Properties

Label 352.2.w.a.113.4
Level $352$
Weight $2$
Character 352.113
Analytic conductor $2.811$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(49,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.w (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 113.4
Character \(\chi\) \(=\) 352.113
Dual form 352.2.w.a.81.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.826127 + 0.268425i) q^{3} +(2.15963 - 2.97247i) q^{5} +(0.369362 - 1.13678i) q^{7} +(-1.81662 + 1.31985i) q^{9} +(-2.03213 - 2.62115i) q^{11} +(-2.33969 - 3.22030i) q^{13} +(-0.986240 + 3.03533i) q^{15} +(2.57254 + 1.86906i) q^{17} +(4.09534 - 1.33066i) q^{19} +1.03827i q^{21} -2.46096 q^{23} +(-2.62651 - 8.08357i) q^{25} +(2.67820 - 3.68622i) q^{27} +(-3.65234 - 1.18672i) q^{29} +(7.40138 - 5.37742i) q^{31} +(2.38238 + 1.61993i) q^{33} +(-2.58136 - 3.55294i) q^{35} +(5.06948 + 1.64717i) q^{37} +(2.79729 + 2.03235i) q^{39} +(0.164715 + 0.506940i) q^{41} +6.51729i q^{43} +8.25022i q^{45} +(-0.110898 - 0.341309i) q^{47} +(4.50728 + 3.27473i) q^{49} +(-2.62694 - 0.853546i) q^{51} +(-1.42471 - 1.96095i) q^{53} +(-12.1799 + 0.379753i) q^{55} +(-3.02609 + 2.19858i) q^{57} +(0.566526 + 0.184075i) q^{59} +(-4.28455 + 5.89718i) q^{61} +(0.829389 + 2.55260i) q^{63} -14.6251 q^{65} +11.2692i q^{67} +(2.03306 - 0.660583i) q^{69} +(4.52005 + 3.28401i) q^{71} +(-0.825597 + 2.54093i) q^{73} +(4.33966 + 5.97303i) q^{75} +(-3.73026 + 1.34194i) q^{77} +(-9.30369 + 6.75953i) q^{79} +(0.858601 - 2.64250i) q^{81} +(-0.589450 + 0.811308i) q^{83} +(11.1114 - 3.61033i) q^{85} +3.33584 q^{87} +13.6469 q^{89} +(-4.52497 + 1.47025i) q^{91} +(-4.67105 + 6.42914i) q^{93} +(4.88906 - 15.0470i) q^{95} +(4.81420 - 3.49772i) q^{97} +(7.15114 + 2.07952i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 10 q^{7} + 18 q^{15} - 6 q^{17} + 8 q^{23} - 4 q^{25} + 6 q^{31} - 10 q^{33} + 34 q^{39} - 14 q^{41} + 6 q^{47} - 4 q^{49} + 2 q^{55} - 26 q^{57} - 60 q^{63} - 36 q^{65} - 22 q^{71} - 6 q^{73} - 74 q^{79}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.826127 + 0.268425i −0.476965 + 0.154975i −0.537626 0.843183i \(-0.680679\pi\)
0.0606618 + 0.998158i \(0.480679\pi\)
\(4\) 0 0
\(5\) 2.15963 2.97247i 0.965814 1.32933i 0.0216810 0.999765i \(-0.493098\pi\)
0.944133 0.329564i \(-0.106902\pi\)
\(6\) 0 0
\(7\) 0.369362 1.13678i 0.139606 0.429662i −0.856672 0.515861i \(-0.827472\pi\)
0.996278 + 0.0861988i \(0.0274720\pi\)
\(8\) 0 0
\(9\) −1.81662 + 1.31985i −0.605539 + 0.439950i
\(10\) 0 0
\(11\) −2.03213 2.62115i −0.612711 0.790307i
\(12\) 0 0
\(13\) −2.33969 3.22030i −0.648913 0.893152i 0.350139 0.936698i \(-0.386134\pi\)
−0.999051 + 0.0435462i \(0.986134\pi\)
\(14\) 0 0
\(15\) −0.986240 + 3.03533i −0.254646 + 0.783720i
\(16\) 0 0
\(17\) 2.57254 + 1.86906i 0.623932 + 0.453313i 0.854293 0.519792i \(-0.173991\pi\)
−0.230361 + 0.973105i \(0.573991\pi\)
\(18\) 0 0
\(19\) 4.09534 1.33066i 0.939535 0.305273i 0.201079 0.979575i \(-0.435555\pi\)
0.738456 + 0.674302i \(0.235555\pi\)
\(20\) 0 0
\(21\) 1.03827i 0.226569i
\(22\) 0 0
\(23\) −2.46096 −0.513145 −0.256573 0.966525i \(-0.582593\pi\)
−0.256573 + 0.966525i \(0.582593\pi\)
\(24\) 0 0
\(25\) −2.62651 8.08357i −0.525302 1.61671i
\(26\) 0 0
\(27\) 2.67820 3.68622i 0.515420 0.709414i
\(28\) 0 0
\(29\) −3.65234 1.18672i −0.678223 0.220368i −0.0504057 0.998729i \(-0.516051\pi\)
−0.627817 + 0.778361i \(0.716051\pi\)
\(30\) 0 0
\(31\) 7.40138 5.37742i 1.32933 0.965813i 0.329563 0.944134i \(-0.393099\pi\)
0.999765 0.0216793i \(-0.00690127\pi\)
\(32\) 0 0
\(33\) 2.38238 + 1.61993i 0.414720 + 0.281993i
\(34\) 0 0
\(35\) −2.58136 3.55294i −0.436329 0.600556i
\(36\) 0 0
\(37\) 5.06948 + 1.64717i 0.833417 + 0.270794i 0.694484 0.719508i \(-0.255633\pi\)
0.138933 + 0.990302i \(0.455633\pi\)
\(38\) 0 0
\(39\) 2.79729 + 2.03235i 0.447925 + 0.325436i
\(40\) 0 0
\(41\) 0.164715 + 0.506940i 0.0257241 + 0.0791707i 0.963094 0.269164i \(-0.0867473\pi\)
−0.937370 + 0.348335i \(0.886747\pi\)
\(42\) 0 0
\(43\) 6.51729i 0.993878i 0.867785 + 0.496939i \(0.165543\pi\)
−0.867785 + 0.496939i \(0.834457\pi\)
\(44\) 0 0
\(45\) 8.25022i 1.22987i
\(46\) 0 0
\(47\) −0.110898 0.341309i −0.0161761 0.0497850i 0.942643 0.333804i \(-0.108332\pi\)
−0.958819 + 0.284019i \(0.908332\pi\)
\(48\) 0 0
\(49\) 4.50728 + 3.27473i 0.643897 + 0.467819i
\(50\) 0 0
\(51\) −2.62694 0.853546i −0.367846 0.119520i
\(52\) 0 0
\(53\) −1.42471 1.96095i −0.195700 0.269357i 0.699878 0.714262i \(-0.253238\pi\)
−0.895578 + 0.444905i \(0.853238\pi\)
\(54\) 0 0
\(55\) −12.1799 + 0.379753i −1.64234 + 0.0512059i
\(56\) 0 0
\(57\) −3.02609 + 2.19858i −0.400815 + 0.291209i
\(58\) 0 0
\(59\) 0.566526 + 0.184075i 0.0737554 + 0.0239646i 0.345662 0.938359i \(-0.387654\pi\)
−0.271907 + 0.962324i \(0.587654\pi\)
\(60\) 0 0
\(61\) −4.28455 + 5.89718i −0.548580 + 0.755056i −0.989819 0.142334i \(-0.954539\pi\)
0.441238 + 0.897390i \(0.354539\pi\)
\(62\) 0 0
\(63\) 0.829389 + 2.55260i 0.104493 + 0.321597i
\(64\) 0 0
\(65\) −14.6251 −1.81402
\(66\) 0 0
\(67\) 11.2692i 1.37675i 0.725353 + 0.688377i \(0.241677\pi\)
−0.725353 + 0.688377i \(0.758323\pi\)
\(68\) 0 0
\(69\) 2.03306 0.660583i 0.244752 0.0795248i
\(70\) 0 0
\(71\) 4.52005 + 3.28401i 0.536432 + 0.389740i 0.822758 0.568392i \(-0.192434\pi\)
−0.286326 + 0.958132i \(0.592434\pi\)
\(72\) 0 0
\(73\) −0.825597 + 2.54093i −0.0966288 + 0.297393i −0.987675 0.156520i \(-0.949972\pi\)
0.891046 + 0.453913i \(0.149972\pi\)
\(74\) 0 0
\(75\) 4.33966 + 5.97303i 0.501101 + 0.689706i
\(76\) 0 0
\(77\) −3.73026 + 1.34194i −0.425103 + 0.152928i
\(78\) 0 0
