Properties

Label 357.2.k.b.64.4
Level $357$
Weight $2$
Character 357.64
Analytic conductor $2.851$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(64,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 32 x^{18} + 426 x^{16} + 3072 x^{14} + 13121 x^{12} + 34148 x^{10} + 53608 x^{8} + 48276 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.4
Root \(-1.51109i\) of defining polynomial
Character \(\chi\) \(=\) 357.64
Dual form 357.2.k.b.106.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.51109i q^{2} +(-0.707107 - 0.707107i) q^{3} -0.283389 q^{4} +(-1.65084 - 1.65084i) q^{5} +(-1.06850 + 1.06850i) q^{6} +(-0.707107 + 0.707107i) q^{7} -2.59395i q^{8} +1.00000i q^{9} +O(q^{10})\) \(q-1.51109i q^{2} +(-0.707107 - 0.707107i) q^{3} -0.283389 q^{4} +(-1.65084 - 1.65084i) q^{5} +(-1.06850 + 1.06850i) q^{6} +(-0.707107 + 0.707107i) q^{7} -2.59395i q^{8} +1.00000i q^{9} +(-2.49457 + 2.49457i) q^{10} +(2.73442 - 2.73442i) q^{11} +(0.200386 + 0.200386i) q^{12} -7.04427 q^{13} +(1.06850 + 1.06850i) q^{14} +2.33464i q^{15} -4.48647 q^{16} +(0.965114 + 4.00856i) q^{17} +1.51109 q^{18} -0.992753i q^{19} +(0.467830 + 0.467830i) q^{20} +1.00000 q^{21} +(-4.13195 - 4.13195i) q^{22} +(-0.461170 + 0.461170i) q^{23} +(-1.83420 + 1.83420i) q^{24} +0.450549i q^{25} +10.6445i q^{26} +(0.707107 - 0.707107i) q^{27} +(0.200386 - 0.200386i) q^{28} +(-3.56926 - 3.56926i) q^{29} +3.52785 q^{30} +(1.46992 + 1.46992i) q^{31} +1.59155i q^{32} -3.86705 q^{33} +(6.05729 - 1.45837i) q^{34} +2.33464 q^{35} -0.283389i q^{36} +(4.07799 + 4.07799i) q^{37} -1.50014 q^{38} +(4.98105 + 4.98105i) q^{39} +(-4.28220 + 4.28220i) q^{40} +(8.45995 - 8.45995i) q^{41} -1.51109i q^{42} -2.40741i q^{43} +(-0.774904 + 0.774904i) q^{44} +(1.65084 - 1.65084i) q^{45} +(0.696868 + 0.696868i) q^{46} -6.81302 q^{47} +(3.17241 + 3.17241i) q^{48} -1.00000i q^{49} +0.680819 q^{50} +(2.15204 - 3.51692i) q^{51} +1.99627 q^{52} -5.04239i q^{53} +(-1.06850 - 1.06850i) q^{54} -9.02818 q^{55} +(1.83420 + 1.83420i) q^{56} +(-0.701983 + 0.701983i) q^{57} +(-5.39348 + 5.39348i) q^{58} -1.56548i q^{59} -0.661611i q^{60} +(8.83396 - 8.83396i) q^{61} +(2.22118 - 2.22118i) q^{62} +(-0.707107 - 0.707107i) q^{63} -6.56797 q^{64} +(11.6290 + 11.6290i) q^{65} +5.84346i q^{66} +4.95686 q^{67} +(-0.273503 - 1.13598i) q^{68} +0.652192 q^{69} -3.52785i q^{70} +(-5.53082 - 5.53082i) q^{71} +2.59395 q^{72} +(3.24064 + 3.24064i) q^{73} +(6.16220 - 6.16220i) q^{74} +(0.318586 - 0.318586i) q^{75} +0.281335i q^{76} +3.86705i q^{77} +(7.52681 - 7.52681i) q^{78} +(0.679318 - 0.679318i) q^{79} +(7.40644 + 7.40644i) q^{80} -1.00000 q^{81} +(-12.7837 - 12.7837i) q^{82} -12.8881i q^{83} -0.283389 q^{84} +(5.02425 - 8.21074i) q^{85} -3.63780 q^{86} +5.04770i q^{87} +(-7.09295 - 7.09295i) q^{88} +3.82872 q^{89} +(-2.49457 - 2.49457i) q^{90} +(4.98105 - 4.98105i) q^{91} +(0.130690 - 0.130690i) q^{92} -2.07878i q^{93} +10.2951i q^{94} +(-1.63888 + 1.63888i) q^{95} +(1.12539 - 1.12539i) q^{96} +(2.10281 + 2.10281i) q^{97} -1.51109 q^{98} +(2.73442 + 2.73442i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6} + 16 q^{10} + 4 q^{11} - 12 q^{13} + 4 q^{14} + 40 q^{16} + 4 q^{17} + 8 q^{18} - 52 q^{20} + 20 q^{21} - 24 q^{22} - 4 q^{23} + 4 q^{24} - 8 q^{29} + 8 q^{31} - 4 q^{33} - 44 q^{34} + 12 q^{35} + 24 q^{37} - 64 q^{38} - 12 q^{39} - 52 q^{40} - 20 q^{41} + 72 q^{44} - 8 q^{45} + 28 q^{46} - 32 q^{47} + 32 q^{48} + 104 q^{50} + 8 q^{51} + 48 q^{52} - 4 q^{54} - 36 q^{55} - 4 q^{56} - 16 q^{57} - 60 q^{58} + 28 q^{61} + 36 q^{62} - 112 q^{64} - 4 q^{65} + 40 q^{67} - 52 q^{68} + 36 q^{69} + 16 q^{71} - 24 q^{72} - 72 q^{73} - 24 q^{74} - 8 q^{75} + 40 q^{78} - 8 q^{79} + 120 q^{80} - 20 q^{81} + 108 q^{82} - 24 q^{84} + 40 q^{85} - 28 q^{88} - 64 q^{89} + 16 q^{90} - 12 q^{91} - 56 q^{92} + 60 q^{95} + 16 q^{96} + 60 q^{97} - 8 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51109i 1.06850i −0.845326 0.534251i \(-0.820594\pi\)
0.845326 0.534251i \(-0.179406\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) −0.283389 −0.141694
\(5\) −1.65084 1.65084i −0.738278 0.738278i 0.233966 0.972245i \(-0.424829\pi\)
−0.972245 + 0.233966i \(0.924829\pi\)
\(6\) −1.06850 + 1.06850i −0.436214 + 0.436214i
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) 2.59395i 0.917100i
\(9\) 1.00000i 0.333333i
\(10\) −2.49457 + 2.49457i −0.788851 + 0.788851i
\(11\) 2.73442 2.73442i 0.824459 0.824459i −0.162285 0.986744i \(-0.551886\pi\)
0.986744 + 0.162285i \(0.0518864\pi\)
\(12\) 0.200386 + 0.200386i 0.0578465 + 0.0578465i
\(13\) −7.04427 −1.95373 −0.976864 0.213859i \(-0.931397\pi\)
−0.976864 + 0.213859i \(0.931397\pi\)
\(14\) 1.06850 + 1.06850i 0.285569 + 0.285569i
\(15\) 2.33464i 0.602802i
\(16\) −4.48647 −1.12162
\(17\) 0.965114 + 4.00856i 0.234074 + 0.972219i
\(18\) 1.51109 0.356167
\(19\) 0.992753i 0.227753i −0.993495 0.113877i \(-0.963673\pi\)
0.993495 0.113877i \(-0.0363269\pi\)
\(20\) 0.467830 + 0.467830i 0.104610 + 0.104610i
\(21\) 1.00000 0.218218
\(22\) −4.13195 4.13195i −0.880935 0.880935i
\(23\) −0.461170 + 0.461170i −0.0961605 + 0.0961605i −0.753551 0.657390i \(-0.771660\pi\)
0.657390 + 0.753551i \(0.271660\pi\)
\(24\) −1.83420 + 1.83420i −0.374405 + 0.374405i
\(25\) 0.450549i 0.0901097i
\(26\) 10.6445i 2.08756i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0.200386 0.200386i 0.0378694 0.0378694i
\(29\) −3.56926 3.56926i −0.662796 0.662796i 0.293242 0.956038i \(-0.405266\pi\)
−0.956038 + 0.293242i \(0.905266\pi\)
\(30\) 3.52785 0.644094
\(31\) 1.46992 + 1.46992i 0.264006 + 0.264006i 0.826679 0.562673i \(-0.190227\pi\)
−0.562673 + 0.826679i \(0.690227\pi\)
\(32\) 1.59155i 0.281349i
\(33\) −3.86705 −0.673168
\(34\) 6.05729 1.45837i 1.03882 0.250109i
\(35\) 2.33464 0.394626
\(36\) 0.283389i 0.0472315i
\(37\) 4.07799 + 4.07799i 0.670417 + 0.670417i 0.957812 0.287395i \(-0.0927892\pi\)
−0.287395 + 0.957812i \(0.592789\pi\)
\(38\) −1.50014 −0.243355
\(39\) 4.98105 + 4.98105i 0.797607 + 0.797607i
\(40\) −4.28220 + 4.28220i −0.677075 + 0.677075i
\(41\) 8.45995 8.45995i 1.32122 1.32122i 0.408433 0.912788i \(-0.366075\pi\)
0.912788 0.408433i \(-0.133925\pi\)
\(42\) 1.51109i 0.233166i
\(43\) 2.40741i 0.367126i −0.983008 0.183563i \(-0.941237\pi\)
0.983008 0.183563i \(-0.0587631\pi\)
\(44\) −0.774904 + 0.774904i −0.116821 + 0.116821i
\(45\) 1.65084 1.65084i 0.246093 0.246093i
\(46\) 0.696868 + 0.696868i 0.102748 + 0.102748i
\(47\) −6.81302 −0.993781 −0.496890 0.867813i \(-0.665525\pi\)
−0.496890 + 0.867813i \(0.665525\pi\)
\(48\) 3.17241 + 3.17241i 0.457898 + 0.457898i
\(49\) 1.00000i 0.142857i
\(50\) 0.680819 0.0962823
\(51\) 2.15204 3.51692i 0.301346 0.492467i
\(52\) 1.99627 0.276833
\(53\) 5.04239i 0.692626i −0.938119 0.346313i \(-0.887434\pi\)
0.938119 0.346313i \(-0.112566\pi\)
\(54\) −1.06850 1.06850i −0.145405 0.145405i
