Properties

Label 357.2.k.b.64.5
Level $357$
Weight $2$
Character 357.64
Analytic conductor $2.851$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(64,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 32 x^{18} + 426 x^{16} + 3072 x^{14} + 13121 x^{12} + 34148 x^{10} + 53608 x^{8} + 48276 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.5
Root \(-1.23743i\) of defining polynomial
Character \(\chi\) \(=\) 357.64
Dual form 357.2.k.b.106.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.23743i q^{2} +(0.707107 + 0.707107i) q^{3} +0.468767 q^{4} +(-1.28416 - 1.28416i) q^{5} +(0.874995 - 0.874995i) q^{6} +(0.707107 - 0.707107i) q^{7} -3.05493i q^{8} +1.00000i q^{9} +O(q^{10})\) \(q-1.23743i q^{2} +(0.707107 + 0.707107i) q^{3} +0.468767 q^{4} +(-1.28416 - 1.28416i) q^{5} +(0.874995 - 0.874995i) q^{6} +(0.707107 - 0.707107i) q^{7} -3.05493i q^{8} +1.00000i q^{9} +(-1.58906 + 1.58906i) q^{10} +(1.66762 - 1.66762i) q^{11} +(0.331468 + 0.331468i) q^{12} -1.26858 q^{13} +(-0.874995 - 0.874995i) q^{14} -1.81608i q^{15} -2.84272 q^{16} +(3.15626 - 2.65293i) q^{17} +1.23743 q^{18} +3.42380i q^{19} +(-0.601973 - 0.601973i) q^{20} +1.00000 q^{21} +(-2.06357 - 2.06357i) q^{22} +(0.635667 - 0.635667i) q^{23} +(2.16016 - 2.16016i) q^{24} -1.70185i q^{25} +1.56978i q^{26} +(-0.707107 + 0.707107i) q^{27} +(0.331468 - 0.331468i) q^{28} +(-0.0171546 - 0.0171546i) q^{29} -2.24727 q^{30} +(4.77634 + 4.77634i) q^{31} -2.59218i q^{32} +2.35837 q^{33} +(-3.28282 - 3.90565i) q^{34} -1.81608 q^{35} +0.468767i q^{36} +(0.843721 + 0.843721i) q^{37} +4.23672 q^{38} +(-0.897020 - 0.897020i) q^{39} +(-3.92302 + 3.92302i) q^{40} +(-5.01497 + 5.01497i) q^{41} -1.23743i q^{42} +5.21815i q^{43} +(0.781726 - 0.781726i) q^{44} +(1.28416 - 1.28416i) q^{45} +(-0.786594 - 0.786594i) q^{46} -8.50780 q^{47} +(-2.01011 - 2.01011i) q^{48} -1.00000i q^{49} -2.10592 q^{50} +(4.10772 + 0.355903i) q^{51} -0.594667 q^{52} +1.07752i q^{53} +(0.874995 + 0.874995i) q^{54} -4.28300 q^{55} +(-2.16016 - 2.16016i) q^{56} +(-2.42099 + 2.42099i) q^{57} +(-0.0212276 + 0.0212276i) q^{58} +5.43516i q^{59} -0.851318i q^{60} +(-4.45420 + 4.45420i) q^{61} +(5.91039 - 5.91039i) q^{62} +(0.707107 + 0.707107i) q^{63} -8.89309 q^{64} +(1.62906 + 1.62906i) q^{65} -2.91832i q^{66} -0.516299 q^{67} +(1.47955 - 1.24361i) q^{68} +0.898969 q^{69} +2.24727i q^{70} +(5.12841 + 5.12841i) q^{71} +3.05493 q^{72} +(9.43285 + 9.43285i) q^{73} +(1.04405 - 1.04405i) q^{74} +(1.20339 - 1.20339i) q^{75} +1.60496i q^{76} -2.35837i q^{77} +(-1.11000 + 1.11000i) q^{78} +(7.61388 - 7.61388i) q^{79} +(3.65052 + 3.65052i) q^{80} -1.00000 q^{81} +(6.20568 + 6.20568i) q^{82} +7.22647i q^{83} +0.468767 q^{84} +(-7.45995 - 0.646350i) q^{85} +6.45709 q^{86} -0.0242602i q^{87} +(-5.09446 - 5.09446i) q^{88} -10.2051 q^{89} +(-1.58906 - 1.58906i) q^{90} +(-0.897020 + 0.897020i) q^{91} +(0.297980 - 0.297980i) q^{92} +6.75476i q^{93} +10.5278i q^{94} +(4.39672 - 4.39672i) q^{95} +(1.83295 - 1.83295i) q^{96} +(0.145058 + 0.145058i) q^{97} -1.23743 q^{98} +(1.66762 + 1.66762i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6} + 16 q^{10} + 4 q^{11} - 12 q^{13} + 4 q^{14} + 40 q^{16} + 4 q^{17} + 8 q^{18} - 52 q^{20} + 20 q^{21} - 24 q^{22} - 4 q^{23} + 4 q^{24} - 8 q^{29} + 8 q^{31} - 4 q^{33} - 44 q^{34} + 12 q^{35} + 24 q^{37} - 64 q^{38} - 12 q^{39} - 52 q^{40} - 20 q^{41} + 72 q^{44} - 8 q^{45} + 28 q^{46} - 32 q^{47} + 32 q^{48} + 104 q^{50} + 8 q^{51} + 48 q^{52} - 4 q^{54} - 36 q^{55} - 4 q^{56} - 16 q^{57} - 60 q^{58} + 28 q^{61} + 36 q^{62} - 112 q^{64} - 4 q^{65} + 40 q^{67} - 52 q^{68} + 36 q^{69} + 16 q^{71} - 24 q^{72} - 72 q^{73} - 24 q^{74} - 8 q^{75} + 40 q^{78} - 8 q^{79} + 120 q^{80} - 20 q^{81} + 108 q^{82} - 24 q^{84} + 40 q^{85} - 28 q^{88} - 64 q^{89} + 16 q^{90} - 12 q^{91} - 56 q^{92} + 60 q^{95} + 16 q^{96} + 60 q^{97} - 8 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23743i 0.874995i −0.899220 0.437498i \(-0.855865\pi\)
0.899220 0.437498i \(-0.144135\pi\)
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0.468767 0.234383
\(5\) −1.28416 1.28416i −0.574295 0.574295i 0.359031 0.933326i \(-0.383107\pi\)
−0.933326 + 0.359031i \(0.883107\pi\)
\(6\) 0.874995 0.874995i 0.357215 0.357215i
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 3.05493i 1.08008i
\(9\) 1.00000i 0.333333i
\(10\) −1.58906 + 1.58906i −0.502506 + 0.502506i
\(11\) 1.66762 1.66762i 0.502807 0.502807i −0.409502 0.912309i \(-0.634298\pi\)
0.912309 + 0.409502i \(0.134298\pi\)
\(12\) 0.331468 + 0.331468i 0.0956866 + 0.0956866i
\(13\) −1.26858 −0.351840 −0.175920 0.984404i \(-0.556290\pi\)
−0.175920 + 0.984404i \(0.556290\pi\)
\(14\) −0.874995 0.874995i −0.233852 0.233852i
\(15\) 1.81608i 0.468910i
\(16\) −2.84272 −0.710681
\(17\) 3.15626 2.65293i 0.765504 0.643431i
\(18\) 1.23743 0.291665
\(19\) 3.42380i 0.785474i 0.919651 + 0.392737i \(0.128472\pi\)
−0.919651 + 0.392737i \(0.871528\pi\)
\(20\) −0.601973 0.601973i −0.134605 0.134605i
\(21\) 1.00000 0.218218
\(22\) −2.06357 2.06357i −0.439954 0.439954i
\(23\) 0.635667 0.635667i 0.132546 0.132546i −0.637721 0.770267i \(-0.720123\pi\)
0.770267 + 0.637721i \(0.220123\pi\)
\(24\) 2.16016 2.16016i 0.440941 0.440941i
\(25\) 1.70185i 0.340370i
\(26\) 1.56978i 0.307858i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0.331468 0.331468i 0.0626416 0.0626416i
\(29\) −0.0171546 0.0171546i −0.00318553 0.00318553i 0.705512 0.708698i \(-0.250717\pi\)
−0.708698 + 0.705512i \(0.750717\pi\)
\(30\) −2.24727 −0.410294
\(31\) 4.77634 + 4.77634i 0.857856 + 0.857856i 0.991085 0.133229i \(-0.0425347\pi\)
−0.133229 + 0.991085i \(0.542535\pi\)
\(32\) 2.59218i 0.458237i
\(33\) 2.35837 0.410540
\(34\) −3.28282 3.90565i −0.562999 0.669813i
\(35\) −1.81608 −0.306974
\(36\) 0.468767i 0.0781278i
\(37\) 0.843721 + 0.843721i 0.138707 + 0.138707i 0.773051 0.634344i \(-0.218730\pi\)
−0.634344 + 0.773051i \(0.718730\pi\)
\(38\) 4.23672 0.687286
\(39\) −0.897020 0.897020i −0.143638 0.143638i
\(40\) −3.92302 + 3.92302i −0.620285 + 0.620285i
\(41\) −5.01497 + 5.01497i −0.783208 + 0.783208i −0.980371 0.197163i \(-0.936827\pi\)
0.197163 + 0.980371i \(0.436827\pi\)
\(42\) 1.23743i 0.190940i
\(43\) 5.21815i 0.795760i 0.917437 + 0.397880i \(0.130254\pi\)
−0.917437 + 0.397880i \(0.869746\pi\)
\(44\) 0.781726 0.781726i 0.117850 0.117850i
\(45\) 1.28416 1.28416i 0.191432 0.191432i
\(46\) −0.786594 0.786594i −0.115977 0.115977i
\(47\) −8.50780 −1.24099 −0.620495 0.784210i \(-0.713068\pi\)
−0.620495 + 0.784210i \(0.713068\pi\)
\(48\) −2.01011 2.01011i −0.290134 0.290134i
\(49\) 1.00000i 0.142857i
\(50\) −2.10592 −0.297822
\(51\) 4.10772 + 0.355903i 0.575195 + 0.0498365i
\(52\) −0.594667 −0.0824654
\(53\) 1.07752i 0.148008i 0.997258 + 0.0740042i \(0.0235778\pi\)
−0.997258 + 0.0740042i \(0.976422\pi\)
\(54\) 0.874995 + 0.874995i 0.119072 + 0.119072i
\(55\) −4.28300 −0.577519
