Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3528,2,Mod(1,3528)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3528, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3528.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3528.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(28.1712218331\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1176) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 3528.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −4.00000 | −1.10940 | −0.554700 | − | 0.832050i | \(-0.687167\pi\) | ||||
−0.554700 | + | 0.832050i | \(0.687167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 4.00000 | 0.970143 | 0.485071 | − | 0.874475i | \(-0.338794\pi\) | ||||
0.485071 | + | 0.874475i | \(0.338794\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −4.00000 | −0.834058 | −0.417029 | − | 0.908893i | \(-0.636929\pi\) | ||||
−0.417029 | + | 0.908893i | \(0.636929\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.00000 | −1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −8.00000 | −1.43684 | −0.718421 | − | 0.695608i | \(-0.755135\pi\) | ||||
−0.718421 | + | 0.695608i | \(0.755135\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −6.00000 | −0.986394 | −0.493197 | − | 0.869918i | \(-0.664172\pi\) | ||||
−0.493197 | + | 0.869918i | \(0.664172\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 12.0000 | 1.87409 | 0.937043 | − | 0.349215i | \(-0.113552\pi\) | ||||
0.937043 | + | 0.349215i | \(0.113552\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | 0.609994 | 0.304997 | − | 0.952353i | \(-0.401344\pi\) | ||||
0.304997 | + | 0.952353i | \(0.401344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −8.00000 | −1.16692 | −0.583460 | − | 0.812142i | \(-0.698301\pi\) | ||||
−0.583460 | + | 0.812142i | \(0.698301\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0 | 0 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 12.0000 | 1.56227 | 0.781133 | − | 0.624364i | \(-0.214642\pi\) | ||||
0.781133 | + | 0.624364i | \(0.214642\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −4.00000 | −0.512148 | −0.256074 | − | 0.966657i | \(-0.582429\pi\) | ||||
−0.256074 | + | 0.966657i | \(0.582429\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −4.00000 | −0.488678 | −0.244339 | − | 0.969690i | \(-0.578571\pi\) | ||||
−0.244339 | + | 0.969690i | \(0.578571\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 12.0000 | 1.42414 | 0.712069 | − | 0.702109i | \(-0.247758\pi\) | ||||
0.712069 | + | 0.702109i | \(0.247758\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −8.00000 | −0.936329 | −0.468165 | − | 0.883641i | \(-0.655085\pi\) | ||||
−0.468165 | + | 0.883641i | \(0.655085\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −16.0000 | −1.80014 | −0.900070 | − | 0.435745i | \(-0.856485\pi\) | ||||
−0.900070 | + | 0.435745i | \(0.856485\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −4.00000 | −0.439057 | −0.219529 | − | 0.975606i | \(-0.570452\pi\) | ||||
−0.219529 | + | 0.975606i | \(0.570452\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 4.00000 | 0.423999 | 0.212000 | − | 0.977270i | \(-0.432002\pi\) | ||||
0.212000 | + | 0.977270i | \(0.432002\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −16.0000 | −1.62455 | −0.812277 | − | 0.583272i | \(-0.801772\pi\) | ||||
−0.812277 | + | 0.583272i | \(0.801772\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −8.00000 | −0.796030 | −0.398015 | − | 0.917379i | \(-0.630301\pi\) | ||||
−0.398015 | + | 0.917379i | \(0.630301\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000 | 0.788263 | 0.394132 | − | 0.919054i | \(-0.371045\pi\) | ||||
0.394132 | + | 0.919054i | \(0.371045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −8.00000 | −0.773389 | −0.386695 | − | 0.922208i | \(-0.626383\pi\) | ||||