\(79\) −9.30369 + 6.75953i −1.04675 + 0.760506i −0.971591 0.236665i \(-0.923945\pi\)
−0.0751561 + 0.997172i \(0.523945\pi\)
\(80\) 0 0
\(81\) 0.858601 2.64250i 0.0954001 0.293611i
\(82\) 0 0
\(83\) −0.589450 + 0.811308i −0.0647006 + 0.0890527i −0.840141 0.542368i \(-0.817528\pi\)
0.775440 + 0.631421i \(0.217528\pi\)
\(84\) 0 0
\(85\) 11.1114 3.61033i 1.20521 0.391595i
\(86\) 0 0
\(87\) 3.33584 0.357640
\(88\) 0 0
\(89\) 13.6469 1.44657 0.723283 0.690551i \(-0.242632\pi\)
0.723283 + 0.690551i \(0.242632\pi\)
\(90\) 0 0
\(91\) −4.52497 + 1.47025i −0.474346 + 0.154124i
\(92\) 0 0
\(93\) −4.67105 + 6.42914i −0.484365 + 0.666671i
\(94\) 0 0
\(95\) 4.88906 15.0470i 0.501607 1.54379i
\(96\) 0 0
\(97\) 4.81420 3.49772i 0.488808 0.355140i −0.315918 0.948787i \(-0.602312\pi\)
0.804726 + 0.593647i \(0.202312\pi\)
\(98\) 0 0
\(99\) 7.15114 + 2.07952i 0.718716 + 0.208999i
\(100\) 0 0
\(101\) 3.51209 + 4.83398i 0.349466 + 0.480998i 0.947176 0.320714i \(-0.103923\pi\)
−0.597710 + 0.801712i \(0.703923\pi\)
\(102\) 0 0
\(103\) 1.21309 3.73350i 0.119529 0.367873i −0.873336 0.487119i \(-0.838048\pi\)
0.992865 + 0.119246i \(0.0380477\pi\)
\(104\) 0 0
\(105\) 3.08623 + 2.24228i 0.301185 + 0.218824i
\(106\) 0 0
\(107\) −12.1838 + 3.95877i −1.17786 + 0.382709i −0.831570 0.555420i \(-0.812558\pi\)
−0.346287 + 0.938129i \(0.612558\pi\)
\(108\) 0 0
\(109\) 5.65346i 0.541504i −0.962649 0.270752i \(-0.912728\pi\)
0.962649 0.270752i \(-0.0872723\pi\)
\(110\) 0 0
\(111\) −4.63018 −0.439477
\(112\) 0 0
\(113\) −4.94390 15.2158i −0.465083 1.43138i −0.858878 0.512180i \(-0.828838\pi\)
0.393796 0.919198i \(-0.371162\pi\)
\(114\) 0 0
\(115\) −5.31475 + 7.31513i −0.495603 + 0.682139i
\(116\) 0 0
\(117\) 8.50064 + 2.76202i 0.785884 + 0.255349i
\(118\) 0 0
\(119\) 3.07491 2.23405i 0.281876 0.204795i
\(120\) 0 0
\(121\) −2.74086 + 10.6531i −0.249169 + 0.968460i
\(122\) 0 0
\(123\) −0.272150 0.374583i −0.0245390 0.0337750i
\(124\) 0 0
\(125\) −12.2287 3.97334i −1.09377 0.355387i
\(126\) 0 0
\(127\) 7.48900 + 5.44108i 0.664541 + 0.482817i 0.868193 0.496226i \(-0.165281\pi\)
−0.203652 + 0.979043i \(0.565281\pi\)
\(128\) 0 0
\(129\) −1.74940 5.38411i −0.154026 0.474045i
\(130\) 0 0
\(131\) 13.3281i 1.16448i −0.813016 0.582241i \(-0.802176\pi\)
0.813016 0.582241i \(-0.197824\pi\)
\(132\) 0 0
\(133\) 5.14699i 0.446301i
\(134\) 0 0
\(135\) −5.17328 15.9217i −0.445245 1.37032i
\(136\) 0 0
\(137\) 7.85466 + 5.70674i 0.671069 + 0.487560i 0.870383 0.492376i \(-0.163871\pi\)
−0.199314 + 0.979936i \(0.563871\pi\)
\(138\) 0 0
\(139\) 21.1657 + 6.87716i 1.79525 + 0.583313i 0.999744 0.0226274i \(-0.00720315\pi\)
0.795510 + 0.605941i \(0.207203\pi\)
\(140\) 0 0
\(141\) 0.183232 + 0.252197i 0.0154309 + 0.0212388i
\(142\) 0 0
\(143\) −3.68634 + 12.6768i −0.308267 + 1.06008i
\(144\) 0 0
\(145\) −11.4152 + 8.29361i −0.947979 + 0.688747i
\(146\) 0 0
\(147\) −4.60260 1.49548i −0.379616 0.123345i
\(148\) 0 0
\(149\) 7.40685 10.1947i 0.606793 0.835179i −0.389516 0.921020i \(-0.627358\pi\)
0.996309 + 0.0858410i \(0.0273577\pi\)
\(150\) 0 0
\(151\) 4.68668 + 14.4241i 0.381397 + 1.17382i 0.939061 + 0.343751i \(0.111698\pi\)
−0.557664 + 0.830067i \(0.688302\pi\)
\(152\) 0 0
\(153\) −7.14020 −0.577251
\(154\) 0 0
\(155\) 33.6136i 2.69991i
\(156\) 0 0
\(157\) −1.45191 + 0.471754i −0.115875 + 0.0376501i −0.366381 0.930465i \(-0.619403\pi\)
0.250506 + 0.968115i \(0.419403\pi\)
\(158\) 0 0
\(159\) 1.70336 + 1.23757i 0.135085 + 0.0981453i
\(160\) 0 0
\(161\) −0.908985 + 2.79757i −0.0716381 + 0.220479i
\(162\) 0 0
\(163\) −9.13195 12.5690i −0.715269 0.984484i −0.999668 0.0257776i \(-0.991794\pi\)
0.284398 0.958706i \(-0.408206\pi\)
\(164\) 0 0
\(165\) 9.96024 3.58312i 0.775404 0.278946i
\(166\) 0 0
\(167\) −6.79043 + 4.93353i −0.525459 + 0.381768i −0.818656 0.574284i \(-0.805281\pi\)
0.293197 + 0.956052i \(0.405281\pi\)
\(168\) 0 0
\(169\) −0.878998 + 2.70528i −0.0676152 + 0.208098i
\(170\) 0 0
\(171\) −5.68340 + 7.82252i −0.434620 + 0.598203i
\(172\) 0 0
\(173\) −23.6455 + 7.68290i −1.79774 + 0.584120i −0.999826 0.0186572i \(-0.994061\pi\)
−0.797910 + 0.602777i \(0.794061\pi\)
\(174\) 0 0
\(175\) −10.1594 −0.767976
\(176\) 0 0
\(177\) −0.517432 −0.0388926
\(178\) 0 0
\(179\) 15.6791 5.09444i 1.17191 0.380777i 0.342555 0.939498i \(-0.388708\pi\)
0.829356 + 0.558721i \(0.188708\pi\)
\(180\) 0 0
\(181\) −5.39531 + 7.42601i −0.401030 + 0.551971i −0.961002 0.276541i \(-0.910812\pi\)
0.559972 + 0.828512i \(0.310812\pi\)
\(182\) 0 0
\(183\) 1.95663 6.02189i 0.144638 0.445151i
\(184\) 0 0
\(185\) 15.8444 11.5116i 1.16490 0.846350i
\(186\) 0 0
\(187\) −0.328659 10.5412i −0.0240339 0.770848i
\(188\) 0 0
\(189\) −3.20120 4.40607i −0.232853 0.320495i
\(190\) 0 0
\(191\) 0.763217 2.34894i 0.0552244 0.169963i −0.919640 0.392763i \(-0.871519\pi\)
0.974864 + 0.222799i \(0.0715194\pi\)
\(192\) 0 0
\(193\) 8.09515 + 5.88147i 0.582702 + 0.423358i 0.839697 0.543055i \(-0.182732\pi\)
−0.256995 + 0.966413i \(0.582732\pi\)
\(194\) 0 0
\(195\) 12.0822 3.92574i 0.865224 0.281128i
\(196\) 0 0
\(197\) 11.7936i 0.840260i −0.907464 0.420130i \(-0.861985\pi\)
0.907464 0.420130i \(-0.138015\pi\)
\(198\) 0 0
\(199\) 14.7867 1.04820 0.524101 0.851656i \(-0.324402\pi\)
0.524101 + 0.851656i \(0.324402\pi\)
\(200\) 0 0
\(201\) −3.02494 9.30980i −0.213363 0.656663i
\(202\) 0 0
\(203\) −2.69807 + 3.71358i −0.189368 + 0.260642i
\(204\) 0 0
\(205\) 1.86259 + 0.605191i 0.130089 + 0.0422684i
\(206\) 0 0
\(207\) 4.47062 3.24810i 0.310730 0.225758i
\(208\) 0 0
\(209\) −11.8101 8.03043i −0.816924 0.555476i
\(210\) 0 0
