Properties

Label 352.2.s.a.79.2
Level $352$
Weight $2$
Character 352.79
Analytic conductor $2.811$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(79,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.s (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

Embedding invariants

Embedding label 79.2
Root \(1.34500 - 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 352.79
Dual form 352.2.s.a.303.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.67625 - 1.94441i) q^{3} +(2.45454 - 7.55429i) q^{9} +(-3.25830 + 0.619233i) q^{11} +(0.998400 - 0.324400i) q^{17} +(4.72597 + 6.50475i) q^{19} +(-4.04508 + 2.93893i) q^{25} +(-5.05297 - 15.5514i) q^{27} +(-7.51600 + 7.99270i) q^{33} +(1.29913 + 1.78810i) q^{41} +6.88847i q^{43} +(-2.16312 - 6.65740i) q^{49} +(2.04120 - 2.80947i) q^{51} +(25.2958 + 8.21910i) q^{57} +(-2.79793 - 2.03282i) q^{59} +16.3138 q^{67} +(-4.20049 + 5.78148i) q^{73} +(-5.11118 + 15.7306i) q^{75} +(-24.4832 - 17.7881i) q^{81} +(-15.4499 + 5.01998i) q^{83} +0.182318 q^{89} +(-4.03261 + 12.4111i) q^{97} +(-3.31977 + 26.1341i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 2 q^{9} - 6 q^{11} + 10 q^{19} - 10 q^{25} - 38 q^{27} - 38 q^{33} + 14 q^{49} + 70 q^{51} + 70 q^{57} + 18 q^{59} + 28 q^{67} - 30 q^{75} - 8 q^{81} - 90 q^{83} - 36 q^{89} + 30 q^{97}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.67625 1.94441i 1.54513 1.12261i 0.598123 0.801404i \(-0.295913\pi\)
0.947011 0.321202i \(-0.104087\pi\)
\(4\) 0 0
\(5\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(6\) 0 0
\(7\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(8\) 0 0
\(9\) 2.45454 7.55429i 0.818179 2.51810i
\(10\) 0 0
\(11\) −3.25830 + 0.619233i −0.982416 + 0.186706i
\(12\) 0 0
\(13\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.998400 0.324400i 0.242148 0.0786785i −0.185429 0.982658i \(-0.559367\pi\)
0.427576 + 0.903979i \(0.359367\pi\)
\(18\) 0 0
\(19\) 4.72597 + 6.50475i 1.08421 + 1.49229i 0.854797 + 0.518962i \(0.173682\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −4.04508 + 2.93893i −0.809017 + 0.587785i
\(26\) 0 0
\(27\) −5.05297 15.5514i −0.972444 2.99288i
\(28\) 0 0
\(29\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(30\) 0 0
\(31\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(32\) 0 0
\(33\) −7.51600 + 7.99270i −1.30837 + 1.39135i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.29913 + 1.78810i 0.202890 + 0.279254i 0.898322 0.439338i \(-0.144787\pi\)
−0.695432 + 0.718592i \(0.744787\pi\)
\(42\) 0 0
\(43\) 6.88847i 1.05048i 0.850954 + 0.525241i \(0.176025\pi\)
−0.850954 + 0.525241i \(0.823975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(48\) 0 0
\(49\) −2.16312 6.65740i −0.309017 0.951057i
\(50\) 0 0
\(51\) 2.04120 2.80947i 0.285825 0.393405i
\(52\) 0 0
\(53\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 25.2958 + 8.21910i 3.35051 + 1.08865i
\(58\) 0 0
\(59\) −2.79793 2.03282i −0.364260 0.264650i 0.390567 0.920575i \(-0.372279\pi\)
−0.754827 + 0.655924i \(0.772279\pi\)
\(60\) 0 0
\(61\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 16.3138 1.99304 0.996522 0.0833352i \(-0.0265572\pi\)
0.996522 + 0.0833352i \(0.0265572\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) 0 0
\(73\) −4.20049 + 5.78148i −0.491631 + 0.676671i −0.980688 0.195580i \(-0.937341\pi\)
0.489057 + 0.872252i \(0.337341\pi\)
\(74\) 0 0
