Properties

Label 3520.2.a.z.1.1
Level $3520$
Weight $2$
Character 3520.1
Self dual yes
Analytic conductor $28.107$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3520,2,Mod(1,3520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3520.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3520 = 2^{6} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.1073415115\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3520.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} -5.00000 q^{7} -2.00000 q^{9} +1.00000 q^{11} -2.00000 q^{13} +1.00000 q^{15} +3.00000 q^{17} -7.00000 q^{19} -5.00000 q^{21} +6.00000 q^{23} +1.00000 q^{25} -5.00000 q^{27} +3.00000 q^{29} +7.00000 q^{31} +1.00000 q^{33} -5.00000 q^{35} +7.00000 q^{37} -2.00000 q^{39} +6.00000 q^{41} +8.00000 q^{43} -2.00000 q^{45} -6.00000 q^{47} +18.0000 q^{49} +3.00000 q^{51} +3.00000 q^{53} +1.00000 q^{55} -7.00000 q^{57} -6.00000 q^{59} +1.00000 q^{61} +10.0000 q^{63} -2.00000 q^{65} +8.00000 q^{67} +6.00000 q^{69} -3.00000 q^{71} +2.00000 q^{73} +1.00000 q^{75} -5.00000 q^{77} +10.0000 q^{79} +1.00000 q^{81} -6.00000 q^{83} +3.00000 q^{85} +3.00000 q^{87} +9.00000 q^{89} +10.0000 q^{91} +7.00000 q^{93} -7.00000 q^{95} -4.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −5.00000 −1.88982 −0.944911 0.327327i \(-0.893852\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) −5.00000 −1.09109
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) −5.00000 −0.845154
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 18.0000 2.57143
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) −7.00000 −0.927173
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 10.0000 1.25988
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −5.00000 −0.569803
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) 10.0000 1.04828
\(92\) 0 0
\(93\) 7.00000 0.725866
\(94\) 0 0
\(95\) −7.00000 −0.718185
\(96\) 0 0
\(97\) −4.00000 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) −5.00000 −0.487950
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) 0 0
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) −15.0000 −1.37505
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 0 0
\(133\) 35.0000 3.03488
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 3.00000 0.249136
\(146\) 0 0
\(147\) 18.0000 1.48461
\(148\) 0 0
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 7.00000 0.562254
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 3.00000 0.237915
\(160\) 0 0
\(161\) −30.0000 −2.36433
\(162\) 0 0
\(163\) 5.00000 0.391630 0.195815 0.980641i \(-0.437265\pi\)
0.195815 + 0.980641i \(0.437265\pi\)
\(164\) 0 0
\(165\) 1.00000 0.0778499
\(166\) 0 0
\(167\) −21.0000 −1.62503 −0.812514 0.582941i \(-0.801902\pi\)
−0.812514 + 0.582941i \(0.801902\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 14.0000 1.07061
\(172\) 0 0
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) −5.00000 −0.377964
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) 7.00000 0.514650
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) 0 0
\(189\) 25.0000 1.81848
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 23.0000 1.65558 0.827788 0.561041i \(-0.189599\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −11.0000 −0.779769 −0.389885 0.920864i \(-0.627485\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) −15.0000 −1.05279
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) −7.00000 −0.484200
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) 0 0