\(56\) −2.16016 2.16016i −0.288663 0.288663i
\(57\) −2.42099 + 2.42099i −0.320668 + 0.320668i
\(58\) −0.0212276 + 0.0212276i −0.00278732 + 0.00278732i
\(59\) 5.43516i 0.707597i 0.935322 + 0.353799i \(0.115110\pi\)
−0.935322 + 0.353799i \(0.884890\pi\)
\(60\) 0.851318i 0.109905i
\(61\) −4.45420 + 4.45420i −0.570302 + 0.570302i −0.932213 0.361911i \(-0.882124\pi\)
0.361911 + 0.932213i \(0.382124\pi\)
\(62\) 5.91039 5.91039i 0.750620 0.750620i
\(63\) 0.707107 + 0.707107i 0.0890871 + 0.0890871i
\(64\) −8.89309 −1.11164
\(65\) 1.62906 + 1.62906i 0.202060 + 0.202060i
\(66\) 2.91832i 0.359221i
\(67\) −0.516299 −0.0630759 −0.0315380 0.999503i \(-0.510041\pi\)
−0.0315380 + 0.999503i \(0.510041\pi\)
\(68\) 1.47955 1.24361i 0.179421 0.150809i
\(69\) 0.898969 0.108223
\(70\) 2.24727i 0.268601i
\(71\) 5.12841 + 5.12841i 0.608630 + 0.608630i 0.942588 0.333958i \(-0.108384\pi\)
−0.333958 + 0.942588i \(0.608384\pi\)
\(72\) 3.05493 0.360027
\(73\) 9.43285 + 9.43285i 1.10403 + 1.10403i 0.993919 + 0.110112i \(0.0351210\pi\)
0.110112 + 0.993919i \(0.464879\pi\)
\(74\) 1.04405 1.04405i 0.121368 0.121368i
\(75\) 1.20339 1.20339i 0.138955 0.138955i
\(76\) 1.60496i 0.184102i
\(77\) 2.35837i 0.268762i
\(78\) −1.11000 + 1.11000i −0.125683 + 0.125683i
\(79\) 7.61388 7.61388i 0.856628 0.856628i −0.134311 0.990939i \(-0.542882\pi\)
0.990939 + 0.134311i \(0.0428821\pi\)
\(80\) 3.65052 + 3.65052i 0.408141 + 0.408141i
\(81\) −1.00000 −0.111111
\(82\) 6.20568 + 6.20568i 0.685303 + 0.685303i
\(83\) 7.22647i 0.793208i 0.917990 + 0.396604i \(0.129811\pi\)
−0.917990 + 0.396604i \(0.870189\pi\)
\(84\) 0.468767 0.0511466
\(85\) −7.45995 0.646350i −0.809145 0.0701065i
\(86\) 6.45709 0.696286
\(87\) 0.0242602i 0.00260097i
\(88\) −5.09446 5.09446i −0.543071 0.543071i
\(89\) −10.2051 −1.08174 −0.540872 0.841105i \(-0.681906\pi\)
−0.540872 + 0.841105i \(0.681906\pi\)
\(90\) −1.58906 1.58906i −0.167502 0.167502i
\(91\) −0.897020 + 0.897020i −0.0940332 + 0.0940332i
\(92\) 0.297980 0.297980i 0.0310665 0.0310665i
\(93\) 6.75476i 0.700436i
\(94\) 10.5278i 1.08586i
\(95\) 4.39672 4.39672i 0.451094 0.451094i
\(96\) 1.83295 1.83295i 0.187074 0.187074i
\(97\) 0.145058 + 0.145058i 0.0147284 + 0.0147284i 0.714433 0.699704i \(-0.246685\pi\)
−0.699704 + 0.714433i \(0.746685\pi\)
\(98\) −1.23743 −0.124999
\(99\) 1.66762 + 1.66762i 0.167602 + 0.167602i
\(100\) 0.797770i 0.0797770i
\(101\) 10.0435 0.999361 0.499680 0.866210i \(-0.333451\pi\)
0.499680 + 0.866210i \(0.333451\pi\)
\(102\) 0.440406 5.08301i 0.0436067 0.503293i
\(103\) 0.982712 0.0968295 0.0484147 0.998827i \(-0.484583\pi\)
0.0484147 + 0.998827i \(0.484583\pi\)
\(104\) 3.87541i 0.380015i
\(105\) −1.28416 1.28416i −0.125322 0.125322i
\(106\) 1.33335 0.129507
\(107\) 9.56506 + 9.56506i 0.924689 + 0.924689i 0.997356 0.0726670i \(-0.0231510\pi\)
−0.0726670 + 0.997356i \(0.523151\pi\)
\(108\) −0.331468 + 0.331468i −0.0318955 + 0.0318955i
\(109\) −6.76586 + 6.76586i −0.648052 + 0.648052i −0.952522 0.304470i \(-0.901521\pi\)
0.304470 + 0.952522i \(0.401521\pi\)
\(110\) 5.29991i 0.505327i
\(111\) 1.19320i 0.113254i
\(112\) −2.01011 + 2.01011i −0.189938 + 0.189938i
\(113\) 8.08789 8.08789i 0.760845 0.760845i −0.215630 0.976475i \(-0.569181\pi\)
0.976475 + 0.215630i \(0.0691806\pi\)
\(114\) 2.99581 + 2.99581i 0.280583 + 0.280583i
\(115\) −1.63260 −0.152241
\(116\) −0.00804150 0.00804150i −0.000746634 0.000746634i
\(117\) 1.26858i 0.117280i
\(118\) 6.72563 0.619144
\(119\) 0.355903 4.10772i 0.0326256 0.376554i
\(120\) −5.54799 −0.506460
\(121\) 5.43807i 0.494370i
\(122\) 5.51176 + 5.51176i 0.499011 + 0.499011i
\(123\) −7.09225 −0.639486
\(124\) 2.23899 + 2.23899i 0.201067 + 0.201067i
\(125\) −8.60627 + 8.60627i −0.769768 + 0.769768i
\(126\) 0.874995 0.874995i 0.0779508 0.0779508i
\(127\) 17.4380i 1.54737i −0.633570 0.773685i \(-0.718411\pi\)
0.633570 0.773685i \(-0.281589\pi\)
\(128\) 5.82022i 0.514439i
\(129\) −3.68979 + 3.68979i −0.324868 + 0.324868i
\(130\) 2.01585 2.01585i 0.176802 0.176802i
\(131\) 1.62969 + 1.62969i 0.142387 + 0.142387i 0.774707 0.632320i \(-0.217897\pi\)
−0.632320 + 0.774707i \(0.717897\pi\)
\(132\) 1.10553 0.0962238
\(133\) 2.42099 + 2.42099i 0.209927 + 0.209927i
\(134\) 0.638883i 0.0551911i
\(135\) 1.81608 0.156303
\(136\) −8.10451 9.64213i −0.694956 0.826806i
\(137\) −0.591167 −0.0505068 −0.0252534 0.999681i \(-0.508039\pi\)
−0.0252534 + 0.999681i \(0.508039\pi\)
\(138\) 1.11241i 0.0946948i
\(139\) −4.09327 4.09327i −0.347187 0.347187i 0.511874 0.859061i \(-0.328952\pi\)
−0.859061 + 0.511874i \(0.828952\pi\)
\(140\) −0.851318 −0.0719495
\(141\) −6.01592 6.01592i −0.506632 0.506632i
\(142\) 6.34605 6.34605i 0.532548 0.532548i
\(143\) −2.11551 + 2.11551i −0.176908 + 0.176908i
\(144\) 2.84272i 0.236894i
\(145\) 0.0440586i 0.00365886i
\(146\) 11.6725 11.6725i 0.966022 0.966022i
\(147\) 0.707107 0.707107i 0.0583212 0.0583212i
\(148\) 0.395508 + 0.395508i 0.0325106 + 0.0325106i
\(149\) −20.6031 −1.68787 −0.843936 0.536444i \(-0.819767\pi\)
−0.843936 + 0.536444i \(0.819767\pi\)
\(150\) −1.48911 1.48911i −0.121585 0.121585i
\(151\) 14.8292i 1.20679i −0.797444 0.603393i \(-0.793815\pi\)
0.797444 0.603393i \(-0.206185\pi\)
\(152\) 10.4595 0.848374
\(153\) 2.65293 + 3.15626i 0.214477 + 0.255168i
\(154\) −2.91832 −0.235165
\(155\) 12.2672i 0.985325i
\(156\) −0.420493 0.420493i −0.0336664 0.0336664i
\(157\) −3.79172 −0.302612 −0.151306 0.988487i \(-0.548348\pi\)
−0.151306 + 0.988487i \(0.548348\pi\)
\(158\) −9.42164 9.42164i −0.749546 0.749546i
\(159\) −0.761920 + 0.761920i −0.0604242 + 0.0604242i
\(160\) −3.32878 + 3.32878i −0.263163 + 0.263163i
\(161\) 0.898969i 0.0708487i
\(162\) 1.23743i 0.0972217i
\(163\) 15.3052 15.3052i 1.19880 1.19880i 0.224273 0.974526i \(-0.427999\pi\)
0.974526 0.224273i \(-0.0720007\pi\)
\(164\) −2.35085 + 2.35085i −0.183571 + 0.183571i
\(165\) −3.02854 3.02854i −0.235771 0.235771i
\(166\) 8.94225 0.694053
\(167\) −18.0062 18.0062i −1.39336 1.39336i −0.817659 0.575703i \(-0.804728\pi\)
−0.575703 0.817659i \(-0.695272\pi\)
\(168\) 3.05493i 0.235693i
\(169\) −11.3907 −0.876209
\(170\) −0.799812 + 9.23116i −0.0613428 + 0.707998i
\(171\) −3.42380 −0.261825
\(172\) 2.44609i 0.186513i
\(173\) −2.10892 2.10892i −0.160338 0.160338i 0.622378 0.782717i \(-0.286167\pi\)
−0.782717 + 0.622378i \(0.786167\pi\)
\(174\) −0.0300204 −0.00227584
\(175\) −1.20339 1.20339i −0.0909677 0.0909677i
\(176\) −4.74059 + 4.74059i −0.357335 + 0.357335i
\(177\) −3.84324 + 3.84324i −0.288875 + 0.288875i
\(178\) 12.6282i 0.946520i
\(179\) 7.72272i 0.577223i 0.957446 + 0.288612i \(0.0931936\pi\)
−0.957446 + 0.288612i \(0.906806\pi\)
\(180\) 0.601973 0.601973i 0.0448684 0.0448684i
\(181\) 15.4505 15.4505i 1.14842 1.14842i 0.161561 0.986863i \(-0.448347\pi\)
0.986863 0.161561i \(-0.0516528\pi\)
\(182\) 1.11000 + 1.11000i 0.0822786 + 0.0822786i
\(183\) −6.29919 −0.465649
