Properties

Label 3528.1.n.a.197.4
Level 35283528
Weight 11
Character 3528.197
Analytic conductor 1.7611.761
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -7
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,1,Mod(197,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.197");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3528.n (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.760701364571.76070136457
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.84672.1

Embedding invariants

Embedding label 197.4
Root 0.7071070.707107i-0.707107 - 0.707107i of defining polynomial
Character χ\chi == 3528.197
Dual form 3528.1.n.a.197.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.707107+0.707107i)q2+1.00000iq4+(0.707107+0.707107i)q8+1.41421q111.00000q16+(1.00000+1.00000i)q22+1.41421iq231.00000q25+1.41421q29+(0.7071070.707107i)q32+2.00000iq372.00000iq43+1.41421iq44+(1.00000+1.00000i)q46+(0.7071070.707107i)q50+1.41421q53+(1.00000+1.00000i)q581.00000iq64+1.41421iq71+(1.41421+1.41421i)q742.00000q79+(1.414211.41421i)q86+(1.00000+1.00000i)q881.41421q92+O(q100)q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.707107 + 0.707107i) q^{8} +1.41421 q^{11} -1.00000 q^{16} +(1.00000 + 1.00000i) q^{22} +1.41421i q^{23} -1.00000 q^{25} +1.41421 q^{29} +(-0.707107 - 0.707107i) q^{32} +2.00000i q^{37} -2.00000i q^{43} +1.41421i q^{44} +(-1.00000 + 1.00000i) q^{46} +(-0.707107 - 0.707107i) q^{50} +1.41421 q^{53} +(1.00000 + 1.00000i) q^{58} -1.00000i q^{64} +1.41421i q^{71} +(-1.41421 + 1.41421i) q^{74} -2.00000 q^{79} +(1.41421 - 1.41421i) q^{86} +(-1.00000 + 1.00000i) q^{88} -1.41421 q^{92} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q16+4q224q254q46+4q588q794q88+O(q100) 4 q - 4 q^{16} + 4 q^{22} - 4 q^{25} - 4 q^{46} + 4 q^{58} - 8 q^{79} - 4 q^{88}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3528Z)×\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times.

nn 785785 10811081 17651765 26472647
χ(n)\chi(n) 1-1 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.707107 + 0.707107i 0.707107 + 0.707107i
33 0 0
44 1.00000i 1.00000i
55 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
66 0 0
77 0 0
88 −0.707107 + 0.707107i −0.707107 + 0.707107i
99 0 0
1010 0 0
1111 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 0 0
1515 0 0
1616 −1.00000 −1.00000
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 1.00000 + 1.00000i 1.00000 + 1.00000i
2323 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
2424 0 0
2525 −1.00000 −1.00000
2626 0 0
2727 0 0
2828 0 0
2929 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 −0.707107 0.707107i −0.707107 0.707107i
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
4444 1.41421i 1.41421i
4545 0 0
4646 −1.00000 + 1.00000i −1.00000 + 1.00000i
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 0 0
5050 −0.707107 0.707107i −0.707107 0.707107i
5151 0 0
5252 0 0
5353 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 1.00000 + 1.00000i 1.00000 + 1.00000i
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 1.00000i 1.00000i
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 −1.41421 + 1.41421i −1.41421 + 1.41421i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 1.41421 1.41421i 1.41421 1.41421i
8787 0 0
8888 −1.00000 + 1.00000i −1.00000 + 1.00000i
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 −1.41421 −1.41421
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 0 0
9999 0 0
100100 1.00000i 1.00000i
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 1.00000 + 1.00000i 1.00000 + 1.00000i
107107 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 0 0
109109 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
114114 0 0
115115 0 0
116116 1.41421i 1.41421i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 1.00000 1.00000
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
128128 0.707107 0.707107i 0.707107 0.707107i
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 −1.00000 + 1.00000i −1.00000 + 1.00000i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 −2.00000 −2.00000
149149 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 −1.41421 1.41421i −1.41421 1.41421i
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 2.00000 2.00000
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 −1.41421 −1.41421
177177 0 0
178178 0 0
179179 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 −1.00000 1.00000i −1.00000 1.00000i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 0 0
197197 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0.707107 0.707107i 0.707107 0.707107i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