−0.386695 | + | 0.922208i | \(0.626383\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −14.0000 | −1.34096 | −0.670478 | − | 0.741929i | \(-0.733911\pi\) | ||||
−0.670478 | + | 0.741929i | \(0.733911\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −2.00000 | −0.188144 | −0.0940721 | − | 0.995565i | \(-0.529988\pi\) | ||||
−0.0940721 | + | 0.995565i | \(0.529988\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000 | 0.709885 | 0.354943 | − | 0.934888i | \(-0.384500\pi\) | ||||
0.354943 | + | 0.934888i | \(0.384500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −4.00000 | −0.349482 | −0.174741 | − | 0.984614i | \(-0.555909\pi\) | ||||
−0.174741 | + | 0.984614i | \(0.555909\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −22.0000 | −1.87959 | −0.939793 | − | 0.341743i | \(-0.888983\pi\) | ||||
−0.939793 | + | 0.341743i | \(0.888983\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 12.0000 | 1.01783 | 0.508913 | − | 0.860818i | \(-0.330047\pi\) | ||||
0.508913 | + | 0.860818i | \(0.330047\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 20.0000 | 1.59617 | 0.798087 | − | 0.602542i | \(-0.205846\pi\) | ||||
0.798087 | + | 0.602542i | \(0.205846\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −12.0000 | −0.939913 | −0.469956 | − | 0.882690i | \(-0.655730\pi\) | ||||
−0.469956 | + | 0.882690i | \(0.655730\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −8.00000 | −0.619059 | −0.309529 | − | 0.950890i | \(-0.600171\pi\) | ||||
−0.309529 | + | 0.950890i | \(0.600171\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 3.00000 | 0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 16.0000 | 1.21646 | 0.608229 | − | 0.793762i | \(-0.291880\pi\) | ||||
0.608229 | + | 0.793762i | \(0.291880\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 24.0000 | 1.79384 | 0.896922 | − | 0.442189i | \(-0.145798\pi\) | ||||
0.896922 | + | 0.442189i | \(0.145798\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 12.0000 | 0.891953 | 0.445976 | − | 0.895045i | \(-0.352856\pi\) | ||||
0.445976 | + | 0.895045i | \(0.352856\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −12.0000 | −0.868290 | −0.434145 | − | 0.900843i | \(-0.642949\pi\) | ||||
−0.434145 | + | 0.900843i | \(0.642949\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −14.0000 | −1.00774 | −0.503871 | − | 0.863779i | \(-0.668091\pi\) | ||||
−0.503871 | + | 0.863779i | \(0.668091\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −6.00000 | −0.427482 | −0.213741 | − | 0.976890i | \(-0.568565\pi\) | ||||
−0.213741 | + | 0.976890i | \(0.568565\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 8.00000 | 0.567105 | 0.283552 | − | 0.958957i | \(-0.408487\pi\) | ||||
0.283552 | + | 0.958957i | \(0.408487\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 20.0000 | 1.37686 | 0.688428 | − | 0.725304i | \(-0.258301\pi\) | ||||
0.688428 | + | 0.725304i | \(0.258301\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −16.0000 | −1.07628 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 16.0000 | 1.07144 | 0.535720 | − | 0.844396i | \(-0.320040\pi\) | ||||
0.535720 | + | 0.844396i | \(0.320040\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −20.0000 | −1.32745 | −0.663723 | − | 0.747978i | \(-0.731025\pi\) | ||||
−0.663723 | + | 0.747978i | \(0.731025\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −20.0000 | −1.32164 | −0.660819 | − | 0.750546i | \(-0.729791\pi\) | ||||
−0.660819 | + | 0.750546i | \(0.729791\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −6.00000 | −0.393073 | −0.196537 | − | 0.980497i | \(-0.562969\pi\) | ||||
−0.196537 | + | 0.980497i | \(0.562969\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 20.0000 | 1.29369 | 0.646846 | − | 0.762620i | \(-0.276088\pi\) | ||||
0.646846 | + | 0.762620i | \(0.276088\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −16.0000 | −1.01806 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −12.0000 | −0.757433 | −0.378717 | − | 0.925513i | \(-0.623635\pi\) | ||||