\(184\) −1.94192 1.94192i −0.143160 0.143160i
\(185\) 2.16695i 0.159317i
\(186\) 8.35855 0.612878
\(187\) 0.839353 9.68753i 0.0613796 0.708422i
\(188\) −3.98817 −0.290867
\(189\) 1.00000i 0.0727393i
\(190\) −5.44063 5.44063i −0.394705 0.394705i
\(191\) −22.7283 −1.64456 −0.822282 0.569081i \(-0.807299\pi\)
−0.822282 + 0.569081i \(0.807299\pi\)
\(192\) −6.28836 6.28836i −0.453824 0.453824i
\(193\) −16.6127 + 16.6127i −1.19581 + 1.19581i −0.220400 + 0.975410i \(0.570736\pi\)
−0.975410 + 0.220400i \(0.929264\pi\)
\(194\) 0.179499 0.179499i 0.0128873 0.0128873i
\(195\) 2.30384i 0.164981i
\(196\) 0.468767i 0.0334833i
\(197\) 4.80175 4.80175i 0.342111 0.342111i −0.515050 0.857160i \(-0.672227\pi\)
0.857160 + 0.515050i \(0.172227\pi\)
\(198\) 2.06357 2.06357i 0.146651 0.146651i
\(199\) 3.56463 + 3.56463i 0.252690 + 0.252690i 0.822073 0.569383i \(-0.192818\pi\)
−0.569383 + 0.822073i \(0.692818\pi\)
\(200\) −5.19902 −0.367627
\(201\) −0.365078 0.365078i −0.0257506 0.0257506i
\(202\) 12.4281i 0.874436i
\(203\) −0.0242602 −0.00170273
\(204\) 1.92556 + 0.166836i 0.134816 + 0.0116808i
\(205\) 12.8801 0.899585
\(206\) 1.21604i 0.0847253i
\(207\) 0.635667 + 0.635667i 0.0441819 + 0.0441819i
\(208\) 3.60622 0.250046
\(209\) 5.70961 + 5.70961i 0.394942 + 0.394942i
\(210\) −1.58906 + 1.58906i −0.109656 + 0.109656i
\(211\) 5.56798 5.56798i 0.383315 0.383315i −0.488980 0.872295i \(-0.662631\pi\)
0.872295 + 0.488980i \(0.162631\pi\)
\(212\) 0.505104i 0.0346907i
\(213\) 7.25266i 0.496944i
\(214\) 11.8361 11.8361i 0.809099 0.809099i
\(215\) 6.70095 6.70095i 0.457001 0.457001i
\(216\) 2.16016 + 2.16016i 0.146980 + 0.146980i
\(217\) 6.75476 0.458543
\(218\) 8.37227 + 8.37227i 0.567042 + 0.567042i
\(219\) 13.3401i 0.901438i
\(220\) −2.00773 −0.135361
\(221\) −4.00395 + 3.36545i −0.269335 + 0.226385i
\(222\) 1.47650 0.0990964
\(223\) 20.5049i 1.37311i −0.727077 0.686556i \(-0.759122\pi\)
0.727077 0.686556i \(-0.240878\pi\)
\(224\) −1.83295 1.83295i −0.122469 0.122469i
\(225\) 1.70185 0.113457
\(226\) −10.0082 10.0082i −0.665736 0.665736i
\(227\) 6.24987 6.24987i 0.414819 0.414819i −0.468595 0.883413i \(-0.655240\pi\)
0.883413 + 0.468595i \(0.155240\pi\)
\(228\) −1.13488 + 1.13488i −0.0751593 + 0.0751593i
\(229\) 6.26192i 0.413799i −0.978362 0.206900i \(-0.933663\pi\)
0.978362 0.206900i \(-0.0663374\pi\)
\(230\) 2.02023i 0.133210i
\(231\) 1.66762 1.66762i 0.109721 0.109721i
\(232\) −0.0524060 + 0.0524060i −0.00344062 + 0.00344062i
\(233\) 16.0632 + 16.0632i 1.05234 + 1.05234i 0.998552 + 0.0537860i \(0.0171289\pi\)
0.0537860 + 0.998552i \(0.482871\pi\)
\(234\) −1.56978 −0.102619
\(235\) 10.9254 + 10.9254i 0.712695 + 0.712695i
\(236\) 2.54782i 0.165849i
\(237\) 10.7677 0.699434
\(238\) −5.08301 0.440406i −0.329483 0.0285473i
\(239\) −5.42712 −0.351052 −0.175526 0.984475i \(-0.556163\pi\)
−0.175526 + 0.984475i \(0.556163\pi\)
\(240\) 5.16262i 0.333246i
\(241\) 19.0689 + 19.0689i 1.22834 + 1.22834i 0.964593 + 0.263743i \(0.0849572\pi\)
0.263743 + 0.964593i \(0.415043\pi\)
\(242\) 6.72924 0.432572
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) −2.08798 + 2.08798i −0.133669 + 0.133669i
\(245\) −1.28416 + 1.28416i −0.0820422 + 0.0820422i
\(246\) 8.77616i 0.559547i
\(247\) 4.34336i 0.276361i
\(248\) 14.5914 14.5914i 0.926552 0.926552i
\(249\) −5.10989 + 5.10989i −0.323826 + 0.323826i
\(250\) 10.6497 + 10.6497i 0.673543 + 0.673543i
\(251\) −11.3447 −0.716074 −0.358037 0.933707i \(-0.616554\pi\)
−0.358037 + 0.933707i \(0.616554\pi\)
\(252\) 0.331468 + 0.331468i 0.0208805 + 0.0208805i
\(253\) 2.12011i 0.133290i
\(254\) −21.5783 −1.35394
\(255\) −4.81794 5.73202i −0.301711 0.358953i
\(256\) −10.5841 −0.661504
\(257\) 26.4860i 1.65215i −0.563557 0.826077i \(-0.690568\pi\)
0.563557 0.826077i \(-0.309432\pi\)
\(258\) 4.56585 + 4.56585i 0.284258 + 0.284258i
\(259\) 1.19320 0.0741419
\(260\) 0.763649 + 0.763649i 0.0473595 + 0.0473595i
\(261\) 0.0171546 0.0171546i 0.00106184 0.00106184i
\(262\) 2.01663 2.01663i 0.124588 0.124588i
\(263\) 0.781732i 0.0482036i 0.999710 + 0.0241018i \(0.00767259\pi\)
−0.999710 + 0.0241018i \(0.992327\pi\)
\(264\) 7.20466i 0.443416i
\(265\) 1.38371 1.38371i 0.0850006 0.0850006i
\(266\) 2.99581 2.99581i 0.183685 0.183685i
\(267\) −7.21613 7.21613i −0.441620 0.441620i
\(268\) −0.242024 −0.0147839
\(269\) 7.14131 + 7.14131i 0.435413 + 0.435413i 0.890465 0.455052i \(-0.150379\pi\)
−0.455052 + 0.890465i \(0.650379\pi\)
\(270\) 2.24727i 0.136765i
\(271\) 16.8897 1.02597 0.512987 0.858397i \(-0.328539\pi\)
0.512987 + 0.858397i \(0.328539\pi\)
\(272\) −8.97237 + 7.54156i −0.544030 + 0.457274i
\(273\) −1.26858 −0.0767778
\(274\) 0.731527i 0.0441932i
\(275\) −2.83804 2.83804i −0.171140 0.171140i
\(276\) 0.421407 0.0253657
\(277\) 3.05228 + 3.05228i 0.183394 + 0.183394i 0.792833 0.609439i \(-0.208605\pi\)
−0.609439 + 0.792833i \(0.708605\pi\)
\(278\) −5.06514 + 5.06514i −0.303787 + 0.303787i
\(279\) −4.77634 + 4.77634i −0.285952 + 0.285952i
\(280\) 5.54799i 0.331556i
\(281\) 14.7023i 0.877067i 0.898715 + 0.438534i \(0.144502\pi\)
−0.898715 + 0.438534i \(0.855498\pi\)
\(282\) −7.44428 + 7.44428i −0.443301 + 0.443301i
\(283\) −7.32159 + 7.32159i −0.435224 + 0.435224i −0.890401 0.455177i \(-0.849576\pi\)
0.455177 + 0.890401i \(0.349576\pi\)
\(284\) 2.40403 + 2.40403i 0.142653 + 0.142653i
\(285\) 6.21790 0.368317
\(286\) 2.61779 + 2.61779i 0.154793 + 0.154793i
\(287\) 7.09225i 0.418642i
\(288\) 2.59218 0.152746
\(289\) 2.92390 16.7467i 0.171994 0.985098i
\(290\) 0.0545194 0.00320149
\(291\) 0.205143i 0.0120257i
\(292\) 4.42180 + 4.42180i 0.258767 + 0.258767i
\(293\) −10.9848 −0.641741 −0.320871 0.947123i \(-0.603975\pi\)
−0.320871 + 0.947123i \(0.603975\pi\)
\(294\) −0.874995 0.874995i −0.0510308 0.0510308i
\(295\) 6.97963 6.97963i 0.406370 0.406370i
\(296\) 2.57750 2.57750i 0.149814 0.149814i
\(297\) 2.35837i 0.136847i
\(298\) 25.4949i 1.47688i
\(299\) −0.806393 + 0.806393i −0.0466349 + 0.0466349i
\(300\) 0.564109 0.564109i 0.0325688 0.0325688i
\(301\) 3.68979 + 3.68979i 0.212676 + 0.212676i
\(302\) −18.3501 −1.05593
\(303\) 7.10179 + 7.10179i 0.407987 + 0.407987i
\(304\) 9.73293i 0.558222i
\(305\) 11.4398 0.655043
\(306\) 3.90565 3.28282i 0.223271 0.187666i
\(307\) 13.8104 0.788203 0.394102 0.919067i \(-0.371056\pi\)
0.394102 + 0.919067i \(0.371056\pi\)
\(308\) 1.10553i 0.0629932i
\(309\) 0.694882 + 0.694882i 0.0395305 + 0.0395305i
\(310\) −15.1798 −0.862155
\(311\) −17.1579 17.1579i −0.972936 0.972936i 0.0267073 0.999643i \(-0.491498\pi\)
−0.999643 + 0.0267073i \(0.991498\pi\)
\(312\) −2.74033 + 2.74033i −0.155141 + 0.155141i
\(313\) 11.3705 11.3705i 0.642699 0.642699i −0.308519 0.951218i \(-0.599833\pi\)
0.951218 + 0.308519i \(0.0998334\pi\)
\(314\) 4.69199i 0.264784i
\(315\) 1.81608i 0.102325i
\(316\) 3.56913 3.56913i 0.200779 0.200779i
\(317\) 3.03419 3.03419i 0.170417 0.170417i −0.616746 0.787162i \(-0.711549\pi\)