\(211\) 4.99983 + 6.88168i 0.344203 + 0.473754i 0.945663 0.325148i \(-0.105414\pi\)
−0.601460 + 0.798903i \(0.705414\pi\)
\(212\) 0 0
\(213\) −4.61565 1.49971i −0.316259 0.102759i
\(214\) 0 0
\(215\) 19.3725 + 14.0749i 1.32119 + 0.959902i
\(216\) 0 0
\(217\) −3.37915 10.4000i −0.229392 0.705995i
\(218\) 0 0
\(219\) 2.32074i 0.156821i
\(220\) 0 0
\(221\) 12.6574i 0.851427i
\(222\) 0 0
\(223\) −1.55218 4.77711i −0.103941 0.319899i 0.885539 0.464565i \(-0.153789\pi\)
−0.989481 + 0.144666i \(0.953789\pi\)
\(224\) 0 0
\(225\) 15.4405 + 11.2181i 1.02936 + 0.747877i
\(226\) 0 0
\(227\) −17.1881 5.58475i −1.14081 0.370673i −0.323138 0.946352i \(-0.604738\pi\)
−0.817676 + 0.575679i \(0.804738\pi\)
\(228\) 0 0
\(229\) 2.34091 + 3.22199i 0.154692 + 0.212915i 0.879328 0.476217i \(-0.157992\pi\)
−0.724636 + 0.689132i \(0.757992\pi\)
\(230\) 0 0
\(231\) 2.72146 2.10990i 0.179059 0.138822i
\(232\) 0 0
\(233\) −9.93905 + 7.22114i −0.651129 + 0.473073i −0.863656 0.504082i \(-0.831831\pi\)
0.212527 + 0.977155i \(0.431831\pi\)
\(234\) 0 0
\(235\) −1.25403 0.407459i −0.0818038 0.0265797i
\(236\) 0 0
\(237\) 5.87160 8.08157i 0.381402 0.524954i
\(238\) 0 0
\(239\) −6.47271 19.9210i −0.418685 1.28858i −0.908913 0.416985i \(-0.863087\pi\)
0.490228 0.871594i \(-0.336913\pi\)
\(240\) 0 0
\(241\) 17.4490 1.12399 0.561996 0.827140i \(-0.310034\pi\)
0.561996 + 0.827140i \(0.310034\pi\)
\(242\) 0 0
\(243\) 16.0828i 1.03171i
\(244\) 0 0
\(245\) 19.4681 6.32556i 1.24377 0.404125i
\(246\) 0 0
\(247\) −13.8669 10.0749i −0.882332 0.641051i
\(248\) 0 0
\(249\) 0.269185 0.828467i 0.0170589 0.0525019i
\(250\) 0 0
\(251\) 3.50218 + 4.82034i 0.221056 + 0.304257i 0.905113 0.425171i \(-0.139786\pi\)
−0.684057 + 0.729428i \(0.739786\pi\)
\(252\) 0 0
\(253\) 5.00100 + 6.45054i 0.314410 + 0.405542i
\(254\) 0 0
\(255\) −8.21036 + 5.96517i −0.514153 + 0.373554i
\(256\) 0 0
\(257\) −4.37822 + 13.4748i −0.273106 + 0.840533i 0.716609 + 0.697476i \(0.245693\pi\)
−0.989714 + 0.143058i \(0.954307\pi\)
\(258\) 0 0
\(259\) 3.74495 5.15448i 0.232700 0.320284i
\(260\) 0 0
\(261\) 8.20120 2.66473i 0.507641 0.164943i
\(262\) 0 0
\(263\) −11.0152 −0.679225 −0.339612 0.940566i \(-0.610296\pi\)
−0.339612 + 0.940566i \(0.610296\pi\)
\(264\) 0 0
\(265\) −8.90572 −0.547074
\(266\) 0 0
\(267\) −11.2741 + 3.66316i −0.689961 + 0.224182i
\(268\) 0 0
\(269\) 1.45964 2.00902i 0.0889959 0.122492i −0.762197 0.647345i \(-0.775879\pi\)
0.851193 + 0.524852i \(0.175879\pi\)
\(270\) 0 0
\(271\) −0.0950935 + 0.292668i −0.00577652 + 0.0177783i −0.953903 0.300114i \(-0.902975\pi\)
0.948127 + 0.317893i \(0.102975\pi\)
\(272\) 0 0
\(273\) 3.34355 2.42923i 0.202361 0.147024i
\(274\) 0 0
\(275\) −15.8508 + 23.3114i −0.955841 + 1.40573i
\(276\) 0 0
\(277\) 1.46947 + 2.02255i 0.0882919 + 0.121523i 0.850878 0.525363i \(-0.176071\pi\)
−0.762586 + 0.646887i \(0.776071\pi\)
\(278\) 0 0
\(279\) −6.34809 + 19.5374i −0.380051 + 1.16968i
\(280\) 0 0
\(281\) 1.00572 + 0.730699i 0.0599963 + 0.0435899i 0.617379 0.786666i \(-0.288194\pi\)
−0.557383 + 0.830256i \(0.688194\pi\)
\(282\) 0 0
\(283\) −13.1263 + 4.26500i −0.780279 + 0.253528i −0.671959 0.740588i \(-0.734547\pi\)
−0.108320 + 0.994116i \(0.534547\pi\)
\(284\) 0 0
\(285\) 13.7431i 0.814069i
\(286\) 0 0
\(287\) 0.637118 0.0376079
\(288\) 0 0
\(289\) −2.12871 6.55151i −0.125219 0.385383i
\(290\) 0 0
\(291\) −3.03826 + 4.18181i −0.178106 + 0.245142i
\(292\) 0 0
\(293\) −14.1561 4.59959i −0.827007 0.268711i −0.135223 0.990815i \(-0.543175\pi\)
−0.691784 + 0.722104i \(0.743175\pi\)
\(294\) 0 0
\(295\) 1.77064 1.28645i 0.103091 0.0748998i
\(296\) 0 0
\(297\) −15.1046 + 0.470940i −0.876458 + 0.0273267i
\(298\) 0 0
\(299\) 5.75788 + 7.92504i 0.332987 + 0.458317i
\(300\) 0 0
\(301\) 7.40873 + 2.40724i 0.427032 + 0.138751i
\(302\) 0 0
\(303\) −4.19899 3.05074i −0.241226 0.175261i
\(304\) 0 0
\(305\) 8.27616 + 25.4714i 0.473891 + 1.45849i
\(306\) 0 0
\(307\) 8.40361i 0.479619i −0.970820 0.239810i \(-0.922915\pi\)
0.970820 0.239810i \(-0.0770850\pi\)
\(308\) 0 0
\(309\) 3.40997i 0.193986i
\(310\) 0 0
\(311\) −7.92512 24.3910i −0.449392 1.38309i −0.877594 0.479404i \(-0.840853\pi\)
0.428202 0.903683i \(-0.359147\pi\)
\(312\) 0 0
\(313\) −15.2762 11.0988i −0.863460 0.627340i 0.0653641 0.997861i \(-0.479179\pi\)
−0.928824 + 0.370521i \(0.879179\pi\)
\(314\) 0 0
\(315\) 9.37869 + 3.04732i 0.528429 + 0.171697i
\(316\) 0 0
\(317\) 11.7338 + 16.1502i 0.659037 + 0.907087i 0.999449 0.0331895i \(-0.0105665\pi\)
−0.340412 + 0.940276i \(0.610566\pi\)
\(318\) 0 0
\(319\) 4.31148 + 11.9849i 0.241397 + 0.671026i
\(320\) 0 0
\(321\) 9.00277 6.54089i 0.502485 0.365077i
\(322\) 0 0
\(323\) 13.0225 + 4.23126i 0.724591 + 0.235434i
\(324\) 0 0
\(325\) −19.8863 + 27.3712i −1.10309 + 1.51828i
\(326\) 0 0
\(327\) 1.51753 + 4.67048i 0.0839196 + 0.258278i
\(328\) 0 0
\(329\) −0.428955 −0.0236490
\(330\) 0 0
\(331\) 18.8624i 1.03677i 0.855147 + 0.518386i \(0.173467\pi\)
−0.855147 + 0.518386i \(0.826533\pi\)
\(332\) 0 0
\(333\) −11.3833 + 3.69867i −0.623803 + 0.202686i
\(334\) 0 0
\(335\) 33.4974 + 24.3373i 1.83016 + 1.32969i
\(336\) 0 0
\(337\) 6.57702 20.2420i 0.358273 1.10265i −0.595814 0.803123i \(-0.703170\pi\)
0.954087 0.299529i \(-0.0968297\pi\)
\(338\) 0 0
\(339\) 8.16857 + 11.2431i 0.443656 + 0.610640i
\(340\) 0 0
\(341\) −29.1356 8.47250i −1.57778 0.458812i
\(342\) 0 0
\(343\) 12.1565 8.83220i 0.656388 0.476894i
\(344\) 0 0
\(345\) 2.42710 7.46983i 0.130670 0.402162i
\(346\) 0 0
\(347\) 3.20169 4.40674i 0.171876 0.236566i −0.714386 0.699752i \(-0.753294\pi\)
0.886261 + 0.463186i \(0.153294\pi\)
\(348\) 0 0