212212 1.41421i 1.41421i
213213 0 0
214214 −1.00000 1.00000i −1.00000 1.00000i
215215 0 0
216216 0 0
217217 0 0
218218 1.41421 1.41421i 1.41421 1.41421i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 1.00000 1.00000i 1.00000 1.00000i
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 −1.00000 + 1.00000i −1.00000 + 1.00000i
233233 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0.707107 + 0.707107i 0.707107 + 0.707107i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 2.00000i 2.00000i
254254 −1.41421 1.41421i −1.41421 1.41421i
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 −1.00000 + 1.00000i −1.00000 + 1.00000i
275275 −1.41421 −1.41421
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 −1.41421 −1.41421
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 1.00000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 −1.41421 1.41421i −1.41421 1.41421i
297297 0 0
298298 1.00000 + 1.00000i 1.00000 + 1.00000i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 0 0
315315 0 0
316316 2.00000i 2.00000i
317317 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
318318 0 0
319319 2.00000 2.00000
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0.707107 + 0.707107i 0.707107 + 0.707107i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 1.41421 + 1.41421i 1.41421 + 1.41421i
345345 0 0
346346 0 0
347347 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 −1.00000 1.00000i −1.00000 1.00000i
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 1.00000 + 1.00000i 1.00000 + 1.00000i
359359 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 1.41421i 1.41421i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 1.00000 1.00000i 1.00000 1.00000i
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 1.00000 + 1.00000i 1.00000 + 1.00000i
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 1.00000 1.00000
401401 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 2.82843i 2.82843i
408408 0 0
409409 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 1.41421 1.41421i 1.41421 1.41421i
423423 0 0
424424 −1.00000 + 1.00000i −1.00000 + 1.00000i
425425 0 0
426426 0 0
427427 0 0
428428 1.41421i 1.41421i
429429 0 0
430430 0 0
431431 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 2.00000 2.00000
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 0 0
442442 0 0
443443 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
450450 0 0
451451 0 0
452452 1.41421 1.41421
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
464464 −1.41421 −1.41421
465465 0 0
466466 1.00000 1.00000i 1.00000 1.00000i
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 2.82843i 2.82843i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 1.00000 1.00000i 1.00000 1.00000i
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 1.00000i 1.00000i
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 0 0
491491 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 −1.41421 + 1.41421i −1.41421 + 1.41421i
507507 0 0
508508 2.00000i 2.00000i
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 0.707107 + 0.707107i 0.707107 + 0.707107i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 1.00000 1.00000i 1.00000 1.00000i
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 −1.41421 −1.41421
549549 0 0
550550 −1.00000 1.00000i −1.00000 1.00000i
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 1.00000 1.00000i 1.00000 1.00000i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 −1.00000 1.00000i −1.00000 1.00000i
569569 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 1.41421i 1.41421i
576576 0 0
577577 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
578578 0.707107 + 0.707107i 0.707107 + 0.707107i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 2.00000 2.00000
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 2.00000i 2.00000i
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 1.41421i 1.41421i
597597 0 0
598598 0 0
599599 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 2.00000 2.00000 1.00000 00
1.00000 00
632632 1.41421 1.41421i 1.41421 1.41421i
633633 0 0
634634 −1.00000 1.00000i −1.00000 1.00000i
635635 0 0
636636 0 0
637637 0 0
638638 1.41421 + 1.41421i 1.41421 + 1.41421i
639639 0 0
640640 0 0
641641 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 1.41421 1.41421i 1.41421 1.41421i
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 2.00000i 2.00000i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 1.00000i 1.00000i
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 2.00000i 2.00000i
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 0 0
