Properties

Label 3872.2.g.d.1935.11
Level $3872$
Weight $2$
Character 3872.1935
Analytic conductor $30.918$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3872,2,Mod(1935,3872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3872.1935");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9180756626\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1935.11
Character \(\chi\) \(=\) 3872.1935
Dual form 3872.2.g.d.1935.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.24811 q^{3} +3.46137i q^{5} +1.43093 q^{7} -1.44222 q^{9} -6.59738 q^{13} -4.32018i q^{15} -0.752791i q^{17} +2.75168i q^{19} -1.78596 q^{21} -4.40738i q^{23} -6.98111 q^{25} +5.54438 q^{27} -0.125227 q^{29} -3.84067i q^{31} +4.95298i q^{35} -2.01363i q^{37} +8.23427 q^{39} +2.65007i q^{41} -4.68327i q^{43} -4.99205i q^{45} -4.61654i q^{47} -4.95244 q^{49} +0.939567i q^{51} -5.21442i q^{53} -3.43440i q^{57} -6.16277 q^{59} +2.93925 q^{61} -2.06371 q^{63} -22.8360i q^{65} +10.7156 q^{67} +5.50091i q^{69} -11.7635i q^{71} +6.25654i q^{73} +8.71321 q^{75} -1.63879 q^{79} -2.59336 q^{81} +12.2151i q^{83} +2.60569 q^{85} +0.156297 q^{87} +10.6955 q^{89} -9.44039 q^{91} +4.79358i q^{93} -9.52458 q^{95} +11.3372 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{3} - 44 q^{25} - 8 q^{27} + 52 q^{49} + 72 q^{59} + 28 q^{67} + 76 q^{75} - 112 q^{81} + 20 q^{89} - 48 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3872\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(1695\) \(2785\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.24811 −0.720598 −0.360299 0.932837i \(-0.617325\pi\)
−0.360299 + 0.932837i \(0.617325\pi\)
\(4\) 0 0
\(5\) 3.46137i 1.54797i 0.633202 + 0.773987i \(0.281740\pi\)
−0.633202 + 0.773987i \(0.718260\pi\)
\(6\) 0 0
\(7\) 1.43093 0.540840 0.270420 0.962742i \(-0.412837\pi\)
0.270420 + 0.962742i \(0.412837\pi\)
\(8\) 0 0
\(9\) −1.44222 −0.480739
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −6.59738 −1.82979 −0.914893 0.403697i \(-0.867725\pi\)
−0.914893 + 0.403697i \(0.867725\pi\)
\(14\) 0 0
\(15\) − 4.32018i − 1.11547i
\(16\) 0 0
\(17\) − 0.752791i − 0.182579i −0.995824 0.0912893i \(-0.970901\pi\)
0.995824 0.0912893i \(-0.0290988\pi\)
\(18\) 0 0
\(19\) 2.75168i 0.631278i 0.948879 + 0.315639i \(0.102219\pi\)
−0.948879 + 0.315639i \(0.897781\pi\)
\(20\) 0 0
\(21\) −1.78596 −0.389728
\(22\) 0 0
\(23\) − 4.40738i − 0.919003i −0.888177 0.459502i \(-0.848028\pi\)
0.888177 0.459502i \(-0.151972\pi\)
\(24\) 0 0
\(25\) −6.98111 −1.39622
\(26\) 0 0
\(27\) 5.54438 1.06702
\(28\) 0 0
\(29\) −0.125227 −0.0232541 −0.0116270 0.999932i \(-0.503701\pi\)
−0.0116270 + 0.999932i \(0.503701\pi\)
\(30\) 0 0
\(31\) − 3.84067i − 0.689804i −0.938639 0.344902i \(-0.887912\pi\)
0.938639 0.344902i \(-0.112088\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.95298i 0.837206i
\(36\) 0 0
\(37\) − 2.01363i − 0.331039i −0.986207 0.165520i \(-0.947070\pi\)
0.986207 0.165520i \(-0.0529301\pi\)
\(38\) 0 0
\(39\) 8.23427 1.31854
\(40\) 0 0
\(41\) 2.65007i 0.413872i 0.978355 + 0.206936i \(0.0663491\pi\)
−0.978355 + 0.206936i \(0.933651\pi\)
\(42\) 0 0
\(43\) − 4.68327i − 0.714192i −0.934068 0.357096i \(-0.883767\pi\)
0.934068 0.357096i \(-0.116233\pi\)
\(44\) 0 0
\(45\) − 4.99205i − 0.744171i
\(46\) 0 0
\(47\) − 4.61654i − 0.673391i −0.941613 0.336696i \(-0.890691\pi\)
0.941613 0.336696i \(-0.109309\pi\)
\(48\) 0 0
\(49\) −4.95244 −0.707492
\(50\) 0 0
\(51\) 0.939567i 0.131566i
\(52\) 0 0
\(53\) − 5.21442i − 0.716256i −0.933672 0.358128i \(-0.883415\pi\)
0.933672 0.358128i \(-0.116585\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 3.43440i − 0.454897i
\(58\) 0 0
\(59\) −6.16277 −0.802324 −0.401162 0.916007i \(-0.631394\pi\)
−0.401162 + 0.916007i \(0.631394\pi\)
\(60\) 0 0
\(61\) 2.93925 0.376333 0.188166 0.982137i \(-0.439746\pi\)
0.188166 + 0.982137i \(0.439746\pi\)
\(62\) 0 0
\(63\) −2.06371 −0.260003
\(64\) 0 0
\(65\) − 22.8360i − 2.83246i
\(66\) 0 0
\(67\) 10.7156 1.30912 0.654559 0.756011i \(-0.272854\pi\)
0.654559 + 0.756011i \(0.272854\pi\)
\(68\) 0 0
\(69\) 5.50091i 0.662232i
\(70\) 0 0
\(71\) − 11.7635i − 1.39607i −0.716064 0.698034i \(-0.754058\pi\)
0.716064 0.698034i \(-0.245942\pi\)
\(72\) 0 0
\(73\) 6.25654i 0.732273i 0.930561 + 0.366136i \(0.119320\pi\)
−0.930561 + 0.366136i \(0.880680\pi\)
\(74\) 0 0
\(75\) 8.71321 1.00611
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.63879 −0.184378 −0.0921892 0.995742i \(-0.529386\pi\)
