Properties

Label 352.2.s.b.271.3
Level $352$
Weight $2$
Character 352.271
Analytic conductor $2.811$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(79,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.s (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 271.3
Character \(\chi\) \(=\) 352.271
Dual form 352.2.s.b.239.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.385688 + 1.18702i) q^{3} +(-2.03454 - 2.80031i) q^{5} +(0.442181 + 1.36089i) q^{7} +(1.16678 + 0.847714i) q^{9} +(1.18696 + 3.09695i) q^{11} +(5.33740 + 3.87785i) q^{13} +(4.10874 - 1.33501i) q^{15} +(0.442479 + 0.609020i) q^{17} +(2.61700 + 0.850314i) q^{19} -1.78596 q^{21} -4.40738i q^{23} +(-2.15728 + 6.63943i) q^{25} +(-4.48550 + 3.25891i) q^{27} +(-0.0386973 - 0.119098i) q^{29} +(-2.25749 + 3.10716i) q^{31} +(-4.13396 + 0.214498i) q^{33} +(2.91129 - 4.00704i) q^{35} +(1.91508 - 0.622247i) q^{37} +(-6.66167 + 4.83999i) q^{39} +(2.52037 + 0.818917i) q^{41} -4.68327i q^{43} -4.99205i q^{45} +(-4.39059 - 1.42659i) q^{47} +(4.00661 - 2.91097i) q^{49} +(-0.893581 + 0.290342i) q^{51} +(-3.06496 + 4.21856i) q^{53} +(6.25750 - 9.62476i) q^{55} +(-2.01869 + 2.77849i) q^{57} +(-1.90440 - 5.86114i) q^{59} +(-2.37790 + 1.72765i) q^{61} +(-0.637721 + 1.96270i) q^{63} -22.8360i q^{65} +10.7156 q^{67} +(5.23168 + 1.69987i) q^{69} +(6.91440 + 9.51686i) q^{71} +(-5.95032 + 1.93338i) q^{73} +(-7.04913 - 5.12150i) q^{75} +(-3.68977 + 2.98475i) q^{77} +(1.32581 + 0.963258i) q^{79} +(-0.801393 - 2.46643i) q^{81} +(-7.17988 - 9.88226i) q^{83} +(0.805202 - 2.47816i) q^{85} +0.156297 q^{87} +10.6955 q^{89} +(-2.91724 + 8.97834i) q^{91} +(-2.81760 - 3.87809i) q^{93} +(-2.94326 - 9.05841i) q^{95} +(-9.17200 - 6.66385i) q^{97} +(-1.24041 + 4.61966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} - 10 q^{9} + 18 q^{11} - 10 q^{17} + 6 q^{25} + 32 q^{27} + 32 q^{33} + 10 q^{35} - 10 q^{41} - 18 q^{49} - 60 q^{51} - 80 q^{57} - 28 q^{59} + 28 q^{67} - 10 q^{73} - 4 q^{75} + 28 q^{81}+ \cdots - 122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.385688 + 1.18702i −0.222677 + 0.685329i 0.775842 + 0.630927i \(0.217325\pi\)
−0.998519 + 0.0544021i \(0.982675\pi\)
\(4\) 0 0
\(5\) −2.03454 2.80031i −0.909876 1.25234i −0.967209 0.253982i \(-0.918260\pi\)
0.0573329 0.998355i \(-0.481740\pi\)
\(6\) 0 0
\(7\) 0.442181 + 1.36089i 0.167129 + 0.514370i 0.999187 0.0403190i \(-0.0128374\pi\)
−0.832058 + 0.554689i \(0.812837\pi\)
\(8\) 0 0
\(9\) 1.16678 + 0.847714i 0.388926 + 0.282571i
\(10\) 0 0
\(11\) 1.18696 + 3.09695i 0.357883 + 0.933766i
\(12\) 0 0
\(13\) 5.33740 + 3.87785i 1.48033 + 1.07552i 0.977451 + 0.211163i \(0.0677249\pi\)
0.502876 + 0.864358i \(0.332275\pi\)
\(14\) 0 0
\(15\) 4.10874 1.33501i 1.06087 0.344698i
\(16\) 0 0
\(17\) 0.442479 + 0.609020i 0.107317 + 0.147709i 0.859297 0.511476i \(-0.170901\pi\)
−0.751980 + 0.659185i \(0.770901\pi\)
\(18\) 0 0
\(19\) 2.61700 + 0.850314i 0.600381 + 0.195075i 0.593410 0.804900i \(-0.297781\pi\)
0.00697046 + 0.999976i \(0.497781\pi\)
\(20\) 0 0
\(21\) −1.78596 −0.389728
\(22\) 0 0
\(23\) 4.40738i 0.919003i −0.888177 0.459502i \(-0.848028\pi\)
0.888177 0.459502i \(-0.151972\pi\)
\(24\) 0 0
\(25\) −2.15728 + 6.63943i −0.431456 + 1.32789i
\(26\) 0 0
\(27\) −4.48550 + 3.25891i −0.863235 + 0.627177i
\(28\) 0 0
\(29\) −0.0386973 0.119098i −0.00718590 0.0221159i 0.947399 0.320054i \(-0.103701\pi\)
−0.954585 + 0.297938i \(0.903701\pi\)
\(30\) 0 0
\(31\) −2.25749 + 3.10716i −0.405457 + 0.558063i −0.962103 0.272686i \(-0.912088\pi\)
0.556646 + 0.830750i \(0.312088\pi\)
\(32\) 0 0
\(33\) −4.13396 + 0.214498i −0.719630 + 0.0373393i
\(34\) 0 0
\(35\) 2.91129 4.00704i 0.492098 0.677314i
\(36\) 0 0
\(37\) 1.91508 0.622247i 0.314837 0.102297i −0.147336 0.989086i \(-0.547070\pi\)
0.462173 + 0.886790i \(0.347070\pi\)
\(38\) 0 0
\(39\) −6.66167 + 4.83999i −1.06672 + 0.775018i
\(40\) 0 0
\(41\) 2.52037 + 0.818917i 0.393615 + 0.127893i 0.499136 0.866524i \(-0.333651\pi\)
−0.105521 + 0.994417i \(0.533651\pi\)
\(42\) 0 0
\(43\) 4.68327i 0.714192i −0.934068 0.357096i \(-0.883767\pi\)
0.934068 0.357096i \(-0.116233\pi\)
\(44\) 0 0
\(45\) 4.99205i 0.744171i
\(46\) 0 0
\(47\) −4.39059 1.42659i −0.640433 0.208089i −0.0292421 0.999572i \(-0.509309\pi\)
−0.611191 + 0.791483i \(0.709309\pi\)
\(48\) 0 0
\(49\) 4.00661 2.91097i 0.572373 0.415853i
\(50\) 0 0
\(51\) −0.893581 + 0.290342i −0.125126 + 0.0406560i
\(52\) 0 0
\(53\) −3.06496 + 4.21856i −0.421005 + 0.579463i −0.965859 0.259067i \(-0.916585\pi\)
0.544854 + 0.838531i \(0.316585\pi\)
\(54\) 0 0
\(55\) 6.25750 9.62476i 0.843761 1.29780i
\(56\) 0 0
\(57\) −2.01869 + 2.77849i −0.267382 + 0.368020i
\(58\) 0 0
\(59\) −1.90440 5.86114i −0.247932 0.763056i −0.995140 0.0984660i \(-0.968606\pi\)
0.747209 0.664590i \(-0.231394\pi\)
\(60\) 0 0
\(61\) −2.37790 + 1.72765i −0.304460 + 0.221203i −0.729516 0.683964i \(-0.760254\pi\)
0.425056 + 0.905167i \(0.360254\pi\)
\(62\) 0 0
\(63\) −0.637721 + 1.96270i −0.0803453 + 0.247277i
\(64\) 0 0
\(65\) 22.8360i 2.83246i
\(66\) 0 0
\(67\) 10.7156 1.30912 0.654559 0.756011i \(-0.272854\pi\)
0.654559 + 0.756011i \(0.272854\pi\)
\(68\) 0 0
\(69\) 5.23168 + 1.69987i 0.629820 + 0.204641i
\(70\) 0 0
\(71\) 6.91440 + 9.51686i 0.820588 + 1.12944i 0.989602 + 0.143829i \(0.0459417\pi\)
−0.169014 + 0.985614i \(0.554058\pi\)
\(72\) 0 0
\(73\) −5.95032 + 1.93338i −0.696433 + 0.226285i −0.635776 0.771874i \(-0.719320\pi\)
−0.0606571 + 0.998159i \(0.519320\pi\)
\(74\) 0 0
\(75\) −7.04913 5.12150i −0.813964 0.591379i
\(76\) 0 0
\(77\) −3.68977 + 2.98475i −0.420489 + 0.340143i