−0.378717 | + | 0.925513i | \(0.623635\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −12.0000 | −0.748539 | −0.374270 | − | 0.927320i | \(-0.622107\pi\) | ||||
−0.374270 | + | 0.927320i | \(0.622107\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −12.0000 | −0.739952 | −0.369976 | − | 0.929041i | \(-0.620634\pi\) | ||||
−0.369976 | + | 0.929041i | \(0.620634\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −24.0000 | −1.46331 | −0.731653 | − | 0.681677i | \(-0.761251\pi\) | ||||
−0.731653 | + | 0.681677i | \(0.761251\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −16.0000 | −0.971931 | −0.485965 | − | 0.873978i | \(-0.661532\pi\) | ||||
−0.485965 | + | 0.873978i | \(0.661532\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −10.0000 | −0.600842 | −0.300421 | − | 0.953807i | \(-0.597127\pi\) | ||||
−0.300421 | + | 0.953807i | \(0.597127\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −22.0000 | −1.31241 | −0.656205 | − | 0.754583i | \(-0.727839\pi\) | ||||
−0.656205 | + | 0.754583i | \(0.727839\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000 | 0.237775 | 0.118888 | − | 0.992908i | \(-0.462067\pi\) | ||||
0.118888 | + | 0.992908i | \(0.462067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −1.00000 | −0.0588235 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −24.0000 | −1.40209 | −0.701047 | − | 0.713115i | \(-0.747284\pi\) | ||||
−0.701047 | + | 0.713115i | \(0.747284\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 16.0000 | 0.925304 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −12.0000 | −0.684876 | −0.342438 | − | 0.939540i | \(-0.611253\pi\) | ||||
−0.342438 | + | 0.939540i | \(0.611253\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −16.0000 | −0.907277 | −0.453638 | − | 0.891186i | \(-0.649874\pi\) | ||||
−0.453638 | + | 0.891186i | \(0.649874\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 8.00000 | 0.452187 | 0.226093 | − | 0.974106i | \(-0.427405\pi\) | ||||
0.226093 | + | 0.974106i | \(0.427405\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 18.0000 | 1.01098 | 0.505490 | − | 0.862832i | \(-0.331312\pi\) | ||||
0.505490 | + | 0.862832i | \(0.331312\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 16.0000 | 0.890264 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 20.0000 | 1.10940 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 4.00000 | 0.219860 | 0.109930 | − | 0.993939i | \(-0.464937\pi\) | ||||
0.109930 | + | 0.993939i | \(0.464937\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −18.0000 | −0.980522 | −0.490261 | − | 0.871576i | \(-0.663099\pi\) | ||||
−0.490261 | + | 0.871576i | \(0.663099\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 24.0000 | 1.28839 | 0.644194 | − | 0.764862i | \(-0.277193\pi\) | ||||
0.644194 | + | 0.764862i | \(0.277193\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 36.0000 | 1.92704 | 0.963518 | − | 0.267644i | \(-0.0862451\pi\) | ||||
0.963518 | + | 0.267644i | \(0.0862451\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 28.0000 | 1.49029 | 0.745145 | − | 0.666903i | \(-0.232380\pi\) | ||||
0.745145 | + | 0.666903i | \(0.232380\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −28.0000 | −1.47778 | −0.738892 | − | 0.673824i | \(-0.764651\pi\) | ||||
−0.738892 | + | 0.673824i | \(0.764651\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 16.0000 | 0.835193 | 0.417597 | − | 0.908633i | \(-0.362873\pi\) | ||||
0.417597 | + | 0.908633i | \(0.362873\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −10.0000 | −0.517780 | −0.258890 | − | 0.965907i | \(-0.583357\pi\) | ||||
−0.258890 | + | 0.965907i | \(0.583357\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 8.00000 | 0.412021 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −12.0000 | −0.616399 | −0.308199 | − | 0.951322i | \(-0.599726\pi\) | ||||
