119597\pi
282282 0 0
283283 14.9626 + 20.5942i 0.889432 + 1.22420i 0.973718 + 0.227757i 0.0731392π0.0731392\pi
−0.0842855 + 0.996442i 0.526861π0.526861\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −12.8617 + 9.34459i −0.756572 + 0.549682i
290290 0 0
291291 13.3400 + 41.0562i 0.782004 + 2.40676i
292292 0 0
293293 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
294294 0 0
295295 0 0
296296 0 0
297297 26.0941 + 47.5424i 1.51413 + 2.75869i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 34.9580i 1.99516i −0.0695319 0.997580i 0.522151π-0.522151\pi
0.0695319 0.997580i 0.477849π-0.477849\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
312312 0 0
313313 −3.66492 11.2795i −0.207153 0.637553i −0.999618 0.0276348i 0.991202π-0.991202\pi
0.792465 0.609918i 0.208798π-0.208798\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
318318 0 0
319319 0 0
320320 0 0
321321 −37.2015 12.0875i −2.07639 0.674659i
322322 0 0
323323 6.82855 + 4.96123i 0.379951 + 0.276050i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −16.1755 −0.889086 −0.444543 0.895757i 0.646634π-0.646634\pi
−0.444543 + 0.895757i 0.646634π0.646634\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 11.3031 15.5574i 0.615718 0.847463i −0.381314 0.924445i 0.624528π-0.624528\pi
0.997032 + 0.0769821i 0.0245284π0.0245284\pi
338338 0 0
339339 −8.08822 + 24.8930i −0.439292 + 1.35200i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 −24.9372 + 8.10257i −1.33870 + 0.434969i −0.888875 0.458149i 0.848512π-0.848512\pi
−0.449822 + 0.893118i 0.648512π0.648512\pi
348348 0 0
349349 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
350350 0 0
351351 0 0
352352 0 0
353353 37.5706 1.99968 0.999840 0.0178943i 0.00569624π-0.00569624\pi
0.999840 + 0.0178943i 0.00569624π0.00569624\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
360360 0 0
361361 −14.1056 + 43.4124i −0.742398 + 2.28487i
362362 0 0
363363 19.5401 30.6968i 1.02559 1.61117i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
368368 0 0
369369 16.6966 5.42505i 0.869189 0.282417i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.13492 + 3.49291i 0.0582967 + 0.179419i 0.975964 0.217930i 0.0699304π-0.0699304\pi
−0.917668 + 0.397349i 0.869930π0.869930\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
384384 0 0
385385 0 0
386386 0 0
387387 52.0375 + 16.9080i 2.64521 + 0.859482i
388388 0 0
389389 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
390390 0 0
391391 0 0
392392 0 0
393393 −42.8186 58.9347i −2.15991 2.97286i
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 12.2105 + 37.5801i 0.609763 + 1.87666i 0.459951 + 0.887945i 0.347867π0.347867\pi
0.149813 + 0.988714i 0.452133π0.452133\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 32.2799 + 10.4884i 1.59614 + 0.518617i 0.966149 0.257985i 0.0830586π-0.0830586\pi
0.629991 + 0.776603i 0.283059π0.283059\pi
410410 0 0
411411 −52.6307 38.2385i −2.59608 1.88617i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 28.0695i 1.37457i
418418 0 0
419419 29.4076 1.43666 0.718328 0.695705i 0.244908π-0.244908\pi
0.718328 + 0.695705i 0.244908π0.244908\pi
420420 0 0
421421 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
422422 0 0
423423 0 0
424424 0 0
425425 −3.08523 + 4.24645i −0.149655 + 0.205983i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
432432 0 0
433433 16.8013 + 12.2069i 0.807421 + 0.586626i 0.913082 0.407777i 0.133696π-0.133696\pi