\(349\) 9.70881 3.15458i 0.519701 0.168861i −0.0374088 0.999300i \(-0.511910\pi\)
0.557109 + 0.830439i \(0.311910\pi\)
\(350\) 0 0
\(351\) −18.1369 −0.968077
\(352\) 0 0
\(353\) 5.11121 0.272042 0.136021 0.990706i \(-0.456569\pi\)
0.136021 + 0.990706i \(0.456569\pi\)
\(354\) 0 0
\(355\) 19.5233 6.34349i 1.03619 0.336677i
\(356\) 0 0
\(357\) −1.94059 + 2.67099i −0.102707 + 0.141364i
\(358\) 0 0
\(359\) −6.48321 + 19.9533i −0.342171 + 1.05309i 0.620910 + 0.783882i \(0.286763\pi\)
−0.963081 + 0.269212i \(0.913237\pi\)
\(360\) 0 0
\(361\) −0.370174 + 0.268947i −0.0194828 + 0.0141551i
\(362\) 0 0
\(363\) −0.595247 9.53649i −0.0312423 0.500536i
\(364\) 0 0
\(365\) 5.76985 + 7.94152i 0.302008 + 0.415678i
\(366\) 0 0
\(367\) 9.74300 29.9859i 0.508580 1.56525i −0.286086 0.958204i \(-0.592354\pi\)
0.794667 0.607046i \(-0.207646\pi\)
\(368\) 0 0
\(369\) −0.968308 0.703517i −0.0504081 0.0366236i
\(370\) 0 0
\(371\) −2.75540 + 0.895285i −0.143053 + 0.0464809i
\(372\) 0 0
\(373\) 24.8244i 1.28536i 0.766136 + 0.642678i \(0.222177\pi\)
−0.766136 + 0.642678i \(0.777823\pi\)
\(374\) 0 0
\(375\) 11.1690 0.576765
\(376\) 0 0
\(377\) 4.72375 + 14.5382i 0.243285 + 0.748755i
\(378\) 0 0
\(379\) 21.0081 28.9152i 1.07911 1.48527i 0.218620 0.975810i \(-0.429844\pi\)
0.860493 0.509462i \(-0.170156\pi\)
\(380\) 0 0
\(381\) −7.64738 2.48479i −0.391787 0.127299i
\(382\) 0 0
\(383\) −15.4018 + 11.1901i −0.786997 + 0.571787i −0.907071 0.420978i \(-0.861687\pi\)
0.120073 + 0.992765i \(0.461687\pi\)
\(384\) 0 0
\(385\) −4.06711 + 13.9862i −0.207279 + 0.712802i
\(386\) 0 0
\(387\) −8.60185 11.8394i −0.437257 0.601832i
\(388\) 0 0
\(389\) 30.9758 + 10.0646i 1.57053 + 0.510297i 0.959596 0.281381i \(-0.0907925\pi\)
0.610938 + 0.791679i \(0.290793\pi\)
\(390\) 0 0
\(391\) −6.33091 4.59968i −0.320168 0.232616i
\(392\) 0 0
\(393\) 3.57760 + 11.0107i 0.180466 + 0.555417i
\(394\) 0 0
\(395\) 42.2530i 2.12598i
\(396\) 0 0
\(397\) 13.0143i 0.653167i 0.945168 + 0.326584i \(0.105897\pi\)
−0.945168 + 0.326584i \(0.894103\pi\)
\(398\) 0 0
\(399\) 1.38158 + 4.25207i 0.0691655 + 0.212870i
\(400\) 0 0
\(401\) −16.6284 12.0813i −0.830384 0.603310i 0.0892837 0.996006i \(-0.471542\pi\)
−0.919668 + 0.392697i \(0.871542\pi\)
\(402\) 0 0
\(403\) −34.6339 11.2532i −1.72523 0.560563i
\(404\) 0 0
\(405\) −6.00050 8.25898i −0.298167 0.410392i
\(406\) 0 0
\(407\) −5.98437 16.6352i −0.296634 0.824574i
\(408\) 0 0
\(409\) −7.97764 + 5.79610i −0.394469 + 0.286598i −0.767284 0.641307i \(-0.778392\pi\)
0.372815 + 0.927906i \(0.378392\pi\)
\(410\) 0 0
\(411\) −8.02078 2.60611i −0.395636 0.128550i
\(412\) 0 0
\(413\) 0.418506 0.576025i 0.0205934 0.0283443i
\(414\) 0 0
\(415\) 1.13860 + 3.50425i 0.0558916 + 0.172017i
\(416\) 0 0
\(417\) −19.3316 −0.946671
\(418\) 0 0
\(419\) 0.169087i 0.00826046i −0.999991 0.00413023i \(-0.998685\pi\)
0.999991 0.00413023i \(-0.00131470\pi\)
\(420\) 0 0
\(421\) −22.3620 + 7.26586i −1.08986 + 0.354116i −0.798192 0.602404i \(-0.794210\pi\)
−0.291666 + 0.956520i \(0.594210\pi\)
\(422\) 0 0
\(423\) 0.651936 + 0.473659i 0.0316982 + 0.0230301i
\(424\) 0 0
\(425\) 8.35186 25.7044i 0.405125 1.24685i
\(426\) 0 0
\(427\) 5.12124 + 7.04878i 0.247834 + 0.341114i
\(428\) 0 0
\(429\) −0.357372 11.4621i −0.0172541 0.553396i
\(430\) 0 0
\(431\) −5.89994 + 4.28656i −0.284190 + 0.206476i −0.720743 0.693202i \(-0.756199\pi\)
0.436553 + 0.899679i \(0.356199\pi\)
\(432\) 0 0
\(433\) 0.722575 2.22386i 0.0347247 0.106872i −0.932192 0.361965i \(-0.882106\pi\)
0.966917 + 0.255093i \(0.0821061\pi\)
\(434\) 0 0
\(435\) 7.20417 9.91569i 0.345414 0.475421i
\(436\) 0 0
\(437\) −10.0785 + 3.27469i −0.482118 + 0.156650i
\(438\) 0 0
\(439\) 1.21401 0.0579413 0.0289707 0.999580i \(-0.490777\pi\)
0.0289707 + 0.999580i \(0.490777\pi\)
\(440\) 0 0
\(441\) −12.5102 −0.595722
\(442\) 0 0
\(443\) −4.39270 + 1.42728i −0.208704 + 0.0678119i −0.411503 0.911408i \(-0.634996\pi\)
0.202799 + 0.979220i \(0.434996\pi\)
\(444\) 0 0
\(445\) 29.4722 40.5650i 1.39711 1.92296i
\(446\) 0 0
\(447\) −3.38250 + 10.4103i −0.159987 + 0.492388i
\(448\) 0 0
\(449\) −4.74796 + 3.44960i −0.224070 + 0.162797i −0.694157 0.719824i \(-0.744223\pi\)
0.470087 + 0.882620i \(0.344223\pi\)
\(450\) 0 0
\(451\) 0.994043 1.46191i 0.0468077 0.0688387i
\(452\) 0 0
\(453\) −7.74358 10.6581i −0.363825 0.500762i
\(454\) 0 0
\(455\) −5.40196 + 16.6255i −0.253248 + 0.779417i
\(456\) 0 0
\(457\) 19.8188 + 14.3992i 0.927084 + 0.673566i 0.945277 0.326269i \(-0.105791\pi\)
−0.0181932 + 0.999834i \(0.505791\pi\)
\(458\) 0 0
\(459\) 13.7795 4.47724i 0.643174 0.208980i
\(460\) 0 0
\(461\) 6.59878i 0.307336i −0.988123 0.153668i \(-0.950891\pi\)
0.988123 0.153668i \(-0.0491086\pi\)
\(462\) 0 0
\(463\) 14.4202 0.670163 0.335081 0.942189i \(-0.391236\pi\)
0.335081 + 0.942189i \(0.391236\pi\)
\(464\) 0 0
\(465\) 9.02273 + 27.7691i 0.418419 + 1.28776i
\(466\) 0 0
\(467\) −3.22623 + 4.44053i −0.149292 + 0.205483i −0.877113 0.480285i \(-0.840533\pi\)
0.727821 + 0.685768i \(0.240533\pi\)
\(468\) 0 0
\(469\) 12.8106 + 4.16242i 0.591540 + 0.192203i
\(470\) 0 0
\(471\) 1.07283 0.779457i 0.0494334 0.0359155i
\(472\) 0 0
\(473\) 17.0828 13.2440i 0.785469 0.608961i
\(474\) 0 0
\(475\) −21.5129 29.6100i −0.987079 1.35860i
\(476\) 0 0
\(477\) 5.17632 + 1.68189i 0.237007 + 0.0770084i
\(478\) 0 0
\(479\) −24.1603 17.5535i −1.10391 0.802039i −0.122217 0.992503i \(-0.539001\pi\)
−0.981694 + 0.190465i \(0.939001\pi\)
\(480\) 0 0
\(481\) −6.55660 20.1791i −0.298955 0.920090i
\(482\) 0 0
\(483\) 2.55514i 0.116263i
\(484\) 0 0
\(485\) 21.8638i 0.992786i
\(486\) 0 0