\(55\) −9.02818 −1.21736
\(56\) 1.83420 + 1.83420i 0.245105 + 0.245105i
\(57\) −0.701983 + 0.701983i −0.0929799 + 0.0929799i
\(58\) −5.39348 + 5.39348i −0.708198 + 0.708198i
\(59\) 1.56548i 0.203808i −0.994794 0.101904i \(-0.967507\pi\)
0.994794 0.101904i \(-0.0324934\pi\)
\(60\) 0.661611i 0.0854137i
\(61\) 8.83396 8.83396i 1.13107 1.13107i 0.141074 0.989999i \(-0.454944\pi\)
0.989999 0.141074i \(-0.0450555\pi\)
\(62\) 2.22118 2.22118i 0.282090 0.282090i
\(63\) −0.707107 0.707107i −0.0890871 0.0890871i
\(64\) −6.56797 −0.820996
\(65\) 11.6290 + 11.6290i 1.44240 + 1.44240i
\(66\) 5.84346i 0.719280i
\(67\) 4.95686 0.605577 0.302788 0.953058i \(-0.402082\pi\)
0.302788 + 0.953058i \(0.402082\pi\)
\(68\) −0.273503 1.13598i −0.0331671 0.137758i
\(69\) 0.652192 0.0785147
\(70\) 3.52785i 0.421659i
\(71\) −5.53082 5.53082i −0.656387 0.656387i 0.298136 0.954523i \(-0.403635\pi\)
−0.954523 + 0.298136i \(0.903635\pi\)
\(72\) 2.59395 0.305700
\(73\) 3.24064 + 3.24064i 0.379289 + 0.379289i 0.870846 0.491557i \(-0.163572\pi\)
−0.491557 + 0.870846i \(0.663572\pi\)
\(74\) 6.16220 6.16220i 0.716341 0.716341i
\(75\) 0.318586 0.318586i 0.0367871 0.0367871i
\(76\) 0.281335i 0.0322714i
\(77\) 3.86705i 0.440692i
\(78\) 7.52681 7.52681i 0.852243 0.852243i
\(79\) 0.679318 0.679318i 0.0764293 0.0764293i −0.667859 0.744288i \(-0.732789\pi\)
0.744288 + 0.667859i \(0.232789\pi\)
\(80\) 7.40644 + 7.40644i 0.828066 + 0.828066i
\(81\) −1.00000 −0.111111
\(82\) −12.7837 12.7837i −1.41173 1.41173i
\(83\) 12.8881i 1.41465i −0.706889 0.707324i \(-0.749902\pi\)
0.706889 0.707324i \(-0.250098\pi\)
\(84\) −0.283389 −0.0309203
\(85\) 5.02425 8.21074i 0.544956 0.890580i
\(86\) −3.63780 −0.392275
\(87\) 5.04770i 0.541170i
\(88\) −7.09295 7.09295i −0.756111 0.756111i
\(89\) 3.82872 0.405843 0.202922 0.979195i \(-0.434956\pi\)
0.202922 + 0.979195i \(0.434956\pi\)
\(90\) −2.49457 2.49457i −0.262950 0.262950i
\(91\) 4.98105 4.98105i 0.522156 0.522156i
\(92\) 0.130690 0.130690i 0.0136254 0.0136254i
\(93\) 2.07878i 0.215560i
\(94\) 10.2951i 1.06186i
\(95\) −1.63888 + 1.63888i −0.168145 + 0.168145i
\(96\) 1.12539 1.12539i 0.114860 0.114860i
\(97\) 2.10281 + 2.10281i 0.213508 + 0.213508i 0.805756 0.592248i \(-0.201759\pi\)
−0.592248 + 0.805756i \(0.701759\pi\)
\(98\) −1.51109 −0.152643
\(99\) 2.73442 + 2.73442i 0.274820 + 0.274820i
\(100\) 0.127680i 0.0127680i
\(101\) −1.00557 −0.100058 −0.0500290 0.998748i \(-0.515931\pi\)
−0.0500290 + 0.998748i \(0.515931\pi\)
\(102\) −5.31438 3.25193i −0.526202 0.321989i
\(103\) −1.58496 −0.156170 −0.0780852 0.996947i \(-0.524881\pi\)
−0.0780852 + 0.996947i \(0.524881\pi\)
\(104\) 18.2725i 1.79177i
\(105\) −1.65084 1.65084i −0.161106 0.161106i
\(106\) −7.61950 −0.740071
\(107\) 4.33329 + 4.33329i 0.418915 + 0.418915i 0.884829 0.465915i \(-0.154275\pi\)
−0.465915 + 0.884829i \(0.654275\pi\)
\(108\) −0.200386 + 0.200386i −0.0192822 + 0.0192822i
\(109\) 9.35507 9.35507i 0.896053 0.896053i −0.0990316 0.995084i \(-0.531574\pi\)
0.995084 + 0.0990316i \(0.0315745\pi\)
\(110\) 13.6424i 1.30075i
\(111\) 5.76715i 0.547393i
\(112\) 3.17241 3.17241i 0.299765 0.299765i
\(113\) 13.3488 13.3488i 1.25575 1.25575i 0.302642 0.953104i \(-0.402131\pi\)
0.953104 0.302642i \(-0.0978687\pi\)
\(114\) 1.06076 + 1.06076i 0.0993491 + 0.0993491i
\(115\) 1.52264 0.141986
\(116\) 1.01149 + 1.01149i 0.0939145 + 0.0939145i
\(117\) 7.04427i 0.651243i
\(118\) −2.36558 −0.217769
\(119\) −3.51692 2.15204i −0.322395 0.197277i
\(120\) 6.05595 0.552830
\(121\) 3.95411i 0.359464i
\(122\) −13.3489 13.3489i −1.20855 1.20855i
\(123\) −11.9642 −1.07877
\(124\) −0.416560 0.416560i −0.0374082 0.0374082i
\(125\) −7.51042 + 7.51042i −0.671752 + 0.671752i
\(126\) −1.06850 + 1.06850i −0.0951896 + 0.0951896i
\(127\) 22.2222i 1.97190i 0.167035 + 0.985951i \(0.446581\pi\)
−0.167035 + 0.985951i \(0.553419\pi\)
\(128\) 13.1079i 1.15858i
\(129\) −1.70229 + 1.70229i −0.149879 + 0.149879i
\(130\) 17.5724 17.5724i 1.54120 1.54120i
\(131\) −5.73121 5.73121i −0.500738 0.500738i 0.410929 0.911667i \(-0.365204\pi\)
−0.911667 + 0.410929i \(0.865204\pi\)
\(132\) 1.09588 0.0953841
\(133\) 0.701983 + 0.701983i 0.0608696 + 0.0608696i
\(134\) 7.49025i 0.647059i
\(135\) −2.33464 −0.200934
\(136\) 10.3980 2.50346i 0.891622 0.214670i
\(137\) −7.66715 −0.655049 −0.327524 0.944843i \(-0.606214\pi\)
−0.327524 + 0.944843i \(0.606214\pi\)
\(138\) 0.985521i 0.0838931i
\(139\) −3.45909 3.45909i −0.293396 0.293396i 0.545024 0.838420i \(-0.316520\pi\)
−0.838420 + 0.545024i \(0.816520\pi\)
\(140\) −0.661611 −0.0559164
\(141\) 4.81753 + 4.81753i 0.405709 + 0.405709i
\(142\) −8.35755 + 8.35755i −0.701350 + 0.701350i
\(143\) −19.2620 + 19.2620i −1.61077 + 1.61077i
\(144\) 4.48647i 0.373872i
\(145\) 11.7846i 0.978655i
\(146\) 4.89690 4.89690i 0.405270 0.405270i
\(147\) −0.707107 + 0.707107i −0.0583212 + 0.0583212i
\(148\) −1.15566 1.15566i −0.0949944 0.0949944i
\(149\) 13.7753 1.12852 0.564258 0.825599i \(-0.309162\pi\)
0.564258 + 0.825599i \(0.309162\pi\)
\(150\) −0.481412 0.481412i −0.0393071 0.0393071i
\(151\) 20.5923i 1.67578i 0.545841 + 0.837889i \(0.316210\pi\)
−0.545841 + 0.837889i \(0.683790\pi\)
\(152\) −2.57515 −0.208873
\(153\) −4.00856 + 0.965114i −0.324073 + 0.0780248i
\(154\) 5.84346 0.470880
\(155\) 4.85321i 0.389819i
\(156\) −1.41157 1.41157i −0.113016 0.113016i
\(157\) −23.0384 −1.83866 −0.919331 0.393484i \(-0.871270\pi\)
−0.919331 + 0.393484i \(0.871270\pi\)
\(158\) −1.02651 1.02651i −0.0816648 0.0816648i
\(159\) −3.56551 + 3.56551i −0.282763 + 0.282763i
\(160\) 2.62739 2.62739i 0.207714 0.207714i
\(161\) 0.652192i 0.0514000i
\(162\) 1.51109i 0.118722i
\(163\) −3.40803 + 3.40803i −0.266937 + 0.266937i −0.827865 0.560927i \(-0.810445\pi\)
0.560927 + 0.827865i \(0.310445\pi\)
\(164\) −2.39745 + 2.39745i −0.187210 + 0.187210i
\(165\) 6.38389 + 6.38389i 0.496985 + 0.496985i
\(166\) −19.4750 −1.51155
\(167\) 10.0111 + 10.0111i 0.774680 + 0.774680i 0.978921 0.204241i \(-0.0654725\pi\)
−0.204241 + 0.978921i \(0.565473\pi\)
\(168\) 2.59395i 0.200128i
\(169\) 36.6217 2.81706
\(170\) −12.4072 7.59208i −0.951586 0.582286i
\(171\) 0.992753 0.0759178
\(172\) 0.682232i 0.0520197i
\(173\) 14.3926 + 14.3926i 1.09425 + 1.09425i 0.995069 + 0.0991809i \(0.0316223\pi\)
0.0991809 + 0.995069i \(0.468378\pi\)
\(174\) 7.62753 0.578241
\(175\) −0.318586 0.318586i −0.0240828 0.0240828i
\(176\) −12.2679 + 12.2679i −0.924727 + 0.924727i
\(177\) −1.10696 + 1.10696i −0.0832042 + 0.0832042i
\(178\) 5.78553i 0.433644i
\(179\) 15.0614i 1.12574i 0.826544 + 0.562872i \(0.190304\pi\)
−0.826544 + 0.562872i \(0.809696\pi\)
\(180\) −0.467830 + 0.467830i −0.0348700 + 0.0348700i
\(181\) −3.31493 + 3.31493i −0.246397 + 0.246397i −0.819490 0.573093i \(-0.805743\pi\)
0.573093 + 0.819490i \(0.305743\pi\)
\(182\) −7.52681 7.52681i −0.557924 0.557924i