\(213\) −3.00000 −0.205557
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) −35.0000 −2.37595
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) −5.00000 −0.328976
\(232\) 0 0
\(233\) 27.0000 1.76883 0.884414 0.466702i \(-0.154558\pi\)
0.884414 + 0.466702i \(0.154558\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 0 0
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 18.0000 1.14998
\(246\) 0 0
\(247\) 14.0000 0.890799
\(248\) 0 0
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 3.00000 0.187867
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) −35.0000 −2.17479
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 9.00000 0.554964 0.277482 0.960731i \(-0.410500\pi\)
0.277482 + 0.960731i \(0.410500\pi\)
\(264\) 0 0
\(265\) 3.00000 0.184289
\(266\) 0 0
\(267\) 9.00000 0.550791
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 10.0000 0.605228
\(274\) 0 0
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 4.00000 0.240337 0.120168 0.992754i \(-0.461657\pi\)
0.120168 + 0.992754i \(0.461657\pi\)
\(278\) 0 0
\(279\) −14.0000 −0.838158
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 2.00000 0.118888 0.0594438 0.998232i \(-0.481067\pi\)
0.0594438 + 0.998232i \(0.481067\pi\)
\(284\) 0 0
\(285\) −7.00000 −0.414644
\(286\) 0 0
\(287\) −30.0000 −1.77084
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −4.00000 −0.234484
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) −40.0000 −2.30556
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) 1.00000 0.0572598
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) 15.0000 0.850572 0.425286 0.905059i \(-0.360174\pi\)
0.425286 + 0.905059i \(0.360174\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 10.0000 0.563436
\(316\) 0 0
\(317\) 21.0000 1.17948 0.589739 0.807594i \(-0.299231\pi\)
0.589739 + 0.807594i \(0.299231\pi\)
\(318\) 0 0
\(319\) 3.00000 0.167968
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −21.0000 −1.16847
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) −14.0000 −0.774202
\(328\) 0 0
\(329\) 30.0000 1.65395
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) −14.0000 −0.767195
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) 0 0
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 7.00000 0.379071
\(342\) 0 0
\(343\) −55.0000 −2.96972
\(344\) 0 0
\(345\) 6.00000 0.323029
\(346\) 0 0
\(347\) 30.0000 1.61048 0.805242 0.592946i \(-0.202035\pi\)
0.805242 + 0.592946i \(0.202035\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 10.0000 0.533761
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −3.00000 −0.159223
\(356\) 0 0
\(357\) −15.0000 −0.793884
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) −15.0000 −0.778761
\(372\) 0 0
\(373\) −2.00000 −0.103556 −0.0517780 0.998659i \(-0.516489\pi\)
−0.0517780 + 0.998659i \(0.516489\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −6.00000 −0.309016
\(378\) 0 0
\(379\) 26.0000 1.33553 0.667765 0.744372i \(-0.267251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) 18.0000 0.919757 0.459879 0.887982i \(-0.347893\pi\)
0.459879 + 0.887982i \(0.347893\pi\)
\(384\) 0 0
\(385\) −5.00000 −0.254824
\(386\) 0 0
\(387\) −16.0000 −0.813326
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) −3.00000 −0.151330
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 0 0
\(399\) 35.0000 1.75219
\(400\) 0 0
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) 0 0
\(403\) −14.0000 −0.697390