0.787162 + 0.616746i \(0.211549\pi\)
\(318\) 0.942823 + 0.942823i 0.0528709 + 0.0528709i
\(319\) −0.0572147 −0.00320341
\(320\) 11.4202 + 11.4202i 0.638407 + 0.638407i
\(321\) 13.5270i 0.755006i
\(322\) −1.11241 −0.0619923
\(323\) 9.08311 + 10.8064i 0.505398 + 0.601284i
\(324\) −0.468767 −0.0260426
\(325\) 2.15893i 0.119756i
\(326\) −18.9392 18.9392i −1.04894 1.04894i
\(327\) −9.56837 −0.529132
\(328\) 15.3204 + 15.3204i 0.845926 + 0.845926i
\(329\) −6.01592 + 6.01592i −0.331669 + 0.331669i
\(330\) −3.74760 + 3.74760i −0.206299 + 0.206299i
\(331\) 19.3135i 1.06156i −0.847508 0.530782i \(-0.821898\pi\)
0.847508 0.530782i \(-0.178102\pi\)
\(332\) 3.38753i 0.185915i
\(333\) −0.843721 + 0.843721i −0.0462356 + 0.0462356i
\(334\) −22.2814 + 22.2814i −1.21919 + 1.21919i
\(335\) 0.663012 + 0.663012i 0.0362242 + 0.0362242i
\(336\) −2.84272 −0.155083
\(337\) 13.8651 + 13.8651i 0.755280 + 0.755280i 0.975459 0.220180i \(-0.0706644\pi\)
−0.220180 + 0.975459i \(0.570664\pi\)
\(338\) 14.0952i 0.766678i
\(339\) 11.4380 0.621227
\(340\) −3.49697 0.302987i −0.189650 0.0164318i
\(341\) 15.9303 0.862672
\(342\) 4.23672i 0.229095i
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) 15.9411 0.859484
\(345\) −1.15442 1.15442i −0.0621521 0.0621521i
\(346\) −2.60964 + 2.60964i −0.140295 + 0.140295i
\(347\) −1.58456 + 1.58456i −0.0850636 + 0.0850636i −0.748358 0.663295i \(-0.769158\pi\)
0.663295 + 0.748358i \(0.269158\pi\)
\(348\) 0.0113724i 0.000609624i
\(349\) 22.3354i 1.19559i 0.801650 + 0.597794i \(0.203956\pi\)
−0.801650 + 0.597794i \(0.796044\pi\)
\(350\) −1.48911 + 1.48911i −0.0795963 + 0.0795963i
\(351\) 0.897020 0.897020i 0.0478794 0.0478794i
\(352\) −4.32278 4.32278i −0.230405 0.230405i
\(353\) −7.98083 −0.424777 −0.212388 0.977185i \(-0.568124\pi\)
−0.212388 + 0.977185i \(0.568124\pi\)
\(354\) 4.75574 + 4.75574i 0.252765 + 0.252765i
\(355\) 13.1714i 0.699067i
\(356\) −4.78383 −0.253543
\(357\) 3.15626 2.65293i 0.167047 0.140408i
\(358\) 9.55633 0.505068
\(359\) 21.3945i 1.12916i 0.825379 + 0.564579i \(0.190962\pi\)
−0.825379 + 0.564579i \(0.809038\pi\)
\(360\) −3.92302 3.92302i −0.206762 0.206762i
\(361\) 7.27758 0.383031
\(362\) −19.1189 19.1189i −1.00487 1.00487i
\(363\) −3.84530 + 3.84530i −0.201826 + 0.201826i
\(364\) −0.420493 + 0.420493i −0.0220398 + 0.0220398i
\(365\) 24.2266i 1.26808i
\(366\) 7.79480i 0.407441i
\(367\) −0.781447 + 0.781447i −0.0407912 + 0.0407912i −0.727208 0.686417i \(-0.759183\pi\)
0.686417 + 0.727208i \(0.259183\pi\)
\(368\) −1.80703 + 1.80703i −0.0941978 + 0.0941978i
\(369\) −5.01497 5.01497i −0.261069 0.261069i
\(370\) −2.68145 −0.139402
\(371\) 0.761920 + 0.761920i 0.0395569 + 0.0395569i
\(372\) 3.16641i 0.164171i
\(373\) −26.1722 −1.35514 −0.677572 0.735457i \(-0.736968\pi\)
−0.677572 + 0.735457i \(0.736968\pi\)
\(374\) −11.9876 1.03864i −0.619866 0.0537069i
\(375\) −12.1711 −0.628513
\(376\) 25.9907i 1.34037i
\(377\) 0.0217619 + 0.0217619i 0.00112080 + 0.00112080i
\(378\) 1.23743 0.0636465
\(379\) −19.6286 19.6286i −1.00826 1.00826i −0.999966 0.00828990i \(-0.997361\pi\)
−0.00828990 0.999966i \(-0.502639\pi\)
\(380\) 2.06104 2.06104i 0.105729 0.105729i
\(381\) 12.3305 12.3305i 0.631711 0.631711i
\(382\) 28.1247i 1.43899i
\(383\) 17.8180i 0.910459i −0.890374 0.455230i \(-0.849557\pi\)
0.890374 0.455230i \(-0.150443\pi\)
\(384\) −4.11552 + 4.11552i −0.210019 + 0.210019i
\(385\) −3.02854 + 3.02854i −0.154349 + 0.154349i
\(386\) 20.5571 + 20.5571i 1.04633 + 1.04633i
\(387\) −5.21815 −0.265253
\(388\) 0.0679982 + 0.0679982i 0.00345209 + 0.00345209i
\(389\) 22.5784i 1.14477i 0.819984 + 0.572386i \(0.193982\pi\)
−0.819984 + 0.572386i \(0.806018\pi\)
\(390\) 2.85084 0.144358
\(391\) 0.319946 3.69271i 0.0161804 0.186748i
\(392\) −3.05493 −0.154297
\(393\) 2.30473i 0.116258i
\(394\) −5.94183 5.94183i −0.299345 0.299345i
\(395\) −19.5549 −0.983915
\(396\) 0.781726 + 0.781726i 0.0392832 + 0.0392832i
\(397\) −25.5061 + 25.5061i −1.28011 + 1.28011i −0.339511 + 0.940602i \(0.610262\pi\)
−0.940602 + 0.339511i \(0.889738\pi\)
\(398\) 4.41098 4.41098i 0.221102 0.221102i
\(399\) 3.42380i 0.171404i
\(400\) 4.83789i 0.241894i
\(401\) −1.91643 + 1.91643i −0.0957021 + 0.0957021i −0.753337 0.657635i \(-0.771557\pi\)
0.657635 + 0.753337i \(0.271557\pi\)
\(402\) −0.451759 + 0.451759i −0.0225317 + 0.0225317i
\(403\) −6.05915 6.05915i −0.301828 0.301828i
\(404\) 4.70804 0.234234
\(405\) 1.28416 + 1.28416i 0.0638106 + 0.0638106i
\(406\) 0.0300204i 0.00148988i
\(407\) 2.81401 0.139486
\(408\) 1.08726 12.5488i 0.0538273 0.621257i
\(409\) −32.7262 −1.61821 −0.809103 0.587667i \(-0.800047\pi\)
−0.809103 + 0.587667i \(0.800047\pi\)
\(410\) 15.9382i 0.787132i
\(411\) −0.418018 0.418018i −0.0206193 0.0206193i
\(412\) 0.460662 0.0226952
\(413\) 3.84324 + 3.84324i 0.189113 + 0.189113i
\(414\) 0.786594 0.786594i 0.0386590 0.0386590i
\(415\) 9.27997 9.27997i 0.455536 0.455536i
\(416\) 3.28838i 0.161226i
\(417\) 5.78876i 0.283477i
\(418\) 7.06524 7.06524i 0.345572 0.345572i
\(419\) −0.602340 + 0.602340i −0.0294262 + 0.0294262i −0.721667 0.692241i \(-0.756624\pi\)
0.692241 + 0.721667i \(0.256624\pi\)
\(420\) −0.601973 0.601973i −0.0293733 0.0293733i
\(421\) 1.46190 0.0712489 0.0356244 0.999365i \(-0.488658\pi\)
0.0356244 + 0.999365i \(0.488658\pi\)
\(422\) −6.88998 6.88998i −0.335399 0.335399i
\(423\) 8.50780i 0.413663i
\(424\) 3.29174 0.159861
\(425\) −4.51489 5.37147i −0.219004 0.260555i
\(426\) 8.97467 0.434824
\(427\) 6.29919i 0.304839i
\(428\) 4.48378 + 4.48378i 0.216732 + 0.216732i
\(429\) −2.99178 −0.144444
\(430\) −8.29196 8.29196i −0.399874 0.399874i
\(431\) 15.5055 15.5055i 0.746872 0.746872i −0.227019 0.973890i \(-0.572898\pi\)
0.973890 + 0.227019i \(0.0728979\pi\)
\(432\) 2.01011 2.01011i 0.0967114 0.0967114i
\(433\) 25.4725i 1.22413i −0.790807 0.612065i \(-0.790339\pi\)
0.790807 0.612065i \(-0.209661\pi\)
\(434\) 8.35855i 0.401223i
\(435\) −0.0311541 + 0.0311541i −0.00149373 + 0.00149373i
\(436\) −3.17161 + 3.17161i −0.151892 + 0.151892i
\(437\) 2.17640 + 2.17640i 0.104111 + 0.104111i
\(438\) 16.5074 0.788754
\(439\) −26.3658 26.3658i −1.25837 1.25837i −0.951871 0.306498i \(-0.900843\pi\)
−0.306498 0.951871i \(-0.599157\pi\)
\(440\) 13.0842i 0.623767i
\(441\) 1.00000 0.0476190
\(442\) 4.16451 + 4.95461i 0.198085 + 0.235667i
\(443\) 40.4670 1.92264 0.961321 0.275429i \(-0.0888199\pi\)
0.961321 + 0.275429i \(0.0888199\pi\)
\(444\) 0.559333i 0.0265448i
\(445\) 13.1051 + 13.1051i 0.621240 + 0.621240i
\(446\) −25.3734 −1.20147
\(447\) −14.5686 14.5686i −0.689071 0.689071i
\(448\) −6.28836 + 6.28836i −0.297097 + 0.297097i
\(449\) 6.73113 6.73113i 0.317662 0.317662i −0.530207 0.847868i \(-0.677886\pi\)
0.847868 + 0.530207i \(0.177886\pi\)
\(450\) 2.10592i 0.0992740i
\(451\) 16.7262i 0.787604i
\(452\) 3.79133 3.79133i 0.178329 0.178329i
\(453\) 10.4859 10.4859i 0.492669 0.492669i
\(454\) −7.73378 7.73378i −0.362964 0.362964i