\(183\) −12.4931 −0.923517
\(184\) 1.19625 + 1.19625i 0.0881889 + 0.0881889i
\(185\) 13.4642i 0.989909i
\(186\) −3.14123 −0.230326
\(187\) 13.6001 + 8.32206i 0.994539 + 0.608569i
\(188\) 1.93073 0.140813
\(189\) 1.00000i 0.0727393i
\(190\) 2.47649 + 2.47649i 0.179663 + 0.179663i
\(191\) −17.6598 −1.27782 −0.638908 0.769283i \(-0.720614\pi\)
−0.638908 + 0.769283i \(0.720614\pi\)
\(192\) 4.64425 + 4.64425i 0.335170 + 0.335170i
\(193\) −10.4528 + 10.4528i −0.752408 + 0.752408i −0.974928 0.222520i \(-0.928572\pi\)
0.222520 + 0.974928i \(0.428572\pi\)
\(194\) 3.17753 3.17753i 0.228133 0.228133i
\(195\) 16.4458i 1.17771i
\(196\) 0.283389i 0.0202421i
\(197\) 3.21831 3.21831i 0.229295 0.229295i −0.583103 0.812398i \(-0.698162\pi\)
0.812398 + 0.583103i \(0.198162\pi\)
\(198\) 4.13195 4.13195i 0.293645 0.293645i
\(199\) 14.3092 + 14.3092i 1.01435 + 1.01435i 0.999895 + 0.0144592i \(0.00460267\pi\)
0.0144592 + 0.999895i \(0.495397\pi\)
\(200\) 1.16870 0.0826396
\(201\) −3.50503 3.50503i −0.247226 0.247226i
\(202\) 1.51951i 0.106912i
\(203\) 5.04770 0.354279
\(204\) −0.609865 + 0.996656i −0.0426991 + 0.0697799i
\(205\) −27.9320 −1.95086
\(206\) 2.39501i 0.166868i
\(207\) −0.461170 0.461170i −0.0320535 0.0320535i
\(208\) 31.6039 2.19134
\(209\) −2.71461 2.71461i −0.187773 0.187773i
\(210\) −2.49457 + 2.49457i −0.172141 + 0.172141i
\(211\) 1.06695 1.06695i 0.0734519 0.0734519i −0.669426 0.742878i \(-0.733460\pi\)
0.742878 + 0.669426i \(0.233460\pi\)
\(212\) 1.42896i 0.0981412i
\(213\) 7.82176i 0.535938i
\(214\) 6.54798 6.54798i 0.447611 0.447611i
\(215\) −3.97424 + 3.97424i −0.271041 + 0.271041i
\(216\) −1.83420 1.83420i −0.124802 0.124802i
\(217\) −2.07878 −0.141117
\(218\) −14.1363 14.1363i −0.957433 0.957433i
\(219\) 4.58296i 0.309688i
\(220\) 2.55849 0.172493
\(221\) −6.79852 28.2374i −0.457318 1.89945i
\(222\) −8.71467 −0.584890
\(223\) 29.2730i 1.96027i −0.198337 0.980134i \(-0.563554\pi\)
0.198337 0.980134i \(-0.436446\pi\)
\(224\) −1.12539 1.12539i −0.0751936 0.0751936i
\(225\) −0.450549 −0.0300366
\(226\) −20.1712 20.1712i −1.34177 1.34177i
\(227\) −16.0152 + 16.0152i −1.06296 + 1.06296i −0.0650831 + 0.997880i \(0.520731\pi\)
−0.997880 + 0.0650831i \(0.979269\pi\)
\(228\) 0.198934 0.198934i 0.0131747 0.0131747i
\(229\) 20.5349i 1.35699i −0.734607 0.678493i \(-0.762633\pi\)
0.734607 0.678493i \(-0.237367\pi\)
\(230\) 2.30084i 0.151713i
\(231\) 2.73442 2.73442i 0.179912 0.179912i
\(232\) −9.25850 + 9.25850i −0.607850 + 0.607850i
\(233\) 2.75026 + 2.75026i 0.180176 + 0.180176i 0.791432 0.611257i \(-0.209336\pi\)
−0.611257 + 0.791432i \(0.709336\pi\)
\(234\) −10.6445 −0.695854
\(235\) 11.2472 + 11.2472i 0.733687 + 0.733687i
\(236\) 0.443639i 0.0288785i
\(237\) −0.960701 −0.0624042
\(238\) −3.25193 + 5.31438i −0.210791 + 0.344480i
\(239\) −7.00766 −0.453288 −0.226644 0.973978i \(-0.572775\pi\)
−0.226644 + 0.973978i \(0.572775\pi\)
\(240\) 10.4743i 0.676113i
\(241\) 11.6350 + 11.6350i 0.749476 + 0.749476i 0.974381 0.224905i \(-0.0722070\pi\)
−0.224905 + 0.974381i \(0.572207\pi\)
\(242\) −5.97501 −0.384088
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −2.50345 + 2.50345i −0.160267 + 0.160267i
\(245\) −1.65084 + 1.65084i −0.105468 + 0.105468i
\(246\) 18.0789i 1.15267i
\(247\) 6.99322i 0.444968i
\(248\) 3.81291 3.81291i 0.242120 0.242120i
\(249\) −9.11323 + 9.11323i −0.577528 + 0.577528i
\(250\) 11.3489 + 11.3489i 0.717768 + 0.717768i
\(251\) −12.6735 −0.799941 −0.399971 0.916528i \(-0.630980\pi\)
−0.399971 + 0.916528i \(0.630980\pi\)
\(252\) 0.200386 + 0.200386i 0.0126231 + 0.0126231i
\(253\) 2.52206i 0.158561i
\(254\) 33.5797 2.10698
\(255\) −9.35855 + 2.25319i −0.586055 + 0.141100i
\(256\) 6.67123 0.416952
\(257\) 14.4557i 0.901719i −0.892595 0.450859i \(-0.851118\pi\)
0.892595 0.450859i \(-0.148882\pi\)
\(258\) 2.57232 + 2.57232i 0.160145 + 0.160145i
\(259\) −5.76715 −0.358353
\(260\) −3.29552 3.29552i −0.204379 0.204379i
\(261\) 3.56926 3.56926i 0.220932 0.220932i
\(262\) −8.66036 + 8.66036i −0.535039 + 0.535039i
\(263\) 17.9342i 1.10587i −0.833225 0.552935i \(-0.813508\pi\)
0.833225 0.552935i \(-0.186492\pi\)
\(264\) 10.0310i 0.617362i
\(265\) −8.32418 + 8.32418i −0.511351 + 0.511351i
\(266\) 1.06076 1.06076i 0.0650393 0.0650393i
\(267\) −2.70731 2.70731i −0.165685 0.165685i
\(268\) −1.40472 −0.0858069
\(269\) 3.04172 + 3.04172i 0.185457 + 0.185457i 0.793729 0.608272i \(-0.208137\pi\)
−0.608272 + 0.793729i \(0.708137\pi\)
\(270\) 3.52785i 0.214698i
\(271\) 26.7775 1.62662 0.813310 0.581831i \(-0.197664\pi\)
0.813310 + 0.581831i \(0.197664\pi\)
\(272\) −4.32995 17.9843i −0.262542 1.09046i
\(273\) −7.04427 −0.426339
\(274\) 11.5857i 0.699920i
\(275\) 1.23199 + 1.23199i 0.0742917 + 0.0742917i
\(276\) −0.184824 −0.0111251
\(277\) −6.21835 6.21835i −0.373625 0.373625i 0.495171 0.868796i \(-0.335105\pi\)
−0.868796 + 0.495171i \(0.835105\pi\)
\(278\) −5.22699 + 5.22699i −0.313494 + 0.313494i
\(279\) −1.46992 + 1.46992i −0.0880019 + 0.0880019i
\(280\) 6.05595i 0.361912i
\(281\) 13.5121i 0.806065i −0.915186 0.403033i \(-0.867956\pi\)
0.915186 0.403033i \(-0.132044\pi\)
\(282\) 7.27972 7.27972i 0.433501 0.433501i
\(283\) 18.1685 18.1685i 1.08000 1.08000i 0.0834957 0.996508i \(-0.473392\pi\)
0.996508 0.0834957i \(-0.0266085\pi\)
\(284\) 1.56737 + 1.56737i 0.0930064 + 0.0930064i
\(285\) 2.31772 0.137290
\(286\) 29.1066 + 29.1066i 1.72111 + 1.72111i
\(287\) 11.9642i 0.706223i
\(288\) −1.59155 −0.0937829
\(289\) −15.1371 + 7.73743i −0.890418 + 0.455143i
\(290\) 17.8075 1.04569
\(291\) 2.97382i 0.174328i
\(292\) −0.918363 0.918363i −0.0537431 0.0537431i
\(293\) 19.3056 1.12784 0.563922 0.825828i \(-0.309292\pi\)
0.563922 + 0.825828i \(0.309292\pi\)
\(294\) 1.06850 + 1.06850i 0.0623162 + 0.0623162i
\(295\) −2.58436 + 2.58436i −0.150467 + 0.150467i
\(296\) 10.5781 10.5781i 0.614840 0.614840i
\(297\) 3.86705i 0.224389i
\(298\) 20.8157i 1.20582i
\(299\) 3.24860 3.24860i 0.187872 0.187872i
\(300\) −0.0902837 + 0.0902837i −0.00521253 + 0.00521253i
\(301\) 1.70229 + 1.70229i 0.0981186 + 0.0981186i
\(302\) 31.1168 1.79057
\(303\) 0.711046 + 0.711046i 0.0408485 + 0.0408485i
\(304\) 4.45396i 0.255452i
\(305\) −29.1669 −1.67009
\(306\) 1.45837 + 6.05729i 0.0833696 + 0.346272i
\(307\) −0.224246 −0.0127984 −0.00639920 0.999980i \(-0.502037\pi\)
−0.00639920 + 0.999980i \(0.502037\pi\)
\(308\) 1.09588i 0.0624436i
\(309\) 1.12073 + 1.12073i 0.0637563 + 0.0637563i
\(310\) −7.33364 −0.416523
\(311\) −22.8463 22.8463i −1.29549 1.29549i −0.931339 0.364153i \(-0.881358\pi\)
−0.364153 0.931339i \(-0.618642\pi\)
\(312\) 12.9206 12.9206i 0.731485 0.731485i
\(313\) 6.97873 6.97873i 0.394461 0.394461i −0.481813 0.876274i \(-0.660022\pi\)
0.876274 + 0.481813i \(0.160022\pi\)
\(314\) 34.8130i 1.96461i
\(315\) 2.33464i 0.131542i
\(316\) −0.192511 + 0.192511i −0.0108296 + 0.0108296i
