Properties

Label 968.2.g.a.483.8
Level $968$
Weight $2$
Character 968.483
Analytic conductor $7.730$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(483,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.483");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 483.8
Root \(1.34500 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 968.483
Dual form 968.2.g.a.483.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +3.30803 q^{3} -2.00000 q^{4} +4.67826i q^{6} -2.82843i q^{8} +7.94305 q^{9} -6.61606 q^{12} +4.00000 q^{16} -1.04978i q^{17} +11.2332i q^{18} +8.04031i q^{19} -9.35652i q^{24} +5.00000 q^{25} +16.3517 q^{27} +5.65685i q^{32} +1.48461 q^{34} -15.8861 q^{36} -11.3707 q^{38} -2.21021i q^{41} -6.88847i q^{43} +13.2321 q^{48} -7.00000 q^{49} +7.07107i q^{50} -3.47270i q^{51} +23.1249i q^{54} +26.5976i q^{57} -3.45844 q^{59} -8.00000 q^{64} -16.3138 q^{67} +2.09956i q^{68} -22.4663i q^{72} -7.14631i q^{73} +16.5401 q^{75} -16.0806i q^{76} +30.2629 q^{81} +3.12571 q^{82} -16.2450i q^{83} +9.74177 q^{86} +0.182318 q^{89} +18.7130i q^{96} -13.0498 q^{97} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 16 q^{4} + 28 q^{9} + 8 q^{12} + 32 q^{16} + 40 q^{25} + 8 q^{27} + 16 q^{34} - 56 q^{36} - 24 q^{38} - 16 q^{48} - 56 q^{49} + 12 q^{59} - 64 q^{64} - 28 q^{67} - 20 q^{75} + 112 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) 3.30803 1.90989 0.954945 0.296781i \(-0.0959133\pi\)
0.954945 + 0.296781i \(0.0959133\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 4.67826i 1.90989i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) − 2.82843i − 1.00000i
\(9\) 7.94305 2.64768
\(10\) 0 0
\(11\) 0 0
\(12\) −6.61606 −1.90989
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) − 1.04978i − 0.254609i −0.991864 0.127304i \(-0.959367\pi\)
0.991864 0.127304i \(-0.0406325\pi\)
\(18\) 11.2332i 2.64768i
\(19\) 8.04031i 1.84457i 0.386507 + 0.922287i \(0.373682\pi\)
−0.386507 + 0.922287i \(0.626318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) − 9.35652i − 1.90989i
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 16.3517 3.14690
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) 1.48461 0.254609
\(35\) 0 0
\(36\) −15.8861 −2.64768
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −11.3707 −1.84457
\(39\) 0 0
\(40\) 0 0
\(41\) − 2.21021i − 0.345177i −0.984994 0.172588i \(-0.944787\pi\)
0.984994 0.172588i \(-0.0552131\pi\)
\(42\) 0 0
\(43\) − 6.88847i − 1.05048i −0.850954 0.525241i \(-0.823975\pi\)
0.850954 0.525241i \(-0.176025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 13.2321 1.90989
\(49\) −7.00000 −1.00000
\(50\) 7.07107i 1.00000i
\(51\) − 3.47270i − 0.486275i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 23.1249i 3.14690i
\(55\) 0 0
\(56\) 0 0
\(57\) 26.5976i 3.52293i
\(58\) 0 0
\(59\) −3.45844 −0.450250 −0.225125 0.974330i \(-0.572279\pi\)
−0.225125 + 0.974330i \(0.572279\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −16.3138 −1.99304 −0.996522 0.0833352i \(-0.973443\pi\)
−0.996522 + 0.0833352i \(0.973443\pi\)
\(68\) 2.09956i 0.254609i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) − 22.4663i − 2.64768i
\(73\) − 7.14631i − 0.836412i −0.908352 0.418206i \(-0.862659\pi\)
0.908352 0.418206i \(-0.137341\pi\)
\(74\) 0 0
\(75\) 16.5401 1.90989
\(76\) − 16.0806i − 1.84457i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 30.2629 3.36254
\(82\) 3.12571 0.345177
\(83\) − 16.2450i − 1.78312i −0.452904 0.891559i \(-0.649612\pi\)
0.452904 0.891559i \(-0.350388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 9.74177 1.05048
\(87\) 0 0