\(455\) 2.30384 0.108006
\(456\) 7.39596 + 7.39596i 0.346347 + 0.346347i
\(457\) 8.05510i 0.376802i −0.982092 0.188401i \(-0.939670\pi\)
0.982092 0.188401i \(-0.0603304\pi\)
\(458\) −7.74869 −0.362073
\(459\) −0.355903 + 4.10772i −0.0166122 + 0.191732i
\(460\) −0.765309 −0.0356827
\(461\) 33.2395i 1.54812i 0.633113 + 0.774059i \(0.281777\pi\)
−0.633113 + 0.774059i \(0.718223\pi\)
\(462\) −2.06357 2.06357i −0.0960058 0.0960058i
\(463\) 18.4862 0.859125 0.429563 0.903037i \(-0.358668\pi\)
0.429563 + 0.903037i \(0.358668\pi\)
\(464\) 0.0487657 + 0.0487657i 0.00226389 + 0.00226389i
\(465\) 8.67422 8.67422i 0.402257 0.402257i
\(466\) 19.8771 19.8771i 0.920791 0.920791i
\(467\) 7.79833i 0.360864i 0.983587 + 0.180432i \(0.0577495\pi\)
−0.983587 + 0.180432i \(0.942250\pi\)
\(468\) 0.594667i 0.0274885i
\(469\) −0.365078 + 0.365078i −0.0168577 + 0.0168577i
\(470\) 13.5194 13.5194i 0.623604 0.623604i
\(471\) −2.68115 2.68115i −0.123541 0.123541i
\(472\) 16.6040 0.764262
\(473\) 8.70190 + 8.70190i 0.400114 + 0.400114i
\(474\) 13.3242i 0.612001i
\(475\) 5.82680 0.267352
\(476\) 0.166836 1.92556i 0.00764690 0.0882579i
\(477\) −1.07752 −0.0493362
\(478\) 6.71569i 0.307168i
\(479\) −12.8498 12.8498i −0.587121 0.587121i 0.349729 0.936851i \(-0.386274\pi\)
−0.936851 + 0.349729i \(0.886274\pi\)
\(480\) −4.70761 −0.214872
\(481\) −1.07033 1.07033i −0.0488026 0.0488026i
\(482\) 23.5964 23.5964i 1.07479 1.07479i
\(483\) 0.635667 0.635667i 0.0289239 0.0289239i
\(484\) 2.54919i 0.115872i
\(485\) 0.372555i 0.0169169i
\(486\) −0.874995 + 0.874995i −0.0396906 + 0.0396906i
\(487\) −3.29305 + 3.29305i −0.149223 + 0.149223i −0.777771 0.628548i \(-0.783650\pi\)
0.628548 + 0.777771i \(0.283650\pi\)
\(488\) 13.6072 + 13.6072i 0.615971 + 0.615971i
\(489\) 21.6449 0.978816
\(490\) 1.58906 + 1.58906i 0.0717865 + 0.0717865i
\(491\) 41.8043i 1.88660i 0.331942 + 0.943300i \(0.392296\pi\)
−0.331942 + 0.943300i \(0.607704\pi\)
\(492\) −3.32461 −0.149885
\(493\) −0.0996542 0.00863430i −0.00448820 0.000388869i
\(494\) −5.37460 −0.241815
\(495\) 4.28300i 0.192506i
\(496\) −13.5778 13.5778i −0.609662 0.609662i
\(497\) 7.25266 0.325326
\(498\) 6.32313 + 6.32313i 0.283346 + 0.283346i
\(499\) −7.48438 + 7.48438i −0.335047 + 0.335047i −0.854499 0.519453i \(-0.826136\pi\)
0.519453 + 0.854499i \(0.326136\pi\)
\(500\) −4.03433 + 4.03433i −0.180421 + 0.180421i
\(501\) 25.4646i 1.13768i
\(502\) 14.0383i 0.626561i
\(503\) 19.3628 19.3628i 0.863343 0.863343i −0.128382 0.991725i \(-0.540978\pi\)
0.991725 + 0.128382i \(0.0409784\pi\)
\(504\) 2.16016 2.16016i 0.0962211 0.0962211i
\(505\) −12.8974 12.8974i −0.573928 0.573928i
\(506\) −2.62348 −0.116628
\(507\) −8.05445 8.05445i −0.357711 0.357711i
\(508\) 8.17435i 0.362678i
\(509\) −9.14311 −0.405261 −0.202631 0.979255i \(-0.564949\pi\)
−0.202631 + 0.979255i \(0.564949\pi\)
\(510\) −7.09297 + 5.96186i −0.314082 + 0.263996i
\(511\) 13.3401 0.590130
\(512\) 24.7375i 1.09325i
\(513\) −2.42099 2.42099i −0.106889 0.106889i
\(514\) −32.7746 −1.44563
\(515\) −1.26196 1.26196i −0.0556087 0.0556087i
\(516\) −1.72965 + 1.72965i −0.0761436 + 0.0761436i
\(517\) −14.1878 + 14.1878i −0.623978 + 0.623978i
\(518\) 1.47650i 0.0648738i
\(519\) 2.98246i 0.130916i
\(520\) 4.97666 4.97666i 0.218241 0.218241i
\(521\) −12.4615 + 12.4615i −0.545949 + 0.545949i −0.925267 0.379317i \(-0.876159\pi\)
0.379317 + 0.925267i \(0.376159\pi\)
\(522\) −0.0212276 0.0212276i −0.000929107 0.000929107i
\(523\) 3.52171 0.153994 0.0769969 0.997031i \(-0.475467\pi\)
0.0769969 + 0.997031i \(0.475467\pi\)
\(524\) 0.763944 + 0.763944i 0.0333730 + 0.0333730i
\(525\) 1.70185i 0.0742748i
\(526\) 0.967338 0.0421779
\(527\) 27.7466 + 2.40404i 1.20866 + 0.104722i
\(528\) −6.70421 −0.291763
\(529\) 22.1919i 0.964863i
\(530\) −1.71224 1.71224i −0.0743751 0.0743751i
\(531\) −5.43516 −0.235866
\(532\) 1.13488 + 1.13488i 0.0492033 + 0.0492033i
\(533\) 6.36188 6.36188i 0.275564 0.275564i
\(534\) −8.92945 + 8.92945i −0.386415 + 0.386415i
\(535\) 24.5662i 1.06209i
\(536\) 1.57725i 0.0681270i
\(537\) −5.46079 + 5.46079i −0.235650 + 0.235650i
\(538\) 8.83687 8.83687i 0.380984 0.380984i
\(539\) −1.66762 1.66762i −0.0718296 0.0718296i
\(540\) 0.851318 0.0366349
\(541\) −24.5762 24.5762i −1.05662 1.05662i −0.998298 0.0583174i \(-0.981426\pi\)
−0.0583174 0.998298i \(-0.518574\pi\)
\(542\) 20.8998i 0.897722i
\(543\) 21.8503 0.937684
\(544\) −6.87688 8.18158i −0.294844 0.350782i
\(545\) 17.3769 0.744346
\(546\) 1.56978i 0.0671802i
\(547\) 23.2069 + 23.2069i 0.992254 + 0.992254i 0.999970 0.00771605i \(-0.00245612\pi\)
−0.00771605 + 0.999970i \(0.502456\pi\)
\(548\) −0.277119 −0.0118379
\(549\) −4.45420 4.45420i −0.190101 0.190101i
\(550\) −3.51188 + 3.51188i −0.149747 + 0.149747i
\(551\) 0.0587339 0.0587339i 0.00250215 0.00250215i
\(552\) 2.74629i 0.116890i
\(553\) 10.7677i 0.457887i
\(554\) 3.77698 3.77698i 0.160469 0.160469i
\(555\) 1.53227 1.53227i 0.0650410 0.0650410i
\(556\) −1.91879 1.91879i −0.0813748 0.0813748i
\(557\) 33.5274 1.42060 0.710300 0.703899i \(-0.248559\pi\)
0.710300 + 0.703899i \(0.248559\pi\)
\(558\) 5.91039 + 5.91039i 0.250207 + 0.250207i
\(559\) 6.61962i 0.279980i
\(560\) 5.16262 0.218160
\(561\) 7.44363 6.25661i 0.314270 0.264154i
\(562\) 18.1931 0.767430
\(563\) 39.1139i 1.64845i −0.566260 0.824226i \(-0.691610\pi\)
0.566260 0.824226i \(-0.308390\pi\)
\(564\) −2.82006 2.82006i −0.118746 0.118746i
\(565\) −20.7723 −0.873899
\(566\) 9.05996 + 9.05996i 0.380819 + 0.380819i
\(567\) −0.707107 + 0.707107i −0.0296957 + 0.0296957i
\(568\) 15.6669 15.6669i 0.657369 0.657369i
\(569\) 18.6068i 0.780037i −0.920807 0.390018i \(-0.872469\pi\)
0.920807 0.390018i \(-0.127531\pi\)
\(570\) 7.69422i 0.322275i
\(571\) 1.41482 1.41482i 0.0592085 0.0592085i −0.676883 0.736091i \(-0.736670\pi\)
0.736091 + 0.676883i \(0.236670\pi\)
\(572\) −0.991679 + 0.991679i −0.0414642 + 0.0414642i
\(573\) −16.0713 16.0713i −0.671390 0.671390i
\(574\) 8.77616 0.366310
\(575\) −1.08181 1.08181i −0.0451146 0.0451146i
\(576\) 8.89309i 0.370545i
\(577\) 10.9555 0.456083 0.228042 0.973651i \(-0.426768\pi\)
0.228042 + 0.973651i \(0.426768\pi\)
\(578\) −20.7228 3.61812i −0.861956 0.150494i
\(579\) −23.4939 −0.976375
\(580\) 0.0206532i 0.000857577i
\(581\) 5.10989 + 5.10989i 0.211994 + 0.211994i
\(582\) 0.253850 0.0105224
\(583\) 1.79689 + 1.79689i 0.0744197 + 0.0744197i
\(584\) 28.8167 28.8167i 1.19244 1.19244i
\(585\) −1.62906 + 1.62906i −0.0673534 + 0.0673534i
\(586\) 13.5930i 0.561520i
\(587\) 4.27209i 0.176328i 0.996106 + 0.0881640i \(0.0281000\pi\)
−0.996106 + 0.0881640i \(0.971900\pi\)
\(588\) 0.331468 0.331468i 0.0136695 0.0136695i
\(589\) −16.3532 + 16.3532i −0.673823 + 0.673823i
\(590\) −8.63681 8.63681i −0.355572 0.355572i
\(591\) 6.79070 0.279332
\(592\) −2.39847 2.39847i −0.0985763 0.0985763i
\(593\) 19.2572i 0.790799i 0.918509 + 0.395399i \(0.129394\pi\)