\(78\) 0 0
\(79\) 1.32581 + 0.963258i 0.149165 + 0.108375i 0.659865 0.751384i \(-0.270614\pi\)
−0.510700 + 0.859759i \(0.670614\pi\)
\(80\) 0 0
\(81\) −0.801393 2.46643i −0.0890436 0.274048i
\(82\) 0 0
\(83\) −7.17988 9.88226i −0.788094 1.08472i −0.994343 0.106219i \(-0.966126\pi\)
0.206249 0.978500i \(-0.433874\pi\)
\(84\) 0 0
\(85\) 0.805202 2.47816i 0.0873365 0.268794i
\(86\) 0 0
\(87\) 0.156297 0.0167568
\(88\) 0 0
\(89\) 10.6955 1.13372 0.566858 0.823815i \(-0.308159\pi\)
0.566858 + 0.823815i \(0.308159\pi\)
\(90\) 0 0
\(91\) −2.91724 + 8.97834i −0.305810 + 0.941186i
\(92\) 0 0
\(93\) −2.81760 3.87809i −0.292171 0.402139i
\(94\) 0 0
\(95\) −2.94326 9.05841i −0.301972 0.929373i
\(96\) 0 0
\(97\) −9.17200 6.66385i −0.931276 0.676611i 0.0150293 0.999887i \(-0.495216\pi\)
−0.946305 + 0.323276i \(0.895216\pi\)
\(98\) 0 0
\(99\) −1.24041 + 4.61966i −0.124666 + 0.464293i
\(100\) 0 0
\(101\) −7.14622 5.19204i −0.711076 0.516627i 0.172445 0.985019i \(-0.444833\pi\)
−0.883521 + 0.468392i \(0.844833\pi\)
\(102\) 0 0
\(103\) −16.7264 + 5.43473i −1.64810 + 0.535499i −0.978327 0.207068i \(-0.933608\pi\)
−0.669771 + 0.742567i \(0.733608\pi\)
\(104\) 0 0
\(105\) 3.63361 + 5.00124i 0.354604 + 0.488071i
\(106\) 0 0
\(107\) 4.41132 + 1.43333i 0.426459 + 0.138565i 0.514379 0.857563i \(-0.328022\pi\)
−0.0879209 + 0.996127i \(0.528022\pi\)
\(108\) 0 0
\(109\) −11.8543 −1.13544 −0.567718 0.823223i \(-0.692173\pi\)
−0.567718 + 0.823223i \(0.692173\pi\)
\(110\) 0 0
\(111\) 2.51324i 0.238546i
\(112\) 0 0
\(113\) 0.696722 2.14429i 0.0655421 0.201718i −0.912922 0.408133i \(-0.866180\pi\)
0.978464 + 0.206415i \(0.0661798\pi\)
\(114\) 0 0
\(115\) −12.3420 + 8.96702i −1.15090 + 0.836179i
\(116\) 0 0
\(117\) 2.94025 + 9.04917i 0.271826 + 0.836596i
\(118\) 0 0
\(119\) −0.633156 + 0.871465i −0.0580413 + 0.0798870i
\(120\) 0 0
\(121\) −8.18224 + 7.35194i −0.743840 + 0.668358i
\(122\) 0 0
\(123\) −1.94415 + 2.67589i −0.175298 + 0.241277i
\(124\) 0 0
\(125\) 6.52174 2.11904i 0.583323 0.189533i
\(126\) 0 0
\(127\) 11.2265 8.15650i 0.996187 0.723772i 0.0349194 0.999390i \(-0.488883\pi\)
0.961267 + 0.275618i \(0.0888826\pi\)
\(128\) 0 0
\(129\) 5.55916 + 1.80628i 0.489457 + 0.159034i
\(130\) 0 0
\(131\) 8.50766i 0.743317i −0.928369 0.371659i \(-0.878789\pi\)
0.928369 0.371659i \(-0.121211\pi\)
\(132\) 0 0
\(133\) 3.93745i 0.341420i
\(134\) 0 0
\(135\) 18.2519 + 5.93040i 1.57087 + 0.510408i
\(136\) 0 0
\(137\) −3.93506 + 2.85899i −0.336195 + 0.244260i −0.743055 0.669231i \(-0.766624\pi\)
0.406860 + 0.913491i \(0.366624\pi\)
\(138\) 0 0
\(139\) 15.2832 4.96581i 1.29630 0.421194i 0.422009 0.906592i \(-0.361325\pi\)
0.874294 + 0.485397i \(0.161325\pi\)
\(140\) 0 0
\(141\) 3.38679 4.66152i 0.285219 0.392571i
\(142\) 0 0
\(143\) −5.67421 + 21.1325i −0.474501 + 1.76719i
\(144\) 0 0
\(145\) −0.254780 + 0.350674i −0.0211583 + 0.0291219i
\(146\) 0 0
\(147\) 1.91010 + 5.87867i 0.157542 + 0.484865i
\(148\) 0 0
\(149\) 17.2096 12.5035i 1.40986 1.02433i 0.416520 0.909127i \(-0.363250\pi\)
0.993342 0.115198i \(-0.0367504\pi\)
\(150\) 0 0
\(151\) 4.91773 15.1352i 0.400199 1.23169i −0.524639 0.851325i \(-0.675800\pi\)
0.924838 0.380361i \(-0.124200\pi\)
\(152\) 0 0
\(153\) 1.08569i 0.0877726i
\(154\) 0 0
\(155\) 13.2940 1.06780
\(156\) 0 0
\(157\) 1.98718 + 0.645673i 0.158594 + 0.0515303i 0.387238 0.921980i \(-0.373429\pi\)
−0.228644 + 0.973510i \(0.573429\pi\)
\(158\) 0 0
\(159\) −3.82542 5.26523i −0.303375 0.417560i
\(160\) 0 0
\(161\) 5.99798 1.94886i 0.472707 0.153592i
\(162\) 0 0
\(163\) −8.87445 6.44766i −0.695100 0.505020i 0.183233 0.983070i \(-0.441344\pi\)
−0.878333 + 0.478050i \(0.841344\pi\)
\(164\) 0 0
\(165\) 9.01138 + 11.1400i 0.701535 + 0.867245i
\(166\) 0 0
\(167\) −10.5048 7.63218i −0.812885 0.590595i 0.101781 0.994807i \(-0.467546\pi\)
−0.914666 + 0.404211i \(0.867546\pi\)
\(168\) 0 0
\(169\) 9.43289 + 29.0315i 0.725607 + 2.23319i
\(170\) 0 0
\(171\) 2.33263 + 3.21059i 0.178381 + 0.245520i
\(172\) 0 0
\(173\) −1.07620 + 3.31219i −0.0818217 + 0.251821i −0.983596 0.180386i \(-0.942265\pi\)
0.901774 + 0.432208i \(0.142265\pi\)
\(174\) 0 0
\(175\) −9.98947 −0.755133
\(176\) 0 0
\(177\) 7.69182 0.578153
\(178\) 0 0
\(179\) −0.835692 + 2.57200i −0.0624626 + 0.192240i −0.977418 0.211315i \(-0.932226\pi\)
0.914956 + 0.403555i \(0.132226\pi\)
\(180\) 0 0
\(181\) 6.52174 + 8.97641i 0.484757 + 0.667211i 0.979410 0.201879i \(-0.0647048\pi\)
−0.494653 + 0.869091i \(0.664705\pi\)
\(182\) 0 0
\(183\) −1.13363 3.48897i −0.0838006 0.257912i
\(184\) 0 0
\(185\) −5.63880 4.09682i −0.414572 0.301205i
\(186\) 0 0
\(187\) −1.36090 + 2.09322i −0.0995189 + 0.153072i
\(188\) 0 0
\(189\) −6.41843 4.66326i −0.466872 0.339203i
\(190\) 0 0
\(191\) 12.9352 4.20291i 0.935961 0.304112i 0.198963 0.980007i \(-0.436243\pi\)
0.736998 + 0.675895i \(0.236243\pi\)
\(192\) 0 0
\(193\) −3.16835 4.36086i −0.228063 0.313901i 0.679615 0.733569i \(-0.262147\pi\)
−0.907678 + 0.419667i \(0.862147\pi\)
\(194\) 0 0
\(195\) 27.1069 + 8.80757i 1.94117 + 0.630723i
\(196\) 0 0
\(197\) −6.42744 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(198\) 0 0
\(199\) 3.62012i 0.256623i −0.991734 0.128312i \(-0.959044\pi\)
0.991734 0.128312i \(-0.0409558\pi\)
\(200\) 0 0
\(201\) −4.13288 + 12.7197i −0.291511 + 0.897177i
\(202\) 0 0
\(203\) 0.144968 0.105326i 0.0101748 0.00739242i
\(204\) 0 0
\(205\) −2.83458 8.72393i −0.197976 0.609306i
\(206\) 0 0
\(207\) 3.73620 5.14244i 0.259684 0.357424i
\(208\) 0 0
\(209\) 0.472897 + 9.11401i 0.0327110 + 0.630430i
\(210\) 0 0