\(75\) −5.11118 + 15.7306i −0.590189 + 1.81641i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 0 0
\(81\) −24.4832 17.7881i −2.72035 1.97645i
\(82\) 0 0
\(83\) −15.4499 + 5.01998i −1.69585 + 0.551014i −0.987878 0.155230i \(-0.950388\pi\)
−0.707968 + 0.706244i \(0.750388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.182318 0.0193256 0.00966282 0.999953i \(-0.496924\pi\)
0.00966282 + 0.999953i \(0.496924\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.03261 + 12.4111i −0.409449 + 1.26016i 0.507673 + 0.861550i \(0.330506\pi\)
−0.917122 + 0.398606i \(0.869494\pi\)
\(98\) 0 0
\(99\) −3.31977 + 26.1341i −0.333649 + 2.62658i
\(100\) 0 0
\(101\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(102\) 0 0
\(103\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.95030 9.56627i −0.671911 0.924806i 0.327891 0.944716i \(-0.393662\pi\)
−0.999802 + 0.0199092i \(0.993662\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.40116 + 4.65072i −0.602171 + 0.437503i −0.846649 0.532152i \(-0.821383\pi\)
0.244478 + 0.969655i \(0.421383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.2331 4.03530i 0.930282 0.366845i
\(122\) 0 0
\(123\) 6.95359 + 2.25936i 0.626984 + 0.203720i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(128\) 0 0
\(129\) 13.3940 + 18.4353i 1.17928 + 1.62314i
\(130\) 0 0
\(131\) 22.0214i 1.92402i −0.273022 0.962008i \(-0.588023\pi\)
0.273022 0.962008i \(-0.411977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.07708 18.7033i −0.519200 1.59793i −0.775507 0.631338i \(-0.782506\pi\)
0.256307 0.966595i \(-0.417494\pi\)
\(138\) 0 0
\(139\) −4.98752 + 6.86474i −0.423036 + 0.582259i −0.966337 0.257279i \(-0.917174\pi\)
0.543301 + 0.839538i \(0.317174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −18.7338 13.6109i −1.54513 1.12261i
\(148\) 0 0
\(149\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(150\) 0 0
\(151\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(152\) 0 0
\(153\) 8.33845i 0.674124i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.12369 12.6914i 0.322992 0.994068i −0.649347 0.760493i \(-0.724958\pi\)
0.972339 0.233575i \(-0.0750425\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(168\) 0 0
\(169\) 10.5172 + 7.64121i 0.809017 + 0.587785i
\(170\) 0 0
\(171\) 60.7388 19.7352i 4.64481 1.50919i
\(172\) 0 0
\(173\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.4406 −0.859929
\(178\) 0 0
\(179\) 21.1961 15.3999i 1.58427 1.15104i 0.672692 0.739923i \(-0.265138\pi\)
0.911582 0.411119i \(-0.134862\pi\)
\(180\) 0 0
\(181\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.05221 + 1.67524i −0.223200 + 0.122505i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(192\) 0 0
\(193\) 16.1400 5.24419i 1.16178 0.377485i 0.336211 0.941787i \(-0.390854\pi\)
0.825569 + 0.564301i \(0.190854\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 43.6597 31.7206i 3.07952 2.23740i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −19.4266 18.2680i −1.34377 1.26362i
\(210\) 0 0
\(211\) −20.1444 6.54531i −1.38680 0.450598i −0.481900 0.876226i \(-0.660053\pi\)
−0.904898 + 0.425628i \(0.860053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 23.6402i 1.59746i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(224\) 0 0
\(225\) 12.2727 + 37.7714i 0.818179 + 2.51810i
\(226\) 0 0
\(227\) −11.7097 + 16.1171i −0.777203 + 1.06973i 0.218382 + 0.975863i \(0.429922\pi\)