\(88\) 0 0
\(89\) 0.182318 0.0193256 0.00966282 0.999953i \(-0.496924\pi\)
0.00966282 + 0.999953i \(0.496924\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 18.7130i 1.90989i
\(97\) −13.0498 −1.32501 −0.662503 0.749059i \(-0.730506\pi\)
−0.662503 + 0.749059i \(0.730506\pi\)
\(98\) − 9.89949i − 1.00000i
\(99\) 0 0
\(100\) −10.0000 −1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 4.91114 0.486275
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 11.8246i − 1.14312i −0.820559 0.571562i \(-0.806338\pi\)
0.820559 0.571562i \(-0.193662\pi\)
\(108\) −32.7035 −3.14690
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.91227 0.744324 0.372162 0.928168i \(-0.378617\pi\)
0.372162 + 0.928168i \(0.378617\pi\)
\(114\) −37.6146 −3.52293
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) − 4.89097i − 0.450250i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) − 7.31144i − 0.659250i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) − 11.3137i − 1.00000i
\(129\) − 22.7872i − 2.00631i
\(130\) 0 0
\(131\) 22.0214i 1.92402i 0.273022 + 0.962008i \(0.411977\pi\)
−0.273022 + 0.962008i \(0.588023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 23.0711i − 1.99304i
\(135\) 0 0
\(136\) −2.96923 −0.254609
\(137\) −19.6659 −1.68017 −0.840083 0.542457i \(-0.817494\pi\)
−0.840083 + 0.542457i \(0.817494\pi\)
\(138\) 0 0
\(139\) 8.48528i 0.719712i 0.933008 + 0.359856i \(0.117174\pi\)
−0.933008 + 0.359856i \(0.882826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 31.7722 2.64768
\(145\) 0 0
\(146\) 10.1064 0.836412
\(147\) −23.1562 −1.90989
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 23.3913i 1.90989i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 22.7414 1.84457
\(153\) − 8.33845i − 0.674124i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 42.7982i 3.36254i
\(163\) −13.3445 −1.04522 −0.522612 0.852570i \(-0.675042\pi\)
−0.522612 + 0.852570i \(0.675042\pi\)
\(164\) 4.42042i 0.345177i
\(165\) 0 0
\(166\) 22.9739 1.78312
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 63.8646i 4.88384i
\(172\) 13.7769i 1.05048i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.4406 −0.859929
\(178\) 0.257836i 0.0193256i
\(179\) 26.1999 1.95827 0.979135 0.203212i \(-0.0651381\pi\)
0.979135 + 0.203212i \(0.0651381\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −26.4642 −1.90989
\(193\) − 16.9706i − 1.22157i −0.791797 0.610784i \(-0.790854\pi\)
0.791797 0.610784i \(-0.209146\pi\)
\(194\) − 18.4552i − 1.32501i
\(195\) 0 0
\(196\) 14.0000 1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) − 14.1421i − 1.00000i
\(201\) −53.9664 −3.80649
\(202\) 0 0
\(203\) 0 0
\(204\) 6.94540i 0.486275i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 21.1811i 1.45817i 0.684425 + 0.729083i \(0.260053\pi\)
−0.684425 + 0.729083i \(0.739947\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 16.7225 1.14312
\(215\) 0 0
\(216\) − 46.2497i − 3.14690i
\(217\) 0 0
\(218\) 0 0
\(219\) − 23.6402i − 1.59746i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 39.7152 2.64768
\(226\) 11.1896i 0.744324i
\(227\) 19.9218i 1.32226i 0.750273 + 0.661128i \(0.229922\pi\)
−0.750273 + 0.661128i \(0.770078\pi\)
\(228\) − 53.1951i − 3.52293i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 30.2798i − 1.98369i −0.127438 0.991847i \(-0.540675\pi\)
0.127438 0.991847i \(-0.459325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.91687 0.450250
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) − 29.0119i − 1.86882i −0.356199 0.934410i \(-0.615928\pi\)
0.356199 0.934410i \(-0.384072\pi\)
\(242\) 0 0