\(317\) 2.70321 2.70321i 0.151827 0.151827i −0.627106 0.778934i \(-0.715761\pi\)
0.778934 + 0.627106i \(0.215761\pi\)
\(318\) 5.38780 + 5.38780i 0.302133 + 0.302133i
\(319\) −19.5197 −1.09290
\(320\) 10.8427 + 10.8427i 0.606123 + 0.606123i
\(321\) 6.12819i 0.342042i
\(322\) −0.985521 −0.0549209
\(323\) 3.97951 0.958120i 0.221426 0.0533112i
\(324\) 0.283389 0.0157438
\(325\) 3.17379i 0.176050i
\(326\) 5.14983 + 5.14983i 0.285223 + 0.285223i
\(327\) −13.2301 −0.731624
\(328\) −21.9447 21.9447i −1.21169 1.21169i
\(329\) 4.81753 4.81753i 0.265599 0.265599i
\(330\) 9.64662 9.64662i 0.531029 0.531029i
\(331\) 20.4933i 1.12641i 0.826317 + 0.563206i \(0.190432\pi\)
−0.826317 + 0.563206i \(0.809568\pi\)
\(332\) 3.65233i 0.200448i
\(333\) −4.07799 + 4.07799i −0.223472 + 0.223472i
\(334\) 15.1276 15.1276i 0.827746 0.827746i
\(335\) −8.18298 8.18298i −0.447084 0.447084i
\(336\) −4.48647 −0.244757
\(337\) −16.3891 16.3891i −0.892772 0.892772i 0.102011 0.994783i \(-0.467472\pi\)
−0.994783 + 0.102011i \(0.967472\pi\)
\(338\) 55.3387i 3.01003i
\(339\) −18.8780 −1.02531
\(340\) −1.42382 + 2.32683i −0.0772172 + 0.126190i
\(341\) 8.03877 0.435324
\(342\) 1.50014i 0.0811182i
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) −6.24470 −0.336691
\(345\) −1.07667 1.07667i −0.0579657 0.0579657i
\(346\) 21.7485 21.7485i 1.16921 1.16921i
\(347\) 0.767240 0.767240i 0.0411876 0.0411876i −0.686213 0.727401i \(-0.740728\pi\)
0.727401 + 0.686213i \(0.240728\pi\)
\(348\) 1.43046i 0.0766809i
\(349\) 12.8669i 0.688749i 0.938832 + 0.344374i \(0.111909\pi\)
−0.938832 + 0.344374i \(0.888091\pi\)
\(350\) −0.481412 + 0.481412i −0.0257325 + 0.0257325i
\(351\) −4.98105 + 4.98105i −0.265869 + 0.265869i
\(352\) 4.35196 + 4.35196i 0.231960 + 0.231960i
\(353\) 6.81692 0.362828 0.181414 0.983407i \(-0.441933\pi\)
0.181414 + 0.983407i \(0.441933\pi\)
\(354\) 1.67272 + 1.67272i 0.0889038 + 0.0889038i
\(355\) 18.2610i 0.969193i
\(356\) −1.08502 −0.0575058
\(357\) 0.965114 + 4.00856i 0.0510792 + 0.212156i
\(358\) 22.7592 1.20286
\(359\) 6.71484i 0.354396i −0.984175 0.177198i \(-0.943297\pi\)
0.984175 0.177198i \(-0.0567033\pi\)
\(360\) −4.28220 4.28220i −0.225692 0.225692i
\(361\) 18.0144 0.948128
\(362\) 5.00916 + 5.00916i 0.263275 + 0.263275i
\(363\) −2.79598 + 2.79598i −0.146751 + 0.146751i
\(364\) −1.41157 + 1.41157i −0.0739866 + 0.0739866i
\(365\) 10.6996i 0.560041i
\(366\) 18.8782i 0.986779i
\(367\) 13.7945 13.7945i 0.720070 0.720070i −0.248550 0.968619i \(-0.579954\pi\)
0.968619 + 0.248550i \(0.0799539\pi\)
\(368\) 2.06902 2.06902i 0.107855 0.107855i
\(369\) 8.45995 + 8.45995i 0.440407 + 0.440407i
\(370\) −20.3456 −1.05772
\(371\) 3.56551 + 3.56551i 0.185112 + 0.185112i
\(372\) 0.589104i 0.0305436i
\(373\) 11.5715 0.599152 0.299576 0.954072i \(-0.403155\pi\)
0.299576 + 0.954072i \(0.403155\pi\)
\(374\) 12.5754 20.5510i 0.650257 1.06267i
\(375\) 10.6213 0.548483
\(376\) 17.6726i 0.911397i
\(377\) 25.1429 + 25.1429i 1.29492 + 1.29492i
\(378\) 1.51109 0.0777220
\(379\) 10.0319 + 10.0319i 0.515306 + 0.515306i 0.916147 0.400842i \(-0.131282\pi\)
−0.400842 + 0.916147i \(0.631282\pi\)
\(380\) 0.464440 0.464440i 0.0238253 0.0238253i
\(381\) 15.7135 15.7135i 0.805026 0.805026i
\(382\) 26.6855i 1.36535i
\(383\) 10.0566i 0.513871i 0.966429 + 0.256935i \(0.0827128\pi\)
−0.966429 + 0.256935i \(0.917287\pi\)
\(384\) 9.26867 9.26867i 0.472990 0.472990i
\(385\) 6.38389 6.38389i 0.325353 0.325353i
\(386\) 15.7951 + 15.7951i 0.803949 + 0.803949i
\(387\) 2.40741 0.122375
\(388\) −0.595912 0.595912i −0.0302528 0.0302528i
\(389\) 15.1409i 0.767672i 0.923401 + 0.383836i \(0.125397\pi\)
−0.923401 + 0.383836i \(0.874603\pi\)
\(390\) −24.8511 −1.25839
\(391\) −2.29371 1.40355i −0.115998 0.0709803i
\(392\) −2.59395 −0.131014
\(393\) 8.10515i 0.408851i
\(394\) −4.86315 4.86315i −0.245002 0.245002i
\(395\) −2.24289 −0.112852
\(396\) −0.774904 0.774904i −0.0389404 0.0389404i
\(397\) 20.2301 20.2301i 1.01532 1.01532i 0.0154374 0.999881i \(-0.495086\pi\)
0.999881 0.0154374i \(-0.00491407\pi\)
\(398\) 21.6225 21.6225i 1.08384 1.08384i
\(399\) 0.992753i 0.0496998i
\(400\) 2.02137i 0.101069i
\(401\) −4.45942 + 4.45942i −0.222693 + 0.222693i −0.809631 0.586939i \(-0.800333\pi\)
0.586939 + 0.809631i \(0.300333\pi\)
\(402\) −5.29641 + 5.29641i −0.264161 + 0.264161i
\(403\) −10.3545 10.3545i −0.515796 0.515796i
\(404\) 0.284968 0.0141777
\(405\) 1.65084 + 1.65084i 0.0820309 + 0.0820309i
\(406\) 7.62753i 0.378548i
\(407\) 22.3019 1.10546
\(408\) −9.12272 5.58229i −0.451642 0.276365i
\(409\) −0.539984 −0.0267005 −0.0133503 0.999911i \(-0.504250\pi\)
−0.0133503 + 0.999911i \(0.504250\pi\)
\(410\) 42.2078i 2.08449i
\(411\) 5.42149 + 5.42149i 0.267422 + 0.267422i
\(412\) 0.449159 0.0221285
\(413\) 1.10696 + 1.10696i 0.0544700 + 0.0544700i
\(414\) −0.696868 + 0.696868i −0.0342492 + 0.0342492i
\(415\) −21.2761 + 21.2761i −1.04440 + 1.04440i
\(416\) 11.2113i 0.549679i
\(417\) 4.89189i 0.239557i
\(418\) −4.10201 + 4.10201i −0.200636 + 0.200636i
\(419\) −22.3051 + 22.3051i −1.08967 + 1.08967i −0.0941132 + 0.995562i \(0.530002\pi\)
−0.995562 + 0.0941132i \(0.969998\pi\)
\(420\) 0.467830 + 0.467830i 0.0228278 + 0.0228278i
\(421\) 1.65742 0.0807778 0.0403889 0.999184i \(-0.487140\pi\)
0.0403889 + 0.999184i \(0.487140\pi\)
\(422\) −1.61226 1.61226i −0.0784834 0.0784834i
\(423\) 6.81302i 0.331260i
\(424\) −13.0797 −0.635207
\(425\) −1.80605 + 0.434830i −0.0876063 + 0.0210924i
\(426\) 11.8194 0.572650
\(427\) 12.4931i 0.604584i
\(428\) −1.22801 1.22801i −0.0593579 0.0593579i
\(429\) 27.2406 1.31519
\(430\) 6.00543 + 6.00543i 0.289608 + 0.289608i
\(431\) −19.6916 + 19.6916i −0.948510 + 0.948510i −0.998738 0.0502281i \(-0.984005\pi\)
0.0502281 + 0.998738i \(0.484005\pi\)
\(432\) −3.17241 + 3.17241i −0.152633 + 0.152633i
\(433\) 27.9567i 1.34352i −0.740771 0.671758i \(-0.765540\pi\)
0.740771 0.671758i \(-0.234460\pi\)
\(434\) 3.14123i 0.150784i
\(435\) 8.33295 8.33295i 0.399534 0.399534i
\(436\) −2.65112 + 2.65112i −0.126966 + 0.126966i
\(437\) 0.457828 + 0.457828i 0.0219009 + 0.0219009i
\(438\) −6.92526 −0.330902
\(439\) −1.51580 1.51580i −0.0723453 0.0723453i 0.670008 0.742354i \(-0.266291\pi\)
−0.742354 + 0.670008i \(0.766291\pi\)
\(440\) 23.4187i 1.11644i
\(441\) 1.00000 0.0476190
\(442\) −42.6692 + 10.2732i −2.02957 + 0.488645i
\(443\) −26.1035 −1.24022 −0.620108 0.784516i \(-0.712911\pi\)
−0.620108 + 0.784516i \(0.712911\pi\)
\(444\) 1.63435i 0.0775626i
\(445\) −6.32060 6.32060i −0.299625 0.299625i
\(446\) −44.2342 −2.09455
\(447\) −9.74060 9.74060i −0.460714 0.460714i
\(448\) 4.64425 4.64425i 0.219420 0.219420i
\(449\) −16.3399 + 16.3399i −0.771126 + 0.771126i −0.978303 0.207177i \(-0.933572\pi\)
0.207177 + 0.978303i \(0.433572\pi\)
\(450\) 0.680819i 0.0320941i
\(451\) 46.2661i 2.17859i
\(452\) −3.78289 + 3.78289i −0.177932 + 0.177932i