−0.308199 | + | 0.951322i | \(0.599726\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 24.0000 | 1.22634 | 0.613171 | − | 0.789950i | \(-0.289894\pi\) | ||||
0.613171 | + | 0.789950i | \(0.289894\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −26.0000 | −1.31825 | −0.659126 | − | 0.752032i | \(-0.729074\pi\) | ||||
−0.659126 | + | 0.752032i | \(0.729074\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −16.0000 | −0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 20.0000 | 1.00377 | 0.501886 | − | 0.864934i | \(-0.332640\pi\) | ||||
0.501886 | + | 0.864934i | \(0.332640\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 18.0000 | 0.898877 | 0.449439 | − | 0.893311i | \(-0.351624\pi\) | ||||
0.449439 | + | 0.893311i | \(0.351624\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 32.0000 | 1.59403 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −32.0000 | −1.58230 | −0.791149 | − | 0.611623i | \(-0.790517\pi\) | ||||
−0.791149 | + | 0.611623i | \(0.790517\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 20.0000 | 0.977064 | 0.488532 | − | 0.872546i | \(-0.337533\pi\) | ||||
0.488532 | + | 0.872546i | \(0.337533\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 6.00000 | 0.292422 | 0.146211 | − | 0.989253i | \(-0.453292\pi\) | ||||
0.146211 | + | 0.989253i | \(0.453292\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −20.0000 | −0.970143 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 12.0000 | 0.578020 | 0.289010 | − | 0.957326i | \(-0.406674\pi\) | ||||
0.289010 | + | 0.957326i | \(0.406674\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −8.00000 | −0.384455 | −0.192228 | − | 0.981350i | \(-0.561571\pi\) | ||||
−0.192228 | + | 0.981350i | \(0.561571\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −16.0000 | −0.765384 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 32.0000 | 1.52037 | 0.760183 | − | 0.649709i | \(-0.225109\pi\) | ||||
0.760183 | + | 0.649709i | \(0.225109\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 14.0000 | 0.660701 | 0.330350 | − | 0.943858i | \(-0.392833\pi\) | ||||
0.330350 | + | 0.943858i | \(0.392833\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10.0000 | 0.467780 | 0.233890 | − | 0.972263i | \(-0.424854\pi\) | ||||
0.233890 | + | 0.972263i | \(0.424854\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −16.0000 | −0.745194 | −0.372597 | − | 0.927993i | \(-0.621533\pi\) | ||||
−0.372597 | + | 0.927993i | \(0.621533\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 16.0000 | 0.743583 | 0.371792 | − | 0.928316i | \(-0.378744\pi\) | ||||
0.371792 | + | 0.928316i | \(0.378744\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −20.0000 | −0.925490 | −0.462745 | − | 0.886492i | \(-0.653135\pi\) | ||||
−0.462745 | + | 0.886492i | \(0.653135\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −20.0000 | −0.917663 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 40.0000 | 1.82765 | 0.913823 | − | 0.406112i | \(-0.133116\pi\) | ||||
0.913823 | + | 0.406112i | \(0.133116\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 24.0000 | 1.09431 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 8.00000 | 0.362515 | 0.181257 | − | 0.983436i | \(-0.441983\pi\) | ||||
0.181257 | + | 0.983436i | \(0.441983\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −8.00000 | −0.360302 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 36.0000 | 1.61158 | 0.805791 | − | 0.592200i | \(-0.201741\pi\) | ||||
0.805791 | + | 0.592200i | \(0.201741\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 32.0000 | 1.42681 | 0.713405 | − | 0.700752i | \(-0.247152\pi\) | ||||
0.713405 | + | 0.700752i | \(0.247152\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 8.00000 | 0.354594 | 0.177297 | − | 0.984157i | \(-0.443265\pi\) | ||||