694694 −1.00000 1.00000i −1.00000 1.00000i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
702702 0 0
703703 0 0
704704 1.41421i 1.41421i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 1.41421i 1.41421i
717717 0 0
718718 −1.00000 + 1.00000i −1.00000 + 1.00000i
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0.707107 + 0.707107i 0.707107 + 0.707107i
723723 0 0
724724 0 0
725725 −1.41421 −1.41421
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 1.00000 1.00000i 1.00000 1.00000i
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
758758 −1.41421 + 1.41421i −1.41421 + 1.41421i
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 1.41421 1.41421
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 −1.00000 1.00000i −1.00000 1.00000i
779779 0 0
780780 0 0
781781 2.00000i 2.00000i
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 1.41421i 1.41421i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 0.707107 + 0.707107i 0.707107 + 0.707107i
801801 0 0
802802 1.00000 1.00000i 1.00000 1.00000i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 −2.00000 + 2.00000i −2.00000 + 2.00000i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
822822 0 0
823823 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 2.00000 2.00000
845845 0 0
846846 0 0
847847 0 0
848848 −1.41421 −1.41421
849849 0 0
850850 0 0
851851 −2.82843 −2.82843
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 1.00000 1.00000i 1.00000 1.00000i
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 −1.00000 + 1.00000i −1.00000 + 1.00000i
863863 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 −2.82843 −2.82843
870870 0 0
871871 0 0
872872 1.41421 + 1.41421i 1.41421 + 1.41421i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 1.00000 + 1.00000i 1.00000 + 1.00000i
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −1.00000 + 1.00000i −1.00000 + 1.00000i
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 1.00000 + 1.00000i 1.00000 + 1.00000i
905905 0 0
906906 0 0
907907 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 2.00000i 2.00000i
926926 −1.41421 1.41421i −1.41421 1.41421i
927927 0 0
928928 −1.00000 1.00000i −1.00000 1.00000i
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 1.41421 1.41421
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 2.00000 2.00000i 2.00000 2.00000i
947947 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
954954 0 0
955955 0 0
956956 1.41421 1.41421
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 2.00000 2.00000 1.00000 00
1.00000 00
968968 −0.707107 + 0.707107i −0.707107 + 0.707107i
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 −1.00000 1.00000i −1.00000 1.00000i
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 2.82843 2.82843
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 1.41421 1.41421i 1.41421 1.41421i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.1.n.a.197.4 yes 4
3.2 odd 2 inner 3528.1.n.a.197.1 4
7.2 even 3 3528.1.bd.a.557.3 8
7.3 odd 6 3528.1.bd.a.3509.1 8
7.4 even 3 3528.1.bd.a.3509.1 8
7.5 odd 6 3528.1.bd.a.557.3 8
7.6 odd 2 CM 3528.1.n.a.197.4 yes 4
8.5 even 2 inner 3528.1.n.a.197.2 yes 4
21.2 odd 6 3528.1.bd.a.557.2 8
21.5 even 6 3528.1.bd.a.557.2 8
21.11 odd 6 3528.1.bd.a.3509.4 8
21.17 even 6 3528.1.bd.a.3509.4 8
21.20 even 2 inner 3528.1.n.a.197.1 4
24.5 odd 2 inner 3528.1.n.a.197.3 yes 4
56.5 odd 6 3528.1.bd.a.557.4 8
56.13 odd 2 inner 3528.1.n.a.197.2 yes 4
56.37 even 6 3528.1.bd.a.557.4 8
56.45 odd 6 3528.1.bd.a.3509.2 8
56.53 even 6 3528.1.bd.a.3509.2 8
168.5 even 6 3528.1.bd.a.557.1 8
168.53 odd 6 3528.1.bd.a.3509.3 8
168.101 even 6 3528.1.bd.a.3509.3 8
168.125 even 2 inner 3528.1.n.a.197.3 yes 4
168.149 odd 6 3528.1.bd.a.557.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3528.1.n.a.197.1 4 3.2 odd 2 inner
3528.1.n.a.197.1 4 21.20 even 2 inner
3528.1.n.a.197.2 yes 4 8.5 even 2 inner
3528.1.n.a.197.2 yes 4 56.13 odd 2 inner
3528.1.n.a.197.3 yes 4 24.5 odd 2 inner
3528.1.n.a.197.3 yes 4 168.125 even 2 inner
3528.1.n.a.197.4 yes 4 1.1 even 1 trivial
3528.1.n.a.197.4 yes 4 7.6 odd 2 CM
3528.1.bd.a.557.1 8 168.5 even 6
3528.1.bd.a.557.1 8 168.149 odd 6
3528.1.bd.a.557.2 8 21.2 odd 6
3528.1.bd.a.557.2 8 21.5 even 6
3528.1.bd.a.557.3 8 7.2 even 3
3528.1.bd.a.557.3 8 7.5 odd 6
3528.1.bd.a.557.4 8 56.5 odd 6
3528.1.bd.a.557.4 8 56.37 even 6
3528.1.bd.a.3509.1 8 7.3 odd 6
3528.1.bd.a.3509.1 8 7.4 even 3
3528.1.bd.a.3509.2 8 56.45 odd 6
3528.1.bd.a.3509.2 8 56.53 even 6
3528.1.bd.a.3509.3 8 168.53 odd 6
3528.1.bd.a.3509.3 8 168.101 even 6
3528.1.bd.a.3509.4 8 21.11 odd 6
3528.1.bd.a.3509.4 8 21.17 even 6