−0.918509 + 0.395399i \(0.870606\pi\)
\(594\) 2.91832 0.119740
\(595\) −5.73202 + 4.81794i −0.234990 + 0.197516i
\(596\) −9.65805 −0.395609
\(597\) 5.04115i 0.206320i
\(598\) 0.997855 + 0.997855i 0.0408053 + 0.0408053i
\(599\) 4.47849 0.182986 0.0914931 0.995806i \(-0.470836\pi\)
0.0914931 + 0.995806i \(0.470836\pi\)
\(600\) −3.67627 3.67627i −0.150083 0.150083i
\(601\) −24.4616 + 24.4616i −0.997811 + 0.997811i −0.999998 0.00218683i \(-0.999304\pi\)
0.00218683 + 0.999998i \(0.499304\pi\)
\(602\) 4.56585 4.56585i 0.186090 0.186090i
\(603\) 0.516299i 0.0210253i
\(604\) 6.95145i 0.282851i
\(605\) 6.98338 6.98338i 0.283915 0.283915i
\(606\) 8.78797 8.78797i 0.356987 0.356987i
\(607\) 1.88069 + 1.88069i 0.0763350 + 0.0763350i 0.744243 0.667908i \(-0.232810\pi\)
−0.667908 + 0.744243i \(0.732810\pi\)
\(608\) 8.87511 0.359933
\(609\) −0.0171546 0.0171546i −0.000695139 0.000695139i
\(610\) 14.1560i 0.573160i
\(611\) 10.7928 0.436630
\(612\) 1.24361 + 1.47955i 0.0502698 + 0.0598072i
\(613\) −8.81178 −0.355905 −0.177952 0.984039i \(-0.556947\pi\)
−0.177952 + 0.984039i \(0.556947\pi\)
\(614\) 17.0895i 0.689674i
\(615\) 9.10760 + 9.10760i 0.367254 + 0.367254i
\(616\) −7.20466 −0.290284
\(617\) −17.5550 17.5550i −0.706738 0.706738i 0.259110 0.965848i \(-0.416571\pi\)
−0.965848 + 0.259110i \(0.916571\pi\)
\(618\) 0.859868 0.859868i 0.0345890 0.0345890i
\(619\) −13.3538 + 13.3538i −0.536733 + 0.536733i −0.922568 0.385835i \(-0.873913\pi\)
0.385835 + 0.922568i \(0.373913\pi\)
\(620\) 5.75045i 0.230944i
\(621\) 0.898969i 0.0360744i
\(622\) −21.2317 + 21.2317i −0.851314 + 0.851314i
\(623\) −7.21613 + 7.21613i −0.289108 + 0.289108i
\(624\) 2.54998 + 2.54998i 0.102081 + 0.102081i
\(625\) 13.5945 0.543778
\(626\) −14.0702 14.0702i −0.562359 0.562359i
\(627\) 8.07460i 0.322469i
\(628\) −1.77743 −0.0709273
\(629\) 4.90133 + 0.424665i 0.195429 + 0.0169325i
\(630\) −2.24727 −0.0895335
\(631\) 33.5614i 1.33606i 0.744135 + 0.668030i \(0.232862\pi\)
−0.744135 + 0.668030i \(0.767138\pi\)
\(632\) −23.2598 23.2598i −0.925227 0.925227i
\(633\) 7.87431 0.312976
\(634\) −3.75459 3.75459i −0.149114 0.149114i
\(635\) −22.3932 + 22.3932i −0.888648 + 0.888648i
\(636\) −0.357163 + 0.357163i −0.0141624 + 0.0141624i
\(637\) 1.26858i 0.0502629i
\(638\) 0.0707992i 0.00280297i
\(639\) −5.12841 + 5.12841i −0.202877 + 0.202877i
\(640\) 7.47411 7.47411i 0.295440 0.295440i
\(641\) 12.7679 + 12.7679i 0.504302 + 0.504302i 0.912772 0.408470i \(-0.133937\pi\)
−0.408470 + 0.912772i \(0.633937\pi\)
\(642\) 16.7388 0.660626
\(643\) −18.7783 18.7783i −0.740543 0.740543i 0.232139 0.972683i \(-0.425428\pi\)
−0.972683 + 0.232139i \(0.925428\pi\)
\(644\) 0.421407i 0.0166058i
\(645\) 9.47658 0.373140
\(646\) 13.3722 11.2397i 0.526121 0.442221i
\(647\) −12.7877 −0.502735 −0.251367 0.967892i \(-0.580880\pi\)
−0.251367 + 0.967892i \(0.580880\pi\)
\(648\) 3.05493i 0.120009i
\(649\) 9.06379 + 9.06379i 0.355785 + 0.355785i
\(650\) 2.67152 0.104786
\(651\) 4.77634 + 4.77634i 0.187199 + 0.187199i
\(652\) 7.17459 7.17459i 0.280979 0.280979i
\(653\) −0.199511 + 0.199511i −0.00780745 + 0.00780745i −0.711000 0.703192i \(-0.751757\pi\)
0.703192 + 0.711000i \(0.251757\pi\)
\(654\) 11.8402i 0.462988i
\(655\) 4.18557i 0.163544i
\(656\) 14.2562 14.2562i 0.556611 0.556611i
\(657\) −9.43285 + 9.43285i −0.368010 + 0.368010i
\(658\) 7.44428 + 7.44428i 0.290208 + 0.290208i
\(659\) −38.5587 −1.50203 −0.751017 0.660283i \(-0.770436\pi\)
−0.751017 + 0.660283i \(0.770436\pi\)
\(660\) −1.41968 1.41968i −0.0552609 0.0552609i
\(661\) 19.9752i 0.776944i −0.921461 0.388472i \(-0.873003\pi\)
0.921461 0.388472i \(-0.126997\pi\)
\(662\) −23.8991 −0.928863
\(663\) −5.21096 0.451491i −0.202377 0.0175345i
\(664\) 22.0763 0.856728
\(665\) 6.21790i 0.241120i
\(666\) 1.04405 + 1.04405i 0.0404559 + 0.0404559i
\(667\) −0.0218092 −0.000844456
\(668\) −8.44071 8.44071i −0.326581 0.326581i
\(669\) 14.4992 14.4992i 0.560570 0.560570i
\(670\) 0.820431 0.820431i 0.0316960 0.0316960i
\(671\) 14.8558i 0.573503i
\(672\) 2.59218i 0.0999955i
\(673\) −29.9293 + 29.9293i −1.15369 + 1.15369i −0.167882 + 0.985807i \(0.553693\pi\)
−0.985807 + 0.167882i \(0.946307\pi\)
\(674\) 17.1571 17.1571i 0.660866 0.660866i
\(675\) 1.20339 + 1.20339i 0.0463185 + 0.0463185i
\(676\) −5.33959 −0.205369
\(677\) −29.6635 29.6635i −1.14006 1.14006i −0.988438 0.151624i \(-0.951550\pi\)
−0.151624 0.988438i \(-0.548450\pi\)
\(678\) 14.1537i 0.543571i
\(679\) 0.205143 0.00787265
\(680\) −1.97455 + 22.7896i −0.0757205 + 0.873941i
\(681\) 8.83865 0.338698
\(682\) 19.7126i 0.754834i
\(683\) 13.1896 + 13.1896i 0.504686 + 0.504686i 0.912891 0.408205i \(-0.133845\pi\)
−0.408205 + 0.912891i \(0.633845\pi\)
\(684\) −1.60496 −0.0613673
\(685\) 0.759154 + 0.759154i 0.0290058 + 0.0290058i
\(686\) −0.874995 + 0.874995i −0.0334075 + 0.0334075i
\(687\) 4.42785 4.42785i 0.168933 0.168933i
\(688\) 14.8338i 0.565532i
\(689\) 1.36691i 0.0520753i
\(690\) −1.42852 + 1.42852i −0.0543828 + 0.0543828i
\(691\) −21.1245 + 21.1245i −0.803615 + 0.803615i −0.983659 0.180043i \(-0.942376\pi\)
0.180043 + 0.983659i \(0.442376\pi\)
\(692\) −0.988591 0.988591i −0.0375806 0.0375806i
\(693\) 2.35837 0.0895872
\(694\) 1.96078 + 1.96078i 0.0744303 + 0.0744303i
\(695\) 10.5129i 0.398776i
\(696\) −0.0741132 −0.00280926
\(697\) −2.52415 + 29.1329i −0.0956092 + 1.10349i
\(698\) 27.6385 1.04613
\(699\) 22.7169i 0.859231i
\(700\) −0.564109 0.564109i −0.0213213 0.0213213i
\(701\) −29.6430 −1.11960 −0.559800 0.828628i \(-0.689122\pi\)
−0.559800 + 0.828628i \(0.689122\pi\)
\(702\) −1.11000 1.11000i −0.0418942 0.0418942i
\(703\) −2.88873 + 2.88873i −0.108951 + 0.108951i
\(704\) −14.8303 + 14.8303i −0.558938 + 0.558938i
\(705\) 15.4509i 0.581913i
\(706\) 9.87572i 0.371677i
\(707\) 7.10179 7.10179i 0.267090 0.267090i
\(708\) −1.80158 + 1.80158i −0.0677076 + 0.0677076i
\(709\) −34.5354 34.5354i −1.29700 1.29700i −0.930363 0.366640i \(-0.880508\pi\)
−0.366640 0.930363i \(-0.619492\pi\)
\(710\) −16.2987 −0.611680
\(711\) 7.61388 + 7.61388i 0.285543 + 0.285543i
\(712\) 31.1760i 1.16837i
\(713\) 6.07233 0.227410
\(714\) −3.28282 3.90565i −0.122856 0.146165i
\(715\) 5.43331 0.203194
\(716\) 3.62015i 0.135292i
\(717\) −3.83756 3.83756i −0.143316 0.143316i
\(718\) 26.4742 0.988008
\(719\) 23.9009 + 23.9009i 0.891354 + 0.891354i 0.994651 0.103297i \(-0.0329391\pi\)
−0.103297 + 0.994651i \(0.532939\pi\)
\(720\) −3.65052 + 3.65052i −0.136047 + 0.136047i
\(721\) 0.694882 0.694882i 0.0258788 0.0258788i
\(722\) 9.00550i 0.335150i
\(723\) 26.9675i 1.00293i
\(724\) 7.24266 7.24266i 0.269171 0.269171i
\(725\) −0.0291945 + 0.0291945i −0.00108426 + 0.00108426i
\(726\) 4.75829 + 4.75829i 0.176597 + 0.176597i
\(727\) −12.4398 −0.461367 −0.230684 0.973029i \(-0.574096\pi\)
−0.230684 + 0.973029i \(0.574096\pi\)
\(728\) 2.74033 + 2.74033i 0.101563 + 0.101563i
\(729\) 1.00000i 0.0370370i
\(730\) −29.9788 −1.10956