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 7.00000 0.346977
\(408\) 0 0
\(409\) −4.00000 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) 30.0000 1.47620
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 12.0000 0.583460
\(424\) 0 0
\(425\) 3.00000 0.145521
\(426\) 0 0
\(427\) −5.00000 −0.241967
\(428\) 0 0
\(429\) −2.00000 −0.0965609
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −28.0000 −1.34559 −0.672797 0.739827i \(-0.734907\pi\)
−0.672797 + 0.739827i \(0.734907\pi\)
\(434\) 0 0
\(435\) 3.00000 0.143839
\(436\) 0 0
\(437\) −42.0000 −2.00913
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −36.0000 −1.71429
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 9.00000 0.426641
\(446\) 0 0
\(447\) −15.0000 −0.709476
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 0 0
\(453\) −2.00000 −0.0939682
\(454\) 0 0
\(455\) 10.0000 0.468807
\(456\) 0 0
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) 0 0
\(459\) −15.0000 −0.700140
\(460\) 0 0
\(461\) −3.00000 −0.139724 −0.0698620 0.997557i \(-0.522256\pi\)
−0.0698620 + 0.997557i \(0.522256\pi\)
\(462\) 0 0
\(463\) 22.0000 1.02243 0.511213 0.859454i \(-0.329196\pi\)
0.511213 + 0.859454i \(0.329196\pi\)
\(464\) 0 0
\(465\) 7.00000 0.324617
\(466\) 0 0
\(467\) −39.0000 −1.80470 −0.902352 0.430999i \(-0.858161\pi\)
−0.902352 + 0.430999i \(0.858161\pi\)
\(468\) 0 0
\(469\) −40.0000 −1.84703
\(470\) 0 0
\(471\) 7.00000 0.322543
\(472\) 0 0
\(473\) 8.00000 0.367840
\(474\) 0 0
\(475\) −7.00000 −0.321182
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) −14.0000 −0.638345
\(482\) 0 0
\(483\) −30.0000 −1.36505
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) 5.00000 0.226108
\(490\) 0 0
\(491\) 33.0000 1.48927 0.744635 0.667472i \(-0.232624\pi\)
0.744635 + 0.667472i \(0.232624\pi\)
\(492\) 0 0
\(493\) 9.00000 0.405340
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 0 0
\(497\) 15.0000 0.672842
\(498\) 0 0
\(499\) 44.0000 1.96971 0.984855 0.173379i \(-0.0554684\pi\)
0.984855 + 0.173379i \(0.0554684\pi\)
\(500\) 0 0
\(501\) −21.0000 −0.938211
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) 12.0000 0.531891 0.265945 0.963988i \(-0.414316\pi\)
0.265945 + 0.963988i \(0.414316\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) 35.0000 1.54529
\(514\) 0 0
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) −5.00000 −0.218218
\(526\) 0 0
\(527\) 21.0000 0.914774
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) −41.0000 −1.76273 −0.881364 0.472438i \(-0.843374\pi\)
−0.881364 + 0.472438i \(0.843374\pi\)
\(542\) 0 0
\(543\) 22.0000 0.944110
\(544\) 0 0
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −21.0000 −0.894630
\(552\) 0 0
\(553\) −50.0000 −2.12622
\(554\) 0 0
\(555\) 7.00000 0.297133
\(556\) 0 0
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 3.00000 0.126660
\(562\) 0 0
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 0 0
\(567\) −5.00000 −0.209980
\(568\) 0 0
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) −25.0000 −1.04622 −0.523109 0.852266i \(-0.675228\pi\)
−0.523109 + 0.852266i \(0.675228\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 23.0000 0.955847
\(580\) 0 0
\(581\) 30.0000 1.24461
\(582\) 0 0
\(583\) 3.00000 0.124247
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) 3.00000 0.123823 0.0619116 0.998082i \(-0.480280\pi\)
0.0619116 + 0.998082i \(0.480280\pi\)
\(588\) 0 0
\(589\) −49.0000 −2.01901
