Properties

Label 36.6.b.b.35.2
Level $36$
Weight $6$
Character 36.35
Analytic conductor $5.774$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [36,6,Mod(35,36)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("36.35");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 36.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.77381751327\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 58x^{6} - 160x^{5} + 805x^{4} - 1348x^{3} + 3024x^{2} - 2376x + 972 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 35.2
Root \(0.500000 + 2.36350i\) of defining polynomial
Character \(\chi\) \(=\) 36.35
Dual form 36.6.b.b.35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.11240 + 2.42144i) q^{2} +(20.2733 - 24.7587i) q^{4} +49.0700i q^{5} -12.2745i q^{7} +(-43.6935 + 175.667i) q^{8} +(-118.820 - 250.865i) q^{10} -706.464 q^{11} -795.304 q^{13} +(29.7220 + 62.7523i) q^{14} +(-201.988 - 1003.88i) q^{16} -363.652i q^{17} +2776.33i q^{19} +(1214.91 + 994.810i) q^{20} +(3611.73 - 1710.66i) q^{22} -1048.39 q^{23} +717.137 q^{25} +(4065.91 - 1925.78i) q^{26} +(-303.902 - 248.845i) q^{28} -4961.79i q^{29} +5933.17i q^{31} +(3463.48 + 4643.14i) q^{32} +(880.560 + 1859.13i) q^{34} +602.311 q^{35} -5625.73 q^{37} +(-6722.71 - 14193.7i) q^{38} +(-8619.97 - 2144.04i) q^{40} +8665.30i q^{41} -17517.2i q^{43} +(-14322.3 + 17491.1i) q^{44} +(5359.80 - 2538.62i) q^{46} -97.2886 q^{47} +16656.3 q^{49} +(-3666.29 + 1736.50i) q^{50} +(-16123.4 + 19690.7i) q^{52} +21872.7i q^{53} -34666.2i q^{55} +(2156.23 + 536.317i) q^{56} +(12014.7 + 25366.7i) q^{58} +19260.2 q^{59} +931.610 q^{61} +(-14366.8 - 30332.7i) q^{62} +(-28949.8 - 15351.0i) q^{64} -39025.6i q^{65} +30412.3i q^{67} +(-9003.55 - 7372.42i) q^{68} +(-3079.25 + 1458.46i) q^{70} +42335.7 q^{71} +146.390 q^{73} +(28761.0 - 13622.3i) q^{74} +(68738.4 + 56285.3i) q^{76} +8671.51i q^{77} +37898.9i q^{79} +(49260.4 - 9911.53i) q^{80} +(-20982.5 - 44300.5i) q^{82} -62590.3 q^{83} +17844.4 q^{85} +(42416.8 + 89554.9i) q^{86} +(30867.9 - 124102. i) q^{88} -35939.1i q^{89} +9761.98i q^{91} +(-21254.4 + 25956.8i) q^{92} +(497.378 - 235.578i) q^{94} -136234. q^{95} -96305.1 q^{97} +(-85153.9 + 40332.3i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 44 q^{4} - 596 q^{10} + 256 q^{13} - 4216 q^{16} + 9984 q^{22} + 15192 q^{25} - 23232 q^{28} + 23236 q^{34} - 26096 q^{37} - 36104 q^{40} + 84480 q^{46} + 4664 q^{49} - 96368 q^{52} + 126964 q^{58}+ \cdots + 229888 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/36\mathbb{Z}\right)^\times\).