−0.105661 + 0.994402i 0.533696π0.533696\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 −55.6013 −2.64768
442442 0 0
443443 −8.32375 + 6.04756i −0.395473 + 0.287328i −0.767695 0.640816i 0.778596π-0.778596\pi
0.372221 + 0.928144i 0.378596π0.378596\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −9.47251 + 29.1534i −0.447036 + 1.37583i 0.433200 + 0.901298i 0.357384π0.357384\pi
−0.880236 + 0.474536i 0.842616π0.842616\pi
450450 0 0
451451 −5.34021 5.02171i −0.251461 0.236463i
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −33.4923 + 10.8823i −1.56670 + 0.509052i −0.958588 0.284797i 0.908074π-0.908074\pi
−0.608114 + 0.793849i 0.708074π0.708074\pi
458458 0 0
459459 −10.0898 13.8874i −0.470950 0.648207i
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 −9.27051 28.5317i −0.428988 1.32029i −0.899123 0.437695i 0.855795π-0.855795\pi
0.470135 0.882594i 0.344205π-0.344205\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −4.26557 22.4447i −0.196131 1.03201i
474474 0 0
475475 −38.2339 12.4230i −1.75429 0.570004i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
488488 0 0
489489 −13.6413 41.9835i −0.616880 1.89856i
490490 0 0
491491 −26.0474 + 35.8512i −1.17550 + 1.61794i −0.579149 + 0.815222i 0.696615π0.696615\pi
−0.596355 + 0.802721i 0.703385π0.703385\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 29.1438 + 21.1742i 1.30465 + 0.947887i 0.999990 0.00457310i 0.00145567π-0.00145567\pi
0.304664 + 0.952460i 0.401456π0.401456\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
504504 0 0
505505 0 0
506506 0 0
507507 43.0044 1.90989
508508 0 0
509509 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
510510 0 0
511511 0 0
512512 0 0
513513 77.2779 106.364i 3.41190 4.69608i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 17.5929 + 12.7820i 0.770759 + 0.559989i 0.902191 0.431336i 0.141958π-0.141958\pi
−0.131432 + 0.991325i 0.541958π0.541958\pi
522522 0 0
523523 −1.65639 + 0.538193i −0.0724288 + 0.0235335i −0.345007 0.938600i 0.612124π-0.612124\pi
0.272578 + 0.962134i 0.412124π0.412124\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 23.0000 1.00000
530530 0 0
531531 −22.2241 + 16.1468i −0.964445 + 0.700710i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 26.7825 82.4279i 1.15575 3.55703i
538538 0 0
539539 11.1706 + 20.3523i 0.481151 + 0.876638i
540540 0 0
541541 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 19.9276 + 27.4280i 0.852043 + 1.17274i 0.983409 + 0.181402i 0.0580636π0.0580636\pi
−0.131366 + 0.991334i 0.541936π0.541936\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
558558 0 0
559559 0 0
560560 0 0
561561 −4.91114 + 10.4181i −0.207349 + 0.439853i
562562 0 0
563563 37.9416 + 12.3280i 1.59905 + 0.519562i 0.966871 0.255264i 0.0821625π-0.0821625\pi
0.632175 + 0.774826i 0.282163π0.282163\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 25.2706 + 34.7820i 1.05940 + 1.45814i 0.880366 + 0.474295i 0.157297π0.157297\pi
0.179034 + 0.983843i 0.442703π0.442703\pi
570570 0 0
571571 42.4264i 1.77549i −0.460336 0.887745i 0.652271π-0.652271\pi
0.460336 0.887745i 0.347729π-0.347729\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −14.6649 45.1340i −0.610509 1.87895i −0.453218 0.891400i 0.649724π-0.649724\pi
−0.157290 0.987552i 0.550276π-0.550276\pi
578578 0 0
579579 32.9977 45.4175i 1.37134 1.88749i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 26.7920 + 19.4655i 1.10582 + 0.803428i 0.982001 0.188876i 0.0604844π-0.0604844\pi