\(243\) 51.0552 3.27520
\(244\) 0 0
\(245\) 0 0
\(246\) 10.3399 0.659250
\(247\) 0 0
\(248\) 0 0
\(249\) − 53.7389i − 3.40556i
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 20.0305 1.24947 0.624734 0.780838i \(-0.285208\pi\)
0.624734 + 0.780838i \(0.285208\pi\)
\(258\) 32.2260 2.00631
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −31.1429 −1.92402
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.603112 0.0369099
\(268\) 32.6275 1.99304
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) − 4.19912i − 0.254609i
\(273\) 0 0
\(274\) − 27.8117i − 1.68017i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −12.0000 −0.719712
\(279\) 0 0
\(280\) 0 0
\(281\) − 25.8593i − 1.54264i −0.636448 0.771319i \(-0.719597\pi\)
0.636448 0.771319i \(-0.280403\pi\)
\(282\) 0 0
\(283\) 25.4558i 1.51319i 0.653882 + 0.756596i \(0.273139\pi\)
−0.653882 + 0.756596i \(0.726861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 44.9327i 2.64768i
\(289\) 15.8980 0.935174
\(290\) 0 0
\(291\) −43.1691 −2.53062
\(292\) 14.2926i 0.836412i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) − 32.7478i − 1.90989i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −33.0803 −1.90989
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 32.1612i 1.84457i
\(305\) 0 0
\(306\) 11.7924 0.674124
\(307\) 34.9580i 1.99516i 0.0695319 + 0.997580i \(0.477849\pi\)
−0.0695319 + 0.997580i \(0.522151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −11.8599 −0.670362 −0.335181 0.942154i \(-0.608798\pi\)
−0.335181 + 0.942154i \(0.608798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) − 39.1160i − 2.18324i
\(322\) 0 0
\(323\) 8.44055 0.469645
\(324\) −60.5258 −3.36254
\(325\) 0 0
\(326\) − 18.8720i − 1.04522i
\(327\) 0 0
\(328\) −6.25142 −0.345177
\(329\) 0 0
\(330\) 0 0
\(331\) 16.1755 0.889086 0.444543 0.895757i \(-0.353366\pi\)
0.444543 + 0.895757i \(0.353366\pi\)
\(332\) 32.4900i 1.78312i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 19.2300i 1.04752i 0.851865 + 0.523761i \(0.175472\pi\)
−0.851865 + 0.523761i \(0.824528\pi\)
\(338\) − 18.3848i − 1.00000i
\(339\) 26.1740 1.42158
\(340\) 0 0
\(341\) 0 0
\(342\) −90.3181 −4.88384
\(343\) 0 0
\(344\) −19.4835 −1.05048
\(345\) 0 0
\(346\) 0 0
\(347\) − 26.2205i − 1.40759i −0.710404 0.703795i \(-0.751488\pi\)
0.710404 0.703795i \(-0.248512\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 37.5706 1.99968 0.999840 0.0178943i \(-0.00569624\pi\)
0.999840 + 0.0178943i \(0.00569624\pi\)
\(354\) − 16.1795i − 0.859929i
\(355\) 0 0
\(356\) −0.364636 −0.0193256
\(357\) 0 0
\(358\) 37.0522i 1.95827i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −45.6465 −2.40245
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) − 17.5558i − 0.913919i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −3.67266 −0.188652 −0.0943260 0.995541i \(-0.530070\pi\)
−0.0943260 + 0.995541i \(0.530070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) − 37.4261i − 1.90989i
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) − 54.7155i − 2.78134i
\(388\) 26.0996 1.32501
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 19.7990i 1.00000i
\(393\) 72.8473i 3.67466i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 20.0000 1.00000
\(401\) 39.5140 1.97324 0.986618 0.163049i \(-0.0521329\pi\)
0.986618 + 0.163049i \(0.0521329\pi\)
\(402\) − 76.3200i − 3.80649i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −9.82228 −0.486275
\(409\) 33.9411i 1.67828i 0.543915 + 0.839140i \(0.316941\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) −65.0552 −3.20894