\(211\) −12.3044 + 16.9355i −0.847067 + 1.16589i 0.137434 + 0.990511i \(0.456114\pi\)
−0.984501 + 0.175377i \(0.943886\pi\)
\(212\) 0 0
\(213\) −13.9635 + 4.53703i −0.956766 + 0.310872i
\(214\) 0 0
\(215\) −13.1146 + 9.52832i −0.894409 + 0.649826i
\(216\) 0 0
\(217\) −5.22674 1.69827i −0.354814 0.115286i
\(218\) 0 0
\(219\) 7.80886i 0.527674i
\(220\) 0 0
\(221\) 4.96645i 0.334080i
\(222\) 0 0
\(223\) 2.52383 + 0.820041i 0.169008 + 0.0549140i 0.392299 0.919838i \(-0.371680\pi\)
−0.223291 + 0.974752i \(0.571680\pi\)
\(224\) 0 0
\(225\) −8.14541 + 5.91798i −0.543027 + 0.394532i
\(226\) 0 0
\(227\) 3.31167 1.07603i 0.219803 0.0714184i −0.197045 0.980394i \(-0.563135\pi\)
0.416848 + 0.908976i \(0.363135\pi\)
\(228\) 0 0
\(229\) 7.74574 10.6611i 0.511853 0.704505i −0.472377 0.881396i \(-0.656604\pi\)
0.984230 + 0.176891i \(0.0566041\pi\)
\(230\) 0 0
\(231\) −2.11987 5.53103i −0.139477 0.363915i
\(232\) 0 0
\(233\) 4.10254 5.64666i 0.268766 0.369925i −0.653207 0.757180i \(-0.726577\pi\)
0.921973 + 0.387255i \(0.126577\pi\)
\(234\) 0 0
\(235\) 4.93796 + 15.1975i 0.322117 + 0.991374i
\(236\) 0 0
\(237\) −1.65476 + 1.20225i −0.107488 + 0.0780947i
\(238\) 0 0
\(239\) 0.736760 2.26751i 0.0476570 0.146673i −0.924396 0.381434i \(-0.875431\pi\)
0.972053 + 0.234760i \(0.0754305\pi\)
\(240\) 0 0
\(241\) 10.0044i 0.644440i −0.946665 0.322220i \(-0.895571\pi\)
0.946665 0.322220i \(-0.104429\pi\)
\(242\) 0 0
\(243\) −13.3963 −0.859376
\(244\) 0 0
\(245\) −16.3033 5.29725i −1.04158 0.338429i
\(246\) 0 0
\(247\) 10.6706 + 14.6868i 0.678952 + 0.934498i
\(248\) 0 0
\(249\) 14.4997 4.71123i 0.918880 0.298562i
\(250\) 0 0
\(251\) −14.1273 10.2641i −0.891709 0.647864i 0.0446141 0.999004i \(-0.485794\pi\)
−0.936323 + 0.351140i \(0.885794\pi\)
\(252\) 0 0
\(253\) 13.6495 5.23140i 0.858134 0.328896i
\(254\) 0 0
\(255\) 2.63108 + 1.91159i 0.164765 + 0.119708i
\(256\) 0 0
\(257\) −2.52039 7.75695i −0.157217 0.483865i 0.841162 0.540784i \(-0.181872\pi\)
−0.998379 + 0.0569189i \(0.981872\pi\)
\(258\) 0 0
\(259\) 1.69362 + 2.33107i 0.105237 + 0.144846i
\(260\) 0 0
\(261\) 0.0558098 0.171765i 0.00345454 0.0106320i
\(262\) 0 0
\(263\) 21.0996 1.30106 0.650530 0.759481i \(-0.274547\pi\)
0.650530 + 0.759481i \(0.274547\pi\)
\(264\) 0 0
\(265\) 18.0491 1.10875
\(266\) 0 0
\(267\) −4.12511 + 12.6958i −0.252453 + 0.776969i
\(268\) 0 0
\(269\) 12.3273 + 16.9671i 0.751610 + 1.03450i 0.997866 + 0.0652981i \(0.0207998\pi\)
−0.246255 + 0.969205i \(0.579200\pi\)
\(270\) 0 0
\(271\) 6.16426 + 18.9717i 0.374452 + 1.15245i 0.943847 + 0.330382i \(0.107178\pi\)
−0.569395 + 0.822064i \(0.692822\pi\)
\(272\) 0 0
\(273\) −9.53237 6.92567i −0.576925 0.419161i
\(274\) 0 0
\(275\) −23.1226 + 1.19976i −1.39435 + 0.0723482i
\(276\) 0 0
\(277\) −0.866547 0.629583i −0.0520658 0.0378280i 0.561448 0.827512i \(-0.310244\pi\)
−0.613514 + 0.789684i \(0.710244\pi\)
\(278\) 0 0
\(279\) −5.26797 + 1.71167i −0.315385 + 0.102475i
\(280\) 0 0
\(281\) −2.05101 2.82297i −0.122353 0.168404i 0.743447 0.668795i \(-0.233190\pi\)
−0.865800 + 0.500391i \(0.833190\pi\)
\(282\) 0 0
\(283\) −19.4768 6.32839i −1.15777 0.376184i −0.333707 0.942677i \(-0.608300\pi\)
−0.824066 + 0.566493i \(0.808300\pi\)
\(284\) 0 0
\(285\) 11.8877 0.704169
\(286\) 0 0
\(287\) 3.79206i 0.223838i
\(288\) 0 0
\(289\) 5.07817 15.6290i 0.298716 0.919353i
\(290\) 0 0
\(291\) 11.4477 8.31723i 0.671075 0.487565i
\(292\) 0 0
\(293\) −8.03179 24.7193i −0.469222 1.44412i −0.853594 0.520939i \(-0.825582\pi\)
0.384372 0.923178i \(-0.374418\pi\)
\(294\) 0 0
\(295\) −12.5384 + 17.2577i −0.730015 + 1.00478i
\(296\) 0 0
\(297\) −15.4168 10.0232i −0.894574 0.581604i
\(298\) 0 0
\(299\) 17.0912 23.5240i 0.988407 1.36043i
\(300\) 0 0
\(301\) 6.37343 2.07085i 0.367359 0.119362i
\(302\) 0 0
\(303\) 8.91929 6.48024i 0.512400 0.372280i
\(304\) 0 0
\(305\) 9.67591 + 3.14389i 0.554041 + 0.180019i
\(306\) 0 0
\(307\) 9.33420i 0.532731i −0.963872 0.266366i \(-0.914177\pi\)
0.963872 0.266366i \(-0.0858228\pi\)
\(308\) 0 0
\(309\) 21.9507i 1.24873i
\(310\) 0 0
\(311\) −18.5133 6.01534i −1.04979 0.341099i −0.267206 0.963639i \(-0.586101\pi\)
−0.782588 + 0.622541i \(0.786101\pi\)
\(312\) 0 0
\(313\) −11.9727 + 8.69865i −0.676735 + 0.491677i −0.872273 0.489020i \(-0.837355\pi\)
0.195538 + 0.980696i \(0.437355\pi\)
\(314\) 0 0
\(315\) 6.79365 2.20739i 0.382779 0.124372i
\(316\) 0 0
\(317\) −18.6496 + 25.6690i −1.04747 + 1.44171i −0.156480 + 0.987681i \(0.550015\pi\)
−0.890986 + 0.454031i \(0.849985\pi\)
\(318\) 0 0
\(319\) 0.322908 0.261208i 0.0180794 0.0146249i
\(320\) 0 0
\(321\) −3.40279 + 4.68353i −0.189925 + 0.261409i
\(322\) 0 0
\(323\) 0.640109 + 1.97005i 0.0356166 + 0.109617i
\(324\) 0 0
\(325\) −37.2610 + 27.0717i −2.06687 + 1.50167i
\(326\) 0 0
\(327\) 4.57206 14.0713i 0.252835 0.778147i
\(328\) 0 0
\(329\) 6.60594i 0.364197i
\(330\) 0 0
\(331\) 0.462745 0.0254347 0.0127174 0.999919i \(-0.495952\pi\)
0.0127174 + 0.999919i \(0.495952\pi\)
\(332\) 0 0
\(333\) 2.76196 + 0.897414i 0.151354 + 0.0491780i
\(334\) 0 0
\(335\) −21.8014 30.0070i −1.19114 1.63946i
\(336\) 0 0
\(337\) 21.3704 6.94366i 1.16412 0.378245i 0.337675 0.941263i \(-0.390360\pi\)
0.826445 + 0.563017i \(0.190360\pi\)
\(338\) 0 0
\(339\) 2.27661 + 1.65405i 0.123648 + 0.0898358i
\(340\) 0 0
\(341\) −12.3023 3.30324i −0.666207 0.178881i
\(342\) 0 0
\(343\) 13.8367 + 10.0529i 0.747111 + 0.542808i
\(344\) 0 0
\(345\) −5.88390 18.1088i −0.316779 0.974944i
\(346\) 0 0
\(347\) 10.6270 + 14.6268i 0.570486 + 0.785207i 0.992612 0.121330i \(-0.0387159\pi\)
−0.422126 + 0.906537i \(0.638716\pi\)
\(348\) 0 0