0.177297 | + | 0.984157i | \(0.443265\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 36.0000 | 1.57719 | 0.788594 | − | 0.614914i | \(-0.210809\pi\) | ||||
0.788594 | + | 0.614914i | \(0.210809\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −28.0000 | −1.22435 | −0.612177 | − | 0.790721i | \(-0.709706\pi\) | ||||
−0.612177 | + | 0.790721i | \(0.709706\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −32.0000 | −1.39394 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −48.0000 | −2.07911 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 30.0000 | 1.28980 | 0.644900 | − | 0.764267i | \(-0.276899\pi\) | ||||
0.644900 | + | 0.764267i | \(0.276899\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −28.0000 | −1.19719 | −0.598597 | − | 0.801050i | \(-0.704275\pi\) | ||||
−0.598597 | + | 0.801050i | \(0.704275\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −8.00000 | −0.340811 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 34.0000 | 1.44063 | 0.720313 | − | 0.693649i | \(-0.243998\pi\) | ||||
0.720313 | + | 0.693649i | \(0.243998\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −16.0000 | −0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −12.0000 | −0.505740 | −0.252870 | − | 0.967500i | \(-0.581374\pi\) | ||||
−0.252870 | + | 0.967500i | \(0.581374\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 10.0000 | 0.419222 | 0.209611 | − | 0.977785i | \(-0.432780\pi\) | ||||
0.209611 | + | 0.977785i | \(0.432780\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 12.0000 | 0.502184 | 0.251092 | − | 0.967963i | \(-0.419210\pi\) | ||||
0.251092 | + | 0.967963i | \(0.419210\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 20.0000 | 0.834058 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −32.0000 | −1.33218 | −0.666089 | − | 0.745873i | \(-0.732033\pi\) | ||||
−0.666089 | + | 0.745873i | \(0.732033\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 36.0000 | 1.48588 | 0.742940 | − | 0.669359i | \(-0.233431\pi\) | ||||
0.742940 | + | 0.669359i | \(0.233431\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −32.0000 | −1.31854 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −20.0000 | −0.821302 | −0.410651 | − | 0.911793i | \(-0.634698\pi\) | ||||
−0.410651 | + | 0.911793i | \(0.634698\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 12.0000 | 0.490307 | 0.245153 | − | 0.969484i | \(-0.421162\pi\) | ||||
0.245153 | + | 0.969484i | \(0.421162\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −16.0000 | −0.652654 | −0.326327 | − | 0.945257i | \(-0.605811\pi\) | ||||
−0.326327 | + | 0.945257i | \(0.605811\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 32.0000 | 1.29458 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 26.0000 | 1.05013 | 0.525065 | − | 0.851062i | \(-0.324041\pi\) | ||||
0.525065 | + | 0.851062i | \(0.324041\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −22.0000 | −0.885687 | −0.442843 | − | 0.896599i | \(-0.646030\pi\) | ||||
−0.442843 | + | 0.896599i | \(0.646030\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −44.0000 | −1.76851 | −0.884255 | − | 0.467005i | \(-0.845333\pi\) | ||||
−0.884255 | + | 0.467005i | \(0.845333\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −24.0000 | −0.956943 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 24.0000 | 0.955425 | 0.477712 | − | 0.878516i | \(-0.341466\pi\) | ||||
0.477712 | + | 0.878516i | \(0.341466\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.0000 | −1.18493 | −0.592464 | − | 0.805597i | \(-0.701845\pi\) | ||||
−0.592464 | + | 0.805597i | \(0.701845\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −4.00000 | −0.157745 | −0.0788723 | − | 0.996885i | \(-0.525132\pi\) | ||||
−0.0788723 | + | 0.996885i | \(0.525132\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −8.00000 | −0.314512 | −0.157256 | − | 0.987558i | \(-0.550265\pi\) | ||||