−0.995585 + 0.0938647i \(0.970078\pi\)
\(228\) 0 0
\(229\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −28.7978 9.35696i −1.88660 0.612995i −0.982683 0.185296i \(-0.940675\pi\)
−0.903921 0.427698i \(-0.859325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(240\) 0 0
\(241\) 29.0119i 1.86882i −0.356199 0.934410i \(-0.615928\pi\)
0.356199 0.934410i \(-0.384072\pi\)
\(242\) 0 0
\(243\) −51.0552 −3.27520
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −31.5869 + 43.4757i −2.00174 + 2.75516i
\(250\) 0 0
\(251\) −1.85410 + 5.70634i −0.117030 + 0.360181i −0.992365 0.123336i \(-0.960641\pi\)
0.875335 + 0.483517i \(0.160641\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.2050 11.7736i −1.01084 0.734419i −0.0464552 0.998920i \(-0.514792\pi\)
−0.964385 + 0.264502i \(0.914792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.487928 0.354501i 0.0298607 0.0216951i
\(268\) 0 0
\(269\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(270\) 0 0
\(271\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.3602 12.0808i 0.685048 0.728498i
\(276\) 0 0
\(277\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.5937 7.99097i 1.46714 0.476702i 0.536895 0.843649i \(-0.319597\pi\)
0.930242 + 0.366947i \(0.119597\pi\)
\(282\) 0 0
\(283\) 14.9626 + 20.5942i 0.889432 + 1.22420i 0.973718 + 0.227757i \(0.0731392\pi\)
−0.0842855 + 0.996442i \(0.526861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −12.8617 + 9.34459i −0.756572 + 0.549682i
\(290\) 0 0
\(291\) 13.3400 + 41.0562i 0.782004 + 2.40676i
\(292\) 0 0
\(293\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 26.0941 + 47.5424i 1.51413 + 2.75869i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 34.9580i 1.99516i −0.0695319 0.997580i \(-0.522151\pi\)
0.0695319 0.997580i \(-0.477849\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(312\) 0 0
\(313\) −3.66492 11.2795i −0.207153 0.637553i −0.999618 0.0276348i \(-0.991202\pi\)
0.792465 0.609918i \(-0.208798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −37.2015 12.0875i −2.07639 0.674659i
\(322\) 0 0
\(323\) 6.82855 + 4.96123i 0.379951 + 0.276050i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −16.1755 −0.889086 −0.444543 0.895757i \(-0.646634\pi\)
−0.444543 + 0.895757i \(0.646634\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11.3031 15.5574i 0.615718 0.847463i −0.381314 0.924445i \(-0.624528\pi\)
0.997032 + 0.0769821i \(0.0245284\pi\)
\(338\) 0 0
\(339\) −8.08822 + 24.8930i −0.439292 + 1.35200i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −24.9372 + 8.10257i −1.33870 + 0.434969i −0.888875 0.458149i \(-0.848512\pi\)
−0.449822 + 0.893118i \(0.648512\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 37.5706 1.99968 0.999840 0.0178943i \(-0.00569624\pi\)
0.999840 + 0.0178943i \(0.00569624\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) 0 0
\(361\) −14.1056 + 43.4124i −0.742398 + 2.28487i
\(362\) 0 0
\(363\) 19.5401 30.6968i 1.02559 1.61117i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(368\) 0 0
\(369\) 16.6966 5.42505i 0.869189 0.282417i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.13492 + 3.49291i 0.0582967 + 0.179419i 0.975964 0.217930i \(-0.0699304\pi\)
−0.917668 + 0.397349i \(0.869930\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 52.0375 + 16.9080i 2.64521 + 0.859482i
\(388\) 0 0