\(349\) 0.0983383 0.302654i 0.00526393 0.0162007i −0.948390 0.317106i \(-0.897289\pi\)
0.953654 + 0.300905i \(0.0972889\pi\)
\(350\) 0 0
\(351\) −36.5784 −1.95241
\(352\) 0 0
\(353\) −35.8303 −1.90706 −0.953529 0.301303i \(-0.902579\pi\)
−0.953529 + 0.301303i \(0.902579\pi\)
\(354\) 0 0
\(355\) 12.5825 38.7249i 0.667810 2.05531i
\(356\) 0 0
\(357\) −0.790250 1.08769i −0.0418245 0.0575664i
\(358\) 0 0
\(359\) −7.17559 22.0842i −0.378713 1.16556i −0.940939 0.338576i \(-0.890055\pi\)
0.562226 0.826984i \(-0.309945\pi\)
\(360\) 0 0
\(361\) −9.24568 6.71738i −0.486615 0.353546i
\(362\) 0 0
\(363\) −5.57115 12.5481i −0.292409 0.658603i
\(364\) 0 0
\(365\) 17.5203 + 12.7292i 0.917052 + 0.666277i
\(366\) 0 0
\(367\) 12.4753 4.05346i 0.651203 0.211589i 0.0352586 0.999378i \(-0.488775\pi\)
0.615945 + 0.787789i \(0.288775\pi\)
\(368\) 0 0
\(369\) 2.24650 + 3.09204i 0.116948 + 0.160965i
\(370\) 0 0
\(371\) −7.09628 2.30572i −0.368420 0.119707i
\(372\) 0 0
\(373\) 11.1209 0.575820 0.287910 0.957657i \(-0.407040\pi\)
0.287910 + 0.957657i \(0.407040\pi\)
\(374\) 0 0
\(375\) 8.55876i 0.441973i
\(376\) 0 0
\(377\) 0.255301 0.785735i 0.0131487 0.0404674i
\(378\) 0 0
\(379\) 3.56804 2.59234i 0.183278 0.133159i −0.492363 0.870390i \(-0.663867\pi\)
0.675641 + 0.737231i \(0.263867\pi\)
\(380\) 0 0
\(381\) 5.35206 + 16.4719i 0.274194 + 0.843883i
\(382\) 0 0
\(383\) 1.05035 1.44568i 0.0536703 0.0738709i −0.781338 0.624108i \(-0.785463\pi\)
0.835009 + 0.550237i \(0.185463\pi\)
\(384\) 0 0
\(385\) 15.8652 + 4.25991i 0.808567 + 0.217105i
\(386\) 0 0
\(387\) 3.97007 5.46434i 0.201810 0.277768i
\(388\) 0 0
\(389\) 17.8795 5.80939i 0.906525 0.294548i 0.181598 0.983373i \(-0.441873\pi\)
0.724928 + 0.688825i \(0.241873\pi\)
\(390\) 0 0
\(391\) 2.68419 1.95018i 0.135745 0.0986246i
\(392\) 0 0
\(393\) 10.0988 + 3.28130i 0.509417 + 0.165520i
\(394\) 0 0
\(395\) 5.67247i 0.285413i
\(396\) 0 0
\(397\) 16.9423i 0.850309i −0.905121 0.425154i \(-0.860220\pi\)
0.905121 0.425154i \(-0.139780\pi\)
\(398\) 0 0
\(399\) −4.67385 1.51863i −0.233985 0.0760264i
\(400\) 0 0
\(401\) −22.0372 + 16.0110i −1.10049 + 0.799551i −0.981139 0.193302i \(-0.938080\pi\)
−0.119348 + 0.992853i \(0.538080\pi\)
\(402\) 0 0
\(403\) −24.0982 + 7.82998i −1.20042 + 0.390039i
\(404\) 0 0
\(405\) −5.27631 + 7.26222i −0.262182 + 0.360862i
\(406\) 0 0
\(407\) 4.20020 + 5.19232i 0.208196 + 0.257374i
\(408\) 0 0
\(409\) 8.51572 11.7209i 0.421075 0.579560i −0.544801 0.838565i \(-0.683395\pi\)
0.965876 + 0.259005i \(0.0833947\pi\)
\(410\) 0 0
\(411\) −1.87599 5.77369i −0.0925356 0.284795i
\(412\) 0 0
\(413\) 7.13430 5.18337i 0.351056 0.255057i
\(414\) 0 0
\(415\) −13.0656 + 40.2118i −0.641365 + 1.97392i
\(416\) 0 0
\(417\) 20.0568i 0.982184i
\(418\) 0 0
\(419\) 29.5266 1.44247 0.721234 0.692691i \(-0.243575\pi\)
0.721234 + 0.692691i \(0.243575\pi\)
\(420\) 0 0
\(421\) 25.1953 + 8.18646i 1.22795 + 0.398984i 0.849970 0.526831i \(-0.176620\pi\)
0.377976 + 0.925815i \(0.376620\pi\)
\(422\) 0 0
\(423\) −3.91350 5.38648i −0.190281 0.261899i
\(424\) 0 0
\(425\) −4.99810 + 1.62398i −0.242444 + 0.0787747i
\(426\) 0 0
\(427\) −3.40261 2.47214i −0.164664 0.119635i
\(428\) 0 0
\(429\) −22.8964 14.8860i −1.10545 0.718702i
\(430\) 0 0
\(431\) 15.6499 + 11.3703i 0.753827 + 0.547688i 0.897011 0.442008i \(-0.145734\pi\)
−0.143183 + 0.989696i \(0.545734\pi\)
\(432\) 0 0
\(433\) 2.01155 + 6.19091i 0.0966689 + 0.297516i 0.987685 0.156455i \(-0.0500067\pi\)
−0.891016 + 0.453972i \(0.850007\pi\)
\(434\) 0 0
\(435\) −0.317994 0.437681i −0.0152466 0.0209852i
\(436\) 0 0
\(437\) 3.74766 11.5341i 0.179275 0.551752i
\(438\) 0 0
\(439\) 3.89313 0.185809 0.0929044 0.995675i \(-0.470385\pi\)
0.0929044 + 0.995675i \(0.470385\pi\)
\(440\) 0 0
\(441\) 7.14250 0.340119
\(442\) 0 0
\(443\) −9.08528 + 27.9616i −0.431655 + 1.32850i 0.464822 + 0.885404i \(0.346118\pi\)
−0.896476 + 0.443092i \(0.853882\pi\)
\(444\) 0 0
\(445\) −21.7604 29.9506i −1.03154 1.41979i
\(446\) 0 0
\(447\) 8.20442 + 25.2506i 0.388056 + 1.19431i
\(448\) 0 0
\(449\) 19.3694 + 14.0727i 0.914096 + 0.664130i 0.942048 0.335479i \(-0.108898\pi\)
−0.0279511 + 0.999609i \(0.508898\pi\)
\(450\) 0 0
\(451\) 0.455436 + 8.77748i 0.0214456 + 0.413316i
\(452\) 0 0
\(453\) 16.0692 + 11.6749i 0.754995 + 0.548536i
\(454\) 0 0
\(455\) 31.0774 10.0977i 1.45693 0.473386i
\(456\) 0 0
\(457\) −19.8130 27.2702i −0.926811 1.27565i −0.961091 0.276233i \(-0.910914\pi\)
0.0342799 0.999412i \(-0.489086\pi\)
\(458\) 0 0
\(459\) −3.96948 1.28976i −0.185280 0.0602010i
\(460\) 0 0
\(461\) 1.14908 0.0535180 0.0267590 0.999642i \(-0.491481\pi\)
0.0267590 + 0.999642i \(0.491481\pi\)
\(462\) 0 0
\(463\) 35.5695i 1.65305i −0.562897 0.826527i \(-0.690313\pi\)
0.562897 0.826527i \(-0.309687\pi\)
\(464\) 0 0
\(465\) −5.12733 + 15.7803i −0.237774 + 0.731793i
\(466\) 0 0
\(467\) −7.76496 + 5.64158i −0.359320 + 0.261061i −0.752768 0.658286i \(-0.771282\pi\)
0.393449 + 0.919347i \(0.371282\pi\)
\(468\) 0 0
\(469\) 4.73824 + 14.5828i 0.218792 + 0.673371i
\(470\) 0 0
\(471\) −1.53286 + 2.10980i −0.0706304 + 0.0972144i
\(472\) 0 0
\(473\) 14.5039 5.55887i 0.666889 0.255597i
\(474\) 0 0
\(475\) −11.2912 + 15.5410i −0.518076 + 0.713071i
\(476\) 0 0
\(477\) −7.15226 + 2.32391i −0.327479 + 0.106405i
\(478\) 0 0
\(479\) 10.6121 7.71014i 0.484879 0.352285i −0.318332 0.947979i \(-0.603123\pi\)
0.803212 + 0.595694i \(0.203123\pi\)
\(480\) 0 0
\(481\) 12.6345 + 4.10520i 0.576084 + 0.187181i
\(482\) 0 0
\(483\) 7.87141i 0.358162i
\(484\) 0 0
\(485\) 39.2423i 1.78190i
\(486\) 0 0
\(487\) −13.1809 4.28273i −0.597283 0.194069i −0.00525485 0.999986i \(-0.501673\pi\)