−0.157256 | + | 0.987558i | \(0.550265\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −2.00000 | −0.0782660 | −0.0391330 | − | 0.999234i | \(-0.512460\pi\) | ||||
−0.0391330 | + | 0.999234i | \(0.512460\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −40.0000 | −1.55818 | −0.779089 | − | 0.626913i | \(-0.784318\pi\) | ||||
−0.779089 | + | 0.626913i | \(0.784318\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −4.00000 | −0.155582 | −0.0777910 | − | 0.996970i | \(-0.524787\pi\) | ||||
−0.0777910 | + | 0.996970i | \(0.524787\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 8.00000 | 0.309761 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 14.0000 | 0.539660 | 0.269830 | − | 0.962908i | \(-0.413032\pi\) | ||||
0.269830 | + | 0.962908i | \(0.413032\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −32.0000 | −1.22986 | −0.614930 | − | 0.788582i | \(-0.710816\pi\) | ||||
−0.614930 | + | 0.788582i | \(0.710816\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 48.0000 | 1.83667 | 0.918334 | − | 0.395805i | \(-0.129534\pi\) | ||||
0.918334 | + | 0.395805i | \(0.129534\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24.0000 | 0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 20.0000 | 0.760836 | 0.380418 | − | 0.924815i | \(-0.375780\pi\) | ||||
0.380418 | + | 0.924815i | \(0.375780\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 48.0000 | 1.81813 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 46.0000 | 1.73740 | 0.868698 | − | 0.495342i | \(-0.164957\pi\) | ||||
0.868698 | + | 0.495342i | \(0.164957\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −24.0000 | −0.905177 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 26.0000 | 0.976450 | 0.488225 | − | 0.872718i | \(-0.337644\pi\) | ||||
0.488225 | + | 0.872718i | \(0.337644\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 32.0000 | 1.19841 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 40.0000 | 1.49175 | 0.745874 | − | 0.666087i | \(-0.232032\pi\) | ||||
0.745874 | + | 0.666087i | \(0.232032\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 10.0000 | 0.371391 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −24.0000 | −0.890111 | −0.445055 | − | 0.895503i | \(-0.646816\pi\) | ||||
−0.445055 | + | 0.895503i | \(0.646816\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 16.0000 | 0.591781 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 4.00000 | 0.147743 | 0.0738717 | − | 0.997268i | \(-0.476464\pi\) | ||||
0.0738717 | + | 0.997268i | \(0.476464\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 20.0000 | 0.735712 | 0.367856 | − | 0.929883i | \(-0.380092\pi\) | ||||
0.367856 | + | 0.929883i | \(0.380092\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 4.00000 | 0.146746 | 0.0733729 | − | 0.997305i | \(-0.476624\pi\) | ||||
0.0733729 | + | 0.997305i | \(0.476624\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 32.0000 | 1.16770 | 0.583848 | − | 0.811863i | \(-0.301546\pi\) | ||||
0.583848 | + | 0.811863i | \(0.301546\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −22.0000 | −0.799604 | −0.399802 | − | 0.916602i | \(-0.630921\pi\) | ||||
−0.399802 | + | 0.916602i | \(0.630921\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 12.0000 | 0.435000 | 0.217500 | − | 0.976060i | \(-0.430210\pi\) | ||||
0.217500 | + | 0.976060i | \(0.430210\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −48.0000 | −1.73318 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 8.00000 | 0.288487 | 0.144244 | − | 0.989542i | \(-0.453925\pi\) | ||||
0.144244 | + | 0.989542i | \(0.453925\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 24.0000 | 0.863220 | 0.431610 | − | 0.902060i | \(-0.357946\pi\) | ||||
0.431610 | + | 0.902060i | \(0.357946\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 40.0000 | 1.43684 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 48.0000 | 1.71978 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 52.0000 | 1.85360 | 0.926800 | − | 0.375555i | \(-0.122548\pi\) | ||||