\(389\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −42.8186 58.9347i −2.15991 2.97286i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.2105 + 37.5801i 0.609763 + 1.87666i 0.459951 + 0.887945i \(0.347867\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 32.2799 + 10.4884i 1.59614 + 0.518617i 0.966149 0.257985i \(-0.0830586\pi\)
0.629991 + 0.776603i \(0.283059\pi\)
\(410\) 0 0
\(411\) −52.6307 38.2385i −2.59608 1.88617i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 28.0695i 1.37457i
\(418\) 0 0
\(419\) 29.4076 1.43666 0.718328 0.695705i \(-0.244908\pi\)
0.718328 + 0.695705i \(0.244908\pi\)
\(420\) 0 0
\(421\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.08523 + 4.24645i −0.149655 + 0.205983i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(432\) 0 0
\(433\) 16.8013 + 12.2069i 0.807421 + 0.586626i 0.913082 0.407777i \(-0.133696\pi\)
−0.105661 + 0.994402i \(0.533696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −55.6013 −2.64768
\(442\) 0 0
\(443\) −8.32375 + 6.04756i −0.395473 + 0.287328i −0.767695 0.640816i \(-0.778596\pi\)
0.372221 + 0.928144i \(0.378596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9.47251 + 29.1534i −0.447036 + 1.37583i 0.433200 + 0.901298i \(0.357384\pi\)
−0.880236 + 0.474536i \(0.842616\pi\)
\(450\) 0 0
\(451\) −5.34021 5.02171i −0.251461 0.236463i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −33.4923 + 10.8823i −1.56670 + 0.509052i −0.958588 0.284797i \(-0.908074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 0 0
\(459\) −10.0898 13.8874i −0.470950 0.648207i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.27051 28.5317i −0.428988 1.32029i −0.899123 0.437695i \(-0.855795\pi\)
0.470135 0.882594i \(-0.344205\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.26557 22.4447i −0.196131 1.03201i
\(474\) 0 0
\(475\) −38.2339 12.4230i −1.75429 0.570004i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(488\) 0 0
\(489\) −13.6413 41.9835i −0.616880 1.89856i
\(490\) 0 0
\(491\) −26.0474 + 35.8512i −1.17550 + 1.61794i −0.579149 + 0.815222i \(0.696615\pi\)
−0.596355 + 0.802721i \(0.703385\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 29.1438 + 21.1742i 1.30465 + 0.947887i 0.999990 0.00457310i \(-0.00145567\pi\)
0.304664 + 0.952460i \(0.401456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 43.0044 1.90989
\(508\) 0 0
\(509\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 77.2779 106.364i 3.41190 4.69608i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.5929 + 12.7820i 0.770759 + 0.559989i 0.902191 0.431336i \(-0.141958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) −1.65639 + 0.538193i −0.0724288 + 0.0235335i −0.345007 0.938600i \(-0.612124\pi\)
0.272578 + 0.962134i \(0.412124\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −22.2241 + 16.1468i −0.964445 + 0.700710i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 26.7825 82.4279i 1.15575 3.55703i
\(538\) 0 0
\(539\) 11.1706 + 20.3523i 0.481151 + 0.876638i
\(540\) 0 0
\(541\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19.9276 + 27.4280i 0.852043 + 1.17274i 0.983409 + 0.181402i \(0.0580636\pi\)
−0.131366 + 0.991334i \(0.541936\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −4.91114 + 10.4181i −0.207349 + 0.439853i
\(562\) 0 0
\(563\) 37.9416 + 12.3280i 1.59905 + 0.519562i 0.966871 0.255264i \(-0.0821625\pi\)