−0.0921892 + 0.995742i \(0.529386\pi\)
\(80\) 0 0
\(81\) −2.59336 −0.288151
\(82\) 0 0
\(83\) 12.2151i 1.34079i 0.742006 + 0.670393i \(0.233874\pi\)
−0.742006 + 0.670393i \(0.766126\pi\)
\(84\) 0 0
\(85\) 2.60569 0.282627
\(86\) 0 0
\(87\) 0.156297 0.0167568
\(88\) 0 0
\(89\) 10.6955 1.13372 0.566858 0.823815i \(-0.308159\pi\)
0.566858 + 0.823815i \(0.308159\pi\)
\(90\) 0 0
\(91\) −9.44039 −0.989622
\(92\) 0 0
\(93\) 4.79358i 0.497071i
\(94\) 0 0
\(95\) −9.52458 −0.977201
\(96\) 0 0
\(97\) 11.3372 1.15112 0.575560 0.817760i \(-0.304784\pi\)
0.575560 + 0.817760i \(0.304784\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.83322 0.878938 0.439469 0.898258i \(-0.355167\pi\)
0.439469 + 0.898258i \(0.355167\pi\)
\(102\) 0 0
\(103\) 17.5871i 1.73291i 0.499253 + 0.866456i \(0.333608\pi\)
−0.499253 + 0.866456i \(0.666392\pi\)
\(104\) 0 0
\(105\) − 6.18187i − 0.603289i
\(106\) 0 0
\(107\) 4.63834i 0.448405i 0.974543 + 0.224203i \(0.0719777\pi\)
−0.974543 + 0.224203i \(0.928022\pi\)
\(108\) 0 0
\(109\) −11.8543 −1.13544 −0.567718 0.823223i \(-0.692173\pi\)
−0.567718 + 0.823223i \(0.692173\pi\)
\(110\) 0 0
\(111\) 2.51324i 0.238546i
\(112\) 0 0
\(113\) 2.25464 0.212099 0.106049 0.994361i \(-0.466180\pi\)
0.106049 + 0.994361i \(0.466180\pi\)
\(114\) 0 0
\(115\) 15.2556 1.42259
\(116\) 0 0
\(117\) 9.51486 0.879649
\(118\) 0 0
\(119\) − 1.07719i − 0.0987458i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) − 3.30758i − 0.298235i
\(124\) 0 0
\(125\) − 6.85737i − 0.613342i
\(126\) 0 0
\(127\) −13.8767 −1.23135 −0.615677 0.787999i \(-0.711117\pi\)
−0.615677 + 0.787999i \(0.711117\pi\)
\(128\) 0 0
\(129\) 5.84525i 0.514645i
\(130\) 0 0
\(131\) − 8.50766i − 0.743317i −0.928369 0.371659i \(-0.878789\pi\)
0.928369 0.371659i \(-0.121211\pi\)
\(132\) 0 0
\(133\) 3.93745i 0.341420i
\(134\) 0 0
\(135\) 19.1912i 1.65171i
\(136\) 0 0
\(137\) 4.86400 0.415560 0.207780 0.978176i \(-0.433376\pi\)
0.207780 + 0.978176i \(0.433376\pi\)
\(138\) 0 0
\(139\) − 16.0697i − 1.36301i −0.731812 0.681507i \(-0.761325\pi\)
0.731812 0.681507i \(-0.238675\pi\)
\(140\) 0 0
\(141\) 5.76196i 0.485244i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 0.433457i − 0.0359967i
\(146\) 0 0
\(147\) 6.18120 0.509817
\(148\) 0 0
\(149\) −21.2722 −1.74269 −0.871343 0.490675i \(-0.836750\pi\)
−0.871343 + 0.490675i \(0.836750\pi\)
\(150\) 0 0
\(151\) 15.9141 1.29507 0.647536 0.762035i \(-0.275800\pi\)
0.647536 + 0.762035i \(0.275800\pi\)
\(152\) 0 0
\(153\) 1.08569i 0.0877726i
\(154\) 0 0
\(155\) 13.2940 1.06780
\(156\) 0 0
\(157\) 2.08944i 0.166756i 0.996518 + 0.0833778i \(0.0265708\pi\)
−0.996518 + 0.0833778i \(0.973429\pi\)
\(158\) 0 0
\(159\) 6.50819i 0.516133i
\(160\) 0 0
\(161\) − 6.30665i − 0.497034i
\(162\) 0 0
\(163\) 10.9694 0.859191 0.429596 0.903021i \(-0.358656\pi\)
0.429596 + 0.903021i \(0.358656\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.9846 1.00478 0.502391 0.864641i \(-0.332454\pi\)
0.502391 + 0.864641i \(0.332454\pi\)
\(168\) 0 0
\(169\) 30.5255 2.34811
\(170\) 0 0
\(171\) − 3.96851i − 0.303480i
\(172\) 0 0
\(173\) −3.48265 −0.264781 −0.132390 0.991198i \(-0.542265\pi\)
−0.132390 + 0.991198i \(0.542265\pi\)
\(174\) 0 0
\(175\) −9.98947 −0.755133
\(176\) 0 0
\(177\) 7.69182 0.578153
\(178\) 0 0
\(179\) −2.70436 −0.202133 −0.101067 0.994880i \(-0.532226\pi\)
−0.101067 + 0.994880i \(0.532226\pi\)
\(180\) 0 0
\(181\) − 11.0955i − 0.824719i −0.911021 0.412359i \(-0.864705\pi\)
0.911021 0.412359i \(-0.135295\pi\)
\(182\) 0 0
\(183\) −3.66852 −0.271184
\(184\) 0 0
\(185\) 6.96993 0.512440
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 7.93362 0.577086
\(190\) 0 0
\(191\) − 13.6009i − 0.984127i −0.870559 0.492064i \(-0.836243\pi\)
0.870559 0.492064i \(-0.163757\pi\)
\(192\) 0 0
\(193\) 5.39032i 0.388003i 0.981001 + 0.194002i \(0.0621467\pi\)
−0.981001 + 0.194002i \(0.937853\pi\)
\(194\) 0 0
\(195\) 28.5019i 2.04106i
\(196\) 0 0
\(197\) −6.42744 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(198\) 0 0
\(199\) − 3.62012i − 0.256623i −0.991734 0.128312i \(-0.959044\pi\)
0.991734 0.128312i \(-0.0409558\pi\)
\(200\) 0 0
\(201\) −13.3743 −0.943348
\(202\) 0 0
\(203\) −0.179191 −0.0125767
\(204\) 0 0
\(205\) −9.17289 −0.640662
\(206\) 0 0
\(207\) 6.35640i 0.441801i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 20.9334i − 1.44112i −0.693394 0.720558i \(-0.743886\pi\)
0.693394 0.720558i \(-0.256114\pi\)
\(212\) 0 0