\(487\) 0.920108 + 2.83180i 0.0416941 + 0.128321i 0.969737 0.244152i \(-0.0785097\pi\)
−0.928043 + 0.372474i \(0.878510\pi\)
\(488\) 0 0
\(489\) 10.9180 + 7.93238i 0.493729 + 0.358715i
\(490\) 0 0
\(491\) 2.83468 + 0.921042i 0.127927 + 0.0415661i 0.372281 0.928120i \(-0.378576\pi\)
−0.244354 + 0.969686i \(0.578576\pi\)
\(492\) 0 0
\(493\) −7.17774 9.87932i −0.323269 0.444942i
\(494\) 0 0
\(495\) 21.6251 16.7656i 0.971975 0.753556i
\(496\) 0 0
\(497\) 5.40273 3.92532i 0.242346 0.176075i
\(498\) 0 0
\(499\) 14.4506 + 4.69530i 0.646900 + 0.210190i 0.614047 0.789270i \(-0.289541\pi\)
0.0328530 + 0.999460i \(0.489541\pi\)
\(500\) 0 0
\(501\) 4.28547 5.89844i 0.191461 0.263523i
\(502\) 0 0
\(503\) −10.1733 31.3103i −0.453607 1.39606i −0.872763 0.488144i \(-0.837674\pi\)
0.419156 0.907914i \(-0.362326\pi\)
\(504\) 0 0
\(505\) 21.9536 0.976924
\(506\) 0 0
\(507\) 2.47085i 0.109734i
\(508\) 0 0
\(509\) 12.8194 4.16527i 0.568209 0.184622i −0.0108026 0.999942i \(-0.503439\pi\)
0.579011 + 0.815319i \(0.303439\pi\)
\(510\) 0 0
\(511\) 2.58353 + 1.87704i 0.114289 + 0.0830356i
\(512\) 0 0
\(513\) 6.06303 18.6601i 0.267689 0.823863i
\(514\) 0 0
\(515\) −8.47791 11.6688i −0.373581 0.514191i
\(516\) 0 0
\(517\) −0.669262 + 0.984266i −0.0294341 + 0.0432880i
\(518\) 0 0
\(519\) 17.4719 12.6941i 0.766932 0.557209i
\(520\) 0 0
\(521\) 2.87587 8.85103i 0.125994 0.387771i −0.868087 0.496413i \(-0.834650\pi\)
0.994081 + 0.108642i \(0.0346503\pi\)
\(522\) 0 0
\(523\) −8.42368 + 11.5942i −0.368342 + 0.506979i −0.952449 0.304697i \(-0.901445\pi\)
0.584107 + 0.811676i \(0.301445\pi\)
\(524\) 0 0
\(525\) 8.39293 2.72703i 0.366297 0.119017i
\(526\) 0 0
\(527\) 29.0911 1.26723
\(528\) 0 0
\(529\) −16.9437 −0.736682
\(530\) 0 0
\(531\) −1.27211 + 0.413334i −0.0552050 + 0.0179372i
\(532\) 0 0
\(533\) 1.24712 1.71651i 0.0540187 0.0743504i
\(534\) 0 0
\(535\) −14.5452 + 44.7656i −0.628845 + 1.93538i
\(536\) 0 0
\(537\) −11.5854 + 8.41731i −0.499949 + 0.363234i
\(538\) 0 0
\(539\) −0.575835 18.4689i −0.0248030 0.795514i
\(540\) 0 0
\(541\) −13.5920 18.7077i −0.584364 0.804308i 0.409801 0.912175i \(-0.365598\pi\)
−0.994165 + 0.107867i \(0.965598\pi\)
\(542\) 0 0
\(543\) 2.46389 7.58306i 0.105735 0.325420i
\(544\) 0 0
\(545\) −16.8048 12.2094i −0.719836 0.522992i
\(546\) 0 0
\(547\) 8.59894 2.79397i 0.367664 0.119461i −0.119357 0.992851i \(-0.538083\pi\)
0.487021 + 0.873390i \(0.338083\pi\)
\(548\) 0 0
\(549\) 16.3679i 0.698564i
\(550\) 0 0
\(551\) −16.5367 −0.704487
\(552\) 0 0
\(553\) 4.24766 + 13.0730i 0.180629 + 0.555919i
\(554\) 0 0
\(555\) −9.99945 + 13.7631i −0.424453 + 0.584209i
\(556\) 0 0
\(557\) 26.4461 + 8.59286i 1.12056 + 0.364091i 0.809980 0.586457i \(-0.199478\pi\)
0.310577 + 0.950548i \(0.399478\pi\)
\(558\) 0 0
\(559\) 20.9877 15.2484i 0.887684 0.644940i
\(560\) 0 0
\(561\) 3.10103 + 8.62014i 0.130926 + 0.363943i
\(562\) 0 0
\(563\) 20.7692 + 28.5863i 0.875316 + 1.20477i 0.977696 + 0.210024i \(0.0673542\pi\)
−0.102380 + 0.994745i \(0.532646\pi\)
\(564\) 0 0
\(565\) −55.9053 18.1647i −2.35196 0.764197i
\(566\) 0 0
\(567\) −2.68681 1.95208i −0.112835 0.0819797i
\(568\) 0 0
\(569\) 10.1065 + 31.1047i 0.423687 + 1.30398i 0.904246 + 0.427013i \(0.140434\pi\)
−0.480558 + 0.876963i \(0.659566\pi\)
\(570\) 0 0
\(571\) 32.0987i 1.34329i −0.740874 0.671644i \(-0.765588\pi\)
0.740874 0.671644i \(-0.234412\pi\)
\(572\) 0 0
\(573\) 2.14539i 0.0896249i
\(574\) 0 0
\(575\) 6.46373 + 19.8933i 0.269556 + 0.829609i
\(576\) 0 0
\(577\) −17.1459 12.4572i −0.713794 0.518602i 0.170601 0.985340i \(-0.445429\pi\)
−0.884396 + 0.466738i \(0.845429\pi\)
\(578\) 0 0
\(579\) −8.26636 2.68590i −0.343538 0.111622i
\(580\) 0 0
\(581\) 0.704558 + 0.969742i 0.0292300 + 0.0402317i
\(582\) 0 0
\(583\) −2.24474 + 7.71931i −0.0929675 + 0.319701i
\(584\) 0 0
\(585\) 26.5682 19.3029i 1.09846 0.798079i
\(586\) 0 0
\(587\) 6.43150 + 2.08972i 0.265457 + 0.0862521i 0.438721 0.898623i \(-0.355432\pi\)
−0.173265 + 0.984875i \(0.555432\pi\)
\(588\) 0 0
\(589\) 23.1557 31.8710i 0.954113 1.31322i
\(590\) 0 0
\(591\) 3.16570 + 9.74301i 0.130219 + 0.400774i
\(592\) 0 0
\(593\) 8.93648 0.366977 0.183489 0.983022i \(-0.441261\pi\)
0.183489 + 0.983022i \(0.441261\pi\)
\(594\) 0 0
\(595\) 13.9648i 0.572500i
\(596\) 0 0
\(597\) −12.2157 + 3.96912i −0.499955 + 0.162445i
\(598\) 0 0
\(599\) −4.58215 3.32913i −0.187222 0.136025i 0.490226 0.871595i \(-0.336914\pi\)
−0.677448 + 0.735571i \(0.736914\pi\)
\(600\) 0 0
\(601\) −10.6085 + 32.6495i −0.432729 + 1.33180i 0.462668 + 0.886532i \(0.346892\pi\)
−0.895396 + 0.445270i \(0.853108\pi\)
\(602\) 0 0
\(603\) −14.8737 20.4719i −0.605703 0.833679i
\(604\) 0 0
\(605\) 25.7467 + 31.1538i 1.04675 + 1.26658i
\(606\) 0 0
\(607\) −32.7211 + 23.7733i −1.32811 + 0.964929i −0.328318 + 0.944567i \(0.606482\pi\)
−0.999793 + 0.0203611i \(0.993518\pi\)
\(608\) 0 0
\(609\) 1.23213 3.79212i 0.0499286 0.153664i
\(610\) 0 0
\(611\) −0.839652 + 1.15568i −0.0339687 + 0.0467539i
\(612\) 0 0
\(613\) −13.7906 + 4.48085i −0.556998 + 0.180980i −0.573970 0.818876i \(-0.694597\pi\)
0.0169719 + 0.999856i \(0.494597\pi\)
\(614\) 0 0
\(615\) −1.70118 −0.0685982
\(616\) 0 0
\(617\) −17.5018 −0.704595 −0.352297 0.935888i \(-0.614599\pi\)
−0.352297 + 0.935888i \(0.614599\pi\)
\(618\) 0 0
\(619\) −26.6998 + 8.67528i −1.07315 + 0.348689i −0.791715 0.610890i \(-0.790812\pi\)
−0.281439 + 0.959579i \(0.590812\pi\)
\(620\) 0 0
\(621\) −6.59094 + 9.07165i −0.264485 + 0.364033i
\(622\) 0 0
\(623\) 5.04064 15.5135i 0.201949 0.621535i
\(624\) 0 0
\(625\) −3.83860 + 2.78891i −0.153544 + 0.111556i
\(626\) 0 0