\(731\) 13.8434 + 16.4698i 0.512016 + 0.609158i
\(732\) −2.95285 −0.109140
\(733\) 13.2154i 0.488123i −0.969760 0.244061i \(-0.921520\pi\)
0.969760 0.244061i \(-0.0784798\pi\)
\(734\) 0.966986 + 0.966986i 0.0356921 + 0.0356921i
\(735\) −1.81608 −0.0669872
\(736\) −1.64776 1.64776i −0.0607374 0.0607374i
\(737\) −0.860991 + 0.860991i −0.0317150 + 0.0317150i
\(738\) −6.20568 + 6.20568i −0.228434 + 0.228434i
\(739\) 32.3074i 1.18845i 0.804300 + 0.594223i \(0.202540\pi\)
−0.804300 + 0.594223i \(0.797460\pi\)
\(740\) 1.01579i 0.0373413i
\(741\) 3.07122 3.07122i 0.112824 0.112824i
\(742\) 0.942823 0.942823i 0.0346121 0.0346121i
\(743\) −32.4829 32.4829i −1.19168 1.19168i −0.976595 0.215088i \(-0.930996\pi\)
−0.215088 0.976595i \(-0.569004\pi\)
\(744\) 20.6353 0.756527
\(745\) 26.4577 + 26.4577i 0.969337 + 0.969337i
\(746\) 32.3862i 1.18574i
\(747\) −7.22647 −0.264403
\(748\) 0.393461 4.54119i 0.0143864 0.166042i
\(749\) 13.5270 0.494267
\(750\) 15.0609i 0.549946i
\(751\) 34.9317 + 34.9317i 1.27468 + 1.27468i 0.943606 + 0.331071i \(0.107410\pi\)
0.331071 + 0.943606i \(0.392590\pi\)
\(752\) 24.1853 0.881948
\(753\) −8.02195 8.02195i −0.292336 0.292336i
\(754\) 0.0269288 0.0269288i 0.000980691 0.000980691i
\(755\) −19.0432 + 19.0432i −0.693052 + 0.693052i
\(756\) 0.468767i 0.0170489i
\(757\) 44.2730i 1.60913i 0.593866 + 0.804564i \(0.297601\pi\)
−0.593866 + 0.804564i \(0.702399\pi\)
\(758\) −24.2891 + 24.2891i −0.882219 + 0.882219i
\(759\) 1.49914 1.49914i 0.0544154 0.0544154i
\(760\) −13.4317 13.4317i −0.487217 0.487217i
\(761\) 5.71316 0.207102 0.103551 0.994624i \(-0.466979\pi\)
0.103551 + 0.994624i \(0.466979\pi\)
\(762\) −15.2582 15.2582i −0.552745 0.552745i
\(763\) 9.56837i 0.346398i
\(764\) −10.6543 −0.385458
\(765\) 0.646350 7.45995i 0.0233688 0.269715i
\(766\) −22.0486 −0.796648
\(767\) 6.89492i 0.248961i
\(768\) −7.48407 7.48407i −0.270058 0.270058i
\(769\) 27.7810 1.00181 0.500904 0.865503i \(-0.333001\pi\)
0.500904 + 0.865503i \(0.333001\pi\)
\(770\) 3.74760 + 3.74760i 0.135054 + 0.135054i
\(771\) 18.7285 18.7285i 0.674489 0.674489i
\(772\) −7.78749 + 7.78749i −0.280278 + 0.280278i
\(773\) 14.0849i 0.506600i −0.967388 0.253300i \(-0.918484\pi\)
0.967388 0.253300i \(-0.0815160\pi\)
\(774\) 6.45709i 0.232095i
\(775\) 8.12861 8.12861i 0.291988 0.291988i
\(776\) 0.443141 0.443141i 0.0159078 0.0159078i
\(777\) 0.843721 + 0.843721i 0.0302683 + 0.0302683i
\(778\) 27.9392 1.00167
\(779\) −17.1703 17.1703i −0.615189 0.615189i
\(780\) 1.07996i 0.0386689i
\(781\) 17.1045 0.612047
\(782\) −4.56947 0.395911i −0.163404 0.0141578i
\(783\) 0.0242602 0.000866990
\(784\) 2.84272i 0.101526i
\(785\) 4.86919 + 4.86919i 0.173789 + 0.173789i
\(786\) 2.85194 0.101725
\(787\) 12.3554 + 12.3554i 0.440422 + 0.440422i 0.892154 0.451732i \(-0.149194\pi\)
−0.451732 + 0.892154i \(0.649194\pi\)
\(788\) 2.25090 2.25090i 0.0801850 0.0801850i
\(789\) −0.552768 + 0.552768i −0.0196790 + 0.0196790i
\(790\) 24.1979i 0.860921i
\(791\) 11.4380i 0.406689i
\(792\) 5.09446 5.09446i 0.181024 0.181024i
\(793\) 5.65049 5.65049i 0.200655 0.200655i
\(794\) 31.5620 + 31.5620i 1.12009 + 1.12009i
\(795\) 1.95686 0.0694027
\(796\) 1.67098 + 1.67098i 0.0592263 + 0.0592263i
\(797\) 16.4792i 0.583724i 0.956460 + 0.291862i \(0.0942748\pi\)
−0.956460 + 0.291862i \(0.905725\pi\)
\(798\) 4.23672 0.149978
\(799\) −26.8528 + 22.5706i −0.949983 + 0.798491i
\(800\) −4.41150 −0.155970
\(801\) 10.2051i 0.360581i
\(802\) 2.37145 + 2.37145i 0.0837389 + 0.0837389i
\(803\) 31.4608 1.11023
\(804\) −0.171137 0.171137i −0.00603552 0.00603552i
\(805\) −1.15442 + 1.15442i −0.0406881 + 0.0406881i
\(806\) −7.49778 + 7.49778i −0.264098 + 0.264098i
\(807\) 10.0993i 0.355513i
\(808\) 30.6820i 1.07939i
\(809\) 22.2206 22.2206i 0.781235 0.781235i −0.198804 0.980039i \(-0.563706\pi\)
0.980039 + 0.198804i \(0.0637057\pi\)
\(810\) 1.58906 1.58906i 0.0558340 0.0558340i
\(811\) −15.5129 15.5129i −0.544732 0.544732i 0.380181 0.924912i \(-0.375862\pi\)
−0.924912 + 0.380181i \(0.875862\pi\)
\(812\) −0.0113724 −0.000399093
\(813\) 11.9428 + 11.9428i 0.418852 + 0.418852i
\(814\) 3.48215i 0.122049i
\(815\) −39.3089 −1.37693
\(816\) −11.6771 1.01174i −0.408780 0.0354178i
\(817\) −17.8659 −0.625049
\(818\) 40.4964i 1.41592i
\(819\) −0.897020 0.897020i −0.0313444 0.0313444i
\(820\) 6.03776 0.210848
\(821\) 15.2116 + 15.2116i 0.530888 + 0.530888i 0.920837 0.389948i \(-0.127507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(822\) −0.517268 + 0.517268i −0.0180418 + 0.0180418i
\(823\) 30.4939 30.4939i 1.06295 1.06295i 0.0650702 0.997881i \(-0.479273\pi\)
0.997881 0.0650702i \(-0.0207271\pi\)
\(824\) 3.00211i 0.104584i
\(825\) 4.01360i 0.139735i
\(826\) 4.75574 4.75574i 0.165473 0.165473i
\(827\) −18.6909 + 18.6909i −0.649947 + 0.649947i −0.952980 0.303033i \(-0.902001\pi\)
0.303033 + 0.952980i \(0.402001\pi\)
\(828\) 0.297980 + 0.297980i 0.0103555 + 0.0103555i
\(829\) −4.62524 −0.160641 −0.0803205 0.996769i \(-0.525594\pi\)
−0.0803205 + 0.996769i \(0.525594\pi\)
\(830\) −11.4833 11.4833i −0.398592 0.398592i
\(831\) 4.31657i 0.149740i
\(832\) 11.2816 0.391118
\(833\) −2.65293 3.15626i −0.0919187 0.109358i
\(834\) −7.16319 −0.248041
\(835\) 46.2458i 1.60040i
\(836\) 2.67647 + 2.67647i 0.0925678 + 0.0925678i
\(837\) −6.75476 −0.233479
\(838\) 0.745353 + 0.745353i 0.0257478 + 0.0257478i
\(839\) 22.3535 22.3535i 0.771729 0.771729i −0.206679 0.978409i \(-0.566266\pi\)
0.978409 + 0.206679i \(0.0662657\pi\)
\(840\) −3.92302 + 3.92302i −0.135357 + 0.135357i
\(841\) 28.9994i 0.999980i
\(842\) 1.80900i 0.0623424i
\(843\) −10.3961 + 10.3961i −0.358061 + 0.358061i
\(844\) 2.61008 2.61008i 0.0898427 0.0898427i
\(845\) 14.6275 + 14.6275i 0.503202 + 0.503202i
\(846\) −10.5278 −0.361953
\(847\) 3.84530 + 3.84530i 0.132126 + 0.132126i
\(848\) 3.06309i 0.105187i
\(849\) −10.3543 −0.355359
\(850\) −6.64682 + 5.58686i −0.227984 + 0.191628i
\(851\) 1.07265 0.0367700
\(852\) 3.39981i 0.116475i
\(853\) 3.57097 + 3.57097i 0.122268 + 0.122268i 0.765593 0.643325i \(-0.222446\pi\)
−0.643325 + 0.765593i \(0.722446\pi\)
\(854\) 7.79480 0.266733
\(855\) 4.39672 + 4.39672i 0.150365 + 0.150365i
\(856\) 29.2206 29.2206i 0.998738 0.998738i
\(857\) −8.28814 + 8.28814i −0.283117 + 0.283117i −0.834351 0.551234i \(-0.814157\pi\)
0.551234 + 0.834351i \(0.314157\pi\)
\(858\) 3.70212i 0.126388i
\(859\) 48.5065i 1.65502i −0.561450 0.827510i \(-0.689756\pi\)
0.561450 0.827510i \(-0.310244\pi\)
\(860\) 3.14118 3.14118i 0.107113 0.107113i
\(861\) −5.01497 + 5.01497i −0.170910 + 0.170910i
\(862\) −19.1869 19.1869i −0.653509 0.653509i
\(863\) −13.5157 −0.460081 −0.230041 0.973181i \(-0.573886\pi\)
−0.230041 + 0.973181i \(0.573886\pi\)
\(864\) 1.83295 + 1.83295i 0.0623582 + 0.0623582i
\(865\) 5.41639i 0.184163i
\(866\) −31.5204 −1.07111
\(867\) 13.9092 9.77417i 0.472381 0.331948i
\(868\) 3.16641 0.107475
\(869\) 25.3941i 0.861437i