\(213\) 14.6821i 1.00600i
\(214\) 0 0
\(215\) 16.2106 1.10555
\(216\) 0 0
\(217\) − 5.49572i − 0.373074i
\(218\) 0 0
\(219\) − 7.80886i − 0.527674i
\(220\) 0 0
\(221\) 4.96645i 0.334080i
\(222\) 0 0
\(223\) 2.65371i 0.177706i 0.996045 + 0.0888528i \(0.0283201\pi\)
−0.996045 + 0.0888528i \(0.971680\pi\)
\(224\) 0 0
\(225\) 10.0683 0.671218
\(226\) 0 0
\(227\) − 3.48209i − 0.231115i −0.993301 0.115557i \(-0.963135\pi\)
0.993301 0.115557i \(-0.0368654\pi\)
\(228\) 0 0
\(229\) 13.1778i 0.870816i 0.900233 + 0.435408i \(0.143396\pi\)
−0.900233 + 0.435408i \(0.856604\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.97965i 0.457252i 0.973514 + 0.228626i \(0.0734233\pi\)
−0.973514 + 0.228626i \(0.926577\pi\)
\(234\) 0 0
\(235\) 15.9796 1.04239
\(236\) 0 0
\(237\) 2.04540 0.132863
\(238\) 0 0
\(239\) 2.38421 0.154221 0.0771107 0.997023i \(-0.475431\pi\)
0.0771107 + 0.997023i \(0.475431\pi\)
\(240\) 0 0
\(241\) − 10.0044i − 0.644440i −0.946665 0.322220i \(-0.895571\pi\)
0.946665 0.322220i \(-0.104429\pi\)
\(242\) 0 0
\(243\) −13.3963 −0.859376
\(244\) 0 0
\(245\) − 17.1423i − 1.09518i
\(246\) 0 0
\(247\) − 18.1539i − 1.15510i
\(248\) 0 0
\(249\) − 15.2459i − 0.966167i
\(250\) 0 0
\(251\) 17.4623 1.10221 0.551106 0.834435i \(-0.314206\pi\)
0.551106 + 0.834435i \(0.314206\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.25219 −0.203660
\(256\) 0 0
\(257\) −8.15614 −0.508766 −0.254383 0.967104i \(-0.581872\pi\)
−0.254383 + 0.967104i \(0.581872\pi\)
\(258\) 0 0
\(259\) − 2.88136i − 0.179039i
\(260\) 0 0
\(261\) 0.180604 0.0111791
\(262\) 0 0
\(263\) 21.0996 1.30106 0.650530 0.759481i \(-0.274547\pi\)
0.650530 + 0.759481i \(0.274547\pi\)
\(264\) 0 0
\(265\) 18.0491 1.10875
\(266\) 0 0
\(267\) −13.3491 −0.816953
\(268\) 0 0
\(269\) − 20.9725i − 1.27872i −0.768909 0.639358i \(-0.779200\pi\)
0.768909 0.639358i \(-0.220800\pi\)
\(270\) 0 0
\(271\) 19.9480 1.21175 0.605877 0.795559i \(-0.292822\pi\)
0.605877 + 0.795559i \(0.292822\pi\)
\(272\) 0 0
\(273\) 11.7827 0.713119
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.07111 0.0643568 0.0321784 0.999482i \(-0.489756\pi\)
0.0321784 + 0.999482i \(0.489756\pi\)
\(278\) 0 0
\(279\) 5.53907i 0.331616i
\(280\) 0 0
\(281\) 3.48939i 0.208159i 0.994569 + 0.104080i \(0.0331897\pi\)
−0.994569 + 0.104080i \(0.966810\pi\)
\(282\) 0 0
\(283\) − 20.4791i − 1.21736i −0.793418 0.608678i \(-0.791700\pi\)
0.793418 0.608678i \(-0.208300\pi\)
\(284\) 0 0
\(285\) 11.8877 0.704169
\(286\) 0 0
\(287\) 3.79206i 0.223838i
\(288\) 0 0
\(289\) 16.4333 0.966665
\(290\) 0 0
\(291\) −14.1501 −0.829494
\(292\) 0 0
\(293\) −25.9914 −1.51843 −0.759217 0.650837i \(-0.774418\pi\)
−0.759217 + 0.650837i \(0.774418\pi\)
\(294\) 0 0
\(295\) − 21.3316i − 1.24198i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 29.0772i 1.68158i
\(300\) 0 0
\(301\) − 6.70143i − 0.386264i
\(302\) 0 0
\(303\) −11.0248 −0.633361
\(304\) 0 0
\(305\) 10.1739i 0.582553i
\(306\) 0 0
\(307\) − 9.33420i − 0.532731i −0.963872 0.266366i \(-0.914177\pi\)
0.963872 0.266366i \(-0.0858228\pi\)
\(308\) 0 0
\(309\) − 21.9507i − 1.24873i
\(310\) 0 0
\(311\) − 19.4661i − 1.10382i −0.833904 0.551909i \(-0.813899\pi\)
0.833904 0.551909i \(-0.186101\pi\)
\(312\) 0 0
\(313\) 14.7990 0.836490 0.418245 0.908334i \(-0.362645\pi\)
0.418245 + 0.908334i \(0.362645\pi\)
\(314\) 0 0
\(315\) − 7.14327i − 0.402478i
\(316\) 0 0
\(317\) − 31.7286i − 1.78205i −0.453950 0.891027i \(-0.649985\pi\)
0.453950 0.891027i \(-0.350015\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) − 5.78916i − 0.323120i
\(322\) 0 0
\(323\) 2.07144 0.115258
\(324\) 0 0
\(325\) 46.0571 2.55479
\(326\) 0 0
\(327\) 14.7955 0.818192
\(328\) 0 0
\(329\) − 6.60594i − 0.364197i
\(330\) 0 0
\(331\) 0.462745 0.0254347 0.0127174 0.999919i \(-0.495952\pi\)
0.0127174 + 0.999919i \(0.495952\pi\)
\(332\) 0 0
\(333\) 2.90409i 0.159143i
\(334\) 0 0
\(335\) 37.0907i 2.02648i
\(336\) 0 0
\(337\) − 22.4702i − 1.22403i −0.790847 0.612014i \(-0.790360\pi\)
0.790847 0.612014i \(-0.209640\pi\)
\(338\) 0 0
\(339\) −2.81404 −0.152838
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −17.1031 −0.923480
\(344\) 0 0
\(345\) −19.0407 −1.02512
\(346\) 0 0
\(347\) − 18.0797i − 0.970570i −0.874356 0.485285i \(-0.838716\pi\)
0.874356 0.485285i \(-0.161284\pi\)
\(348\) 0 0
\(349\) 0.318230 0.0170344 0.00851722 0.999964i \(-0.497289\pi\)
0.00851722 + 0.999964i \(0.497289\pi\)
\(350\) 0 0
\(351\) −36.5784 −1.95241
\(352\) 0 0