0.926800 | + | 0.375555i | \(0.122548\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 16.0000 | 0.568177 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 16.0000 | 0.566749 | 0.283375 | − | 0.959009i | \(-0.408546\pi\) | ||||
0.283375 | + | 0.959009i | \(0.408546\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −32.0000 | −1.13208 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 38.0000 | 1.33601 | 0.668004 | − | 0.744157i | \(-0.267149\pi\) | ||||
0.668004 | + | 0.744157i | \(0.267149\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 20.0000 | 0.702295 | 0.351147 | − | 0.936320i | \(-0.385792\pi\) | ||||
0.351147 | + | 0.936320i | \(0.385792\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | 0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 26.0000 | 0.907406 | 0.453703 | − | 0.891153i | \(-0.350103\pi\) | ||||
0.453703 | + | 0.891153i | \(0.350103\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −8.00000 | −0.278862 | −0.139431 | − | 0.990232i | \(-0.544527\pi\) | ||||
−0.139431 | + | 0.990232i | \(0.544527\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 8.00000 | 0.278187 | 0.139094 | − | 0.990279i | \(-0.455581\pi\) | ||||
0.139094 | + | 0.990279i | \(0.455581\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 20.0000 | 0.694629 | 0.347314 | − | 0.937749i | \(-0.387094\pi\) | ||||
0.347314 | + | 0.937749i | \(0.387094\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −24.0000 | −0.828572 | −0.414286 | − | 0.910147i | \(-0.635969\pi\) | ||||
−0.414286 | + | 0.910147i | \(0.635969\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 24.0000 | 0.822709 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 4.00000 | 0.136957 | 0.0684787 | − | 0.997653i | \(-0.478185\pi\) | ||||
0.0684787 | + | 0.997653i | \(0.478185\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −36.0000 | −1.22974 | −0.614868 | − | 0.788630i | \(-0.710791\pi\) | ||||
−0.614868 | + | 0.788630i | \(0.710791\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −36.0000 | −1.22830 | −0.614152 | − | 0.789188i | \(-0.710502\pi\) | ||||
−0.614152 | + | 0.789188i | \(0.710502\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −20.0000 | −0.680808 | −0.340404 | − | 0.940279i | \(-0.610564\pi\) | ||||
−0.340404 | + | 0.940279i | \(0.610564\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 16.0000 | 0.542139 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −14.0000 | −0.472746 | −0.236373 | − | 0.971662i | \(-0.575959\pi\) | ||||
−0.236373 | + | 0.971662i | \(0.575959\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 12.0000 | 0.404290 | 0.202145 | − | 0.979356i | \(-0.435209\pi\) | ||||
0.202145 | + | 0.979356i | \(0.435209\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −44.0000 | −1.48072 | −0.740359 | − | 0.672212i | \(-0.765344\pi\) | ||||
−0.740359 | + | 0.672212i | \(0.765344\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −56.0000 | −1.88030 | −0.940148 | − | 0.340766i | \(-0.889313\pi\) | ||||
−0.940148 | + | 0.340766i | \(0.889313\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −32.0000 | −1.07084 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 16.0000 | 0.533630 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −24.0000 | −0.799556 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 44.0000 | 1.46100 | 0.730498 | − | 0.682915i | \(-0.239288\pi\) | ||||
0.730498 | + | 0.682915i | \(0.239288\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −36.0000 | −1.19273 | −0.596367 | − | 0.802712i | \(-0.703390\pi\) | ||||
−0.596367 | + | 0.802712i | \(0.703390\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −48.0000 | −1.57994 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 30.0000 | 0.986394 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 28.0000 | 0.918650 | 0.459325 | − | 0.888268i | \(-0.348091\pi\) | ||||