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 28.0695i 1.37457i
\(418\) 0 0
\(419\) −29.4076 −1.43666 −0.718328 0.695705i \(-0.755092\pi\)
−0.718328 + 0.695705i \(0.755092\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) −29.9546 −1.45817
\(423\) 0 0
\(424\) 0 0
\(425\) − 5.24890i − 0.254609i
\(426\) 0 0
\(427\) 0 0
\(428\) 23.6491i 1.14312i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 65.4070 3.14690
\(433\) −20.7676 −0.998027 −0.499014 0.866594i \(-0.666304\pi\)
−0.499014 + 0.866594i \(0.666304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 33.4323 1.59746
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −55.6013 −2.64768
\(442\) 0 0
\(443\) −10.2887 −0.488832 −0.244416 0.969670i \(-0.578596\pi\)
−0.244416 + 0.969670i \(0.578596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −30.6537 −1.44664 −0.723319 0.690514i \(-0.757384\pi\)
−0.723319 + 0.690514i \(0.757384\pi\)
\(450\) 56.1658i 2.64768i
\(451\) 0 0
\(452\) −15.8245 −0.744324
\(453\) 0 0
\(454\) −28.1737 −1.32226
\(455\) 0 0
\(456\) 75.2293 3.52293
\(457\) 35.2159i 1.64733i 0.567078 + 0.823664i \(0.308074\pi\)
−0.567078 + 0.823664i \(0.691926\pi\)
\(458\) 0 0
\(459\) − 17.1657i − 0.801228i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 42.8220 1.98369
\(467\) 30.0000 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 9.78194i 0.450250i
\(473\) 0 0
\(474\) 0 0
\(475\) 40.2015i 1.84457i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 41.0290 1.86882
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 72.2030i 3.27520i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −44.1441 −1.99627
\(490\) 0 0
\(491\) 44.3145i 1.99989i 0.0106338 + 0.999943i \(0.496615\pi\)
−0.0106338 + 0.999943i \(0.503385\pi\)
\(492\) 14.6229i 0.659250i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 75.9982 3.40556
\(499\) 36.0237 1.61264 0.806321 0.591479i \(-0.201456\pi\)
0.806321 + 0.591479i \(0.201456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 8.48528i 0.378717i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −43.0044 −1.90989
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 131.473i 5.80468i
\(514\) 28.3274i 1.24947i
\(515\) 0 0
\(516\) 45.5745i 2.00631i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.7460 −0.952711 −0.476355 0.879253i \(-0.658042\pi\)
−0.476355 + 0.879253i \(0.658042\pi\)
\(522\) 0 0
\(523\) − 1.74163i − 0.0761561i −0.999275 0.0380781i \(-0.987876\pi\)
0.999275 0.0380781i \(-0.0121236\pi\)
\(524\) − 44.0427i − 1.92402i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −27.4705 −1.19212
\(532\) 0 0
\(533\) 0 0
\(534\) 0.852930i 0.0369099i
\(535\) 0 0
\(536\) 46.1423i 1.99304i
\(537\) 86.6699 3.74008
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 5.93845 0.254609
\(545\) 0 0
\(546\) 0 0
\(547\) 33.9029i 1.44958i 0.688969 + 0.724791i \(0.258064\pi\)
−0.688969 + 0.724791i \(0.741936\pi\)
\(548\) 39.3317 1.68017
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) − 16.9706i − 0.719712i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 36.5706 1.54264
\(563\) − 39.8941i − 1.68134i −0.541551 0.840668i \(-0.682163\pi\)
0.541551 0.840668i \(-0.317837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −36.0000 −1.51319
\(567\) 0 0
\(568\) 0 0
\(569\) − 42.9929i − 1.80236i −0.433447 0.901179i \(-0.642703\pi\)
0.433447 0.901179i \(-0.357297\pi\)
\(570\) 0 0
\(571\) 42.4264i 1.77549i 0.460336 + 0.887745i \(0.347729\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −63.5444 −2.64768
\(577\) −47.4567 −1.97565 −0.987824 0.155579i \(-0.950276\pi\)
−0.987824 + 0.155579i \(0.950276\pi\)
\(578\) 22.4831i 0.935174i