\(353\) −35.8303 −1.90706 −0.953529 0.301303i \(-0.902579\pi\)
−0.953529 + 0.301303i \(0.902579\pi\)
\(354\) 0 0
\(355\) 40.7178 2.16108
\(356\) 0 0
\(357\) 1.34445i 0.0711560i
\(358\) 0 0
\(359\) −23.2207 −1.22554 −0.612771 0.790261i \(-0.709945\pi\)
−0.612771 + 0.790261i \(0.709945\pi\)
\(360\) 0 0
\(361\) 11.4283 0.601489
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.6562 −1.13354
\(366\) 0 0
\(367\) − 13.1173i − 0.684716i −0.939570 0.342358i \(-0.888775\pi\)
0.939570 0.342358i \(-0.111225\pi\)
\(368\) 0 0
\(369\) − 3.82198i − 0.198964i
\(370\) 0 0
\(371\) − 7.46147i − 0.387380i
\(372\) 0 0
\(373\) 11.1209 0.575820 0.287910 0.957657i \(-0.407040\pi\)
0.287910 + 0.957657i \(0.407040\pi\)
\(374\) 0 0
\(375\) 8.55876i 0.441973i
\(376\) 0 0
\(377\) 0.826170 0.0425499
\(378\) 0 0
\(379\) −4.41034 −0.226544 −0.113272 0.993564i \(-0.536133\pi\)
−0.113272 + 0.993564i \(0.536133\pi\)
\(380\) 0 0
\(381\) 17.3196 0.887311
\(382\) 0 0
\(383\) 1.78696i 0.0913094i 0.998957 + 0.0456547i \(0.0145374\pi\)
−0.998957 + 0.0456547i \(0.985463\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.75429i 0.343340i
\(388\) 0 0
\(389\) − 18.7996i − 0.953177i −0.879127 0.476588i \(-0.841873\pi\)
0.879127 0.476588i \(-0.158127\pi\)
\(390\) 0 0
\(391\) −3.31784 −0.167790
\(392\) 0 0
\(393\) 10.6185i 0.535633i
\(394\) 0 0
\(395\) − 5.67247i − 0.285413i
\(396\) 0 0
\(397\) − 16.9423i − 0.850309i −0.905121 0.425154i \(-0.860220\pi\)
0.905121 0.425154i \(-0.139780\pi\)
\(398\) 0 0
\(399\) − 4.91438i − 0.246027i
\(400\) 0 0
\(401\) 27.2395 1.36028 0.680138 0.733084i \(-0.261920\pi\)
0.680138 + 0.733084i \(0.261920\pi\)
\(402\) 0 0
\(403\) 25.3384i 1.26219i
\(404\) 0 0
\(405\) − 8.97659i − 0.446051i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 14.4878i 0.716376i 0.933650 + 0.358188i \(0.116605\pi\)
−0.933650 + 0.358188i \(0.883395\pi\)
\(410\) 0 0
\(411\) −6.07082 −0.299452
\(412\) 0 0
\(413\) −8.81848 −0.433929
\(414\) 0 0
\(415\) −42.2812 −2.07550
\(416\) 0 0
\(417\) 20.0568i 0.982184i
\(418\) 0 0
\(419\) 29.5266 1.44247 0.721234 0.692691i \(-0.243575\pi\)
0.721234 + 0.692691i \(0.243575\pi\)
\(420\) 0 0
\(421\) 26.4920i 1.29114i 0.763702 + 0.645569i \(0.223380\pi\)
−0.763702 + 0.645569i \(0.776620\pi\)
\(422\) 0 0
\(423\) 6.65805i 0.323725i
\(424\) 0 0
\(425\) 5.25532i 0.254920i
\(426\) 0 0
\(427\) 4.20586 0.203536
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.3443 −0.931782 −0.465891 0.884842i \(-0.654266\pi\)
−0.465891 + 0.884842i \(0.654266\pi\)
\(432\) 0 0
\(433\) 6.50951 0.312827 0.156414 0.987692i \(-0.450007\pi\)
0.156414 + 0.987692i \(0.450007\pi\)
\(434\) 0 0
\(435\) 0.541003i 0.0259391i
\(436\) 0 0
\(437\) 12.1277 0.580146
\(438\) 0 0
\(439\) 3.89313 0.185809 0.0929044 0.995675i \(-0.470385\pi\)
0.0929044 + 0.995675i \(0.470385\pi\)
\(440\) 0 0
\(441\) 7.14250 0.340119
\(442\) 0 0
\(443\) −29.4006 −1.39686 −0.698432 0.715677i \(-0.746118\pi\)
−0.698432 + 0.715677i \(0.746118\pi\)
\(444\) 0 0
\(445\) 37.0210i 1.75496i
\(446\) 0 0
\(447\) 26.5501 1.25578
\(448\) 0 0
\(449\) −23.9418 −1.12989 −0.564943 0.825130i \(-0.691102\pi\)
−0.564943 + 0.825130i \(0.691102\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −19.8626 −0.933225
\(454\) 0 0
\(455\) − 32.6767i − 1.53191i
\(456\) 0 0
\(457\) 33.7078i 1.57678i 0.615173 + 0.788392i \(0.289086\pi\)
−0.615173 + 0.788392i \(0.710914\pi\)
\(458\) 0 0
\(459\) − 4.17376i − 0.194814i
\(460\) 0 0
\(461\) 1.14908 0.0535180 0.0267590 0.999642i \(-0.491481\pi\)
0.0267590 + 0.999642i \(0.491481\pi\)
\(462\) 0 0
\(463\) − 35.5695i − 1.65305i −0.562897 0.826527i \(-0.690313\pi\)
0.562897 0.826527i \(-0.309687\pi\)
\(464\) 0 0
\(465\) −16.5924 −0.769453
\(466\) 0 0
\(467\) 9.59802 0.444144 0.222072 0.975030i \(-0.428718\pi\)
0.222072 + 0.975030i \(0.428718\pi\)
\(468\) 0 0
\(469\) 15.3333 0.708024
\(470\) 0 0
\(471\) − 2.60786i − 0.120164i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 19.2098i − 0.881404i
\(476\) 0 0
\(477\) 7.52033i 0.344332i
\(478\) 0 0
\(479\) −13.1173 −0.599344 −0.299672 0.954042i \(-0.596877\pi\)
−0.299672 + 0.954042i \(0.596877\pi\)
\(480\) 0 0
\(481\) 13.2847i 0.605730i
\(482\) 0 0
\(483\) 7.87141i 0.358162i
\(484\) 0 0
\(485\) 39.2423i 1.78190i
\(486\) 0 0
\(487\) − 13.8592i − 0.628021i −0.949420 0.314010i \(-0.898327\pi\)
0.949420 0.314010i \(-0.101673\pi\)
\(488\) 0 0
\(489\) −13.6911 −0.619131
\(490\) 0 0
\(491\) 8.12590i 0.366717i 0.983046 + 0.183358i \(0.0586969\pi\)