0.632175 + 0.774826i \(0.282163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 25.2706 + 34.7820i 1.05940 + 1.45814i 0.880366 + 0.474295i \(0.157297\pi\)
0.179034 + 0.983843i \(0.442703\pi\)
\(570\) 0 0
\(571\) 42.4264i 1.77549i −0.460336 0.887745i \(-0.652271\pi\)
0.460336 0.887745i \(-0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14.6649 45.1340i −0.610509 1.87895i −0.453218 0.891400i \(-0.649724\pi\)
−0.157290 0.987552i \(-0.550276\pi\)
\(578\) 0 0
\(579\) 32.9977 45.4175i 1.37134 1.88749i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.7920 + 19.4655i 1.10582 + 0.803428i 0.982001 0.188876i \(-0.0604844\pi\)
0.123823 + 0.992304i \(0.460484\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 47.1921i 1.93795i 0.247167 + 0.968973i \(0.420500\pi\)
−0.247167 + 0.968973i \(0.579500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(600\) 0 0
\(601\) −28.7972 + 39.6360i −1.17466 + 1.61679i −0.555566 + 0.831472i \(0.687498\pi\)
−0.619098 + 0.785314i \(0.712502\pi\)
\(602\) 0 0
\(603\) 40.0427 123.239i 1.63067 5.01867i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.995401 0.0400733 0.0200367 0.999799i \(-0.493622\pi\)
0.0200367 + 0.999799i \(0.493622\pi\)
\(618\) 0 0
\(619\) −37.1922 + 27.0217i −1.49488 + 1.08609i −0.522514 + 0.852631i \(0.675006\pi\)
−0.972366 + 0.233463i \(0.924994\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.72542 23.7764i 0.309017 0.951057i
\(626\) 0 0
\(627\) −87.5109 11.1163i −3.49485 0.443944i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(632\) 0 0
\(633\) −66.6383 + 21.6521i −2.64863 + 0.860593i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.2625 23.4401i 1.27429 0.925828i 0.274928 0.961465i \(-0.411346\pi\)
0.999365 + 0.0356372i \(0.0113461\pi\)
\(642\) 0 0
\(643\) −7.26834 22.3696i −0.286635 0.882173i −0.985904 0.167313i \(-0.946491\pi\)
0.699269 0.714859i \(-0.253509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(648\) 0 0
\(649\) 10.3753 + 4.89097i 0.407267 + 0.191987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 33.3647 + 45.9226i 1.30168 + 1.79161i
\(658\) 0 0
\(659\) 28.3200i 1.10319i 0.834111 + 0.551596i \(0.185981\pi\)
−0.834111 + 0.551596i \(0.814019\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −33.5823 10.9116i −1.29450 0.420610i −0.420838 0.907136i \(-0.638264\pi\)
−0.873666 + 0.486526i \(0.838264\pi\)
\(674\) 0 0
\(675\) 66.1442 + 48.0566i 2.54589 + 1.84970i
\(676\) 0 0
\(677\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 65.9019i 2.52537i
\(682\) 0 0
\(683\) 42.0000 1.60709 0.803543 0.595247i \(-0.202946\pi\)
0.803543 + 0.595247i \(0.202946\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −6.87631 + 21.1631i −0.261587 + 0.805083i 0.730873 + 0.682514i \(0.239113\pi\)
−0.992460 + 0.122569i \(0.960887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.87711 + 1.36380i 0.0711006 + 0.0516576i
\(698\) 0 0
\(699\) −95.2638 + 30.9531i −3.60321 + 1.17075i
\(700\) 0 0
\(701\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −56.4110 77.6431i −2.09795 2.88758i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −63.1871 + 45.9081i −2.34026 + 1.70030i
\(730\) 0 0
\(731\) 2.23462 + 6.87745i 0.0826503 + 0.254372i
\(732\) 0 0
\(733\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −53.1552 + 10.1020i −1.95800 + 0.372113i
\(738\) 0 0
\(739\) −13.6372 4.43099i −0.501652 0.162997i 0.0472504 0.998883i \(-0.484954\pi\)