\(579\) − 56.1391i − 2.33306i
\(580\) 0 0
\(581\) 0 0
\(582\) − 61.0503i − 2.53062i
\(583\) 0 0
\(584\) −20.2128 −0.836412
\(585\) 0 0
\(586\) 0 0
\(587\) 33.1167 1.36687 0.683437 0.730010i \(-0.260484\pi\)
0.683437 + 0.730010i \(0.260484\pi\)
\(588\) 46.3124 1.90989
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 47.1921i 1.93795i 0.247167 + 0.968973i \(0.420500\pi\)
−0.247167 + 0.968973i \(0.579500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) − 46.7826i − 1.90989i
\(601\) − 48.9928i − 1.99846i −0.0392649 0.999229i \(-0.512502\pi\)
0.0392649 0.999229i \(-0.487498\pi\)
\(602\) 0 0
\(603\) −129.581 −5.27695
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −45.4828 −1.84457
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 16.6769i 0.674124i
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) −49.4381 −1.99516
\(615\) 0 0
\(616\) 0 0
\(617\) 0.995401 0.0400733 0.0200367 0.999799i \(-0.493622\pi\)
0.0200367 + 0.999799i \(0.493622\pi\)
\(618\) 0 0
\(619\) −45.9721 −1.84777 −0.923887 0.382667i \(-0.875006\pi\)
−0.923887 + 0.382667i \(0.875006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) − 16.7725i − 0.670362i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 70.0676i 2.78494i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −39.8787 −1.57511 −0.787556 0.616243i \(-0.788654\pi\)
−0.787556 + 0.616243i \(0.788654\pi\)
\(642\) 55.3184 2.18324
\(643\) 23.5208 0.927571 0.463786 0.885948i \(-0.346491\pi\)
0.463786 + 0.885948i \(0.346491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 11.9367i 0.469645i
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) − 85.5964i − 3.36254i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 26.6891 1.04522
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 8.84084i − 0.345177i
\(657\) − 56.7635i − 2.21455i
\(658\) 0 0
\(659\) − 28.3200i − 1.10319i −0.834111 0.551596i \(-0.814019\pi\)
0.834111 0.551596i \(-0.185981\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 22.8756i 0.889086i
\(663\) 0 0
\(664\) −45.9478 −1.78312
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 35.3106i − 1.36112i −0.732691 0.680561i \(-0.761736\pi\)
0.732691 0.680561i \(-0.238264\pi\)
\(674\) −27.1953 −1.04752
\(675\) 81.7587 3.14690
\(676\) 26.0000 1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 37.0157i 1.42158i
\(679\) 0 0
\(680\) 0 0
\(681\) 65.9019i 2.52537i
\(682\) 0 0
\(683\) −42.0000 −1.60709 −0.803543 0.595247i \(-0.797054\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) − 127.729i − 4.88384i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) − 27.5539i − 1.05048i
\(689\) 0 0
\(690\) 0 0
\(691\) 22.2522 0.846514 0.423257 0.906010i \(-0.360887\pi\)
0.423257 + 0.906010i \(0.360887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 37.0814 1.40759
\(695\) 0 0
\(696\) 0 0
\(697\) −2.32023 −0.0878852
\(698\) 0 0
\(699\) − 100.166i − 3.78864i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 53.1328i 1.99968i
\(707\) 0 0
\(708\) 22.8812 0.859929
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 0.515673i − 0.0193256i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −52.3997 −1.95827
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 64.5540i − 2.40245i
\(723\) − 95.9721i − 3.56924i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 78.1035 2.89272
\(730\) 0 0
\(731\) −7.23137 −0.267462
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 24.8277 0.913919
\(739\) 14.3390i 0.527468i 0.964595 + 0.263734i \(0.0849541\pi\)