−0.983046 + 0.183358i \(0.941303\pi\)
\(492\) 0 0
\(493\) 0.0942697i 0.00424569i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 16.8327i − 0.755050i
\(498\) 0 0
\(499\) 6.57863 0.294500 0.147250 0.989099i \(-0.452958\pi\)
0.147250 + 0.989099i \(0.452958\pi\)
\(500\) 0 0
\(501\) −16.2063 −0.724043
\(502\) 0 0
\(503\) −36.1611 −1.61234 −0.806172 0.591682i \(-0.798464\pi\)
−0.806172 + 0.591682i \(0.798464\pi\)
\(504\) 0 0
\(505\) 30.5751i 1.36057i
\(506\) 0 0
\(507\) −38.0992 −1.69205
\(508\) 0 0
\(509\) − 18.8562i − 0.835788i −0.908496 0.417894i \(-0.862768\pi\)
0.908496 0.417894i \(-0.137232\pi\)
\(510\) 0 0
\(511\) 8.95266i 0.396043i
\(512\) 0 0
\(513\) 15.2563i 0.673584i
\(514\) 0 0
\(515\) −60.8757 −2.68250
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 4.34673 0.190800
\(520\) 0 0
\(521\) −26.9570 −1.18101 −0.590505 0.807034i \(-0.701071\pi\)
−0.590505 + 0.807034i \(0.701071\pi\)
\(522\) 0 0
\(523\) − 26.3243i − 1.15108i −0.817774 0.575540i \(-0.804792\pi\)
0.817774 0.575540i \(-0.195208\pi\)
\(524\) 0 0
\(525\) 12.4680 0.544147
\(526\) 0 0
\(527\) −2.89122 −0.125943
\(528\) 0 0
\(529\) 3.57496 0.155433
\(530\) 0 0
\(531\) 8.88805 0.385708
\(532\) 0 0
\(533\) − 17.4835i − 0.757296i
\(534\) 0 0
\(535\) −16.0550 −0.694119
\(536\) 0 0
\(537\) 3.37534 0.145657
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 35.8266 1.54031 0.770153 0.637860i \(-0.220180\pi\)
0.770153 + 0.637860i \(0.220180\pi\)
\(542\) 0 0
\(543\) 13.8484i 0.594290i
\(544\) 0 0
\(545\) − 41.0321i − 1.75762i
\(546\) 0 0
\(547\) 2.59683i 0.111033i 0.998458 + 0.0555163i \(0.0176805\pi\)
−0.998458 + 0.0555163i \(0.982320\pi\)
\(548\) 0 0
\(549\) −4.23904 −0.180918
\(550\) 0 0
\(551\) − 0.344584i − 0.0146798i
\(552\) 0 0
\(553\) −2.34499 −0.0997193
\(554\) 0 0
\(555\) −8.69926 −0.369263
\(556\) 0 0
\(557\) −18.5778 −0.787166 −0.393583 0.919289i \(-0.628765\pi\)
−0.393583 + 0.919289i \(0.628765\pi\)
\(558\) 0 0
\(559\) 30.8973i 1.30682i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 11.7158i − 0.493760i −0.969046 0.246880i \(-0.920595\pi\)
0.969046 0.246880i \(-0.0794054\pi\)
\(564\) 0 0
\(565\) 7.80415i 0.328323i
\(566\) 0 0
\(567\) −3.71092 −0.155844
\(568\) 0 0
\(569\) 0.0615051i 0.00257843i 0.999999 + 0.00128921i \(0.000410370\pi\)
−0.999999 + 0.00128921i \(0.999590\pi\)
\(570\) 0 0
\(571\) − 13.5141i − 0.565549i −0.959186 0.282775i \(-0.908745\pi\)
0.959186 0.282775i \(-0.0912549\pi\)
\(572\) 0 0
\(573\) 16.9755i 0.709160i
\(574\) 0 0
\(575\) 30.7684i 1.28313i
\(576\) 0 0
\(577\) −29.1720 −1.21445 −0.607224 0.794531i \(-0.707717\pi\)
−0.607224 + 0.794531i \(0.707717\pi\)
\(578\) 0 0
\(579\) − 6.72772i − 0.279594i
\(580\) 0 0
\(581\) 17.4790i 0.725151i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 32.9345i 1.36167i
\(586\) 0 0
\(587\) 16.7053 0.689503 0.344752 0.938694i \(-0.387963\pi\)
0.344752 + 0.938694i \(0.387963\pi\)
\(588\) 0 0
\(589\) 10.5683 0.435458
\(590\) 0 0
\(591\) 8.02216 0.329988
\(592\) 0 0
\(593\) 25.8884i 1.06311i 0.847024 + 0.531555i \(0.178392\pi\)
−0.847024 + 0.531555i \(0.821608\pi\)
\(594\) 0 0
\(595\) 3.72856 0.152856
\(596\) 0 0
\(597\) 4.51831i 0.184922i
\(598\) 0 0
\(599\) − 34.0811i − 1.39252i −0.717792 0.696258i \(-0.754847\pi\)
0.717792 0.696258i \(-0.245153\pi\)
\(600\) 0 0
\(601\) 13.9718i 0.569920i 0.958539 + 0.284960i \(0.0919803\pi\)
−0.958539 + 0.284960i \(0.908020\pi\)
\(602\) 0 0
\(603\) −15.4542 −0.629344
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18.4069 0.747112 0.373556 0.927608i \(-0.378138\pi\)
0.373556 + 0.927608i \(0.378138\pi\)
\(608\) 0 0
\(609\) 0.223650 0.00906276
\(610\) 0 0
\(611\) 30.4571i 1.23216i
\(612\) 0 0
\(613\) −6.17282 −0.249318 −0.124659 0.992200i \(-0.539784\pi\)
−0.124659 + 0.992200i \(0.539784\pi\)
\(614\) 0 0
\(615\) 11.4488 0.461660
\(616\) 0 0
\(617\) 1.39128 0.0560109 0.0280054 0.999608i \(-0.491084\pi\)
0.0280054 + 0.999608i \(0.491084\pi\)
\(618\) 0 0
\(619\) 10.9762 0.441172 0.220586 0.975368i \(-0.429203\pi\)
0.220586 + 0.975368i \(0.429203\pi\)
\(620\) 0 0
\(621\) − 24.4362i − 0.980592i
\(622\) 0 0
\(623\) 15.3044 0.613159
\(624\) 0 0
\(625\) −11.1696 −0.446786
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.51584 −0.0604406
\(630\) 0 0
\(631\) 2.03752i 0.0811124i 0.999177 + 0.0405562i \(0.0129130\pi\)
−0.999177 + 0.0405562i \(0.987087\pi\)
\(632\) 0 0
\(633\) 26.1273i 1.03847i
\(634\) 0 0
\(635\) − 48.0323i − 1.90610i