\(453\) 14.5610 14.5610i 0.684133 0.684133i
\(454\) 24.2003 + 24.2003i 1.13578 + 1.13578i
\(455\) −16.4458 −0.770993
\(456\) 1.82091 + 1.82091i 0.0852719 + 0.0852719i
\(457\) 28.4649i 1.33153i 0.746160 + 0.665766i \(0.231895\pi\)
−0.746160 + 0.665766i \(0.768105\pi\)
\(458\) −31.0301 −1.44994
\(459\) 3.51692 + 2.15204i 0.164156 + 0.100449i
\(460\) −0.431498 −0.0201187
\(461\) 23.9790i 1.11681i 0.829567 + 0.558407i \(0.188587\pi\)
−0.829567 + 0.558407i \(0.811413\pi\)
\(462\) −4.13195 4.13195i −0.192236 0.192236i
\(463\) −20.5076 −0.953068 −0.476534 0.879156i \(-0.658107\pi\)
−0.476534 + 0.879156i \(0.658107\pi\)
\(464\) 16.0134 + 16.0134i 0.743403 + 0.743403i
\(465\) −3.43174 + 3.43174i −0.159143 + 0.159143i
\(466\) 4.15589 4.15589i 0.192518 0.192518i
\(467\) 17.9740i 0.831739i −0.909424 0.415869i \(-0.863477\pi\)
0.909424 0.415869i \(-0.136523\pi\)
\(468\) 1.99627i 0.0922775i
\(469\) −3.50503 + 3.50503i −0.161847 + 0.161847i
\(470\) 16.9955 16.9955i 0.783945 0.783945i
\(471\) 16.2906 + 16.2906i 0.750631 + 0.750631i
\(472\) −4.06078 −0.186912
\(473\) −6.58286 6.58286i −0.302680 0.302680i
\(474\) 1.45170i 0.0666790i
\(475\) 0.447284 0.0205228
\(476\) 0.996656 + 0.609865i 0.0456816 + 0.0279531i
\(477\) 5.04239 0.230875
\(478\) 10.5892i 0.484339i
\(479\) 16.6378 + 16.6378i 0.760202 + 0.760202i 0.976359 0.216157i \(-0.0693523\pi\)
−0.216157 + 0.976359i \(0.569352\pi\)
\(480\) −3.71570 −0.169597
\(481\) −28.7265 28.7265i −1.30981 1.30981i
\(482\) 17.5815 17.5815i 0.800816 0.800816i
\(483\) −0.461170 + 0.461170i −0.0209839 + 0.0209839i
\(484\) 1.12055i 0.0509341i
\(485\) 6.94279i 0.315256i
\(486\) 1.06850 1.06850i 0.0484682 0.0484682i
\(487\) 0.249268 0.249268i 0.0112954 0.0112954i −0.701437 0.712732i \(-0.747458\pi\)
0.712732 + 0.701437i \(0.247458\pi\)
\(488\) −22.9149 22.9149i −1.03731 1.03731i
\(489\) 4.81968 0.217953
\(490\) 2.49457 + 2.49457i 0.112693 + 0.112693i
\(491\) 9.73907i 0.439518i −0.975554 0.219759i \(-0.929473\pi\)
0.975554 0.219759i \(-0.0705271\pi\)
\(492\) 3.39051 0.152856
\(493\) 10.8629 17.7524i 0.489239 0.799526i
\(494\) 10.5674 0.475449
\(495\) 9.02818i 0.405787i
\(496\) −6.59476 6.59476i −0.296113 0.296113i
\(497\) 7.82176 0.350854
\(498\) 13.7709 + 13.7709i 0.617089 + 0.617089i
\(499\) 18.5957 18.5957i 0.832459 0.832459i −0.155393 0.987853i \(-0.549664\pi\)
0.987853 + 0.155393i \(0.0496645\pi\)
\(500\) 2.12837 2.12837i 0.0951836 0.0951836i
\(501\) 14.1578i 0.632524i
\(502\) 19.1507i 0.854738i
\(503\) 2.35428 2.35428i 0.104972 0.104972i −0.652670 0.757642i \(-0.726351\pi\)
0.757642 + 0.652670i \(0.226351\pi\)
\(504\) −1.83420 + 1.83420i −0.0817018 + 0.0817018i
\(505\) 1.66004 + 1.66004i 0.0738706 + 0.0738706i
\(506\) 3.81106 0.169422
\(507\) −25.8955 25.8955i −1.15006 1.15006i
\(508\) 6.29753i 0.279408i
\(509\) 13.6249 0.603914 0.301957 0.953321i \(-0.402360\pi\)
0.301957 + 0.953321i \(0.402360\pi\)
\(510\) 3.40478 + 14.1416i 0.150766 + 0.626200i
\(511\) −4.58296 −0.202738
\(512\) 16.1349i 0.713070i
\(513\) −0.701983 0.701983i −0.0309933 0.0309933i
\(514\) −21.8438 −0.963488
\(515\) 2.61651 + 2.61651i 0.115297 + 0.115297i
\(516\) 0.482411 0.482411i 0.0212370 0.0212370i
\(517\) −18.6297 + 18.6297i −0.819331 + 0.819331i
\(518\) 8.71467i 0.382901i
\(519\) 20.3542i 0.893452i
\(520\) 30.1650 30.1650i 1.32282 1.32282i
\(521\) −1.76032 + 1.76032i −0.0771212 + 0.0771212i −0.744615 0.667494i \(-0.767367\pi\)
0.667494 + 0.744615i \(0.267367\pi\)
\(522\) −5.39348 5.39348i −0.236066 0.236066i
\(523\) −5.84412 −0.255546 −0.127773 0.991803i \(-0.540783\pi\)
−0.127773 + 0.991803i \(0.540783\pi\)
\(524\) 1.62416 + 1.62416i 0.0709518 + 0.0709518i
\(525\) 0.450549i 0.0196635i
\(526\) −27.1001 −1.18162
\(527\) −4.47363 + 7.31091i −0.194874 + 0.318468i
\(528\) 17.3494 0.755036
\(529\) 22.5746i 0.981506i
\(530\) 12.5786 + 12.5786i 0.546379 + 0.546379i
\(531\) 1.56548 0.0679360
\(532\) −0.198934 0.198934i −0.00862489 0.00862489i
\(533\) −59.5941 + 59.5941i −2.58131 + 2.58131i
\(534\) −4.09099 + 4.09099i −0.177034 + 0.177034i
\(535\) 14.3071i 0.618551i
\(536\) 12.8578i 0.555374i
\(537\) 10.6500 10.6500i 0.459583 0.459583i
\(538\) 4.59631 4.59631i 0.198161 0.198161i
\(539\) −2.73442 2.73442i −0.117780 0.117780i
\(540\) 0.661611 0.0284712
\(541\) −17.7427 17.7427i −0.762819 0.762819i 0.214012 0.976831i \(-0.431347\pi\)
−0.976831 + 0.214012i \(0.931347\pi\)
\(542\) 40.4632i 1.73804i
\(543\) 4.68802 0.201182
\(544\) −6.37982 + 1.53603i −0.273532 + 0.0658565i
\(545\) −30.8874 −1.32307
\(546\) 10.6445i 0.455543i
\(547\) −31.4484 31.4484i −1.34463 1.34463i −0.891382 0.453253i \(-0.850264\pi\)
−0.453253 0.891382i \(-0.649736\pi\)
\(548\) 2.17278 0.0928168
\(549\) 8.83396 + 8.83396i 0.377024 + 0.377024i
\(550\) 1.86164 1.86164i 0.0793808 0.0793808i
\(551\) −3.54340 + 3.54340i −0.150954 + 0.150954i
\(552\) 1.69176i 0.0720059i
\(553\) 0.960701i 0.0408532i
\(554\) −9.39649 + 9.39649i −0.399218 + 0.399218i
\(555\) −9.52064 + 9.52064i −0.404129 + 0.404129i
\(556\) 0.980268 + 0.980268i 0.0415726 + 0.0415726i
\(557\) 23.7598 1.00674 0.503368 0.864072i \(-0.332094\pi\)
0.503368 + 0.864072i \(0.332094\pi\)
\(558\) 2.22118 + 2.22118i 0.0940301 + 0.0940301i
\(559\) 16.9584i 0.717265i
\(560\) −10.4743 −0.442620
\(561\) −3.73215 15.5013i −0.157571 0.654466i
\(562\) −20.4180 −0.861282
\(563\) 41.4704i 1.74777i 0.486134 + 0.873884i \(0.338407\pi\)
−0.486134 + 0.873884i \(0.661593\pi\)
\(564\) −1.36523 1.36523i −0.0574868 0.0574868i
\(565\) −44.0734 −1.85418
\(566\) −27.4542 27.4542i −1.15399 1.15399i
\(567\) 0.707107 0.707107i 0.0296957 0.0296957i
\(568\) −14.3467 + 14.3467i −0.601973 + 0.601973i
\(569\) 2.56184i 0.107398i 0.998557 + 0.0536990i \(0.0171011\pi\)
−0.998557 + 0.0536990i \(0.982899\pi\)
\(570\) 3.50228i 0.146695i
\(571\) 16.2523 16.2523i 0.680137 0.680137i −0.279894 0.960031i \(-0.590299\pi\)
0.960031 + 0.279894i \(0.0902992\pi\)
\(572\) 5.45864 5.45864i 0.228237 0.228237i
\(573\) 12.4874 + 12.4874i 0.521667 + 0.521667i
\(574\) 18.0789 0.754600
\(575\) −0.207779 0.207779i −0.00866500 0.00866500i
\(576\) 6.56797i 0.273665i
\(577\) −6.98932 −0.290969 −0.145485 0.989361i \(-0.546474\pi\)
−0.145485 + 0.989361i \(0.546474\pi\)
\(578\) 11.6919 + 22.8735i 0.486321 + 0.951413i
\(579\) 14.7825 0.614339
\(580\) 3.33962i 0.138670i
\(581\) 9.11323 + 9.11323i 0.378081 + 0.378081i
\(582\) −4.49370 −0.186270
\(583\) −13.7880 13.7880i −0.571041 0.571041i
\(584\) 8.40607 8.40607i 0.347846 0.347846i
\(585\) −11.6290 + 11.6290i −0.480799 + 0.480799i
\(586\) 29.1724i 1.20510i
\(587\) 22.3808i 0.923753i −0.886944 0.461877i \(-0.847176\pi\)
0.886944 0.461877i \(-0.152824\pi\)
\(588\) 0.200386 0.200386i 0.00826379 0.00826379i
\(589\) 1.45927 1.45927i 0.0601282 0.0601282i
\(590\) 3.90519 + 3.90519i 0.160774 + 0.160774i
\(591\) −4.55138 −0.187219
\(592\) −18.2958 18.2958i −0.751951 0.751951i