0.123823 + 0.992304i 0.460484π0.460484\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 47.1921i 1.93795i 0.247167 + 0.968973i 0.420500π0.420500\pi
−0.247167 + 0.968973i 0.579500π0.579500\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
600600 0 0
601601 −28.7972 + 39.6360i −1.17466 + 1.61679i −0.555566 + 0.831472i 0.687498π0.687498\pi
−0.619098 + 0.785314i 0.712502π0.712502\pi
602602 0 0
603603 40.0427 123.239i 1.63067 5.01867i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.995401 0.0400733 0.0200367 0.999799i 0.493622π-0.493622\pi
0.0200367 + 0.999799i 0.493622π0.493622\pi
618618 0 0
619619 −37.1922 + 27.0217i −1.49488 + 1.08609i −0.522514 + 0.852631i 0.675006π0.675006\pi
−0.972366 + 0.233463i 0.924994π0.924994\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 7.72542 23.7764i 0.309017 0.951057i
626626 0 0
627627 −87.5109 11.1163i −3.49485 0.443944i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
632632 0 0
633633 −66.6383 + 21.6521i −2.64863 + 0.860593i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 32.2625 23.4401i 1.27429 0.925828i 0.274928 0.961465i 0.411346π-0.411346\pi
0.999365 + 0.0356372i 0.0113461π0.0113461\pi
642642 0 0
643643 −7.26834 22.3696i −0.286635 0.882173i −0.985904 0.167313i 0.946491π-0.946491\pi
0.699269 0.714859i 0.253509π-0.253509\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
648648 0 0
649649 10.3753 + 4.89097i 0.407267 + 0.191987i
650650 0 0
651651 0 0
652652 0 0
653653 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
654654 0 0
655655 0 0
656656 0 0
657657 33.3647 + 45.9226i 1.30168 + 1.79161i
658658 0 0
659659 28.3200i 1.10319i 0.834111 + 0.551596i 0.185981π0.185981\pi
−0.834111 + 0.551596i 0.814019π0.814019\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −33.5823 10.9116i −1.29450 0.420610i −0.420838 0.907136i 0.638264π-0.638264\pi
−0.873666 + 0.486526i 0.838264π0.838264\pi
674674 0 0
675675 66.1442 + 48.0566i 2.54589 + 1.84970i
676676 0 0
677677 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
678678 0 0
679679 0 0
680680 0 0
681681 65.9019i 2.52537i
682682 0 0
683683 42.0000 1.60709 0.803543 0.595247i 0.202946π-0.202946\pi
0.803543 + 0.595247i 0.202946π0.202946\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −6.87631 + 21.1631i −0.261587 + 0.805083i 0.730873 + 0.682514i 0.239113π0.239113\pi
−0.992460 + 0.122569i 0.960887π0.960887\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 1.87711 + 1.36380i 0.0711006 + 0.0516576i
698698 0 0
699699 −95.2638 + 30.9531i −3.60321 + 1.17075i
700700 0 0
701701 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
720720 0 0
721721 0 0
722722 0 0
723723 −56.4110 77.6431i −2.09795 2.88758i
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 −63.1871 + 45.9081i −2.34026 + 1.70030i
730730 0 0
731731 2.23462 + 6.87745i 0.0826503 + 0.254372i
732732 0 0
733733 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
734734 0 0
735735 0 0
736736 0 0
737737 −53.1552 + 10.1020i −1.95800 + 0.372113i
738738 0 0
739739 −13.6372 4.43099i −0.501652 0.162997i 0.0472504 0.998883i 0.484954π-0.484954\pi
−0.548902 + 0.835886i 0.684954π0.684954\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
744744 0 0
745745 0 0
746746 0 0
747747 129.035i 4.72113i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
752752 0 0
753753 6.13342 + 18.8767i 0.223514 + 0.687906i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
758758 0 0
759759 0 0
760760 0 0
761761 38.8919 + 12.6368i 1.40983 + 0.458082i 0.912356 0.409397i 0.134261π-0.134261\pi