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) −15.0000 −0.614940
\(596\) 0 0
\(597\) −11.0000 −0.450200
\(598\) 0 0
\(599\) −9.00000 −0.367730 −0.183865 0.982952i \(-0.558861\pi\)
−0.183865 + 0.982952i \(0.558861\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) −16.0000 −0.651570
\(604\) 0 0
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) 49.0000 1.98885 0.994424 0.105453i \(-0.0336291\pi\)
0.994424 + 0.105453i \(0.0336291\pi\)
\(608\) 0 0
\(609\) −15.0000 −0.607831
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −48.0000 −1.93241 −0.966204 0.257780i \(-0.917009\pi\)
−0.966204 + 0.257780i \(0.917009\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) −30.0000 −1.20386
\(622\) 0 0
\(623\) −45.0000 −1.80289
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −7.00000 −0.279553
\(628\) 0 0
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) −35.0000 −1.39333 −0.696664 0.717398i \(-0.745333\pi\)
−0.696664 + 0.717398i \(0.745333\pi\)
\(632\) 0 0
\(633\) 5.00000 0.198732
\(634\) 0 0
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −36.0000 −1.42637
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −33.0000 −1.30342 −0.651711 0.758468i \(-0.725948\pi\)
−0.651711 + 0.758468i \(0.725948\pi\)
\(642\) 0 0
\(643\) 5.00000 0.197181 0.0985904 0.995128i \(-0.468567\pi\)
0.0985904 + 0.995128i \(0.468567\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) −35.0000 −1.37176
\(652\) 0 0
\(653\) 45.0000 1.76099 0.880493 0.474059i \(-0.157212\pi\)
0.880493 + 0.474059i \(0.157212\pi\)
\(654\) 0 0
\(655\) −3.00000 −0.117220
\(656\) 0 0
\(657\) −4.00000 −0.156055
\(658\) 0 0
\(659\) −21.0000 −0.818044 −0.409022 0.912525i \(-0.634130\pi\)
−0.409022 + 0.912525i \(0.634130\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 0 0
\(663\) −6.00000 −0.233021
\(664\) 0 0
\(665\) 35.0000 1.35724
\(666\) 0 0
\(667\) 18.0000 0.696963
\(668\) 0 0
\(669\) −14.0000 −0.541271
\(670\) 0 0
\(671\) 1.00000 0.0386046
\(672\) 0 0
\(673\) −1.00000 −0.0385472 −0.0192736 0.999814i \(-0.506135\pi\)
−0.0192736 + 0.999814i \(0.506135\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) 0 0
\(679\) 20.0000 0.767530
\(680\) 0 0
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) −9.00000 −0.344375 −0.172188 0.985064i \(-0.555084\pi\)
−0.172188 + 0.985064i \(0.555084\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) −14.0000 −0.534133
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) 0 0
\(693\) 10.0000 0.379869
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) 27.0000 1.02123
\(700\) 0 0
\(701\) −39.0000 −1.47301 −0.736505 0.676432i \(-0.763525\pi\)
−0.736505 + 0.676432i \(0.763525\pi\)
\(702\) 0 0
\(703\) −49.0000 −1.84807
\(704\) 0 0
\(705\) −6.00000 −0.225973
\(706\) 0 0
\(707\) −30.0000 −1.12827
\(708\) 0 0
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 0 0
\(711\) −20.0000 −0.750059
\(712\) 0 0
\(713\) 42.0000 1.57291
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) 0 0
\(717\) −6.00000 −0.224074
\(718\) 0 0
\(719\) 51.0000 1.90198 0.950990 0.309223i \(-0.100069\pi\)
0.950990 + 0.309223i \(0.100069\pi\)
\(720\) 0 0
\(721\) −20.0000 −0.744839
\(722\) 0 0
\(723\) −22.0000 −0.818189
\(724\) 0 0
\(725\) 3.00000 0.111417
\(726\) 0 0
\(727\) 10.0000 0.370879 0.185440 0.982656i \(-0.440629\pi\)
0.185440 + 0.982656i \(0.440629\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) 18.0000 0.663940
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 0 0
\(741\) 14.0000 0.514303
\(742\) 0 0