\(593\) 14.3719i 0.590183i −0.955469 0.295092i \(-0.904650\pi\)
0.955469 0.295092i \(-0.0953502\pi\)
\(594\) −5.84346 −0.239760
\(595\) 2.25319 + 9.35855i 0.0923719 + 0.383663i
\(596\) −3.90376 −0.159904
\(597\) 20.2363i 0.828217i
\(598\) −4.90893 4.90893i −0.200741 0.200741i
\(599\) 13.0016 0.531231 0.265616 0.964079i \(-0.414425\pi\)
0.265616 + 0.964079i \(0.414425\pi\)
\(600\) −0.826396 0.826396i −0.0337375 0.0337375i
\(601\) −9.67071 + 9.67071i −0.394477 + 0.394477i −0.876280 0.481803i \(-0.839982\pi\)
0.481803 + 0.876280i \(0.339982\pi\)
\(602\) 2.57232 2.57232i 0.104840 0.104840i
\(603\) 4.95686i 0.201859i
\(604\) 5.83563i 0.237448i
\(605\) −6.52760 + 6.52760i −0.265385 + 0.265385i
\(606\) 1.07445 1.07445i 0.0436467 0.0436467i
\(607\) −9.95811 9.95811i −0.404187 0.404187i 0.475519 0.879706i \(-0.342260\pi\)
−0.879706 + 0.475519i \(0.842260\pi\)
\(608\) 1.58002 0.0640781
\(609\) −3.56926 3.56926i −0.144634 0.144634i
\(610\) 44.0738i 1.78450i
\(611\) 47.9927 1.94158
\(612\) 1.13598 0.273503i 0.0459193 0.0110557i
\(613\) 31.7030 1.28047 0.640236 0.768178i \(-0.278836\pi\)
0.640236 + 0.768178i \(0.278836\pi\)
\(614\) 0.338856i 0.0136751i
\(615\) 19.7509 + 19.7509i 0.796435 + 0.796435i
\(616\) 10.0310 0.404159
\(617\) 10.5201 + 10.5201i 0.423524 + 0.423524i 0.886415 0.462891i \(-0.153188\pi\)
−0.462891 + 0.886415i \(0.653188\pi\)
\(618\) 1.69353 1.69353i 0.0681236 0.0681236i
\(619\) 15.2920 15.2920i 0.614638 0.614638i −0.329513 0.944151i \(-0.606885\pi\)
0.944151 + 0.329513i \(0.106885\pi\)
\(620\) 1.37535i 0.0552353i
\(621\) 0.652192i 0.0261716i
\(622\) −34.5227 + 34.5227i −1.38423 + 1.38423i
\(623\) −2.70731 + 2.70731i −0.108466 + 0.108466i
\(624\) −22.3473 22.3473i −0.894609 0.894609i
\(625\) 27.0497 1.08199
\(626\) −10.5455 10.5455i −0.421482 0.421482i
\(627\) 3.83903i 0.153316i
\(628\) 6.52882 0.260528
\(629\) −12.4111 + 20.2826i −0.494865 + 0.808720i
\(630\) 3.52785 0.140553
\(631\) 17.3657i 0.691319i −0.938360 0.345659i \(-0.887655\pi\)
0.938360 0.345659i \(-0.112345\pi\)
\(632\) −1.76212 1.76212i −0.0700933 0.0700933i
\(633\) −1.50890 −0.0599732
\(634\) −4.08478 4.08478i −0.162227 0.162227i
\(635\) 36.6853 36.6853i 1.45581 1.45581i
\(636\) 1.01043 1.01043i 0.0400660 0.0400660i
\(637\) 7.04427i 0.279104i
\(638\) 29.4961i 1.16776i
\(639\) 5.53082 5.53082i 0.218796 0.218796i
\(640\) 21.6390 21.6390i 0.855357 0.855357i
\(641\) −3.19471 3.19471i −0.126183 0.126183i 0.641195 0.767378i \(-0.278439\pi\)
−0.767378 + 0.641195i \(0.778439\pi\)
\(642\) −9.26024 −0.365473
\(643\) 4.29555 + 4.29555i 0.169400 + 0.169400i 0.786716 0.617316i \(-0.211780\pi\)
−0.617316 + 0.786716i \(0.711780\pi\)
\(644\) 0.184824i 0.00728309i
\(645\) 5.62043 0.221304
\(646\) −1.44780 6.01340i −0.0569631 0.236594i
\(647\) 44.3110 1.74204 0.871022 0.491245i \(-0.163458\pi\)
0.871022 + 0.491245i \(0.163458\pi\)
\(648\) 2.59395i 0.101900i
\(649\) −4.28068 4.28068i −0.168031 0.168031i
\(650\) −4.79587 −0.188110
\(651\) 1.46992 + 1.46992i 0.0576108 + 0.0576108i
\(652\) 0.965798 0.965798i 0.0378236 0.0378236i
\(653\) 35.1940 35.1940i 1.37725 1.37725i 0.528012 0.849237i \(-0.322937\pi\)
0.849237 0.528012i \(-0.177063\pi\)
\(654\) 19.9918i 0.781741i
\(655\) 18.9226i 0.739368i
\(656\) −37.9553 + 37.9553i −1.48190 + 1.48190i
\(657\) −3.24064 + 3.24064i −0.126430 + 0.126430i
\(658\) −7.27972 7.27972i −0.283793 0.283793i
\(659\) 32.2608 1.25670 0.628351 0.777930i \(-0.283730\pi\)
0.628351 + 0.777930i \(0.283730\pi\)
\(660\) −1.80912 1.80912i −0.0704200 0.0704200i
\(661\) 43.8186i 1.70435i 0.523260 + 0.852173i \(0.324716\pi\)
−0.523260 + 0.852173i \(0.675284\pi\)
\(662\) 30.9671 1.20357
\(663\) −15.1596 + 24.7741i −0.588749 + 0.962147i
\(664\) −33.4310 −1.29737
\(665\) 2.31772i 0.0898774i
\(666\) 6.16220 + 6.16220i 0.238780 + 0.238780i
\(667\) 3.29207 0.127470
\(668\) −2.83703 2.83703i −0.109768 0.109768i
\(669\) −20.6992 + 20.6992i −0.800276 + 0.800276i
\(670\) −12.3652 + 12.3652i −0.477710 + 0.477710i
\(671\) 48.3115i 1.86505i
\(672\) 1.59155i 0.0613953i
\(673\) −1.49798 + 1.49798i −0.0577430 + 0.0577430i −0.735389 0.677646i \(-0.763000\pi\)
0.677646 + 0.735389i \(0.263000\pi\)
\(674\) −24.7654 + 24.7654i −0.953928 + 0.953928i
\(675\) 0.318586 + 0.318586i 0.0122624 + 0.0122624i
\(676\) −10.3782 −0.399161
\(677\) 7.71518 + 7.71518i 0.296519 + 0.296519i 0.839649 0.543130i \(-0.182761\pi\)
−0.543130 + 0.839649i \(0.682761\pi\)
\(678\) 28.5263i 1.09555i
\(679\) −2.97382 −0.114125
\(680\) −21.2983 13.0326i −0.816751 0.499779i
\(681\) 22.6488 0.867906
\(682\) 12.1473i 0.465144i
\(683\) −3.26234 3.26234i −0.124830 0.124830i 0.641932 0.766762i \(-0.278133\pi\)
−0.766762 + 0.641932i \(0.778133\pi\)
\(684\) −0.281335 −0.0107571
\(685\) 12.6572 + 12.6572i 0.483608 + 0.483608i
\(686\) 1.06850 1.06850i 0.0407956 0.0407956i
\(687\) −14.5204 + 14.5204i −0.553987 + 0.553987i
\(688\) 10.8008i 0.411775i
\(689\) 35.5200i 1.35320i
\(690\) −1.62694 + 1.62694i −0.0619364 + 0.0619364i
\(691\) −25.3809 + 25.3809i −0.965534 + 0.965534i −0.999426 0.0338916i \(-0.989210\pi\)
0.0338916 + 0.999426i \(0.489210\pi\)
\(692\) −4.07871 4.07871i −0.155049 0.155049i
\(693\) −3.86705 −0.146897
\(694\) −1.15937 1.15937i −0.0440090 0.0440090i
\(695\) 11.4208i 0.433216i
\(696\) 13.0935 0.496308
\(697\) 42.0770 + 25.7474i 1.59378 + 0.975252i
\(698\) 19.4430 0.735929
\(699\) 3.88946i 0.147113i
\(700\) 0.0902837 + 0.0902837i 0.00341240 + 0.00341240i
\(701\) 10.4646 0.395244 0.197622 0.980278i \(-0.436678\pi\)
0.197622 + 0.980278i \(0.436678\pi\)
\(702\) 7.52681 + 7.52681i 0.284081 + 0.284081i
\(703\) 4.04844 4.04844i 0.152690 0.152690i
\(704\) −17.9596 + 17.9596i −0.676877 + 0.676877i
\(705\) 15.9059i 0.599053i
\(706\) 10.3010i 0.387682i
\(707\) 0.711046 0.711046i 0.0267416 0.0267416i
\(708\) 0.313700 0.313700i 0.0117896 0.0117896i
\(709\) −15.6687 15.6687i −0.588451 0.588451i 0.348760 0.937212i \(-0.386603\pi\)
−0.937212 + 0.348760i \(0.886603\pi\)
\(710\) 27.5940 1.03558
\(711\) 0.679318 + 0.679318i 0.0254764 + 0.0254764i
\(712\) 9.93151i 0.372199i
\(713\) −1.35577 −0.0507739
\(714\) 6.05729 1.45837i 0.226688 0.0545782i
\(715\) 63.5970 2.37839
\(716\) 4.26825i 0.159512i
\(717\) 4.95517 + 4.95517i 0.185054 + 0.185054i
\(718\) −10.1467 −0.378672
\(719\) −22.3270 22.3270i −0.832657 0.832657i 0.155223 0.987880i \(-0.450391\pi\)
−0.987880 + 0.155223i \(0.950391\pi\)
\(720\) −7.40644 + 7.40644i −0.276022 + 0.276022i
\(721\) 1.12073 1.12073i 0.0417383 0.0417383i
\(722\) 27.2214i 1.01308i
\(723\) 16.4544i 0.611945i
\(724\) 0.939415 0.939415i 0.0349131 0.0349131i
\(725\) 1.60813 1.60813i 0.0597243 0.0597243i
\(726\) 4.22497 + 4.22497i 0.156803 + 0.156803i
\(727\) −8.26117 −0.306390 −0.153195 0.988196i \(-0.548956\pi\)
−0.153195 + 0.988196i \(0.548956\pi\)
\(728\) −12.9206 12.9206i −0.478869 0.478869i