0.497475 + 0.867479i 0.334261π0.334261\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 50.9117i 1.83592i −0.396670 0.917961i 0.629834π-0.629834\pi
0.396670 0.917961i 0.370166π-0.370166\pi
770770 0 0
771771 −66.2614 −2.38635
772772 0 0
773773 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −5.49147 + 16.9010i −0.196752 + 0.605542i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 47.5371 15.4457i 1.69451 0.550581i 0.706877 0.707336i 0.250103π-0.250103\pi
0.987638 + 0.156755i 0.0501033π0.0501033\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
798798 0 0
799799 0 0
800800 0 0
801801 0.447506 1.37728i 0.0158118 0.0486638i
802802 0 0
803803 10.1064 21.4389i 0.356647 0.756563i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −46.8791 + 15.2319i −1.64818 + 0.535527i −0.978345 0.206981i 0.933636π-0.933636\pi
−0.669837 + 0.742508i 0.733636π0.733636\pi
810810 0 0
811811 28.9488 + 39.8446i 1.01653 + 1.39913i 0.914609 + 0.404340i 0.132499π0.132499\pi
0.101921 + 0.994792i 0.467501π0.467501\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −44.8077 + 32.5547i −1.56762 + 1.13895i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
822822 0 0
823823 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
824824 0 0
825825 6.91289 54.4201i 0.240676 1.89467i
826826 0 0
827827 −14.9532 4.85858i −0.519972 0.168949i 0.0372604 0.999306i 0.488137π-0.488137\pi
−0.557233 + 0.830356i 0.688137π0.688137\pi
828828 0 0
829829 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
830830 0 0
831831 0 0
832832 0 0
833833 −4.31932 5.94503i −0.149655 0.205983i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
840840 0 0
841841 −8.96149 27.5806i −0.309017 0.951057i
842842 0 0
843843 50.2812 69.2061i 1.73178 2.38358i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 80.0872 + 26.0219i 2.74858 + 0.893069i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
854854 0 0
855855 0 0
856856 0 0
857857 58.3493i 1.99317i −0.0825467 0.996587i 0.526305π-0.526305\pi
0.0825467 0.996587i 0.473695π-0.473695\pi
858858 0 0
859859 51.9105 1.77116 0.885582 0.464483i 0.153760π-0.153760\pi
0.885582 + 0.464483i 0.153760π0.153760\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
864864 0 0
865865 0 0
866866 0 0
867867 −16.2515 + 50.0169i −0.551929 + 1.69866i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 83.8588 + 60.9270i 2.83819 + 2.06207i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
878878 0 0
879879 0 0
880880 0 0
881881 59.3622 1.99996 0.999981 0.00609171i 0.00193906π-0.00193906\pi
0.999981 + 0.00609171i 0.00193906π0.00193906\pi
882882 0 0
883883 −45.2013 + 32.8406i −1.52114 + 1.10518i −0.560227 + 0.828339i 0.689286π0.689286\pi
−0.960917 + 0.276836i 0.910714π0.910714\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
888888 0 0
889889 0 0
890890 0 0
891891 90.7887 + 42.7982i 3.04153 + 1.43379i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −13.2886 40.8981i −0.441241 1.35800i −0.886554 0.462625i 0.846908π-0.846908\pi
0.445313 0.895375i 0.353092π-0.353092\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
912912 0 0
913913 47.2319 25.9237i 1.56315 0.857949i
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
920920 0 0
921921 −67.9727 93.5564i −2.23978 3.08279i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 18.6374 + 57.3601i 0.611474 + 1.88192i 0.443935 + 0.896059i 0.353582π0.353582\pi
0.167539 + 0.985865i 0.446418π0.446418\pi
930930 0 0