−0.964595 + 0.263734i \(0.915046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 129.035i − 4.72113i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 19.8482 0.723307
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) − 5.19393i − 0.188652i
\(759\) 0 0
\(760\) 0 0
\(761\) 40.8934i 1.48238i 0.671293 + 0.741192i \(0.265739\pi\)
−0.671293 + 0.741192i \(0.734261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 52.9284 1.90989
\(769\) − 50.9117i − 1.83592i −0.396670 0.917961i \(-0.629834\pi\)
0.396670 0.917961i \(-0.370166\pi\)
\(770\) 0 0
\(771\) 66.2614 2.38635
\(772\) 33.9411i 1.22157i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 77.3793 2.78134
\(775\) 0 0
\(776\) 36.9104i 1.32501i
\(777\) 0 0
\(778\) 0 0
\(779\) 17.7708 0.636704
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −28.0000 −1.00000
\(785\) 0 0
\(786\) −103.022 −3.67466
\(787\) 49.9835i 1.78172i 0.454280 + 0.890859i \(0.349897\pi\)
−0.454280 + 0.890859i \(0.650103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 28.2843i 1.00000i
\(801\) 1.44816 0.0511682
\(802\) 55.8813i 1.97324i
\(803\) 0 0
\(804\) 107.933 3.80649
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 49.2916i 1.73300i 0.499176 + 0.866501i \(0.333636\pi\)
−0.499176 + 0.866501i \(0.666364\pi\)
\(810\) 0 0
\(811\) 49.2506i 1.72942i 0.502268 + 0.864712i \(0.332499\pi\)
−0.502268 + 0.864712i \(0.667501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) − 13.8908i − 0.486275i
\(817\) 55.3854 1.93769
\(818\) −48.0000 −1.67828
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) − 92.0019i − 3.20894i
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.7227i 0.546731i 0.961910 + 0.273366i \(0.0881369\pi\)
−0.961910 + 0.273366i \(0.911863\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 7.34846i 0.254609i
\(834\) −39.6963 −1.37457
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) − 41.5887i − 1.43666i
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) − 85.5434i − 2.94627i
\(844\) − 42.3622i − 1.45817i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 84.2086i 2.89003i
\(850\) 7.42306 0.254609
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −33.4449 −1.14312
\(857\) − 58.3493i − 1.99317i −0.0825467 0.996587i \(-0.526305\pi\)
0.0825467 0.996587i \(-0.473695\pi\)
\(858\) 0 0
\(859\) −51.9105 −1.77116 −0.885582 0.464483i \(-0.846240\pi\)
−0.885582 + 0.464483i \(0.846240\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 92.4994i 3.14690i
\(865\) 0 0
\(866\) − 29.3698i − 0.998027i
\(867\) 52.5909 1.78608
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −103.655 −3.50820
\(874\) 0 0
\(875\) 0 0
\(876\) 47.2804i 1.59746i
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 59.3622 1.99996 0.999981 0.00609171i \(-0.00193906\pi\)
0.999981 + 0.00609171i \(0.00193906\pi\)
\(882\) − 78.6322i − 2.64768i
\(883\) −55.8718 −1.88024 −0.940119 0.340848i \(-0.889286\pi\)
−0.940119 + 0.340848i \(0.889286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) − 14.5504i − 0.488832i
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) − 43.3509i − 1.44664i
\(899\) 0 0
\(900\) −79.4305 −2.64768
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) − 22.3793i − 0.744324i
\(905\) 0 0
\(906\) 0 0
\(907\) 43.0028 1.42789 0.713943 0.700204i \(-0.246908\pi\)
0.713943 + 0.700204i \(0.246908\pi\)
\(908\) − 39.8436i − 1.32226i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 106.390i 3.52293i
\(913\) 0 0
\(914\) −49.8027 −1.64733
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 24.2760 0.801228
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 115.642i 3.81054i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 60.3120 1.97877 0.989386 0.145310i \(-0.0464179\pi\)