\(729\) 1.00000i 0.0370370i
\(730\) −16.1680 −0.598405
\(731\) 9.65023 2.32342i 0.356927 0.0859348i
\(732\) 3.54041 0.130857
\(733\) 2.49710i 0.0922326i 0.998936 + 0.0461163i \(0.0146845\pi\)
−0.998936 + 0.0461163i \(0.985316\pi\)
\(734\) −20.8448 20.8448i −0.769395 0.769395i
\(735\) 2.33464 0.0861145
\(736\) −0.733974 0.733974i −0.0270546 0.0270546i
\(737\) 13.5541 13.5541i 0.499273 0.499273i
\(738\) 12.7837 12.7837i 0.470576 0.470576i
\(739\) 42.6527i 1.56900i 0.620127 + 0.784502i \(0.287081\pi\)
−0.620127 + 0.784502i \(0.712919\pi\)
\(740\) 3.81561i 0.140265i
\(741\) 4.94496 4.94496i 0.181657 0.181657i
\(742\) 5.38780 5.38780i 0.197792 0.197792i
\(743\) 1.94900 + 1.94900i 0.0715017 + 0.0715017i 0.741953 0.670452i \(-0.233900\pi\)
−0.670452 + 0.741953i \(0.733900\pi\)
\(744\) −5.39226 −0.197690
\(745\) −22.7408 22.7408i −0.833158 0.833158i
\(746\) 17.4856i 0.640195i
\(747\) 12.8881 0.471549
\(748\) −3.85412 2.35838i −0.140921 0.0862309i
\(749\) −6.12819 −0.223919
\(750\) 16.0498i 0.586055i
\(751\) 37.4310 + 37.4310i 1.36588 + 1.36588i 0.866230 + 0.499645i \(0.166536\pi\)
0.499645 + 0.866230i \(0.333464\pi\)
\(752\) 30.5664 1.11464
\(753\) 8.96149 + 8.96149i 0.326575 + 0.326575i
\(754\) 37.9931 37.9931i 1.38363 1.38363i
\(755\) 33.9946 33.9946i 1.23719 1.23719i
\(756\) 0.283389i 0.0103068i
\(757\) 40.7526i 1.48118i −0.671957 0.740590i \(-0.734546\pi\)
0.671957 0.740590i \(-0.265454\pi\)
\(758\) 15.1591 15.1591i 0.550604 0.550604i
\(759\) 1.78337 1.78337i 0.0647322 0.0647322i
\(760\) 4.25117 + 4.25117i 0.154206 + 0.154206i
\(761\) −15.2173 −0.551628 −0.275814 0.961211i \(-0.588947\pi\)
−0.275814 + 0.961211i \(0.588947\pi\)
\(762\) −23.7445 23.7445i −0.860171 0.860171i
\(763\) 13.2301i 0.478960i
\(764\) 5.00459 0.181060
\(765\) 8.21074 + 5.02425i 0.296860 + 0.181652i
\(766\) 15.1965 0.549071
\(767\) 11.0277i 0.398185i
\(768\) −4.71727 4.71727i −0.170220 0.170220i
\(769\) 5.04641 0.181978 0.0909891 0.995852i \(-0.470997\pi\)
0.0909891 + 0.995852i \(0.470997\pi\)
\(770\) −9.64662 9.64662i −0.347640 0.347640i
\(771\) −10.2217 + 10.2217i −0.368125 + 0.368125i
\(772\) 2.96221 2.96221i 0.106612 0.106612i
\(773\) 23.6553i 0.850823i 0.905000 + 0.425411i \(0.139871\pi\)
−0.905000 + 0.425411i \(0.860129\pi\)
\(774\) 3.63780i 0.130758i
\(775\) −0.662271 + 0.662271i −0.0237895 + 0.0237895i
\(776\) 5.45458 5.45458i 0.195808 0.195808i
\(777\) 4.07799 + 4.07799i 0.146297 + 0.146297i
\(778\) 22.8792 0.820258
\(779\) −8.39864 8.39864i −0.300913 0.300913i
\(780\) 4.66057i 0.166875i
\(781\) −30.2472 −1.08233
\(782\) −2.12088 + 3.46600i −0.0758426 + 0.123944i
\(783\) −5.04770 −0.180390
\(784\) 4.48647i 0.160231i
\(785\) 38.0327 + 38.0327i 1.35744 + 1.35744i
\(786\) 12.2476 0.436857
\(787\) 26.5970 + 26.5970i 0.948081 + 0.948081i 0.998717 0.0506365i \(-0.0161250\pi\)
−0.0506365 + 0.998717i \(0.516125\pi\)
\(788\) −0.912034 + 0.912034i −0.0324899 + 0.0324899i
\(789\) −12.6814 + 12.6814i −0.451469 + 0.451469i
\(790\) 3.38921i 0.120583i
\(791\) 18.8780i 0.671225i
\(792\) 7.09295 7.09295i 0.252037 0.252037i
\(793\) −62.2288 + 62.2288i −2.20981 + 2.20981i
\(794\) −30.5694 30.5694i −1.08487 1.08487i
\(795\) 11.7722 0.417516
\(796\) −4.05508 4.05508i −0.143728 0.143728i
\(797\) 39.1927i 1.38828i −0.719841 0.694139i \(-0.755785\pi\)
0.719841 0.694139i \(-0.244215\pi\)
\(798\) −1.50014 −0.0531043
\(799\) −6.57533 27.3104i −0.232619 0.966172i
\(800\) −0.717070 −0.0253523
\(801\) 3.82872i 0.135281i
\(802\) 6.73857 + 6.73857i 0.237947 + 0.237947i
\(803\) 17.7226 0.625416
\(804\) 0.993286 + 0.993286i 0.0350305 + 0.0350305i
\(805\) −1.07667 + 1.07667i −0.0379475 + 0.0379475i
\(806\) −15.6466 + 15.6466i −0.551128 + 0.551128i
\(807\) 4.30164i 0.151425i
\(808\) 2.60840i 0.0917632i
\(809\) 1.40949 1.40949i 0.0495551 0.0495551i −0.681895 0.731450i \(-0.738844\pi\)
0.731450 + 0.681895i \(0.238844\pi\)
\(810\) 2.49457 2.49457i 0.0876501 0.0876501i
\(811\) 9.31564 + 9.31564i 0.327116 + 0.327116i 0.851489 0.524373i \(-0.175700\pi\)
−0.524373 + 0.851489i \(0.675700\pi\)
\(812\) −1.43046 −0.0501994
\(813\) −18.9346 18.9346i −0.664064 0.664064i
\(814\) 33.7001i 1.18119i
\(815\) 11.2522 0.394148
\(816\) −9.65507 + 15.7785i −0.337995 + 0.552360i
\(817\) −2.38996 −0.0836142
\(818\) 0.815964i 0.0285295i
\(819\) 4.98105 + 4.98105i 0.174052 + 0.174052i
\(820\) 7.91563 0.276426
\(821\) −30.5863 30.5863i −1.06747 1.06747i −0.997553 0.0699175i \(-0.977726\pi\)
−0.0699175 0.997553i \(-0.522274\pi\)
\(822\) 8.19235 8.19235i 0.285741 0.285741i
\(823\) 3.51823 3.51823i 0.122638 0.122638i −0.643124 0.765762i \(-0.722362\pi\)
0.765762 + 0.643124i \(0.222362\pi\)
\(824\) 4.11130i 0.143224i
\(825\) 1.74230i 0.0606589i
\(826\) 1.67272 1.67272i 0.0582012 0.0582012i
\(827\) −18.1677 + 18.1677i −0.631753 + 0.631753i −0.948507 0.316755i \(-0.897407\pi\)
0.316755 + 0.948507i \(0.397407\pi\)
\(828\) 0.130690 + 0.130690i 0.00454180 + 0.00454180i
\(829\) 19.6638 0.682952 0.341476 0.939891i \(-0.389073\pi\)
0.341476 + 0.939891i \(0.389073\pi\)
\(830\) 32.1501 + 32.1501i 1.11595 + 1.11595i
\(831\) 8.79408i 0.305063i
\(832\) 46.2665 1.60400
\(833\) 4.00856 0.965114i 0.138888 0.0334392i
\(834\) 7.39208 0.255967
\(835\) 33.0534i 1.14386i
\(836\) 0.769289 + 0.769289i 0.0266064 + 0.0266064i
\(837\) 2.07878 0.0718533
\(838\) 33.7050 + 33.7050i 1.16432 + 1.16432i
\(839\) 20.2884 20.2884i 0.700435 0.700435i −0.264069 0.964504i \(-0.585065\pi\)
0.964504 + 0.264069i \(0.0850647\pi\)
\(840\) −4.28220 + 4.28220i −0.147750 + 0.147750i
\(841\) 3.52070i 0.121404i
\(842\) 2.50451i 0.0863111i
\(843\) −9.55451 + 9.55451i −0.329075 + 0.329075i
\(844\) −0.302362 + 0.302362i −0.0104077 + 0.0104077i
\(845\) −60.4567 60.4567i −2.07977 2.07977i
\(846\) −10.2951 −0.353952
\(847\) 2.79598 + 2.79598i 0.0960709 + 0.0960709i
\(848\) 22.6225i 0.776861i
\(849\) −25.6941 −0.881819
\(850\) 0.657067 + 2.72910i 0.0225372 + 0.0936075i
\(851\) −3.76129 −0.128935
\(852\) 2.21660i 0.0759394i
\(853\) −8.46564 8.46564i −0.289858 0.289858i 0.547166 0.837024i \(-0.315707\pi\)
−0.837024 + 0.547166i \(0.815707\pi\)
\(854\) 18.8782 0.645999
\(855\) −1.63888 1.63888i −0.0560484 0.0560484i
\(856\) 11.2403 11.2403i 0.384187 0.384187i
\(857\) 14.8086 14.8086i 0.505852 0.505852i −0.407399 0.913250i \(-0.633564\pi\)
0.913250 + 0.407399i \(0.133564\pi\)
\(858\) 41.1629i 1.40528i
\(859\) 17.7440i 0.605416i 0.953083 + 0.302708i \(0.0978908\pi\)
−0.953083 + 0.302708i \(0.902109\pi\)
\(860\) 1.12626 1.12626i 0.0384050 0.0384050i
\(861\) 8.45995 8.45995i 0.288314 0.288314i
\(862\) 29.7557 + 29.7557i 1.01348 + 1.01348i
\(863\) −51.0360 −1.73729 −0.868643 0.495438i \(-0.835008\pi\)
−0.868643 + 0.495438i \(0.835008\pi\)
\(864\) 1.12539 + 1.12539i 0.0382867 + 0.0382867i
\(865\) 47.5198i 1.61572i
\(866\) −42.2451 −1.43555
\(867\) 16.1747 + 5.23236i 0.549323 + 0.177700i