\(627\) 11.9122 + 3.46402i 0.475729 + 0.138340i
\(628\) 0 0
\(629\) 9.96277 + 13.7126i 0.397242 + 0.546756i
\(630\) 0 0
\(631\) −5.53882 + 17.0467i −0.220497 + 0.678620i 0.778221 + 0.627991i \(0.216123\pi\)
−0.998718 + 0.0506287i \(0.983877\pi\)
\(632\) 0 0
\(633\) −5.97771 4.34306i −0.237593 0.172621i
\(634\) 0 0
\(635\) 32.3469 10.5101i 1.28365 0.417082i
\(636\) 0 0
\(637\) 22.1767i 0.878671i
\(638\) 0 0
\(639\) −12.5456 −0.496297
\(640\) 0 0
\(641\) 1.09534 + 3.37112i 0.0432634 + 0.133151i 0.970355 0.241683i \(-0.0776995\pi\)
−0.927092 + 0.374835i \(0.877700\pi\)
\(642\) 0 0
\(643\) −9.19302 + 12.6531i −0.362537 + 0.498990i −0.950854 0.309641i \(-0.899791\pi\)
0.588316 + 0.808631i \(0.299791\pi\)
\(644\) 0 0
\(645\) −19.7822 6.42762i −0.778922 0.253087i
\(646\) 0 0
\(647\) −22.4391 + 16.3030i −0.882174 + 0.640937i −0.933826 0.357728i \(-0.883551\pi\)
0.0516518 + 0.998665i \(0.483551\pi\)
\(648\) 0 0
\(649\) −0.668767 1.85902i −0.0262514 0.0729727i
\(650\) 0 0
\(651\) 5.58321 + 7.68464i 0.218823 + 0.301185i
\(652\) 0 0
\(653\) 4.21888 + 1.37080i 0.165098 + 0.0536434i 0.390400 0.920646i \(-0.372337\pi\)
−0.225302 + 0.974289i \(0.572337\pi\)
\(654\) 0 0
\(655\) −39.6174 28.7837i −1.54798 1.12467i
\(656\) 0 0
\(657\) −1.85385 5.70556i −0.0723255 0.222595i
\(658\) 0 0
\(659\) 14.0037i 0.545506i −0.962084 0.272753i \(-0.912066\pi\)
0.962084 0.272753i \(-0.0879341\pi\)
\(660\) 0 0
\(661\) 33.4719i 1.30191i 0.759118 + 0.650953i \(0.225631\pi\)
−0.759118 + 0.650953i \(0.774369\pi\)
\(662\) 0 0
\(663\) 3.39755 + 10.4566i 0.131950 + 0.406100i
\(664\) 0 0
\(665\) −15.2993 11.1156i −0.593281 0.431044i
\(666\) 0 0
\(667\) 8.98826 + 2.92046i 0.348027 + 0.113081i
\(668\) 0 0
\(669\) 2.56459 + 3.52985i 0.0991527 + 0.136472i
\(670\) 0 0
\(671\) 24.1642 0.753404i 0.932847 0.0290848i
\(672\) 0 0
\(673\) 0.817162 0.593703i 0.0314993 0.0228856i −0.571924 0.820306i \(-0.693803\pi\)
0.603423 + 0.797421i \(0.293803\pi\)
\(674\) 0 0
\(675\) −36.8322 11.9675i −1.41767 0.460629i
\(676\) 0 0
\(677\) −18.3934 + 25.3163i −0.706915 + 0.972985i 0.292943 + 0.956130i \(0.405365\pi\)
−0.999858 + 0.0168552i \(0.994635\pi\)
\(678\) 0 0
\(679\) −2.19796 6.76461i −0.0843498 0.259602i
\(680\) 0 0
\(681\) 15.6986 0.601573
\(682\) 0 0
\(683\) 12.2698i 0.469491i 0.972057 + 0.234745i \(0.0754256\pi\)
−0.972057 + 0.234745i \(0.924574\pi\)
\(684\) 0 0
\(685\) 33.9263 11.0233i 1.29626 0.421179i
\(686\) 0 0
\(687\) −2.79875 2.03341i −0.106779 0.0775794i
\(688\) 0 0
\(689\) −2.98147 + 9.17603i −0.113585 + 0.349579i
\(690\) 0 0
\(691\) 6.17353 + 8.49714i 0.234852 + 0.323246i 0.910134 0.414313i \(-0.135978\pi\)
−0.675282 + 0.737559i \(0.735978\pi\)
\(692\) 0 0
\(693\) 5.00531 7.36117i 0.190136 0.279628i
\(694\) 0 0
\(695\) 66.1522 48.0624i 2.50930 1.82311i
\(696\) 0 0
\(697\) −0.523765 + 1.61198i −0.0198390 + 0.0610582i
\(698\) 0 0
\(699\) 6.27258 8.63347i 0.237251 0.326548i
\(700\) 0 0
\(701\) −5.50999 + 1.79030i −0.208109 + 0.0676188i −0.411217 0.911538i \(-0.634896\pi\)
0.203107 + 0.979157i \(0.434896\pi\)
\(702\) 0 0
\(703\) 22.9531 0.865691
\(704\) 0 0
\(705\) 1.14536 0.0431367
\(706\) 0 0
\(707\) 6.79240 2.20698i 0.255454 0.0830022i
\(708\) 0 0
\(709\) −26.7781 + 36.8569i −1.00567 + 1.38419i −0.0838916 + 0.996475i \(0.526735\pi\)
−0.921780 + 0.387713i \(0.873265\pi\)
\(710\) 0 0
\(711\) 7.97969 24.5590i 0.299262 0.921033i
\(712\) 0 0
\(713\) −18.2145 + 13.2336i −0.682138 + 0.495603i
\(714\) 0 0
\(715\) 29.7202 + 38.3346i 1.11147 + 1.43363i
\(716\) 0 0
\(717\) 10.6946 + 14.7198i 0.399396 + 0.549721i
\(718\) 0 0
\(719\) −0.905713 + 2.78750i −0.0337774 + 0.103956i −0.966524 0.256577i \(-0.917405\pi\)
0.932746 + 0.360533i \(0.117405\pi\)
\(720\) 0 0
\(721\) −3.79610 2.75803i −0.141374 0.102714i
\(722\) 0 0
\(723\) −14.4151 + 4.68376i −0.536104 + 0.174191i
\(724\) 0 0
\(725\) 32.6409i 1.21225i
\(726\) 0 0
\(727\) 24.5751 0.911438 0.455719 0.890124i \(-0.349382\pi\)
0.455719 + 0.890124i \(0.349382\pi\)
\(728\) 0 0
\(729\) −1.74122 5.35891i −0.0644895 0.198478i
\(730\) 0 0
\(731\) −12.1812 + 16.7660i −0.450538 + 0.620113i
\(732\) 0 0
\(733\) 19.7862 + 6.42893i 0.730820 + 0.237458i 0.650708 0.759328i \(-0.274472\pi\)
0.0801122 + 0.996786i \(0.474472\pi\)
\(734\) 0 0
\(735\) −14.3852 + 10.4514i −0.530605 + 0.385507i
\(736\) 0 0
\(737\) 29.5383 22.9006i 1.08806 0.843553i
\(738\) 0 0
\(739\) 1.61711 + 2.22575i 0.0594862 + 0.0818757i 0.837724 0.546094i \(-0.183886\pi\)
−0.778237 + 0.627970i \(0.783886\pi\)
\(740\) 0 0
\(741\) 14.1602 + 4.60093i 0.520188 + 0.169019i
\(742\) 0 0
\(743\) 36.3879 + 26.4374i 1.33494 + 0.969894i 0.999614 + 0.0277933i \(0.00884801\pi\)
0.335331 + 0.942101i \(0.391152\pi\)
\(744\) 0 0
\(745\) −14.3073 44.0333i −0.524178 1.61325i
\(746\) 0 0
\(747\) 2.25182i 0.0823899i
\(748\) 0 0
\(749\) 15.3126i 0.559509i
\(750\) 0 0
\(751\) 10.9010 + 33.5497i 0.397782 + 1.22425i 0.926774 + 0.375619i \(0.122570\pi\)
−0.528992 + 0.848627i \(0.677430\pi\)
\(752\) 0 0
\(753\) −4.18715 3.04214i −0.152588 0.110862i
\(754\) 0 0
\(755\) 52.9967 + 17.2197i 1.92875 + 0.626688i
\(756\) 0 0
\(757\) −27.5638 37.9383i −1.00182 1.37889i −0.924201 0.381906i \(-0.875268\pi\)
−0.0776206 0.996983i \(-0.524732\pi\)
\(758\) 0 0
\(759\) −5.86295 3.98658i −0.212811 0.144704i
\(760\) 0 0
\(761\) −3.57793 + 2.59952i −0.129700 + 0.0942324i −0.650744 0.759297i \(-0.725543\pi\)
0.521044 + 0.853530i \(0.325543\pi\)
\(762\) 0 0
\(763\) −6.42674 2.08818i −0.232664 0.0755970i
\(764\) 0 0
\(765\) −15.4202 + 21.2240i −0.557517 + 0.767356i
\(766\) 0 0
\(767\) −0.732715 2.25506i −0.0264568 0.0814256i