\(636\) 0 0
\(637\) 32.6732 1.29456
\(638\) 0 0
\(639\) 16.9655i 0.671144i
\(640\) 0 0
\(641\) −3.34806 −0.132241 −0.0661203 0.997812i \(-0.521062\pi\)
−0.0661203 + 0.997812i \(0.521062\pi\)
\(642\) 0 0
\(643\) −42.0115 −1.65677 −0.828387 0.560157i \(-0.810741\pi\)
−0.828387 + 0.560157i \(0.810741\pi\)
\(644\) 0 0
\(645\) −20.2326 −0.796657
\(646\) 0 0
\(647\) 11.5117i 0.452570i 0.974061 + 0.226285i \(0.0726581\pi\)
−0.974061 + 0.226285i \(0.927342\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 6.85927i 0.268836i
\(652\) 0 0
\(653\) 41.9766i 1.64267i 0.570444 + 0.821336i \(0.306771\pi\)
−0.570444 + 0.821336i \(0.693229\pi\)
\(654\) 0 0
\(655\) 29.4482 1.15064
\(656\) 0 0
\(657\) − 9.02329i − 0.352032i
\(658\) 0 0
\(659\) 38.3263i 1.49298i 0.665396 + 0.746490i \(0.268263\pi\)
−0.665396 + 0.746490i \(0.731737\pi\)
\(660\) 0 0
\(661\) − 12.9209i − 0.502563i −0.967914 0.251281i \(-0.919148\pi\)
0.967914 0.251281i \(-0.0808520\pi\)
\(662\) 0 0
\(663\) − 6.19868i − 0.240737i
\(664\) 0 0
\(665\) −13.6290 −0.528510
\(666\) 0 0
\(667\) 0.551923i 0.0213706i
\(668\) 0 0
\(669\) − 3.31213i − 0.128054i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 42.2131i − 1.62720i −0.581428 0.813598i \(-0.697506\pi\)
0.581428 0.813598i \(-0.302494\pi\)
\(674\) 0 0
\(675\) −38.7060 −1.48979
\(676\) 0 0
\(677\) −8.58558 −0.329971 −0.164985 0.986296i \(-0.552758\pi\)
−0.164985 + 0.986296i \(0.552758\pi\)
\(678\) 0 0
\(679\) 16.2227 0.622572
\(680\) 0 0
\(681\) 4.34604i 0.166541i
\(682\) 0 0
\(683\) −28.2213 −1.07986 −0.539928 0.841711i \(-0.681549\pi\)
−0.539928 + 0.841711i \(0.681549\pi\)
\(684\) 0 0
\(685\) 16.8361i 0.643276i
\(686\) 0 0
\(687\) − 16.4474i − 0.627508i
\(688\) 0 0
\(689\) 34.4016i 1.31060i
\(690\) 0 0
\(691\) 10.4254 0.396599 0.198300 0.980141i \(-0.436458\pi\)
0.198300 + 0.980141i \(0.436458\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 55.6232 2.10991
\(696\) 0 0
\(697\) 1.99495 0.0755641
\(698\) 0 0
\(699\) − 8.71139i − 0.329495i
\(700\) 0 0
\(701\) 20.5951 0.777868 0.388934 0.921266i \(-0.372843\pi\)
0.388934 + 0.921266i \(0.372843\pi\)
\(702\) 0 0
\(703\) 5.54086 0.208978
\(704\) 0 0
\(705\) −19.9443 −0.751146
\(706\) 0 0
\(707\) 12.6397 0.475365
\(708\) 0 0
\(709\) 17.7424i 0.666329i 0.942869 + 0.333164i \(0.108116\pi\)
−0.942869 + 0.333164i \(0.891884\pi\)
\(710\) 0 0
\(711\) 2.36349 0.0886379
\(712\) 0 0
\(713\) −16.9273 −0.633932
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2.97575 −0.111132
\(718\) 0 0
\(719\) 42.0348i 1.56763i 0.620992 + 0.783817i \(0.286730\pi\)
−0.620992 + 0.783817i \(0.713270\pi\)
\(720\) 0 0
\(721\) 25.1659i 0.937229i
\(722\) 0 0
\(723\) 12.4866i 0.464382i
\(724\) 0 0
\(725\) 0.874223 0.0324678
\(726\) 0 0
\(727\) 28.2673i 1.04838i 0.851602 + 0.524189i \(0.175631\pi\)
−0.851602 + 0.524189i \(0.824369\pi\)
\(728\) 0 0
\(729\) 24.5002 0.907416
\(730\) 0 0
\(731\) −3.52552 −0.130396
\(732\) 0 0
\(733\) 32.5046 1.20058 0.600292 0.799781i \(-0.295051\pi\)
0.600292 + 0.799781i \(0.295051\pi\)
\(734\) 0 0
\(735\) 21.3955i 0.789183i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 23.6830i − 0.871193i −0.900142 0.435597i \(-0.856537\pi\)
0.900142 0.435597i \(-0.143463\pi\)
\(740\) 0 0
\(741\) 22.6580i 0.832364i
\(742\) 0 0
\(743\) −12.4937 −0.458350 −0.229175 0.973385i \(-0.573603\pi\)
−0.229175 + 0.973385i \(0.573603\pi\)
\(744\) 0 0
\(745\) − 73.6310i − 2.69763i
\(746\) 0 0
\(747\) − 17.6169i − 0.644568i
\(748\) 0 0
\(749\) 6.63713i 0.242515i
\(750\) 0 0
\(751\) − 4.36510i − 0.159285i −0.996823 0.0796425i \(-0.974622\pi\)
0.996823 0.0796425i \(-0.0253779\pi\)
\(752\) 0 0
\(753\) −21.7950 −0.794252
\(754\) 0 0
\(755\) 55.0847i 2.00474i
\(756\) 0 0
\(757\) − 19.6633i − 0.714676i −0.933975 0.357338i \(-0.883684\pi\)
0.933975 0.357338i \(-0.116316\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.7437i 0.389457i 0.980857 + 0.194729i \(0.0623827\pi\)
−0.980857 + 0.194729i \(0.937617\pi\)
\(762\) 0 0
\(763\) −16.9627 −0.614089
\(764\) 0 0
\(765\) −3.75797 −0.135870
\(766\) 0 0
\(767\) 40.6582 1.46808
\(768\) 0 0
\(769\) − 28.3787i − 1.02336i −0.859176 0.511680i \(-0.829023\pi\)
0.859176 0.511680i \(-0.170977\pi\)
\(770\) 0 0
\(771\) 10.1798 0.366616
\(772\) 0 0
\(773\) − 13.4299i − 0.483039i −0.970396 0.241520i \(-0.922354\pi\)
0.970396 0.241520i \(-0.0776458\pi\)
\(774\) 0 0
\(775\) 26.8121i 0.963120i
\(776\) 0 0
\(777\) 3.59626i 0.129015i
\(778\) 0 0
\(779\) −7.29213 −0.261268