−0.592028 + 0.805917i \(0.701673\pi\)
\(488\) 0 0
\(489\) 11.0763 8.04740i 0.500888 0.363916i
\(490\) 0 0
\(491\) −7.72819 + 2.51104i −0.348768 + 0.113322i −0.478162 0.878272i \(-0.658697\pi\)
0.129394 + 0.991593i \(0.458697\pi\)
\(492\) 0 0
\(493\) 0.0554103 0.0762658i 0.00249556 0.00343484i
\(494\) 0 0
\(495\) 15.4601 5.92538i 0.694882 0.266326i
\(496\) 0 0
\(497\) −9.89402 + 13.6179i −0.443807 + 0.610848i
\(498\) 0 0
\(499\) 2.03291 + 6.25665i 0.0910055 + 0.280086i 0.986192 0.165605i \(-0.0529578\pi\)
−0.895187 + 0.445692i \(0.852958\pi\)
\(500\) 0 0
\(501\) 13.1112 9.52581i 0.585763 0.425582i
\(502\) 0 0
\(503\) −11.1744 + 34.3912i −0.498242 + 1.53343i 0.313602 + 0.949555i \(0.398464\pi\)
−0.811843 + 0.583875i \(0.801536\pi\)
\(504\) 0 0
\(505\) 30.5751i 1.36057i
\(506\) 0 0
\(507\) −38.0992 −1.69205
\(508\) 0 0
\(509\) −17.9333 5.82690i −0.794881 0.258273i −0.116700 0.993167i \(-0.537232\pi\)
−0.678181 + 0.734895i \(0.737232\pi\)
\(510\) 0 0
\(511\) −5.26224 7.24286i −0.232788 0.320405i
\(512\) 0 0
\(513\) −14.5096 + 4.71447i −0.640616 + 0.208149i
\(514\) 0 0
\(515\) 49.2495 + 35.7818i 2.17019 + 1.57674i
\(516\) 0 0
\(517\) −0.793389 15.2908i −0.0348932 0.672487i
\(518\) 0 0
\(519\) −3.51658 2.55494i −0.154361 0.112150i
\(520\) 0 0
\(521\) −8.33018 25.6377i −0.364952 1.12321i −0.950011 0.312216i \(-0.898929\pi\)
0.585059 0.810991i \(-0.301071\pi\)
\(522\) 0 0
\(523\) 15.4730 + 21.2968i 0.676588 + 0.931243i 0.999887 0.0150535i \(-0.00479187\pi\)
−0.323299 + 0.946297i \(0.604792\pi\)
\(524\) 0 0
\(525\) 3.85282 11.8578i 0.168151 0.517515i
\(526\) 0 0
\(527\) −2.89122 −0.125943
\(528\) 0 0
\(529\) 3.57496 0.155433
\(530\) 0 0
\(531\) 2.74656 8.45303i 0.119190 0.366830i
\(532\) 0 0
\(533\) 10.2766 + 14.1445i 0.445127 + 0.612665i
\(534\) 0 0
\(535\) −4.96128 15.2692i −0.214495 0.660147i
\(536\) 0 0
\(537\) −2.73071 1.98397i −0.117839 0.0856148i
\(538\) 0 0
\(539\) 13.7708 + 8.95307i 0.593152 + 0.385636i
\(540\) 0 0
\(541\) −28.9843 21.0583i −1.24613 0.905369i −0.248142 0.968724i \(-0.579820\pi\)
−0.997991 + 0.0633548i \(0.979820\pi\)
\(542\) 0 0
\(543\) −13.1706 + 4.27938i −0.565204 + 0.183646i
\(544\) 0 0
\(545\) 24.1181 + 33.1957i 1.03311 + 1.42195i
\(546\) 0 0
\(547\) 2.46974 + 0.802466i 0.105598 + 0.0343110i 0.361340 0.932434i \(-0.382320\pi\)
−0.255741 + 0.966745i \(0.582320\pi\)
\(548\) 0 0
\(549\) −4.23904 −0.180918
\(550\) 0 0
\(551\) 0.344584i 0.0146798i
\(552\) 0 0
\(553\) −0.724643 + 2.23022i −0.0308150 + 0.0948387i
\(554\) 0 0
\(555\) 7.03785 5.11330i 0.298740 0.217047i
\(556\) 0 0
\(557\) −5.74085 17.6685i −0.243248 0.748639i −0.995920 0.0902436i \(-0.971235\pi\)
0.752672 0.658396i \(-0.228765\pi\)
\(558\) 0 0
\(559\) 18.1610 24.9965i 0.768128 1.05724i
\(560\) 0 0
\(561\) −1.95982 2.42275i −0.0827438 0.102289i
\(562\) 0 0
\(563\) −6.88635 + 9.47824i −0.290225 + 0.399460i −0.929087 0.369861i \(-0.879405\pi\)
0.638862 + 0.769321i \(0.279405\pi\)
\(564\) 0 0
\(565\) −7.42219 + 2.41162i −0.312254 + 0.101457i
\(566\) 0 0
\(567\) 3.00219 2.18122i 0.126080 0.0916027i
\(568\) 0 0
\(569\) 0.0584948 + 0.0190061i 0.00245223 + 0.000796778i 0.310243 0.950657i \(-0.399590\pi\)
−0.307791 + 0.951454i \(0.599590\pi\)
\(570\) 0 0
\(571\) 13.5141i 0.565549i −0.959186 0.282775i \(-0.908745\pi\)
0.959186 0.282775i \(-0.0912549\pi\)
\(572\) 0 0
\(573\) 16.9755i 0.709160i
\(574\) 0 0
\(575\) 29.2625 + 9.50797i 1.22033 + 0.396510i
\(576\) 0 0
\(577\) 23.6007 17.1469i 0.982509 0.713834i 0.0242409 0.999706i \(-0.492283\pi\)
0.958268 + 0.285872i \(0.0922831\pi\)
\(578\) 0 0
\(579\) 6.39844 2.07898i 0.265910 0.0863994i
\(580\) 0 0
\(581\) 10.2739 14.1408i 0.426233 0.586659i
\(582\) 0 0
\(583\) −16.7027 4.48477i −0.691754 0.185740i
\(584\) 0 0
\(585\) 19.3584 26.6446i 0.800372 1.10162i
\(586\) 0 0
\(587\) 5.16224 + 15.8877i 0.213068 + 0.655757i 0.999285 + 0.0378060i \(0.0120369\pi\)
−0.786217 + 0.617951i \(0.787963\pi\)
\(588\) 0 0
\(589\) −8.54991 + 6.21187i −0.352293 + 0.255956i
\(590\) 0 0
\(591\) 2.47898 7.62953i 0.101972 0.313837i
\(592\) 0 0
\(593\) 25.8884i 1.06311i 0.847024 + 0.531555i \(0.178392\pi\)
−0.847024 + 0.531555i \(0.821608\pi\)
\(594\) 0 0
\(595\) 3.72856 0.152856
\(596\) 0 0
\(597\) 4.29717 + 1.39624i 0.175871 + 0.0571441i
\(598\) 0 0
\(599\) 20.0324 + 27.5722i 0.818500 + 1.12657i 0.989956 + 0.141377i \(0.0451528\pi\)
−0.171456 + 0.985192i \(0.554847\pi\)
\(600\) 0 0
\(601\) −13.2879 + 4.31751i −0.542026 + 0.176115i −0.567218 0.823568i \(-0.691980\pi\)
0.0251919 + 0.999683i \(0.491980\pi\)
\(602\) 0 0
\(603\) 12.5027 + 9.08376i 0.509150 + 0.369919i
\(604\) 0 0
\(605\) 37.2348 + 7.95496i 1.51381 + 0.323415i
\(606\) 0 0
\(607\) −14.8915 10.8193i −0.604426 0.439141i 0.243021 0.970021i \(-0.421862\pi\)
−0.847447 + 0.530880i \(0.821862\pi\)
\(608\) 0 0
\(609\) 0.0691117 + 0.212704i 0.00280055 + 0.00861920i
\(610\) 0 0
\(611\) −17.9022 24.6403i −0.724247 0.996840i
\(612\) 0 0
\(613\) −1.90751 + 5.87070i −0.0770435 + 0.237115i −0.982160 0.188049i \(-0.939784\pi\)
0.905116 + 0.425164i \(0.139784\pi\)
\(614\) 0 0
\(615\) 11.4488 0.461660
\(616\) 0 0
\(617\) 1.39128 0.0560109 0.0280054 0.999608i \(-0.491084\pi\)
0.0280054 + 0.999608i \(0.491084\pi\)
\(618\) 0 0
\(619\) 3.39184 10.4390i 0.136330 0.419580i −0.859465 0.511195i \(-0.829203\pi\)
0.995794 + 0.0916154i \(0.0292030\pi\)
\(620\) 0 0
\(621\) 14.3633 + 19.7693i 0.576378 + 0.793316i
\(622\) 0 0
\(623\) 4.72933 + 14.5554i 0.189477 + 0.583149i
\(624\) 0 0
\(625\) 9.03643 + 6.56535i 0.361457 + 0.262614i
\(626\) 0 0