\(743\) 3.00000 0.110059 0.0550297 0.998485i \(-0.482475\pi\)
0.0550297 + 0.998485i \(0.482475\pi\)
\(744\) 0 0
\(745\) −15.0000 −0.549557
\(746\) 0 0
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −5.00000 −0.182453 −0.0912263 0.995830i \(-0.529079\pi\)
−0.0912263 + 0.995830i \(0.529079\pi\)
\(752\) 0 0
\(753\) −30.0000 −1.09326
\(754\) 0 0
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 6.00000 0.217786
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 70.0000 2.53417
\(764\) 0 0
\(765\) −6.00000 −0.216930
\(766\) 0 0
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) −9.00000 −0.323708 −0.161854 0.986815i \(-0.551747\pi\)
−0.161854 + 0.986815i \(0.551747\pi\)
\(774\) 0 0
\(775\) 7.00000 0.251447
\(776\) 0 0
\(777\) −35.0000 −1.25562
\(778\) 0 0
\(779\) −42.0000 −1.50481
\(780\) 0 0
\(781\) −3.00000 −0.107348
\(782\) 0 0
\(783\) −15.0000 −0.536056
\(784\) 0 0
\(785\) 7.00000 0.249841
\(786\) 0 0
\(787\) 8.00000 0.285169 0.142585 0.989783i \(-0.454459\pi\)
0.142585 + 0.989783i \(0.454459\pi\)
\(788\) 0 0
\(789\) 9.00000 0.320408
\(790\) 0 0
\(791\) −60.0000 −2.13335
\(792\) 0 0
\(793\) −2.00000 −0.0710221
\(794\) 0 0
\(795\) 3.00000 0.106399
\(796\) 0 0
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) −18.0000 −0.636794
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 0 0
\(803\) 2.00000 0.0705785
\(804\) 0 0
\(805\) −30.0000 −1.05736
\(806\) 0 0
\(807\) 12.0000 0.422420
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −13.0000 −0.456492 −0.228246 0.973604i \(-0.573299\pi\)
−0.228246 + 0.973604i \(0.573299\pi\)
\(812\) 0 0
\(813\) −20.0000 −0.701431
\(814\) 0 0
\(815\) 5.00000 0.175142
\(816\) 0 0
\(817\) −56.0000 −1.95919
\(818\) 0 0
\(819\) −20.0000 −0.698857
\(820\) 0 0
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 0 0
\(825\) 1.00000 0.0348155
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 52.0000 1.80603 0.903017 0.429604i \(-0.141347\pi\)
0.903017 + 0.429604i \(0.141347\pi\)
\(830\) 0 0
\(831\) 4.00000 0.138758
\(832\) 0 0
\(833\) 54.0000 1.87099
\(834\) 0 0
\(835\) −21.0000 −0.726735
\(836\) 0 0
\(837\) −35.0000 −1.20978
\(838\) 0 0
\(839\) −48.0000 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 30.0000 1.03325
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) 0 0
\(849\) 2.00000 0.0686398
\(850\) 0 0
\(851\) 42.0000 1.43974
\(852\) 0 0
\(853\) 34.0000 1.16414 0.582069 0.813139i \(-0.302243\pi\)
0.582069 + 0.813139i \(0.302243\pi\)
\(854\) 0 0
\(855\) 14.0000 0.478790
\(856\) 0 0
\(857\) 3.00000 0.102478 0.0512390 0.998686i \(-0.483683\pi\)
0.0512390 + 0.998686i \(0.483683\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) −30.0000 −1.02240
\(862\) 0 0
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) 10.0000 0.339227
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 0 0
\(873\) 8.00000 0.270759
\(874\) 0 0
\(875\) −5.00000 −0.169031
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) −1.00000 −0.0336527 −0.0168263 0.999858i \(-0.505356\pi\)
−0.0168263 + 0.999858i \(0.505356\pi\)
\(884\) 0 0
\(885\) −6.00000 −0.201688
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −80.0000 −2.68311
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 42.0000 1.40548
\(894\) 0 0
\(895\) −12.0000 −0.401116
\(896\) 0 0
\(897\) −12.0000 −0.400668
\(898\) 0 0
\(899\) 21.0000 0.700389
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) −40.0000 −1.33112
\(904\) 0 0
\(905\) 22.0000 0.731305
\(906\) 0 0