\(768\) 0 0
\(769\) 53.6158 1.93344 0.966718 0.255844i \(-0.0823534\pi\)
0.966718 + 0.255844i \(0.0823534\pi\)
\(770\) 0 0
\(771\) 12.3071i 0.443229i
\(772\) 0 0
\(773\) −40.8810 + 13.2830i −1.47039 + 0.477758i −0.931225 0.364445i \(-0.881259\pi\)
−0.539161 + 0.842202i \(0.681259\pi\)
\(774\) 0 0
\(775\) −62.9085 45.7057i −2.25974 1.64180i
\(776\) 0 0
\(777\) −1.71021 + 5.26349i −0.0613535 + 0.188827i
\(778\) 0 0
\(779\) 1.34912 + 1.85691i 0.0483374 + 0.0665307i
\(780\) 0 0
\(781\) −0.577467 18.5213i −0.0206634 0.662744i
\(782\) 0 0
\(783\) −14.1562 + 10.2851i −0.505901 + 0.367559i
\(784\) 0 0
\(785\) −1.73331 + 5.33457i −0.0618644 + 0.190399i
\(786\) 0 0
\(787\) −8.95616 + 12.3271i −0.319253 + 0.439414i −0.938239 0.345988i \(-0.887544\pi\)
0.618986 + 0.785402i \(0.287544\pi\)
\(788\) 0 0
\(789\) 9.09993 2.95675i 0.323966 0.105263i
\(790\) 0 0
\(791\) −19.1230 −0.679937
\(792\) 0 0
\(793\) 29.0152 1.03036
\(794\) 0 0
\(795\) 7.35725 2.39052i 0.260935 0.0847829i
\(796\) 0 0
\(797\) −18.9900 + 26.1375i −0.672660 + 0.925837i −0.999817 0.0191333i \(-0.993909\pi\)
0.327157 + 0.944970i \(0.393909\pi\)
\(798\) 0 0
\(799\) 0.352637 1.08531i 0.0124754 0.0383953i
\(800\) 0 0
\(801\) −24.7912 + 18.0118i −0.875953 + 0.636417i
\(802\) 0 0
\(803\) 8.33788 2.99949i 0.294237 0.105850i
\(804\) 0 0
\(805\) 6.35262 + 8.74363i 0.223901 + 0.308173i
\(806\) 0 0
\(807\) −0.666577 + 2.05151i −0.0234646 + 0.0722167i
\(808\) 0 0
\(809\) −40.7382 29.5981i −1.43228 1.04061i −0.989587 0.143939i \(-0.954023\pi\)
−0.442693 0.896673i \(-0.645977\pi\)
\(810\) 0 0
\(811\) −41.5216 + 13.4912i −1.45802 + 0.473739i −0.927464 0.373911i \(-0.878016\pi\)
−0.530555 + 0.847650i \(0.678016\pi\)
\(812\) 0 0
\(813\) 0.267306i 0.00937483i
\(814\) 0 0
\(815\) −57.0827 −1.99952
\(816\) 0 0
\(817\) 8.67228 + 26.6905i 0.303405 + 0.933783i
\(818\) 0 0
\(819\) 6.27963 8.64316i 0.219428 0.302017i
\(820\) 0 0
\(821\) 18.0688 + 5.87092i 0.630607 + 0.204897i 0.606844 0.794821i \(-0.292435\pi\)
0.0237628 + 0.999718i \(0.492435\pi\)
\(822\) 0 0
\(823\) −10.6891 + 7.76610i −0.372599 + 0.270709i −0.758288 0.651920i \(-0.773964\pi\)
0.385689 + 0.922629i \(0.373964\pi\)
\(824\) 0 0
\(825\) 6.83744 23.5129i 0.238049 0.818614i
\(826\) 0 0
\(827\) 10.4334 + 14.3603i 0.362804 + 0.499357i 0.950927 0.309415i \(-0.100133\pi\)
−0.588123 + 0.808771i \(0.700133\pi\)
\(828\) 0 0
\(829\) 8.14454 + 2.64632i 0.282872 + 0.0919106i 0.447017 0.894526i \(-0.352486\pi\)
−0.164145 + 0.986436i \(0.552486\pi\)
\(830\) 0 0
\(831\) −1.75687 1.27644i −0.0609452 0.0442793i
\(832\) 0 0
\(833\) 5.47449 + 16.8487i 0.189680 + 0.583774i
\(834\) 0 0
\(835\) 30.8389i 1.06723i
\(836\) 0 0
\(837\) 41.6850i 1.44084i
\(838\) 0 0
\(839\) 11.7633 + 36.2037i 0.406114 + 1.24989i 0.919962 + 0.392008i \(0.128220\pi\)
−0.513848 + 0.857881i \(0.671780\pi\)
\(840\) 0 0
\(841\) −11.5302 8.37718i −0.397593 0.288868i
\(842\) 0 0
\(843\) −1.02699 0.333690i −0.0353715 0.0114929i
\(844\) 0 0
\(845\) 6.14305 + 8.45519i 0.211327 + 0.290867i
\(846\) 0 0
\(847\) 11.0978 + 7.05059i 0.381325 + 0.242261i
\(848\) 0 0
\(849\) 9.69917 7.04686i 0.332875 0.241848i
\(850\) 0 0
\(851\) −12.4758 4.05363i −0.427664 0.138957i
\(852\) 0 0
\(853\) 20.1305 27.7072i 0.689254 0.948677i −0.310744 0.950493i \(-0.600578\pi\)
0.999998 + 0.00181694i \(0.000578350\pi\)
\(854\) 0 0
\(855\) 10.9782 + 33.7875i 0.375447 + 1.15551i
\(856\) 0 0
\(857\) −52.8215 −1.80435 −0.902174 0.431371i \(-0.858030\pi\)
−0.902174 + 0.431371i \(0.858030\pi\)
\(858\) 0 0
\(859\) 8.91497i 0.304175i 0.988367 + 0.152087i \(0.0485995\pi\)
−0.988367 + 0.152087i \(0.951400\pi\)
\(860\) 0 0
\(861\) −0.526340 + 0.171018i −0.0179376 + 0.00582829i
\(862\) 0 0
\(863\) −0.848339 0.616354i −0.0288778 0.0209809i 0.573253 0.819379i \(-0.305681\pi\)
−0.602131 + 0.798398i \(0.705681\pi\)
\(864\) 0 0
\(865\) −28.2283 + 86.8778i −0.959791 + 2.95393i
\(866\) 0 0
\(867\) 3.51718 + 4.84098i 0.119450 + 0.164408i
\(868\) 0 0
\(869\) 36.6241 + 10.6501i 1.24239 + 0.361280i
\(870\) 0 0
\(871\) 36.2903 26.3665i 1.22965 0.893393i
\(872\) 0 0
\(873\) −4.12909 + 12.7080i −0.139749 + 0.430102i
\(874\) 0 0
\(875\) −9.03364 + 12.4337i −0.305393 + 0.420337i
\(876\) 0 0
\(877\) 11.4920 3.73397i 0.388056 0.126087i −0.108490 0.994098i \(-0.534601\pi\)
0.496546 + 0.868010i \(0.334601\pi\)
\(878\) 0 0
\(879\) 12.9294 0.436096
\(880\) 0 0
\(881\) 11.8356 0.398752 0.199376 0.979923i \(-0.436109\pi\)
0.199376 + 0.979923i \(0.436109\pi\)
\(882\) 0 0
\(883\) −48.6275 + 15.8000i −1.63645 + 0.531713i −0.975740 0.218932i \(-0.929743\pi\)
−0.660705 + 0.750645i \(0.729743\pi\)
\(884\) 0 0
\(885\) −1.11746 + 1.53805i −0.0375630 + 0.0517011i
\(886\) 0 0
\(887\) −5.24892 + 16.1545i −0.176242 + 0.542416i −0.999688 0.0249781i \(-0.992048\pi\)
0.823446 + 0.567394i \(0.192048\pi\)
\(888\) 0 0
\(889\) 8.95146 6.50362i 0.300222 0.218124i
\(890\) 0 0
\(891\) −8.67119 + 3.11940i −0.290496 + 0.104504i
\(892\) 0 0
\(893\) −0.908329 1.25021i −0.0303961 0.0418366i
\(894\) 0 0
\(895\) 18.7179 57.6077i 0.625670 1.92561i
\(896\) 0 0
\(897\) −6.88401 5.00153i −0.229850 0.166996i
\(898\) 0 0
\(899\) −33.4139 + 10.8568i −1.11441 + 0.362095i
\(900\) 0 0
\(901\) 7.70750i 0.256774i
\(902\) 0 0
\(903\) −6.76671 −0.225182
\(904\) 0 0
\(905\) 10.4217 + 32.0748i 0.346430 + 1.06620i
\(906\) 0 0
\(907\) 8.46620 11.6527i 0.281116 0.386922i −0.644987 0.764193i \(-0.723137\pi\)
0.926103 + 0.377271i \(0.123137\pi\)
\(908\) 0 0
\(909\) −12.7602 4.14605i −0.423231 0.137516i
\(910\) 0 0
\(911\) −32.3517 + 23.5049i −1.07186 + 0.778751i −0.976246 0.216667i \(-0.930481\pi\)