\(870\) 0.0385510 + 0.0385510i 0.00130700 + 0.00130700i
\(871\) 0.654965 0.0221926
\(872\) 20.6692 + 20.6692i 0.699947 + 0.699947i
\(873\) −0.145058 + 0.145058i −0.00490946 + 0.00490946i
\(874\) 2.69314 2.69314i 0.0910969 0.0910969i
\(875\) 12.1711i 0.411458i
\(876\) 6.25338i 0.211282i
\(877\) −28.3876 + 28.3876i −0.958582 + 0.958582i −0.999176 0.0405941i \(-0.987075\pi\)
0.0405941 + 0.999176i \(0.487075\pi\)
\(878\) −32.6258 + 32.6258i −1.10107 + 1.10107i
\(879\) −7.76745 7.76745i −0.261990 0.261990i
\(880\) 12.1754 0.410432
\(881\) −18.6392 18.6392i −0.627969 0.627969i 0.319588 0.947557i \(-0.396456\pi\)
−0.947557 + 0.319588i \(0.896456\pi\)
\(882\) 1.23743i 0.0416664i
\(883\) 50.3856 1.69561 0.847805 0.530308i \(-0.177924\pi\)
0.847805 + 0.530308i \(0.177924\pi\)
\(884\) −1.87692 + 1.57761i −0.0631277 + 0.0530608i
\(885\) 9.87069 0.331800
\(886\) 50.0750i 1.68230i
\(887\) 14.6144 + 14.6144i 0.490703 + 0.490703i 0.908528 0.417824i \(-0.137207\pi\)
−0.417824 + 0.908528i \(0.637207\pi\)
\(888\) 3.64514 0.122323
\(889\) −12.3305 12.3305i −0.413552 0.413552i
\(890\) 16.2166 16.2166i 0.543582 0.543582i
\(891\) −1.66762 + 1.66762i −0.0558674 + 0.0558674i
\(892\) 9.61203i 0.321834i
\(893\) 29.1290i 0.974765i
\(894\) −18.0276 + 18.0276i −0.602934 + 0.602934i
\(895\) 9.91724 9.91724i 0.331497 0.331497i
\(896\) 4.11552 + 4.11552i 0.137490 + 0.137490i
\(897\) −1.14041 −0.0380773
\(898\) −8.32930 8.32930i −0.277952 0.277952i
\(899\) 0.163872i 0.00546544i
\(900\) 0.797770 0.0265923
\(901\) 2.85858 + 3.40092i 0.0952332 + 0.113301i
\(902\) 20.6975 0.689150
\(903\) 5.21815i 0.173649i
\(904\) −24.7079 24.7079i −0.821773 0.821773i
\(905\) −39.6818 −1.31907
\(906\) −12.9755 12.9755i −0.431083 0.431083i
\(907\) −2.60816 + 2.60816i −0.0866027 + 0.0866027i −0.749081 0.662478i \(-0.769505\pi\)
0.662478 + 0.749081i \(0.269505\pi\)
\(908\) 2.92973 2.92973i 0.0972265 0.0972265i
\(909\) 10.0435i 0.333120i
\(910\) 2.85084i 0.0945044i
\(911\) 4.02408 4.02408i 0.133324 0.133324i −0.637296 0.770619i \(-0.719947\pi\)
0.770619 + 0.637296i \(0.219947\pi\)
\(912\) 6.88222 6.88222i 0.227893 0.227893i
\(913\) 12.0510 + 12.0510i 0.398831 + 0.398831i
\(914\) −9.96762 −0.329700
\(915\) 8.08918 + 8.08918i 0.267420 + 0.267420i
\(916\) 2.93538i 0.0969877i
\(917\) 2.30473 0.0761088
\(918\) 5.08301 + 0.440406i 0.167764 + 0.0145356i
\(919\) 14.4789 0.477614 0.238807 0.971067i \(-0.423244\pi\)
0.238807 + 0.971067i \(0.423244\pi\)
\(920\) 4.98748i 0.164432i
\(921\) 9.76546 + 9.76546i 0.321783 + 0.321783i
\(922\) 41.1316 1.35460
\(923\) −6.50578 6.50578i −0.214140 0.214140i
\(924\) 0.781726 0.781726i 0.0257169 0.0257169i
\(925\) 1.43589 1.43589i 0.0472116 0.0472116i
\(926\) 22.8754i 0.751731i
\(927\) 0.982712i 0.0322765i
\(928\) −0.0444678 + 0.0444678i −0.00145973 + 0.00145973i
\(929\) −7.28149 + 7.28149i −0.238898 + 0.238898i −0.816394 0.577496i \(-0.804030\pi\)
0.577496 + 0.816394i \(0.304030\pi\)
\(930\) −10.7337 10.7337i −0.351973 0.351973i
\(931\) 3.42380 0.112211
\(932\) 7.52992 + 7.52992i 0.246651 + 0.246651i
\(933\) 24.2650i 0.794399i
\(934\) 9.64989 0.315754
\(935\) −13.5182 + 11.3625i −0.442094 + 0.371594i
\(936\) −3.87541 −0.126672
\(937\) 32.4551i 1.06026i −0.847915 0.530132i \(-0.822142\pi\)
0.847915 0.530132i \(-0.177858\pi\)
\(938\) 0.451759 + 0.451759i 0.0147504 + 0.0147504i
\(939\) 16.0803 0.524762
\(940\) 5.12146 + 5.12146i 0.167044 + 0.167044i
\(941\) −10.3355 + 10.3355i −0.336929 + 0.336929i −0.855210 0.518282i \(-0.826572\pi\)
0.518282 + 0.855210i \(0.326572\pi\)
\(942\) −3.31774 + 3.31774i −0.108098 + 0.108098i
\(943\) 6.37571i 0.207622i
\(944\) 15.4507i 0.502876i
\(945\) 1.28416 1.28416i 0.0417738 0.0417738i
\(946\) 10.7680 10.7680i 0.350098 0.350098i
\(947\) 0.492002 + 0.492002i 0.0159879 + 0.0159879i 0.715056 0.699068i \(-0.246401\pi\)
−0.699068 + 0.715056i \(0.746401\pi\)
\(948\) 5.04752 0.163936
\(949\) −11.9663 11.9663i −0.388442 0.388442i
\(950\) 7.21025i 0.233931i
\(951\) 4.29099 0.139145
\(952\) −12.5488 1.08726i −0.406708 0.0352383i
\(953\) −36.8109 −1.19242 −0.596210 0.802828i \(-0.703328\pi\)
−0.596210 + 0.802828i \(0.703328\pi\)
\(954\) 1.33335i 0.0431689i
\(955\) 29.1869 + 29.1869i 0.944465 + 0.944465i
\(956\) −2.54406 −0.0822806
\(957\) −0.0404569 0.0404569i −0.00130779 0.00130779i
\(958\) −15.9007 + 15.9007i −0.513728 + 0.513728i
\(959\) −0.418018 + 0.418018i −0.0134985 + 0.0134985i
\(960\) 16.1506i 0.521258i
\(961\) 14.6268i 0.471833i
\(962\) −1.32445 + 1.32445i −0.0427021 + 0.0427021i
\(963\) −9.56506 + 9.56506i −0.308230 + 0.308230i
\(964\) 8.93887 + 8.93887i 0.287902 + 0.287902i
\(965\) 42.6669 1.37350
\(966\) −0.786594 0.786594i −0.0253082 0.0253082i
\(967\) 3.34730i 0.107642i 0.998551 + 0.0538210i \(0.0171400\pi\)
−0.998551 + 0.0538210i \(0.982860\pi\)
\(968\) 16.6129 0.533959
\(969\) −1.21854 + 14.0640i −0.0391452 + 0.451801i
\(970\) −0.461011 −0.0148022
\(971\) 5.99767i 0.192474i −0.995358 0.0962372i \(-0.969319\pi\)
0.995358 0.0962372i \(-0.0306807\pi\)
\(972\) −0.331468 0.331468i −0.0106318 0.0106318i
\(973\) −5.78876 −0.185579
\(974\) 4.07492 + 4.07492i 0.130569 + 0.130569i
\(975\) −1.52659 + 1.52659i −0.0488901 + 0.0488901i
\(976\) 12.6621 12.6621i 0.405303 0.405303i
\(977\) 30.5729i 0.978115i −0.872252 0.489058i \(-0.837341\pi\)
0.872252 0.489058i \(-0.162659\pi\)
\(978\) 26.7840i 0.856459i
\(979\) −17.0183 + 17.0183i −0.543908 + 0.543908i
\(980\) −0.601973 + 0.601973i −0.0192293 + 0.0192293i
\(981\) −6.76586 6.76586i −0.216017 0.216017i
\(982\) 51.7298 1.65077
\(983\) 0.787273 + 0.787273i 0.0251101 + 0.0251101i 0.719550 0.694440i \(-0.244348\pi\)
−0.694440 + 0.719550i \(0.744348\pi\)
\(984\) 21.6663i 0.690696i
\(985\) −12.3325 −0.392945
\(986\) −0.0106843 + 0.123315i −0.000340259 + 0.00392715i
\(987\) −8.50780 −0.270806
\(988\) 2.03602i 0.0647745i
\(989\) 3.31701 + 3.31701i 0.105475 + 0.105475i
\(990\) −5.29991 −0.168442
\(991\) −28.8371 28.8371i −0.916039 0.916039i 0.0806990 0.996739i \(-0.474285\pi\)
−0.996739 + 0.0806990i \(0.974285\pi\)
\(992\) 12.3811 12.3811i 0.393101 0.393101i
\(993\) 13.6567 13.6567i 0.433382 0.433382i
\(994\) 8.97467i 0.284659i
\(995\) 9.15513i 0.290237i
\(996\) −2.39534 + 2.39534i −0.0758994 + 0.0758994i
\(997\) −17.7613 + 17.7613i −0.562505 + 0.562505i −0.930018 0.367513i \(-0.880209\pi\)
0.367513 + 0.930018i \(0.380209\pi\)
\(998\) 9.26139 + 9.26139i 0.293164 + 0.293164i
\(999\) −1.19320 −0.0377512
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.k.b.64.5 20
3.2 odd 2 1071.2.n.b.64.6 20
17.2 even 8 6069.2.a.be.1.6 10
17.4 even 4 inner 357.2.k.b.106.6 yes 20
17.15 even 8 6069.2.a.bd.1.6 10
51.38 odd 4 1071.2.n.b.820.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.5 20 1.1 even 1 trivial
357.2.k.b.106.6 yes 20 17.4 even 4 inner
1071.2.n.b.64.6 20 3.2 odd 2
1071.2.n.b.820.5 20 51.38 odd 4
6069.2.a.bd.1.6 10 17.15 even 8
6069.2.a.be.1.6 10 17.2 even 8