\(907\) 17.0000 0.564476 0.282238 0.959344i \(-0.408923\pi\)
0.282238 + 0.959344i \(0.408923\pi\)
\(908\) 0 0
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) 0 0
\(913\) −6.00000 −0.198571
\(914\) 0 0
\(915\) 1.00000 0.0330590
\(916\) 0 0
\(917\) 15.0000 0.495344
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) −10.0000 −0.329511
\(922\) 0 0
\(923\) 6.00000 0.197492
\(924\) 0 0
\(925\) 7.00000 0.230159
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −45.0000 −1.47640 −0.738201 0.674581i \(-0.764324\pi\)
−0.738201 + 0.674581i \(0.764324\pi\)
\(930\) 0 0
\(931\) −126.000 −4.12948
\(932\) 0 0
\(933\) 15.0000 0.491078
\(934\) 0 0
\(935\) 3.00000 0.0981105
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 14.0000 0.456873
\(940\) 0 0
\(941\) 15.0000 0.488986 0.244493 0.969651i \(-0.421378\pi\)
0.244493 + 0.969651i \(0.421378\pi\)
\(942\) 0 0
\(943\) 36.0000 1.17232
\(944\) 0 0
\(945\) 25.0000 0.813250
\(946\) 0 0
\(947\) 3.00000 0.0974869 0.0487435 0.998811i \(-0.484478\pi\)
0.0487435 + 0.998811i \(0.484478\pi\)
\(948\) 0 0
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) 21.0000 0.680972
\(952\) 0 0
\(953\) −27.0000 −0.874616 −0.437308 0.899312i \(-0.644068\pi\)
−0.437308 + 0.899312i \(0.644068\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 3.00000 0.0969762
\(958\) 0 0
\(959\) −60.0000 −1.93750
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 23.0000 0.740396
\(966\) 0 0
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) 0 0
\(969\) −21.0000 −0.674617
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 20.0000 0.641171
\(974\) 0 0
\(975\) −2.00000 −0.0640513
\(976\) 0 0
\(977\) 12.0000 0.383914 0.191957 0.981403i \(-0.438517\pi\)
0.191957 + 0.981403i \(0.438517\pi\)
\(978\) 0 0
\(979\) 9.00000 0.287641
\(980\) 0 0
\(981\) 28.0000 0.893971
\(982\) 0 0
\(983\) 6.00000 0.191370 0.0956851 0.995412i \(-0.469496\pi\)
0.0956851 + 0.995412i \(0.469496\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 30.0000 0.954911
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 8.00000 0.253872
\(994\) 0 0
\(995\) −11.0000 −0.348723
\(996\) 0 0
\(997\) 28.0000 0.886769 0.443384 0.896332i \(-0.353778\pi\)
0.443384 + 0.896332i \(0.353778\pi\)
\(998\) 0 0
\(999\) −35.0000 −1.10735
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3520.2.a.z.1.1 1
4.3 odd 2 3520.2.a.l.1.1 1
8.3 odd 2 110.2.a.a.1.1 1
8.5 even 2 880.2.a.c.1.1 1
24.5 odd 2 7920.2.a.s.1.1 1
24.11 even 2 990.2.a.l.1.1 1
40.3 even 4 550.2.b.b.199.2 2
40.13 odd 4 4400.2.b.g.4049.1 2
40.19 odd 2 550.2.a.i.1.1 1
40.27 even 4 550.2.b.b.199.1 2
40.29 even 2 4400.2.a.w.1.1 1
40.37 odd 4 4400.2.b.g.4049.2 2
56.27 even 2 5390.2.a.h.1.1 1
88.21 odd 2 9680.2.a.j.1.1 1
88.43 even 2 1210.2.a.k.1.1 1
120.59 even 2 4950.2.a.a.1.1 1
120.83 odd 4 4950.2.c.a.199.1 2
120.107 odd 4 4950.2.c.a.199.2 2
440.219 even 2 6050.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.a.1.1 1 8.3 odd 2
550.2.a.i.1.1 1 40.19 odd 2
550.2.b.b.199.1 2 40.27 even 4
550.2.b.b.199.2 2 40.3 even 4
880.2.a.c.1.1 1 8.5 even 2
990.2.a.l.1.1 1 24.11 even 2
1210.2.a.k.1.1 1 88.43 even 2
3520.2.a.l.1.1 1 4.3 odd 2
3520.2.a.z.1.1 1 1.1 even 1 trivial
4400.2.a.w.1.1 1 40.29 even 2
4400.2.b.g.4049.1 2 40.13 odd 4
4400.2.b.g.4049.2 2 40.37 odd 4
4950.2.a.a.1.1 1 120.59 even 2
4950.2.c.a.199.1 2 120.83 odd 4
4950.2.c.a.199.2 2 120.107 odd 4
5390.2.a.h.1.1 1 56.27 even 2
6050.2.a.i.1.1 1 440.219 even 2
7920.2.a.s.1.1 1 24.5 odd 2
9680.2.a.j.1.1 1 88.21 odd 2