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.694306 −0.0248125
\(784\) 0 0
\(785\) −7.23234 −0.258133
\(786\) 0 0
\(787\) 53.3174i 1.90056i 0.311397 + 0.950280i \(0.399203\pi\)
−0.311397 + 0.950280i \(0.600797\pi\)
\(788\) 0 0
\(789\) −26.3347 −0.937540
\(790\) 0 0
\(791\) 3.22623 0.114712
\(792\) 0 0
\(793\) −19.3914 −0.688608
\(794\) 0 0
\(795\) −22.5273 −0.798960
\(796\) 0 0
\(797\) 12.9017i 0.457001i 0.973544 + 0.228501i \(0.0733823\pi\)
−0.973544 + 0.228501i \(0.926618\pi\)
\(798\) 0 0
\(799\) −3.47529 −0.122947
\(800\) 0 0
\(801\) −15.4252 −0.545022
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 21.8297 0.769395
\(806\) 0 0
\(807\) 26.1760i 0.921440i
\(808\) 0 0
\(809\) − 19.7127i − 0.693063i −0.938038 0.346532i \(-0.887359\pi\)
0.938038 0.346532i \(-0.112641\pi\)
\(810\) 0 0
\(811\) − 3.21266i − 0.112812i −0.998408 0.0564059i \(-0.982036\pi\)
0.998408 0.0564059i \(-0.0179641\pi\)
\(812\) 0 0
\(813\) −24.8973 −0.873187
\(814\) 0 0
\(815\) 37.9693i 1.33001i
\(816\) 0 0
\(817\) 12.8868 0.450853
\(818\) 0 0
\(819\) 13.6151 0.475750
\(820\) 0 0
\(821\) 34.1467 1.19173 0.595865 0.803085i \(-0.296809\pi\)
0.595865 + 0.803085i \(0.296809\pi\)
\(822\) 0 0
\(823\) 18.7711i 0.654318i 0.944969 + 0.327159i \(0.106091\pi\)
−0.944969 + 0.327159i \(0.893909\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.2934i 1.67933i 0.543107 + 0.839663i \(0.317248\pi\)
−0.543107 + 0.839663i \(0.682752\pi\)
\(828\) 0 0
\(829\) − 25.1260i − 0.872662i −0.899786 0.436331i \(-0.856278\pi\)
0.899786 0.436331i \(-0.143722\pi\)
\(830\) 0 0
\(831\) −1.33687 −0.0463754
\(832\) 0 0
\(833\) 3.72815i 0.129173i
\(834\) 0 0
\(835\) 44.9447i 1.55537i
\(836\) 0 0
\(837\) − 21.2941i − 0.736033i
\(838\) 0 0
\(839\) 9.59287i 0.331183i 0.986194 + 0.165591i \(0.0529532\pi\)
−0.986194 + 0.165591i \(0.947047\pi\)
\(840\) 0 0
\(841\) −28.9843 −0.999459
\(842\) 0 0
\(843\) − 4.35514i − 0.149999i
\(844\) 0 0
\(845\) 105.660i 3.63482i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 25.5602i 0.877224i
\(850\) 0 0
\(851\) −8.87485 −0.304226
\(852\) 0 0
\(853\) −26.5509 −0.909086 −0.454543 0.890725i \(-0.650197\pi\)
−0.454543 + 0.890725i \(0.650197\pi\)
\(854\) 0 0
\(855\) 13.7365 0.469779
\(856\) 0 0
\(857\) − 9.29115i − 0.317380i −0.987328 0.158690i \(-0.949273\pi\)
0.987328 0.158690i \(-0.0507270\pi\)
\(858\) 0 0
\(859\) −0.473127 −0.0161429 −0.00807145 0.999967i \(-0.502569\pi\)
−0.00807145 + 0.999967i \(0.502569\pi\)
\(860\) 0 0
\(861\) − 4.73292i − 0.161297i
\(862\) 0 0
\(863\) − 6.23350i − 0.212191i −0.994356 0.106095i \(-0.966165\pi\)
0.994356 0.106095i \(-0.0338349\pi\)
\(864\) 0 0
\(865\) − 12.0547i − 0.409873i
\(866\) 0 0
\(867\) −20.5106 −0.696577
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −70.6949 −2.39541
\(872\) 0 0
\(873\) −16.3507 −0.553388
\(874\) 0 0
\(875\) − 9.81241i − 0.331720i
\(876\) 0 0
\(877\) −58.1560 −1.96379 −0.981894 0.189431i \(-0.939336\pi\)
−0.981894 + 0.189431i \(0.939336\pi\)
\(878\) 0 0
\(879\) 32.4402 1.09418
\(880\) 0 0
\(881\) −21.4583 −0.722949 −0.361475 0.932382i \(-0.617727\pi\)
−0.361475 + 0.932382i \(0.617727\pi\)
\(882\) 0 0
\(883\) 38.2306 1.28656 0.643281 0.765630i \(-0.277573\pi\)
0.643281 + 0.765630i \(0.277573\pi\)
\(884\) 0 0
\(885\) 26.6243i 0.894965i
\(886\) 0 0
\(887\) 38.3972 1.28925 0.644626 0.764498i \(-0.277013\pi\)
0.644626 + 0.764498i \(0.277013\pi\)
\(888\) 0 0
\(889\) −19.8565 −0.665966
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.7032 0.425097
\(894\) 0 0
\(895\) − 9.36079i − 0.312897i
\(896\) 0 0
\(897\) − 36.2916i − 1.21174i
\(898\) 0 0
\(899\) 0.480955i 0.0160407i
\(900\) 0 0
\(901\) −3.92537 −0.130773
\(902\) 0 0
\(903\) 8.36413i 0.278341i
\(904\) 0 0
\(905\) 38.4055 1.27664
\(906\) 0 0
\(907\) −0.655162 −0.0217543 −0.0108771 0.999941i \(-0.503462\pi\)
−0.0108771 + 0.999941i \(0.503462\pi\)
\(908\) 0 0
\(909\) −12.7394 −0.422540
\(910\) 0 0
\(911\) − 49.0780i − 1.62603i −0.582245 0.813013i \(-0.697826\pi\)
0.582245 0.813013i \(-0.302174\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 12.6981i − 0.419786i
\(916\) 0 0
\(917\) − 12.1739i − 0.402016i
\(918\) 0 0
\(919\) −20.2852 −0.669146 −0.334573 0.942370i \(-0.608592\pi\)
−0.334573 + 0.942370i \(0.608592\pi\)
\(920\) 0 0
\(921\) 11.6501i 0.383885i
\(922\) 0 0
\(923\) 77.6082i 2.55451i
\(924\) 0 0
\(925\) 14.0574i 0.462204i
\(926\) 0 0
\(927\) − 25.3645i − 0.833078i
\(928\) 0 0