−0.548902 + 0.835886i \(0.684954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 129.035i 4.72113i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(752\) 0 0
\(753\) 6.13342 + 18.8767i 0.223514 + 0.687906i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 38.8919 + 12.6368i 1.40983 + 0.458082i 0.912356 0.409397i \(-0.134261\pi\)
0.497475 + 0.867479i \(0.334261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 50.9117i 1.83592i −0.396670 0.917961i \(-0.629834\pi\)
0.396670 0.917961i \(-0.370166\pi\)
\(770\) 0 0
\(771\) −66.2614 −2.38635
\(772\) 0 0
\(773\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.49147 + 16.9010i −0.196752 + 0.605542i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 47.5371 15.4457i 1.69451 0.550581i 0.706877 0.707336i \(-0.250103\pi\)
0.987638 + 0.156755i \(0.0501033\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0.447506 1.37728i 0.0158118 0.0486638i
\(802\) 0 0
\(803\) 10.1064 21.4389i 0.356647 0.756563i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −46.8791 + 15.2319i −1.64818 + 0.535527i −0.978345 0.206981i \(-0.933636\pi\)
−0.669837 + 0.742508i \(0.733636\pi\)
\(810\) 0 0
\(811\) 28.9488 + 39.8446i 1.01653 + 1.39913i 0.914609 + 0.404340i \(0.132499\pi\)
0.101921 + 0.994792i \(0.467501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −44.8077 + 32.5547i −1.56762 + 1.13895i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(822\) 0 0
\(823\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(824\) 0 0
\(825\) 6.91289 54.4201i 0.240676 1.89467i
\(826\) 0 0
\(827\) −14.9532 4.85858i −0.519972 0.168949i 0.0372604 0.999306i \(-0.488137\pi\)
−0.557233 + 0.830356i \(0.688137\pi\)
\(828\) 0 0
\(829\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.31932 5.94503i −0.149655 0.205983i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(840\) 0 0
\(841\) −8.96149 27.5806i −0.309017 0.951057i
\(842\) 0 0
\(843\) 50.2812 69.2061i 1.73178 2.38358i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 80.0872 + 26.0219i 2.74858 + 0.893069i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 58.3493i 1.99317i −0.0825467 0.996587i \(-0.526305\pi\)
0.0825467 0.996587i \(-0.473695\pi\)
\(858\) 0 0
\(859\) 51.9105 1.77116 0.885582 0.464483i \(-0.153760\pi\)
0.885582 + 0.464483i \(0.153760\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −16.2515 + 50.0169i −0.551929 + 1.69866i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 83.8588 + 60.9270i 2.83819 + 2.06207i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 59.3622 1.99996 0.999981 0.00609171i \(-0.00193906\pi\)
0.999981 + 0.00609171i \(0.00193906\pi\)
\(882\) 0 0
\(883\) −45.2013 + 32.8406i −1.52114 + 1.10518i −0.560227 + 0.828339i \(0.689286\pi\)
−0.960917 + 0.276836i \(0.910714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 90.7887 + 42.7982i 3.04153 + 1.43379i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −13.2886 40.8981i −0.441241 1.35800i −0.886554 0.462625i \(-0.846908\pi\)
0.445313 0.895375i \(-0.353092\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(912\) 0 0
\(913\) 47.2319 25.9237i 1.56315 0.857949i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(920\) 0 0
\(921\) −67.9727 93.5564i −2.23978 3.08279i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18.6374 + 57.3601i 0.611474 + 1.88192i 0.443935 + 0.896059i \(0.353582\pi\)
0.167539 + 0.985865i \(0.446418\pi\)
\(930\) 0 0