−0.0956137 + 0.995419i \(0.530481\pi\)
\(912\) 0 0
\(913\) 3.32440 0.103650i 0.110022 0.00343032i
\(914\) 0 0
\(915\) −13.6743 18.8211i −0.452059 0.622205i
\(916\) 0 0
\(917\) −15.1511 4.92290i −0.500334 0.162568i
\(918\) 0 0
\(919\) −5.72709 4.16097i −0.188919 0.137258i 0.489305 0.872112i \(-0.337250\pi\)
−0.678225 + 0.734855i \(0.737250\pi\)
\(920\) 0 0
\(921\) 2.25574 + 6.94245i 0.0743291 + 0.228761i
\(922\) 0 0
\(923\) 22.2395i 0.732022i
\(924\) 0 0
\(925\) 45.3058i 1.48965i
\(926\) 0 0
\(927\) 2.72395 + 8.38345i 0.0894661 + 0.275348i
\(928\) 0 0
\(929\) 31.0156 + 22.5341i 1.01759 + 0.739320i 0.965787 0.259337i \(-0.0835040\pi\)
0.0518005 + 0.998657i \(0.483504\pi\)
\(930\) 0 0
\(931\) 22.8164 + 7.41349i 0.747776 + 0.242967i
\(932\) 0 0
\(933\) 13.0943 + 18.0228i 0.428688 + 0.590039i
\(934\) 0 0
\(935\) −32.0432 21.7881i −1.04792 0.712547i
\(936\) 0 0
\(937\) 46.9358 34.1009i 1.53333 1.11403i 0.578973 0.815346i \(-0.303454\pi\)
0.954353 0.298680i \(-0.0965465\pi\)
\(938\) 0 0
\(939\) 15.5992 + 5.06850i 0.509062 + 0.165404i
\(940\) 0 0
\(941\) 6.48795 8.92990i 0.211501 0.291106i −0.690065 0.723747i \(-0.742418\pi\)
0.901566 + 0.432641i \(0.142418\pi\)
\(942\) 0 0
\(943\) −0.405356 1.24756i −0.0132002 0.0406261i
\(944\) 0 0
\(945\) −20.0103 −0.650936
\(946\) 0 0
\(947\) 15.5478i 0.505235i 0.967566 + 0.252617i \(0.0812914\pi\)
−0.967566 + 0.252617i \(0.918709\pi\)
\(948\) 0 0
\(949\) 10.1142 3.28630i 0.328321 0.106678i
\(950\) 0 0
\(951\) −14.0287 10.1925i −0.454913 0.330514i
\(952\) 0 0
\(953\) 2.41825 7.44259i 0.0783346 0.241089i −0.904219 0.427069i \(-0.859546\pi\)
0.982554 + 0.185980i \(0.0595460\pi\)
\(954\) 0 0
\(955\) −5.33389 7.34147i −0.172601 0.237564i
\(956\) 0 0
\(957\) −6.77888 8.74374i −0.219130 0.282645i
\(958\) 0 0
\(959\) 9.38853 6.82116i 0.303171 0.220267i
\(960\) 0 0
\(961\) 16.2843 50.1179i 0.525300 1.61671i
\(962\) 0 0
\(963\) 16.9084 23.2724i 0.544866 0.749943i
\(964\) 0 0
\(965\) 34.9650 11.3608i 1.12556 0.365718i
\(966\) 0 0
\(967\) 47.0564 1.51323 0.756615 0.653860i \(-0.226852\pi\)
0.756615 + 0.653860i \(0.226852\pi\)
\(968\) 0 0
\(969\) −11.8940 −0.382090
\(970\) 0 0
\(971\) 36.8899 11.9863i 1.18385 0.384657i 0.350057 0.936729i \(-0.386162\pi\)
0.833797 + 0.552071i \(0.186162\pi\)
\(972\) 0 0
\(973\) 15.6356 21.5206i 0.501256 0.689919i
\(974\) 0 0
\(975\) 9.08152 27.9500i 0.290841 0.895118i
\(976\) 0 0
\(977\) 31.5826 22.9461i 1.01042 0.734111i 0.0461207 0.998936i \(-0.485314\pi\)
0.964297 + 0.264825i \(0.0853141\pi\)
\(978\) 0 0
\(979\) −27.7323 35.7705i −0.886328 1.14323i
\(980\) 0 0
\(981\) 7.46172 + 10.2702i 0.238234 + 0.327902i
\(982\) 0 0
\(983\) −1.73793 + 5.34880i −0.0554314 + 0.170600i −0.974939 0.222471i \(-0.928588\pi\)
0.919508 + 0.393072i \(0.128588\pi\)
\(984\) 0 0
\(985\) −35.0561 25.4698i −1.11698 0.811535i
\(986\) 0 0
\(987\) 0.354371 0.115142i 0.0112797 0.00366501i
\(988\) 0 0
\(989\) 16.0388i 0.510004i
\(990\) 0 0
\(991\) −7.34032 −0.233173 −0.116586 0.993181i \(-0.537195\pi\)
−0.116586 + 0.993181i \(0.537195\pi\)
\(992\) 0 0
\(993\) −5.06314 15.5827i −0.160674 0.494503i
\(994\) 0 0
\(995\) 31.9337 43.9530i 1.01237 1.39340i
\(996\) 0 0
\(997\) −54.1523 17.5952i −1.71502 0.557244i −0.723864 0.689942i \(-0.757636\pi\)
−0.991156 + 0.132698i \(0.957636\pi\)
\(998\) 0 0
\(999\) 19.6489 14.2758i 0.621665 0.451666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.w.a.113.4 40
4.3 odd 2 88.2.o.a.69.4 yes 40
8.3 odd 2 88.2.o.a.69.3 yes 40
8.5 even 2 inner 352.2.w.a.113.7 40
11.2 odd 10 3872.2.c.i.1937.14 20
11.4 even 5 inner 352.2.w.a.81.7 40
11.9 even 5 3872.2.c.h.1937.14 20
12.11 even 2 792.2.br.b.685.7 40
24.11 even 2 792.2.br.b.685.8 40
44.3 odd 10 968.2.o.j.269.7 40
44.7 even 10 968.2.o.i.565.8 40
44.15 odd 10 88.2.o.a.37.3 40
44.19 even 10 968.2.o.d.269.4 40
44.27 odd 10 968.2.o.j.493.6 40
44.31 odd 10 968.2.c.h.485.19 20
44.35 even 10 968.2.c.i.485.2 20
44.39 even 10 968.2.o.d.493.5 40
44.43 even 2 968.2.o.i.245.7 40
88.3 odd 10 968.2.o.j.269.6 40
88.13 odd 10 3872.2.c.i.1937.7 20
88.19 even 10 968.2.o.d.269.5 40
88.27 odd 10 968.2.o.j.493.7 40
88.35 even 10 968.2.c.i.485.1 20
88.37 even 10 inner 352.2.w.a.81.4 40
88.43 even 2 968.2.o.i.245.8 40
88.51 even 10 968.2.o.i.565.7 40
88.53 even 10 3872.2.c.h.1937.7 20
88.59 odd 10 88.2.o.a.37.4 yes 40
88.75 odd 10 968.2.c.h.485.20 20
88.83 even 10 968.2.o.d.493.4 40
132.59 even 10 792.2.br.b.37.8 40
264.59 even 10 792.2.br.b.37.7 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.3 40 44.15 odd 10
88.2.o.a.37.4 yes 40 88.59 odd 10
88.2.o.a.69.3 yes 40 8.3 odd 2
88.2.o.a.69.4 yes 40 4.3 odd 2
352.2.w.a.81.4 40 88.37 even 10 inner
352.2.w.a.81.7 40 11.4 even 5 inner
352.2.w.a.113.4 40 1.1 even 1 trivial
352.2.w.a.113.7 40 8.5 even 2 inner
792.2.br.b.37.7 40 264.59 even 10
792.2.br.b.37.8 40 132.59 even 10
792.2.br.b.685.7 40 12.11 even 2
792.2.br.b.685.8 40 24.11 even 2
968.2.c.h.485.19 20 44.31 odd 10
968.2.c.h.485.20 20 88.75 odd 10
968.2.c.i.485.1 20 88.35 even 10
968.2.c.i.485.2 20 44.35 even 10
968.2.o.d.269.4 40 44.19 even 10
968.2.o.d.269.5 40 88.19 even 10
968.2.o.d.493.4 40 88.83 even 10
968.2.o.d.493.5 40 44.39 even 10
968.2.o.i.245.7 40 44.43 even 2
968.2.o.i.245.8 40 88.43 even 2
968.2.o.i.565.7 40 88.51 even 10
968.2.o.i.565.8 40 44.7 even 10
968.2.o.j.269.6 40 88.3 odd 10
968.2.o.j.269.7 40 44.3 odd 10
968.2.o.j.493.6 40 44.27 odd 10
968.2.o.j.493.7 40 88.27 odd 10
3872.2.c.h.1937.7 20 88.53 even 10
3872.2.c.h.1937.14 20 11.9 even 5
3872.2.c.i.1937.7 20 88.13 odd 10
3872.2.c.i.1937.14 20 11.2 odd 10