0.459325 | + | 0.888268i | \(0.348091\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −48.0000 | −1.56310 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 40.0000 | 1.29983 | 0.649913 | − | 0.760009i | \(-0.274805\pi\) | ||||
0.649913 | + | 0.760009i | \(0.274805\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 32.0000 | 1.03876 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6.00000 | 0.194359 | 0.0971795 | − | 0.995267i | \(-0.469018\pi\) | ||||
0.0971795 | + | 0.995267i | \(0.469018\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 16.0000 | 0.514525 | 0.257263 | − | 0.966342i | \(-0.417179\pi\) | ||||
0.257263 | + | 0.966342i | \(0.417179\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 28.0000 | 0.898563 | 0.449281 | − | 0.893390i | \(-0.351680\pi\) | ||||
0.449281 | + | 0.893390i | \(0.351680\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 34.0000 | 1.08776 | 0.543878 | − | 0.839164i | \(-0.316955\pi\) | ||||
0.543878 | + | 0.839164i | \(0.316955\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −56.0000 | −1.78612 | −0.893061 | − | 0.449935i | \(-0.851447\pi\) | ||||
−0.893061 | + | 0.449935i | \(0.851447\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −16.0000 | −0.508770 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −8.00000 | −0.254128 | −0.127064 | − | 0.991894i | \(-0.540555\pi\) | ||||
−0.127064 | + | 0.991894i | \(0.540555\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 28.0000 | 0.886769 | 0.443384 | − | 0.896332i | \(-0.353778\pi\) | ||||
0.443384 | + | 0.896332i | \(0.353778\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3528.2.a.m.1.1 | 1 | ||
3.2 | odd | 2 | 1176.2.a.b.1.1 | ✓ | 1 | ||
4.3 | odd | 2 | 7056.2.a.ba.1.1 | 1 | |||
7.2 | even | 3 | 3528.2.s.m.361.1 | 2 | |||
7.3 | odd | 6 | 3528.2.s.n.3313.1 | 2 | |||
7.4 | even | 3 | 3528.2.s.m.3313.1 | 2 | |||
7.5 | odd | 6 | 3528.2.s.n.361.1 | 2 | |||
7.6 | odd | 2 | 3528.2.a.n.1.1 | 1 | |||
12.11 | even | 2 | 2352.2.a.r.1.1 | 1 | |||
21.2 | odd | 6 | 1176.2.q.h.361.1 | 2 | |||
21.5 | even | 6 | 1176.2.q.c.361.1 | 2 | |||
21.11 | odd | 6 | 1176.2.q.h.961.1 | 2 | |||
21.17 | even | 6 | 1176.2.q.c.961.1 | 2 | |||
21.20 | even | 2 | 1176.2.a.h.1.1 | yes | 1 | ||
24.5 | odd | 2 | 9408.2.a.cl.1.1 | 1 | |||
24.11 | even | 2 | 9408.2.a.v.1.1 | 1 | |||
28.27 | even | 2 | 7056.2.a.bc.1.1 | 1 | |||
84.11 | even | 6 | 2352.2.q.h.961.1 | 2 | |||
84.23 | even | 6 | 2352.2.q.h.1537.1 | 2 | |||
84.47 | odd | 6 | 2352.2.q.t.1537.1 | 2 | |||
84.59 | odd | 6 | 2352.2.q.t.961.1 | 2 | |||
84.83 | odd | 2 | 2352.2.a.h.1.1 | 1 | |||
168.83 | odd | 2 | 9408.2.a.ck.1.1 | 1 | |||
168.125 | even | 2 | 9408.2.a.u.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1176.2.a.b.1.1 | ✓ | 1 | 3.2 | odd | 2 | ||
1176.2.a.h.1.1 | yes | 1 | 21.20 | even | 2 | ||
1176.2.q.c.361.1 | 2 | 21.5 | even | 6 | |||
1176.2.q.c.961.1 | 2 | 21.17 | even | 6 | |||
1176.2.q.h.361.1 | 2 | 21.2 | odd | 6 | |||
1176.2.q.h.961.1 | 2 | 21.11 | odd | 6 | |||
2352.2.a.h.1.1 | 1 | 84.83 | odd | 2 | |||
2352.2.a.r.1.1 | 1 | 12.11 | even | 2 | |||
2352.2.q.h.961.1 | 2 | 84.11 | even | 6 | |||
2352.2.q.h.1537.1 | 2 | 84.23 | even | 6 | |||
2352.2.q.t.961.1 | 2 | 84.59 | odd | 6 | |||
2352.2.q.t.1537.1 | 2 | 84.47 | odd | 6 | |||
3528.2.a.m.1.1 | 1 | 1.1 | even | 1 | trivial | ||
3528.2.a.n.1.1 | 1 | 7.6 | odd | 2 | |||
3528.2.s.m.361.1 | 2 | 7.2 | even | 3 | |||
3528.2.s.m.3313.1 | 2 | 7.4 | even | 3 | |||
3528.2.s.n.361.1 | 2 | 7.5 | odd | 6 | |||
3528.2.s.n.3313.1 | 2 | 7.3 | odd | 6 | |||
7056.2.a.ba.1.1 | 1 | 4.3 | odd | 2 | |||
7056.2.a.bc.1.1 | 1 | 28.27 | even | 2 | |||
9408.2.a.u.1.1 | 1 | 168.125 | even | 2 | |||
9408.2.a.v.1.1 | 1 | 24.11 | even | 2 | |||
9408.2.a.ck.1.1 | 1 | 168.83 | odd | 2 | |||
9408.2.a.cl.1.1 | 1 | 24.5 | odd | 2 |