\(868\) 0.589104 0.0199955
\(869\) 3.71508i 0.126026i
\(870\) −12.5918 12.5918i −0.426903 0.426903i
\(871\) −34.9174 −1.18313
\(872\) −24.2666 24.2666i −0.821770 0.821770i
\(873\) −2.10281 + 2.10281i −0.0711692 + 0.0711692i
\(874\) 0.691818 0.691818i 0.0234011 0.0234011i
\(875\) 10.6213i 0.359067i
\(876\) 1.29876i 0.0438811i
\(877\) 35.0271 35.0271i 1.18278 1.18278i 0.203762 0.979020i \(-0.434683\pi\)
0.979020 0.203762i \(-0.0653168\pi\)
\(878\) −2.29051 + 2.29051i −0.0773010 + 0.0773010i
\(879\) −13.6511 13.6511i −0.460440 0.460440i
\(880\) 40.5047 1.36541
\(881\) 30.7682 + 30.7682i 1.03661 + 1.03661i 0.999304 + 0.0373037i \(0.0118769\pi\)
0.0373037 + 0.999304i \(0.488123\pi\)
\(882\) 1.51109i 0.0508810i
\(883\) 4.04610 0.136162 0.0680810 0.997680i \(-0.478312\pi\)
0.0680810 + 0.997680i \(0.478312\pi\)
\(884\) 1.92663 + 8.00216i 0.0647994 + 0.269142i
\(885\) 3.65483 0.122856
\(886\) 39.4447i 1.32517i
\(887\) −5.63293 5.63293i −0.189135 0.189135i 0.606187 0.795322i \(-0.292698\pi\)
−0.795322 + 0.606187i \(0.792698\pi\)
\(888\) −14.9597 −0.502015
\(889\) −15.7135 15.7135i −0.527013 0.527013i
\(890\) −9.55099 + 9.55099i −0.320150 + 0.320150i
\(891\) −2.73442 + 2.73442i −0.0916065 + 0.0916065i
\(892\) 8.29566i 0.277759i
\(893\) 6.76365i 0.226337i
\(894\) −14.7189 + 14.7189i −0.492274 + 0.492274i
\(895\) 24.8640 24.8640i 0.831113 0.831113i
\(896\) −9.26867 9.26867i −0.309644 0.309644i
\(897\) −4.59422 −0.153397
\(898\) 24.6910 + 24.6910i 0.823949 + 0.823949i
\(899\) 10.4931i 0.349964i
\(900\) 0.127680 0.00425602
\(901\) 20.2127 4.86648i 0.673384 0.162126i
\(902\) −69.9122 −2.32782
\(903\) 2.40741i 0.0801135i
\(904\) −34.6261 34.6261i −1.15165 1.15165i
\(905\) 10.9448 0.363819
\(906\) −22.0029 22.0029i −0.730997 0.730997i
\(907\) 9.69792 9.69792i 0.322014 0.322014i −0.527525 0.849539i \(-0.676880\pi\)
0.849539 + 0.527525i \(0.176880\pi\)
\(908\) 4.53852 4.53852i 0.150616 0.150616i
\(909\) 1.00557i 0.0333527i
\(910\) 24.8511i 0.823807i
\(911\) −23.3268 + 23.3268i −0.772851 + 0.772851i −0.978604 0.205753i \(-0.934036\pi\)
0.205753 + 0.978604i \(0.434036\pi\)
\(912\) 3.14942 3.14942i 0.104288 0.104288i
\(913\) −35.2414 35.2414i −1.16632 1.16632i
\(914\) 43.0130 1.42274
\(915\) 20.6241 + 20.6241i 0.681813 + 0.681813i
\(916\) 5.81937i 0.192277i
\(917\) 8.10515 0.267656
\(918\) 3.25193 5.31438i 0.107330 0.175401i
\(919\) −42.3458 −1.39686 −0.698430 0.715678i \(-0.746118\pi\)
−0.698430 + 0.715678i \(0.746118\pi\)
\(920\) 3.94964i 0.130216i
\(921\) 0.158566 + 0.158566i 0.00522493 + 0.00522493i
\(922\) 36.2344 1.19332
\(923\) 38.9606 + 38.9606i 1.28240 + 1.28240i
\(924\) −0.774904 + 0.774904i −0.0254925 + 0.0254925i
\(925\) −1.83733 + 1.83733i −0.0604111 + 0.0604111i
\(926\) 30.9888i 1.01835i
\(927\) 1.58496i 0.0520568i
\(928\) 5.68066 5.68066i 0.186477 0.186477i
\(929\) 5.25405 5.25405i 0.172380 0.172380i −0.615644 0.788024i \(-0.711104\pi\)
0.788024 + 0.615644i \(0.211104\pi\)
\(930\) 5.18566 + 5.18566i 0.170045 + 0.170045i
\(931\) −0.992753 −0.0325362
\(932\) −0.779393 0.779393i −0.0255299 0.0255299i
\(933\) 32.3095i 1.05777i
\(934\) −27.1604 −0.888714
\(935\) −8.71322 36.1900i −0.284953 1.18354i
\(936\) −18.2725 −0.597255
\(937\) 2.79023i 0.0911529i −0.998961 0.0455765i \(-0.985488\pi\)
0.998961 0.0455765i \(-0.0145125\pi\)
\(938\) 5.29641 + 5.29641i 0.172934 + 0.172934i
\(939\) −9.86941 −0.322076
\(940\) −3.18733 3.18733i −0.103959 0.103959i
\(941\) 18.1581 18.1581i 0.591937 0.591937i −0.346217 0.938154i \(-0.612534\pi\)
0.938154 + 0.346217i \(0.112534\pi\)
\(942\) 24.6165 24.6165i 0.802050 0.802050i
\(943\) 7.80294i 0.254099i
\(944\) 7.02347i 0.228594i
\(945\) 1.65084 1.65084i 0.0537018 0.0537018i
\(946\) −9.94729 + 9.94729i −0.323414 + 0.323414i
\(947\) 16.9612 + 16.9612i 0.551165 + 0.551165i 0.926777 0.375612i \(-0.122567\pi\)
−0.375612 + 0.926777i \(0.622567\pi\)
\(948\) 0.272252 0.00884234
\(949\) −22.8280 22.8280i −0.741027 0.741027i
\(950\) 0.675885i 0.0219286i
\(951\) −3.82291 −0.123966
\(952\) −5.58229 + 9.12272i −0.180923 + 0.295669i
\(953\) −5.89788 −0.191051 −0.0955255 0.995427i \(-0.530453\pi\)
−0.0955255 + 0.995427i \(0.530453\pi\)
\(954\) 7.61950i 0.246690i
\(955\) 29.1535 + 29.1535i 0.943385 + 0.943385i
\(956\) 1.98589 0.0642284
\(957\) 13.8025 + 13.8025i 0.446173 + 0.446173i
\(958\) 25.1412 25.1412i 0.812276 0.812276i
\(959\) 5.42149 5.42149i 0.175069 0.175069i
\(960\) 15.3338i 0.494898i
\(961\) 26.6787i 0.860602i
\(962\) −43.4082 + 43.4082i −1.39954 + 1.39954i
\(963\) −4.33329 + 4.33329i −0.139638 + 0.139638i
\(964\) −3.29723 3.29723i −0.106197 0.106197i
\(965\) 34.5118 1.11097
\(966\) 0.696868 + 0.696868i 0.0224214 + 0.0224214i
\(967\) 41.8868i 1.34699i 0.739192 + 0.673495i \(0.235208\pi\)
−0.739192 + 0.673495i \(0.764792\pi\)
\(968\) −10.2568 −0.329665
\(969\) −3.49143 2.13645i −0.112161 0.0686326i
\(970\) −10.4912 −0.336851
\(971\) 43.4097i 1.39308i −0.717517 0.696541i \(-0.754721\pi\)
0.717517 0.696541i \(-0.245279\pi\)
\(972\) −0.200386 0.200386i −0.00642739 0.00642739i
\(973\) 4.89189 0.156827
\(974\) −0.376666 0.376666i −0.0120691 0.0120691i
\(975\) −2.24421 + 2.24421i −0.0718721 + 0.0718721i
\(976\) −39.6333 + 39.6333i −1.26863 + 1.26863i
\(977\) 33.0140i 1.05621i −0.849179 0.528105i \(-0.822903\pi\)
0.849179 0.528105i \(-0.177097\pi\)
\(978\) 7.28296i 0.232884i
\(979\) 10.4693 10.4693i 0.334601 0.334601i
\(980\) 0.467830 0.467830i 0.0149443 0.0149443i
\(981\) 9.35507 + 9.35507i 0.298684 + 0.298684i
\(982\) −14.7166 −0.469625
\(983\) −31.2458 31.2458i −0.996586 0.996586i 0.00340834 0.999994i \(-0.498915\pi\)
−0.999994 + 0.00340834i \(0.998915\pi\)
\(984\) 31.0345i 0.989343i
\(985\) −10.6258 −0.338567
\(986\) −26.8254 16.4148i −0.854294 0.522752i
\(987\) −6.81302 −0.216861
\(988\) 1.98180i 0.0630495i
\(989\) 1.11022 + 1.11022i 0.0353030 + 0.0353030i
\(990\) −13.6424 −0.433583
\(991\) −6.79452 6.79452i −0.215835 0.215835i 0.590906 0.806741i \(-0.298771\pi\)
−0.806741 + 0.590906i \(0.798771\pi\)
\(992\) −2.33945 + 2.33945i −0.0742777 + 0.0742777i
\(993\) 14.4909 14.4909i 0.459856 0.459856i
\(994\) 11.8194i 0.374888i
\(995\) 47.2445i 1.49775i
\(996\) 2.58259 2.58259i 0.0818325 0.0818325i
\(997\) −34.4116 + 34.4116i −1.08983 + 1.08983i −0.0942822 + 0.995546i \(0.530056\pi\)
−0.995546 + 0.0942822i \(0.969944\pi\)
\(998\) −28.0998 28.0998i −0.889484 0.889484i
\(999\) 5.76715 0.182464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.k.b.64.4 20
3.2 odd 2 1071.2.n.b.64.7 20
17.2 even 8 6069.2.a.bd.1.7 10
17.4 even 4 inner 357.2.k.b.106.7 yes 20
17.15 even 8 6069.2.a.be.1.7 10
51.38 odd 4 1071.2.n.b.820.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.4 20 1.1 even 1 trivial
357.2.k.b.106.7 yes 20 17.4 even 4 inner
1071.2.n.b.64.7 20 3.2 odd 2
1071.2.n.b.820.4 20 51.38 odd 4
6069.2.a.bd.1.7 10 17.2 even 8
6069.2.a.be.1.7 10 17.15 even 8