\(929\) 25.9159 0.850275 0.425137 0.905129i \(-0.360226\pi\)
0.425137 + 0.905129i \(0.360226\pi\)
\(930\) 0 0
\(931\) − 13.6275i − 0.446624i
\(932\) 0 0
\(933\) 24.2958i 0.795409i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 42.6496i − 1.39330i −0.717410 0.696651i \(-0.754673\pi\)
0.717410 0.696651i \(-0.245327\pi\)
\(938\) 0 0
\(939\) −18.4708 −0.602773
\(940\) 0 0
\(941\) 3.61023 0.117690 0.0588451 0.998267i \(-0.481258\pi\)
0.0588451 + 0.998267i \(0.481258\pi\)
\(942\) 0 0
\(943\) 11.6799 0.380349
\(944\) 0 0
\(945\) 27.4612i 0.893314i
\(946\) 0 0
\(947\) −24.5514 −0.797813 −0.398907 0.916992i \(-0.630610\pi\)
−0.398907 + 0.916992i \(0.630610\pi\)
\(948\) 0 0
\(949\) − 41.2768i − 1.33990i
\(950\) 0 0
\(951\) 39.6008i 1.28414i
\(952\) 0 0
\(953\) 5.04176i 0.163319i 0.996660 + 0.0816593i \(0.0260219\pi\)
−0.996660 + 0.0816593i \(0.973978\pi\)
\(954\) 0 0
\(955\) 47.0778 1.52340
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.96004 0.224752
\(960\) 0 0
\(961\) 16.2493 0.524170
\(962\) 0 0
\(963\) − 6.68949i − 0.215566i
\(964\) 0 0
\(965\) −18.6579 −0.600619
\(966\) 0 0
\(967\) −32.9415 −1.05933 −0.529664 0.848208i \(-0.677682\pi\)
−0.529664 + 0.848208i \(0.677682\pi\)
\(968\) 0 0
\(969\) −2.58538 −0.0830545
\(970\) 0 0
\(971\) −46.1030 −1.47952 −0.739758 0.672873i \(-0.765060\pi\)
−0.739758 + 0.672873i \(0.765060\pi\)
\(972\) 0 0
\(973\) − 22.9946i − 0.737172i
\(974\) 0 0
\(975\) −57.4844 −1.84097
\(976\) 0 0
\(977\) −32.6331 −1.04403 −0.522013 0.852937i \(-0.674819\pi\)
−0.522013 + 0.852937i \(0.674819\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 17.0965 0.545848
\(982\) 0 0
\(983\) − 8.45130i − 0.269555i −0.990876 0.134777i \(-0.956968\pi\)
0.990876 0.134777i \(-0.0430319\pi\)
\(984\) 0 0
\(985\) − 22.2478i − 0.708873i
\(986\) 0 0
\(987\) 8.24495i 0.262440i
\(988\) 0 0
\(989\) −20.6410 −0.656345
\(990\) 0 0
\(991\) − 29.6890i − 0.943104i −0.881838 0.471552i \(-0.843694\pi\)
0.881838 0.471552i \(-0.156306\pi\)
\(992\) 0 0
\(993\) −0.577557 −0.0183282
\(994\) 0 0
\(995\) 12.5306 0.397246
\(996\) 0 0
\(997\) −1.85056 −0.0586079 −0.0293039 0.999571i \(-0.509329\pi\)
−0.0293039 + 0.999571i \(0.509329\pi\)
\(998\) 0 0
\(999\) − 11.1643i − 0.353224i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.2.g.d.1935.11 32
4.3 odd 2 968.2.g.e.483.17 32
8.3 odd 2 inner 3872.2.g.d.1935.9 32
8.5 even 2 968.2.g.e.483.15 32
11.6 odd 10 352.2.s.b.239.4 32
11.9 even 5 352.2.s.b.271.3 32
11.10 odd 2 inner 3872.2.g.d.1935.12 32
44.3 odd 10 968.2.k.e.475.2 32
44.7 even 10 968.2.k.e.699.1 32
44.15 odd 10 968.2.k.i.699.8 32
44.19 even 10 968.2.k.i.475.7 32
44.27 odd 10 968.2.k.h.723.4 32
44.31 odd 10 88.2.k.b.51.3 yes 32
44.35 even 10 968.2.k.h.403.6 32
44.39 even 10 88.2.k.b.19.5 yes 32
44.43 even 2 968.2.g.e.483.16 32
88.5 even 10 968.2.k.h.723.6 32
88.13 odd 10 968.2.k.h.403.4 32
88.21 odd 2 968.2.g.e.483.18 32
88.29 odd 10 968.2.k.e.699.2 32
88.37 even 10 968.2.k.i.699.7 32
88.43 even 2 inner 3872.2.g.d.1935.10 32
88.53 even 10 88.2.k.b.51.5 yes 32
88.61 odd 10 88.2.k.b.19.3 32
88.69 even 10 968.2.k.e.475.1 32
88.75 odd 10 352.2.s.b.271.4 32
88.83 even 10 352.2.s.b.239.3 32
88.85 odd 10 968.2.k.i.475.8 32
132.83 odd 10 792.2.bp.b.19.4 32
132.119 even 10 792.2.bp.b.667.6 32
264.53 odd 10 792.2.bp.b.667.4 32
264.149 even 10 792.2.bp.b.19.6 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.k.b.19.3 32 88.61 odd 10
88.2.k.b.19.5 yes 32 44.39 even 10
88.2.k.b.51.3 yes 32 44.31 odd 10
88.2.k.b.51.5 yes 32 88.53 even 10
352.2.s.b.239.3 32 88.83 even 10
352.2.s.b.239.4 32 11.6 odd 10
352.2.s.b.271.3 32 11.9 even 5
352.2.s.b.271.4 32 88.75 odd 10
792.2.bp.b.19.4 32 132.83 odd 10
792.2.bp.b.19.6 32 264.149 even 10
792.2.bp.b.667.4 32 264.53 odd 10
792.2.bp.b.667.6 32 132.119 even 10
968.2.g.e.483.15 32 8.5 even 2
968.2.g.e.483.16 32 44.43 even 2
968.2.g.e.483.17 32 4.3 odd 2
968.2.g.e.483.18 32 88.21 odd 2
968.2.k.e.475.1 32 88.69 even 10
968.2.k.e.475.2 32 44.3 odd 10
968.2.k.e.699.1 32 44.7 even 10
968.2.k.e.699.2 32 88.29 odd 10
968.2.k.h.403.4 32 88.13 odd 10
968.2.k.h.403.6 32 44.35 even 10
968.2.k.h.723.4 32 44.27 odd 10
968.2.k.h.723.6 32 88.5 even 10
968.2.k.i.475.7 32 44.19 even 10
968.2.k.i.475.8 32 88.85 odd 10
968.2.k.i.699.7 32 88.37 even 10
968.2.k.i.699.8 32 44.15 odd 10
3872.2.g.d.1935.9 32 8.3 odd 2 inner
3872.2.g.d.1935.10 32 88.43 even 2 inner
3872.2.g.d.1935.11 32 1.1 even 1 trivial
3872.2.g.d.1935.12 32 11.10 odd 2 inner