\(627\) −11.0010 2.95382i −0.439336 0.117964i
\(628\) 0 0
\(629\) 1.22634 + 0.890990i 0.0488975 + 0.0355261i
\(630\) 0 0
\(631\) −1.93780 + 0.629628i −0.0771425 + 0.0250651i −0.347334 0.937741i \(-0.612913\pi\)
0.270192 + 0.962807i \(0.412913\pi\)
\(632\) 0 0
\(633\) −15.3572 21.1374i −0.610395 0.840136i
\(634\) 0 0
\(635\) −45.6814 14.8428i −1.81281 0.589019i
\(636\) 0 0
\(637\) 32.6732 1.29456
\(638\) 0 0
\(639\) 16.9655i 0.671144i
\(640\) 0 0
\(641\) −1.03461 + 3.18420i −0.0408646 + 0.125768i −0.969408 0.245457i \(-0.921062\pi\)
0.928543 + 0.371225i \(0.121062\pi\)
\(642\) 0 0
\(643\) 33.9880 24.6938i 1.34036 0.973827i 0.340927 0.940090i \(-0.389259\pi\)
0.999431 0.0337372i \(-0.0107409\pi\)
\(644\) 0 0
\(645\) −6.25221 19.2423i −0.246181 0.757666i
\(646\) 0 0
\(647\) 6.76639 9.31313i 0.266014 0.366137i −0.655025 0.755607i \(-0.727342\pi\)
0.921039 + 0.389470i \(0.127342\pi\)
\(648\) 0 0
\(649\) 15.8912 12.8548i 0.623785 0.504595i
\(650\) 0 0
\(651\) 4.03178 5.54927i 0.158018 0.217493i
\(652\) 0 0
\(653\) −39.9222 + 12.9715i −1.56227 + 0.507614i −0.957414 0.288718i \(-0.906771\pi\)
−0.604860 + 0.796331i \(0.706771\pi\)
\(654\) 0 0
\(655\) −23.8241 + 17.3092i −0.930884 + 0.676327i
\(656\) 0 0
\(657\) −8.58166 2.78835i −0.334802 0.108784i
\(658\) 0 0
\(659\) 38.3263i 1.49298i 0.665396 + 0.746490i \(0.268263\pi\)
−0.665396 + 0.746490i \(0.731737\pi\)
\(660\) 0 0
\(661\) 12.9209i 0.502563i −0.967914 0.251281i \(-0.919148\pi\)
0.967914 0.251281i \(-0.0808520\pi\)
\(662\) 0 0
\(663\) −5.89530 1.91550i −0.228954 0.0743918i
\(664\) 0 0
\(665\) 11.0261 8.01092i 0.427573 0.310650i
\(666\) 0 0
\(667\) −0.524910 + 0.170554i −0.0203246 + 0.00660387i
\(668\) 0 0
\(669\) −1.94682 + 2.67957i −0.0752684 + 0.103598i
\(670\) 0 0
\(671\) −8.17293 5.31360i −0.315513 0.205129i
\(672\) 0 0
\(673\) −24.8122 + 34.1511i −0.956442 + 1.31643i −0.00783601 + 0.999969i \(0.502494\pi\)
−0.948606 + 0.316460i \(0.897506\pi\)
\(674\) 0 0
\(675\) −11.9608 36.8116i −0.460371 1.41688i
\(676\) 0 0
\(677\) 6.94588 5.04648i 0.266952 0.193952i −0.446254 0.894906i \(-0.647242\pi\)
0.713206 + 0.700954i \(0.247242\pi\)
\(678\) 0 0
\(679\) 5.01310 15.4287i 0.192385 0.592101i
\(680\) 0 0
\(681\) 4.34604i 0.166541i
\(682\) 0 0
\(683\) −28.2213 −1.07986 −0.539928 0.841711i \(-0.681549\pi\)
−0.539928 + 0.841711i \(0.681549\pi\)
\(684\) 0 0
\(685\) 16.0121 + 5.20265i 0.611792 + 0.198783i
\(686\) 0 0
\(687\) 9.66755 + 13.3062i 0.368840 + 0.507665i
\(688\) 0 0
\(689\) −32.7178 + 10.6307i −1.24645 + 0.404996i
\(690\) 0 0
\(691\) −8.43429 6.12787i −0.320855 0.233115i 0.415685 0.909509i \(-0.363542\pi\)
−0.736540 + 0.676394i \(0.763542\pi\)
\(692\) 0 0
\(693\) −6.83535 + 0.354665i −0.259654 + 0.0134726i
\(694\) 0 0
\(695\) −45.0001 32.6945i −1.70695 1.24017i
\(696\) 0 0
\(697\) 0.616473 + 1.89731i 0.0233506 + 0.0718657i
\(698\) 0 0
\(699\) 5.12042 + 7.04766i 0.193672 + 0.266567i
\(700\) 0 0
\(701\) 6.36425 19.5871i 0.240374 0.739796i −0.755989 0.654585i \(-0.772843\pi\)
0.996363 0.0852113i \(-0.0271565\pi\)
\(702\) 0 0
\(703\) 5.54086 0.208978
\(704\) 0 0
\(705\) −19.9443 −0.751146
\(706\) 0 0
\(707\) 3.90588 12.0211i 0.146896 0.452099i
\(708\) 0 0
\(709\) −10.4287 14.3539i −0.391658 0.539071i 0.566968 0.823740i \(-0.308116\pi\)
−0.958626 + 0.284669i \(0.908116\pi\)
\(710\) 0 0
\(711\) 0.730359 + 2.24782i 0.0273906 + 0.0842996i
\(712\) 0 0
\(713\) 13.6945 + 9.94961i 0.512862 + 0.372616i
\(714\) 0 0
\(715\) 70.7221 27.1055i 2.64486 1.01369i
\(716\) 0 0
\(717\) 2.40744 + 1.74910i 0.0899074 + 0.0653215i
\(718\) 0 0
\(719\) −39.9775 + 12.9895i −1.49091 + 0.484426i −0.937351 0.348385i \(-0.886730\pi\)
−0.553557 + 0.832811i \(0.686730\pi\)
\(720\) 0 0
\(721\) −14.7922 20.3597i −0.550889 0.758234i
\(722\) 0 0
\(723\) 11.8755 + 3.85858i 0.441654 + 0.143502i
\(724\) 0 0
\(725\) 0.874223 0.0324678
\(726\) 0 0
\(727\) 28.2673i 1.04838i 0.851602 + 0.524189i \(0.175631\pi\)
−0.851602 + 0.524189i \(0.824369\pi\)
\(728\) 0 0
\(729\) 7.57098 23.3011i 0.280407 0.863004i
\(730\) 0 0
\(731\) 2.85221 2.07225i 0.105493 0.0766449i
\(732\) 0 0
\(733\) 10.0445 + 30.9137i 0.371001 + 1.14182i 0.946137 + 0.323765i \(0.104949\pi\)
−0.575137 + 0.818057i \(0.695051\pi\)
\(734\) 0 0
\(735\) 12.5759 17.3093i 0.463870 0.638463i
\(736\) 0 0
\(737\) 12.7190 + 33.1857i 0.468511 + 1.22241i
\(738\) 0 0
\(739\) −13.9205 + 19.1599i −0.512075 + 0.704810i −0.984267 0.176685i \(-0.943463\pi\)
0.472193 + 0.881495i \(0.343463\pi\)
\(740\) 0 0
\(741\) −21.5491 + 7.00172i −0.791625 + 0.257215i
\(742\) 0 0
\(743\) 10.1076 7.34362i 0.370813 0.269411i −0.386735 0.922191i \(-0.626397\pi\)
0.757548 + 0.652780i \(0.226397\pi\)
\(744\) 0 0
\(745\) −70.0273 22.7532i −2.56560 0.833614i
\(746\) 0 0
\(747\) 17.6169i 0.644568i
\(748\) 0 0
\(749\) 6.63713i 0.242515i
\(750\) 0 0
\(751\) −4.15146 1.34889i −0.151489 0.0492217i 0.232291 0.972646i \(-0.425378\pi\)
−0.383780 + 0.923425i \(0.625378\pi\)
\(752\) 0 0
\(753\) 17.6325 12.8108i 0.642563 0.466850i
\(754\) 0 0
\(755\) −52.3886 + 17.0221i −1.90662 + 0.619497i
\(756\) 0 0
\(757\) −11.5578 + 15.9080i −0.420076 + 0.578185i −0.965640 0.259884i \(-0.916316\pi\)
0.545564 + 0.838069i \(0.316316\pi\)
\(758\) 0 0
\(759\) 0.945375 + 18.2199i 0.0343149 + 0.661342i
\(760\) 0 0
\(761\) 6.31497 8.69181i 0.228917 0.315078i −0.679071 0.734072i \(-0.737617\pi\)
0.907989 + 0.418995i \(0.137617\pi\)
\(762\) 0 0
\(763\) −5.24175 16.1324i −0.189764 0.584034i
\(764\) 0 0
\(765\) 3.04026 2.20888i 0.109921 0.0798622i
\(766\) 0 0
\(767\) 12.5641 38.6682i 0.453662 1.39623i
\(768\) 0 0