\(931\) 33.0818 45.5332i 1.08421 1.49229i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −58.1791 18.9035i −1.90063 0.617552i −0.962522 0.271204i \(-0.912578\pi\)
−0.938106 0.346348i \(-0.887422\pi\)
\(938\) 0 0
\(939\) −31.7401 23.0606i −1.03580 0.752553i
\(940\) 0 0
\(941\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −55.8582 −1.81515 −0.907573 0.419894i \(-0.862067\pi\)
−0.907573 + 0.419894i \(0.862067\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 31.6986 43.6294i 1.02682 1.41329i 0.119508 0.992833i \(-0.461868\pi\)
0.907311 0.420461i \(-0.138132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.0795 18.2213i −0.809017 0.587785i
\(962\) 0 0
\(963\) −89.3262 + 29.0238i −2.87850 + 0.935280i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 27.9216 0.896970
\(970\) 0 0
\(971\) 43.6869 31.7404i 1.40198 1.01860i 0.407552 0.913182i \(-0.366383\pi\)
0.994428 0.105416i \(-0.0336174\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.85410 5.70634i 0.0593180 0.182562i −0.917007 0.398871i \(-0.869402\pi\)
0.976325 + 0.216309i \(0.0694020\pi\)
\(978\) 0 0
\(979\) −0.594047 + 0.112897i −0.0189858 + 0.00360821i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −43.2897 + 31.4518i −1.37376 + 0.998093i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.s.a.79.2 8
4.3 odd 2 88.2.k.a.35.2 8
8.3 odd 2 CM 352.2.s.a.79.2 8
8.5 even 2 88.2.k.a.35.2 8
11.4 even 5 3872.2.g.b.1935.1 8
11.6 odd 10 inner 352.2.s.a.303.2 8
11.7 odd 10 3872.2.g.b.1935.2 8
12.11 even 2 792.2.bp.a.739.1 8
24.5 odd 2 792.2.bp.a.739.1 8
44.3 odd 10 968.2.k.c.403.2 8
44.7 even 10 968.2.g.a.483.4 8
44.15 odd 10 968.2.g.a.483.8 8
44.19 even 10 968.2.k.d.403.1 8
44.27 odd 10 968.2.k.b.699.1 8
44.31 odd 10 968.2.k.d.723.1 8
44.35 even 10 968.2.k.c.723.2 8
44.39 even 10 88.2.k.a.83.2 yes 8
44.43 even 2 968.2.k.b.475.1 8
88.5 even 10 968.2.k.b.699.1 8
88.13 odd 10 968.2.k.c.723.2 8
88.21 odd 2 968.2.k.b.475.1 8
88.29 odd 10 968.2.g.a.483.4 8
88.37 even 10 968.2.g.a.483.8 8
88.51 even 10 3872.2.g.b.1935.2 8
88.53 even 10 968.2.k.d.723.1 8
88.59 odd 10 3872.2.g.b.1935.1 8
88.61 odd 10 88.2.k.a.83.2 yes 8
88.69 even 10 968.2.k.c.403.2 8
88.83 even 10 inner 352.2.s.a.303.2 8
88.85 odd 10 968.2.k.d.403.1 8
132.83 odd 10 792.2.bp.a.523.1 8
264.149 even 10 792.2.bp.a.523.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.k.a.35.2 8 4.3 odd 2
88.2.k.a.35.2 8 8.5 even 2
88.2.k.a.83.2 yes 8 44.39 even 10
88.2.k.a.83.2 yes 8 88.61 odd 10
352.2.s.a.79.2 8 1.1 even 1 trivial
352.2.s.a.79.2 8 8.3 odd 2 CM
352.2.s.a.303.2 8 11.6 odd 10 inner
352.2.s.a.303.2 8 88.83 even 10 inner
792.2.bp.a.523.1 8 132.83 odd 10
792.2.bp.a.523.1 8 264.149 even 10
792.2.bp.a.739.1 8 12.11 even 2
792.2.bp.a.739.1 8 24.5 odd 2
968.2.g.a.483.4 8 44.7 even 10
968.2.g.a.483.4 8 88.29 odd 10
968.2.g.a.483.8 8 44.15 odd 10
968.2.g.a.483.8 8 88.37 even 10
968.2.k.b.475.1 8 44.43 even 2
968.2.k.b.475.1 8 88.21 odd 2
968.2.k.b.699.1 8 44.27 odd 10
968.2.k.b.699.1 8 88.5 even 10
968.2.k.c.403.2 8 44.3 odd 10
968.2.k.c.403.2 8 88.69 even 10
968.2.k.c.723.2 8 44.35 even 10
968.2.k.c.723.2 8 88.13 odd 10
968.2.k.d.403.1 8 44.19 even 10
968.2.k.d.403.1 8 88.85 odd 10
968.2.k.d.723.1 8 44.31 odd 10
968.2.k.d.723.1 8 88.53 even 10
3872.2.g.b.1935.1 8 11.4 even 5
3872.2.g.b.1935.1 8 88.59 odd 10
3872.2.g.b.1935.2 8 11.7 odd 10
3872.2.g.b.1935.2 8 88.51 even 10