931931 33.0818 45.5332i 1.08421 1.49229i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −58.1791 18.9035i −1.90063 0.617552i −0.962522 0.271204i 0.912578π-0.912578\pi
−0.938106 0.346348i 0.887422π-0.887422\pi
938938 0 0
939939 −31.7401 23.0606i −1.03580 0.752553i
940940 0 0
941941 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −55.8582 −1.81515 −0.907573 0.419894i 0.862067π-0.862067\pi
−0.907573 + 0.419894i 0.862067π0.862067\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 31.6986 43.6294i 1.02682 1.41329i 0.119508 0.992833i 0.461868π-0.461868\pi
0.907311 0.420461i 0.138132π-0.138132\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −25.0795 18.2213i −0.809017 0.587785i
962962 0 0
963963 −89.3262 + 29.0238i −2.87850 + 0.935280i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 27.9216 0.896970
970970 0 0
971971 43.6869 31.7404i 1.40198 1.01860i 0.407552 0.913182i 0.366383π-0.366383\pi
0.994428 0.105416i 0.0336174π-0.0336174\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 1.85410 5.70634i 0.0593180 0.182562i −0.917007 0.398871i 0.869402π-0.869402\pi
0.976325 + 0.216309i 0.0694020π0.0694020\pi
978978 0 0
979979 −0.594047 + 0.112897i −0.0189858 + 0.00360821i
980980 0 0
981981 0 0
982982 0 0
983983 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 −43.2897 + 31.4518i −1.37376 + 0.998093i
994994 0 0
995995 0 0
996996 0 0
997997 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.s.a.79.2 8
4.3 odd 2 88.2.k.a.35.2 8
8.3 odd 2 CM 352.2.s.a.79.2 8
8.5 even 2 88.2.k.a.35.2 8
11.4 even 5 3872.2.g.b.1935.1 8
11.6 odd 10 inner 352.2.s.a.303.2 8
11.7 odd 10 3872.2.g.b.1935.2 8
12.11 even 2 792.2.bp.a.739.1 8
24.5 odd 2 792.2.bp.a.739.1 8
44.3 odd 10 968.2.k.c.403.2 8
44.7 even 10 968.2.g.a.483.4 8
44.15 odd 10 968.2.g.a.483.8 8
44.19 even 10 968.2.k.d.403.1 8
44.27 odd 10 968.2.k.b.699.1 8
44.31 odd 10 968.2.k.d.723.1 8
44.35 even 10 968.2.k.c.723.2 8
44.39 even 10 88.2.k.a.83.2 yes 8
44.43 even 2 968.2.k.b.475.1 8
88.5 even 10 968.2.k.b.699.1 8
88.13 odd 10 968.2.k.c.723.2 8
88.21 odd 2 968.2.k.b.475.1 8
88.29 odd 10 968.2.g.a.483.4 8
88.37 even 10 968.2.g.a.483.8 8
88.51 even 10 3872.2.g.b.1935.2 8
88.53 even 10 968.2.k.d.723.1 8
88.59 odd 10 3872.2.g.b.1935.1 8
88.61 odd 10 88.2.k.a.83.2 yes 8
88.69 even 10 968.2.k.c.403.2 8
88.83 even 10 inner 352.2.s.a.303.2 8
88.85 odd 10 968.2.k.d.403.1 8
132.83 odd 10 792.2.bp.a.523.1 8
264.149 even 10 792.2.bp.a.523.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.k.a.35.2 8 4.3 odd 2
88.2.k.a.35.2 8 8.5 even 2
88.2.k.a.83.2 yes 8 44.39 even 10
88.2.k.a.83.2 yes 8 88.61 odd 10
352.2.s.a.79.2 8 1.1 even 1 trivial
352.2.s.a.79.2 8 8.3 odd 2 CM
352.2.s.a.303.2 8 11.6 odd 10 inner
352.2.s.a.303.2 8 88.83 even 10 inner
792.2.bp.a.523.1 8 132.83 odd 10
792.2.bp.a.523.1 8 264.149 even 10
792.2.bp.a.739.1 8 12.11 even 2
792.2.bp.a.739.1 8 24.5 odd 2
968.2.g.a.483.4 8 44.7 even 10
968.2.g.a.483.4 8 88.29 odd 10
968.2.g.a.483.8 8 44.15 odd 10
968.2.g.a.483.8 8 88.37 even 10
968.2.k.b.475.1 8 44.43 even 2
968.2.k.b.475.1 8 88.21 odd 2
968.2.k.b.699.1 8 44.27 odd 10
968.2.k.b.699.1 8 88.5 even 10
968.2.k.c.403.2 8 44.3 odd 10
968.2.k.c.403.2 8 88.69 even 10
968.2.k.c.723.2 8 44.35 even 10
968.2.k.c.723.2 8 88.13 odd 10
968.2.k.d.403.1 8 44.19 even 10
968.2.k.d.403.1 8 88.85 odd 10
968.2.k.d.723.1 8 44.31 odd 10
968.2.k.d.723.1 8 88.53 even 10
3872.2.g.b.1935.1 8 11.4 even 5
3872.2.g.b.1935.1 8 88.59 odd 10
3872.2.g.b.1935.2 8 11.7 odd 10
3872.2.g.b.1935.2 8 88.51 even 10