\(769\) 28.3787i 1.02336i −0.859176 0.511680i \(-0.829023\pi\)
0.859176 0.511680i \(-0.170977\pi\)
\(770\) 0 0
\(771\) 10.1798 0.366616
\(772\) 0 0
\(773\) −12.7726 4.15006i −0.459398 0.149267i 0.0701700 0.997535i \(-0.477646\pi\)
−0.529568 + 0.848268i \(0.677646\pi\)
\(774\) 0 0
\(775\) −15.7598 21.6915i −0.566108 0.779180i
\(776\) 0 0
\(777\) −3.42025 + 1.11131i −0.122701 + 0.0398679i
\(778\) 0 0
\(779\) 5.89946 + 4.28621i 0.211370 + 0.153569i
\(780\) 0 0
\(781\) −21.2661 + 32.7097i −0.760962 + 1.17045i
\(782\) 0 0
\(783\) 0.561706 + 0.408103i 0.0200737 + 0.0145844i
\(784\) 0 0
\(785\) −2.23491 6.87836i −0.0797675 0.245499i
\(786\) 0 0
\(787\) −31.3392 43.1347i −1.11712 1.53759i −0.810486 0.585758i \(-0.800797\pi\)
−0.306635 0.951827i \(-0.599203\pi\)
\(788\) 0 0
\(789\) −8.13787 + 25.0458i −0.289716 + 0.891654i
\(790\) 0 0
\(791\) 3.22623 0.114712
\(792\) 0 0
\(793\) −19.3914 −0.688608
\(794\) 0 0
\(795\) −6.96131 + 21.4247i −0.246892 + 0.759856i
\(796\) 0 0
\(797\) −7.58342 10.4377i −0.268619 0.369722i 0.653304 0.757096i \(-0.273382\pi\)
−0.921923 + 0.387374i \(0.873382\pi\)
\(798\) 0 0
\(799\) −1.07392 3.30519i −0.0379927 0.116929i
\(800\) 0 0
\(801\) 12.4792 + 9.06669i 0.440932 + 0.320356i
\(802\) 0 0
\(803\) −13.0504 16.1330i −0.460538 0.569322i
\(804\) 0 0
\(805\) −17.6606 12.8312i −0.622454 0.452239i
\(806\) 0 0
\(807\) −24.8949 + 8.08884i −0.876341 + 0.284741i
\(808\) 0 0
\(809\) 11.5869 + 15.9479i 0.407372 + 0.560700i 0.962575 0.271015i \(-0.0873594\pi\)
−0.555203 + 0.831715i \(0.687359\pi\)
\(810\) 0 0
\(811\) −3.05542 0.992767i −0.107290 0.0348608i 0.254880 0.966973i \(-0.417964\pi\)
−0.362170 + 0.932112i \(0.617964\pi\)
\(812\) 0 0
\(813\) −24.8973 −0.873187
\(814\) 0 0
\(815\) 37.9693i 1.33001i
\(816\) 0 0
\(817\) 3.98225 12.2561i 0.139321 0.428787i
\(818\) 0 0
\(819\) −11.0148 + 8.00275i −0.384889 + 0.279639i
\(820\) 0 0
\(821\) 10.5519 + 32.4755i 0.368265 + 1.13340i 0.947911 + 0.318534i \(0.103191\pi\)
−0.579647 + 0.814868i \(0.696809\pi\)
\(822\) 0 0
\(823\) 11.0334 15.1861i 0.384599 0.529355i −0.572197 0.820116i \(-0.693909\pi\)
0.956796 + 0.290762i \(0.0939087\pi\)
\(824\) 0 0
\(825\) 7.49397 27.9099i 0.260907 0.971697i
\(826\) 0 0
\(827\) 28.3862 39.0702i 0.987084 1.35860i 0.0541588 0.998532i \(-0.482752\pi\)
0.932925 0.360072i \(-0.117248\pi\)
\(828\) 0 0
\(829\) 23.8963 7.76436i 0.829951 0.269668i 0.136926 0.990581i \(-0.456278\pi\)
0.693025 + 0.720914i \(0.256278\pi\)
\(830\) 0 0
\(831\) 1.08155 0.785790i 0.0375185 0.0272588i
\(832\) 0 0
\(833\) 3.54568 + 1.15206i 0.122851 + 0.0399166i
\(834\) 0 0
\(835\) 44.9447i 1.55537i
\(836\) 0 0
\(837\) 21.2941i 0.736033i
\(838\) 0 0
\(839\) 9.12336 + 2.96436i 0.314973 + 0.102341i 0.462238 0.886756i \(-0.347047\pi\)
−0.147264 + 0.989097i \(0.547047\pi\)
\(840\) 0 0
\(841\) 23.4488 17.0366i 0.808580 0.587467i
\(842\) 0 0
\(843\) 4.14199 1.34581i 0.142658 0.0463523i
\(844\) 0 0
\(845\) 62.1055 85.4808i 2.13649 2.94063i
\(846\) 0 0
\(847\) −13.6232 7.88427i −0.468100 0.270907i
\(848\) 0 0
\(849\) 15.0239 20.6786i 0.515619 0.709689i
\(850\) 0 0
\(851\) −2.74248 8.44049i −0.0940110 0.289336i
\(852\) 0 0
\(853\) 21.4801 15.6062i 0.735466 0.534347i −0.155822 0.987785i \(-0.549803\pi\)
0.891288 + 0.453438i \(0.149803\pi\)
\(854\) 0 0
\(855\) 4.24481 13.0642i 0.145170 0.446786i
\(856\) 0 0
\(857\) 9.29115i 0.317380i −0.987328 0.158690i \(-0.949273\pi\)
0.987328 0.158690i \(-0.0507270\pi\)
\(858\) 0 0
\(859\) −0.473127 −0.0161429 −0.00807145 0.999967i \(-0.502569\pi\)
−0.00807145 + 0.999967i \(0.502569\pi\)
\(860\) 0 0
\(861\) −4.50127 1.46255i −0.153403 0.0498436i
\(862\) 0 0
\(863\) 3.66396 + 5.04300i 0.124723 + 0.171666i 0.866812 0.498635i \(-0.166165\pi\)
−0.742090 + 0.670301i \(0.766165\pi\)
\(864\) 0 0
\(865\) 11.4647 3.72512i 0.389813 0.126658i
\(866\) 0 0
\(867\) 16.5934 + 12.0558i 0.563542 + 0.409437i
\(868\) 0 0
\(869\) −1.40948 + 5.24932i −0.0478132 + 0.178071i
\(870\) 0 0
\(871\) 57.1934 + 41.5534i 1.93792 + 1.40798i
\(872\) 0 0
\(873\) −5.05265 15.5505i −0.171006 0.526303i
\(874\) 0 0
\(875\) 5.76759 + 7.93840i 0.194980 + 0.268367i
\(876\) 0 0
\(877\) −17.9712 + 55.3096i −0.606844 + 1.86767i −0.123262 + 0.992374i \(0.539336\pi\)
−0.483582 + 0.875299i \(0.660664\pi\)
\(878\) 0 0
\(879\) 32.4402 1.09418
\(880\) 0 0
\(881\) −21.4583 −0.722949 −0.361475 0.932382i \(-0.617727\pi\)
−0.361475 + 0.932382i \(0.617727\pi\)
\(882\) 0 0
\(883\) 11.8139 36.3594i 0.397569 1.22359i −0.529373 0.848389i \(-0.677573\pi\)
0.926942 0.375204i \(-0.122427\pi\)
\(884\) 0 0
\(885\) −15.6494 21.5395i −0.526047 0.724042i
\(886\) 0 0
\(887\) 11.8654 + 36.5179i 0.398400 + 1.22615i 0.926281 + 0.376832i \(0.122987\pi\)
−0.527881 + 0.849318i \(0.677013\pi\)
\(888\) 0 0
\(889\) 16.0643 + 11.6714i 0.538778 + 0.391445i
\(890\) 0 0
\(891\) 6.68720 5.40944i 0.224030 0.181223i
\(892\) 0 0
\(893\) −10.2771 7.46676i −0.343911 0.249866i
\(894\) 0 0
\(895\) 8.90264 2.89264i 0.297582 0.0966904i
\(896\) 0 0
\(897\) 21.3317 + 29.3605i 0.712244 + 0.980320i
\(898\) 0 0
\(899\) 0.457415 + 0.148623i 0.0152557 + 0.00495686i
\(900\) 0 0
\(901\) −3.92537 −0.130773
\(902\) 0 0
\(903\) 8.36413i 0.278341i
\(904\) 0 0
\(905\) 11.8680 36.5258i 0.394504 1.21416i
\(906\) 0 0
\(907\) 0.530037 0.385095i 0.0175996 0.0127869i −0.578951 0.815363i \(-0.696538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(908\) 0 0
\(909\) −3.93670 12.1159i −0.130572 0.401859i
\(910\) 0 0
\(911\) −28.8473 + 39.7049i −0.955754 + 1.31548i −0.00683066 + 0.999977i \(0.502174\pi\)
−0.948924 + 0.315506i \(0.897826\pi\)
\(912\) 0 0
\(913\) 22.0826 33.9656i 0.730828 1.12410i