0.989386 + 0.145310i \(0.0464179\pi\)
\(930\) 0 0
\(931\) − 56.2822i − 1.84457i
\(932\) 60.5595i 1.98369i
\(933\) 0 0
\(934\) 42.4264i 1.38823i
\(935\) 0 0
\(936\) 0 0
\(937\) − 61.1731i − 1.99844i −0.0395055 0.999219i \(-0.512578\pi\)
0.0395055 0.999219i \(-0.487422\pi\)
\(938\) 0 0
\(939\) −39.2330 −1.28032
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −13.8337 −0.450250
\(945\) 0 0
\(946\) 0 0
\(947\) 55.8582 1.81515 0.907573 0.419894i \(-0.137933\pi\)
0.907573 + 0.419894i \(0.137933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −56.8536 −1.84457
\(951\) 0 0
\(952\) 0 0
\(953\) 53.9289i 1.74693i 0.486889 + 0.873464i \(0.338132\pi\)
−0.486889 + 0.873464i \(0.661868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) − 93.9231i − 3.02663i
\(964\) 58.0238i 1.86882i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 27.9216 0.896970
\(970\) 0 0
\(971\) 54.0000 1.73294 0.866471 0.499227i \(-0.166383\pi\)
0.866471 + 0.499227i \(0.166383\pi\)
\(972\) −102.110 −3.27520
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) − 62.4292i − 1.99627i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −62.6702 −1.99989
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) −20.6799 −0.659250
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 53.5090 1.69806
\(994\) 0 0
\(995\) 0 0
\(996\) 107.478i 3.40556i
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 50.9452i 1.61264i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.g.a.483.8 8
4.3 odd 2 3872.2.g.b.1935.1 8
8.3 odd 2 CM 968.2.g.a.483.8 8
8.5 even 2 3872.2.g.b.1935.1 8
11.2 odd 10 968.2.k.d.403.1 8
11.3 even 5 88.2.k.a.35.2 8
11.4 even 5 968.2.k.b.699.1 8
11.5 even 5 968.2.k.d.723.1 8
11.6 odd 10 968.2.k.c.723.2 8
11.7 odd 10 88.2.k.a.83.2 yes 8
11.8 odd 10 968.2.k.b.475.1 8
11.9 even 5 968.2.k.c.403.2 8
11.10 odd 2 inner 968.2.g.a.483.4 8
33.14 odd 10 792.2.bp.a.739.1 8
33.29 even 10 792.2.bp.a.523.1 8
44.3 odd 10 352.2.s.a.79.2 8
44.7 even 10 352.2.s.a.303.2 8
44.43 even 2 3872.2.g.b.1935.2 8
88.3 odd 10 88.2.k.a.35.2 8
88.19 even 10 968.2.k.b.475.1 8
88.21 odd 2 3872.2.g.b.1935.2 8
88.27 odd 10 968.2.k.d.723.1 8
88.29 odd 10 352.2.s.a.303.2 8
88.35 even 10 968.2.k.d.403.1 8
88.43 even 2 inner 968.2.g.a.483.4 8
88.51 even 10 88.2.k.a.83.2 yes 8
88.59 odd 10 968.2.k.b.699.1 8
88.69 even 10 352.2.s.a.79.2 8
88.75 odd 10 968.2.k.c.403.2 8
88.83 even 10 968.2.k.c.723.2 8
264.179 even 10 792.2.bp.a.739.1 8
264.227 odd 10 792.2.bp.a.523.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.k.a.35.2 8 11.3 even 5
88.2.k.a.35.2 8 88.3 odd 10
88.2.k.a.83.2 yes 8 11.7 odd 10
88.2.k.a.83.2 yes 8 88.51 even 10
352.2.s.a.79.2 8 44.3 odd 10
352.2.s.a.79.2 8 88.69 even 10
352.2.s.a.303.2 8 44.7 even 10
352.2.s.a.303.2 8 88.29 odd 10
792.2.bp.a.523.1 8 33.29 even 10
792.2.bp.a.523.1 8 264.227 odd 10
792.2.bp.a.739.1 8 33.14 odd 10
792.2.bp.a.739.1 8 264.179 even 10
968.2.g.a.483.4 8 11.10 odd 2 inner
968.2.g.a.483.4 8 88.43 even 2 inner
968.2.g.a.483.8 8 1.1 even 1 trivial
968.2.g.a.483.8 8 8.3 odd 2 CM
968.2.k.b.475.1 8 11.8 odd 10
968.2.k.b.475.1 8 88.19 even 10
968.2.k.b.699.1 8 11.4 even 5
968.2.k.b.699.1 8 88.59 odd 10
968.2.k.c.403.2 8 11.9 even 5
968.2.k.c.403.2 8 88.75 odd 10
968.2.k.c.723.2 8 11.6 odd 10
968.2.k.c.723.2 8 88.83 even 10
968.2.k.d.403.1 8 11.2 odd 10
968.2.k.d.403.1 8 88.35 even 10
968.2.k.d.723.1 8 11.5 even 5
968.2.k.d.723.1 8 88.27 odd 10
3872.2.g.b.1935.1 8 4.3 odd 2
3872.2.g.b.1935.1 8 8.5 even 2
3872.2.g.b.1935.2 8 44.43 even 2
3872.2.g.b.1935.2 8 88.21 odd 2