\(914\) 0 0
\(915\) −7.46376 + 10.2730i −0.246744 + 0.339614i
\(916\) 0 0
\(917\) 11.5780 3.76193i 0.382340 0.124230i
\(918\) 0 0
\(919\) 16.4110 11.9233i 0.541350 0.393314i −0.283236 0.959050i \(-0.591408\pi\)
0.824586 + 0.565736i \(0.191408\pi\)
\(920\) 0 0
\(921\) 11.0799 + 3.60009i 0.365096 + 0.118627i
\(922\) 0 0
\(923\) 77.6082i 2.55451i
\(924\) 0 0
\(925\) 14.0574i 0.462204i
\(926\) 0 0
\(927\) −24.1230 7.83805i −0.792305 0.257435i
\(928\) 0 0
\(929\) −20.9664 + 15.2330i −0.687887 + 0.499779i −0.875965 0.482375i \(-0.839774\pi\)
0.188078 + 0.982154i \(0.439774\pi\)
\(930\) 0 0
\(931\) 12.9605 4.21113i 0.424764 0.138014i
\(932\) 0 0
\(933\) 14.2807 19.6557i 0.467530 0.643500i
\(934\) 0 0
\(935\) 8.63049 0.447809i 0.282247 0.0146449i
\(936\) 0 0
\(937\) −25.0688 + 34.5043i −0.818962 + 1.12721i 0.170916 + 0.985286i \(0.445327\pi\)
−0.989878 + 0.141920i \(0.954673\pi\)
\(938\) 0 0
\(939\) −5.70780 17.5668i −0.186267 0.573271i
\(940\) 0 0
\(941\) −2.92074 + 2.12204i −0.0952134 + 0.0691766i −0.634373 0.773027i \(-0.718742\pi\)
0.539160 + 0.842203i \(0.318742\pi\)
\(942\) 0 0
\(943\) 3.60928 11.1082i 0.117534 0.361734i
\(944\) 0 0
\(945\) 27.4612i 0.893314i
\(946\) 0 0
\(947\) −24.5514 −0.797813 −0.398907 0.916992i \(-0.630610\pi\)
−0.398907 + 0.916992i \(0.630610\pi\)
\(948\) 0 0
\(949\) −39.2566 12.7552i −1.27432 0.414052i
\(950\) 0 0
\(951\) −23.2768 32.0377i −0.754801 1.03889i
\(952\) 0 0
\(953\) −4.79500 + 1.55799i −0.155325 + 0.0504682i −0.385648 0.922646i \(-0.626022\pi\)
0.230322 + 0.973114i \(0.426022\pi\)
\(954\) 0 0
\(955\) −38.0868 27.6717i −1.23246 0.895434i
\(956\) 0 0
\(957\) 0.185519 + 0.484045i 0.00599698 + 0.0156470i
\(958\) 0 0
\(959\) −5.63079 4.09101i −0.181828 0.132106i
\(960\) 0 0
\(961\) 5.02130 + 15.4540i 0.161978 + 0.498516i
\(962\) 0 0
\(963\) 3.93198 + 5.41191i 0.126706 + 0.174396i
\(964\) 0 0
\(965\) −5.76561 + 17.7447i −0.185602 + 0.571223i
\(966\) 0 0
\(967\) −32.9415 −1.05933 −0.529664 0.848208i \(-0.677682\pi\)
−0.529664 + 0.848208i \(0.677682\pi\)
\(968\) 0 0
\(969\) −2.58538 −0.0830545
\(970\) 0 0
\(971\) −14.2466 + 43.8466i −0.457196 + 1.40710i 0.411342 + 0.911481i \(0.365060\pi\)
−0.868538 + 0.495623i \(0.834940\pi\)
\(972\) 0 0
\(973\) 13.5159 + 18.6030i 0.433299 + 0.596385i
\(974\) 0 0
\(975\) −17.7637 54.6709i −0.568892 1.75087i
\(976\) 0 0
\(977\) 26.4008 + 19.1813i 0.844635 + 0.613664i 0.923662 0.383209i \(-0.125181\pi\)
−0.0790263 + 0.996873i \(0.525181\pi\)
\(978\) 0 0
\(979\) 12.6951 + 33.1233i 0.405738 + 1.05863i
\(980\) 0 0
\(981\) −13.8313 10.0490i −0.441600 0.320841i
\(982\) 0 0
\(983\) 8.03767 2.61160i 0.256362 0.0832970i −0.178017 0.984027i \(-0.556968\pi\)
0.434378 + 0.900730i \(0.356968\pi\)
\(984\) 0 0
\(985\) 13.0769 + 17.9988i 0.416665 + 0.573490i
\(986\) 0 0
\(987\) 7.84141 + 2.54783i 0.249595 + 0.0810983i
\(988\) 0 0
\(989\) −20.6410 −0.656345
\(990\) 0 0
\(991\) 29.6890i 0.943104i −0.881838 0.471552i \(-0.843694\pi\)
0.881838 0.471552i \(-0.156306\pi\)
\(992\) 0 0
\(993\) −0.178475 + 0.549289i −0.00566373 + 0.0174312i
\(994\) 0 0
\(995\) −10.1375 + 7.36529i −0.321379 + 0.233495i
\(996\) 0 0
\(997\) −0.571855 1.75999i −0.0181108 0.0557394i 0.941593 0.336754i \(-0.109329\pi\)
−0.959703 + 0.281015i \(0.909329\pi\)
\(998\) 0 0
\(999\) −6.56224 + 9.03215i −0.207620 + 0.285765i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.s.b.271.3 32
4.3 odd 2 88.2.k.b.51.3 yes 32
8.3 odd 2 inner 352.2.s.b.271.4 32
8.5 even 2 88.2.k.b.51.5 yes 32
11.5 even 5 3872.2.g.d.1935.11 32
11.6 odd 10 3872.2.g.d.1935.12 32
11.8 odd 10 inner 352.2.s.b.239.4 32
12.11 even 2 792.2.bp.b.667.6 32
24.5 odd 2 792.2.bp.b.667.4 32
44.3 odd 10 968.2.k.h.723.4 32
44.7 even 10 968.2.k.i.475.7 32
44.15 odd 10 968.2.k.e.475.2 32
44.19 even 10 88.2.k.b.19.5 yes 32
44.27 odd 10 968.2.g.e.483.17 32
44.31 odd 10 968.2.k.i.699.8 32
44.35 even 10 968.2.k.e.699.1 32
44.39 even 10 968.2.g.e.483.16 32
44.43 even 2 968.2.k.h.403.6 32
88.5 even 10 968.2.g.e.483.15 32
88.13 odd 10 968.2.k.e.699.2 32
88.19 even 10 inner 352.2.s.b.239.3 32
88.21 odd 2 968.2.k.h.403.4 32
88.27 odd 10 3872.2.g.d.1935.9 32
88.29 odd 10 968.2.k.i.475.8 32
88.37 even 10 968.2.k.e.475.1 32
88.53 even 10 968.2.k.i.699.7 32
88.61 odd 10 968.2.g.e.483.18 32
88.69 even 10 968.2.k.h.723.6 32
88.83 even 10 3872.2.g.d.1935.10 32
88.85 odd 10 88.2.k.b.19.3 32
132.107 odd 10 792.2.bp.b.19.4 32
264.173 even 10 792.2.bp.b.19.6 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.k.b.19.3 32 88.85 odd 10
88.2.k.b.19.5 yes 32 44.19 even 10
88.2.k.b.51.3 yes 32 4.3 odd 2
88.2.k.b.51.5 yes 32 8.5 even 2
352.2.s.b.239.3 32 88.19 even 10 inner
352.2.s.b.239.4 32 11.8 odd 10 inner
352.2.s.b.271.3 32 1.1 even 1 trivial
352.2.s.b.271.4 32 8.3 odd 2 inner
792.2.bp.b.19.4 32 132.107 odd 10
792.2.bp.b.19.6 32 264.173 even 10
792.2.bp.b.667.4 32 24.5 odd 2
792.2.bp.b.667.6 32 12.11 even 2
968.2.g.e.483.15 32 88.5 even 10
968.2.g.e.483.16 32 44.39 even 10
968.2.g.e.483.17 32 44.27 odd 10
968.2.g.e.483.18 32 88.61 odd 10
968.2.k.e.475.1 32 88.37 even 10
968.2.k.e.475.2 32 44.15 odd 10
968.2.k.e.699.1 32 44.35 even 10
968.2.k.e.699.2 32 88.13 odd 10
968.2.k.h.403.4 32 88.21 odd 2
968.2.k.h.403.6 32 44.43 even 2
968.2.k.h.723.4 32 44.3 odd 10
968.2.k.h.723.6 32 88.69 even 10
968.2.k.i.475.7 32 44.7 even 10
968.2.k.i.475.8 32 88.29 odd 10
968.2.k.i.699.7 32 88.53 even 10
968.2.k.i.699.8 32 44.31 odd 10
3872.2.g.d.1935.9 32 88.27 odd 10
3872.2.g.d.1935.10 32 88.83 even 10
3872.2.g.d.1935.11 32 11.5 even 5
3872.2.g.d.1935.12 32 11.6 odd 10