\(n\) \(19\) \(29\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.11240 + 2.42144i −0.903753 + 0.428054i
\(3\) 0 0
\(4\) 20.2733 24.7587i 0.633540 0.773710i
\(5\) 49.0700i 0.877790i 0.898538 + 0.438895i \(0.144630\pi\)
−0.898538 + 0.438895i \(0.855370\pi\)
\(6\) 0 0
\(7\) 12.2745i 0.0946803i −0.998879 0.0473402i \(-0.984926\pi\)
0.998879 0.0473402i \(-0.0150745\pi\)
\(8\) −43.6935 + 175.667i −0.241375 + 0.970432i
\(9\) 0 0
\(10\) −118.820 250.865i −0.375741 0.793306i
\(11\) −706.464 −1.76039 −0.880194 0.474615i \(-0.842587\pi\)
−0.880194 + 0.474615i \(0.842587\pi\)
\(12\) 0 0
\(13\) −795.304 −1.30519 −0.652597 0.757706i \(-0.726320\pi\)
−0.652597 + 0.757706i \(0.726320\pi\)
\(14\) 29.7220 + 62.7523i 0.0405283 + 0.0855677i
\(15\) 0 0
\(16\) −201.988 1003.88i −0.197254 0.980352i
\(17\) 363.652i 0.305185i −0.988289 0.152593i \(-0.951238\pi\)
0.988289 0.152593i \(-0.0487622\pi\)
\(18\) 0 0
\(19\) 2776.33i 1.76436i 0.470913 + 0.882180i \(0.343925\pi\)
−0.470913 + 0.882180i \(0.656075\pi\)
\(20\) 1214.91 + 994.810i 0.679155 + 0.556116i
\(21\) 0 0
\(22\) 3611.73 1710.66i 1.59096 0.753540i
\(23\) −1048.39 −0.413242 −0.206621 0.978421i \(-0.566247\pi\)
−0.206621 + 0.978421i \(0.566247\pi\)
\(24\) 0 0
\(25\) 717.137 0.229484
\(26\) 4065.91 1925.78i 1.17957 0.558693i
\(27\) 0 0
\(28\) −303.902 248.845i −0.0732551 0.0599838i
\(29\) 4961.79i 1.09558i −0.836616 0.547790i \(-0.815469\pi\)
0.836616 0.547790i \(-0.184531\pi\)
\(30\) 0 0
\(31\) 5933.17i 1.10888i 0.832225 + 0.554438i \(0.187067\pi\)
−0.832225 + 0.554438i \(0.812933\pi\)
\(32\) 3463.48 + 4643.14i 0.597912 + 0.801562i
\(33\) 0 0
\(34\) 880.560 + 1859.13i 0.130636 + 0.275812i
\(35\) 602.311 0.0831095
\(36\) 0 0
\(37\) −5625.73 −0.675576 −0.337788 0.941222i \(-0.609679\pi\)
−0.337788 + 0.941222i \(0.609679\pi\)
\(38\) −6722.71 14193.7i −0.755241 1.59455i
\(39\) 0 0
\(40\) −8619.97 2144.04i −0.851836 0.211877i
\(41\) 8665.30i 0.805052i 0.915409 + 0.402526i \(0.131868\pi\)
−0.915409 + 0.402526i \(0.868132\pi\)
\(42\) 0 0
\(43\) 17517.2i 1.44475i −0.691500 0.722376i \(-0.743050\pi\)
0.691500 0.722376i \(-0.256950\pi\)
\(44\) −14322.3 + 17491.1i −1.11528 + 1.36203i
\(45\) 0 0
\(46\) 5359.80 2538.62i 0.373469 0.176890i
\(47\) −97.2886 −0.00642418 −0.00321209 0.999995i \(-0.501022\pi\)
−0.00321209 + 0.999995i \(0.501022\pi\)
\(48\) 0 0
\(49\) 16656.3 0.991036
\(50\) −3666.29 + 1736.50i −0.207397 + 0.0982314i
\(51\) 0 0
\(52\) −16123.4 + 19690.7i −0.826892 + 1.00984i
\(53\) 21872.7i 1.06958i 0.844986 + 0.534788i \(0.179609\pi\)
−0.844986 + 0.534788i \(0.820391\pi\)
\(54\) 0 0
\(55\) 34666.2i 1.54525i
\(56\) 2156.23 + 536.317i 0.0918808 + 0.0228534i
\(57\) 0 0
\(58\) 12014.7 + 25366.7i 0.468967 + 0.990133i
\(59\) 19260.2 0.720330 0.360165 0.932889i \(-0.382720\pi\)
0.360165 + 0.932889i \(0.382720\pi\)
\(60\) 0 0
\(61\) 931.610 0.0320560 0.0160280 0.999872i \(-0.494898\pi\)
0.0160280 + 0.999872i \(0.494898\pi\)
\(62\) −14366.8 30332.7i −0.474658 1.00215i
\(63\) 0 0
\(64\) −28949.8 15351.0i −0.883476 0.468476i
\(65\) 39025.6i 1.14569i
\(66\) 0 0
\(67\) 30412.3i 0.827680i 0.910350 + 0.413840i \(0.135813\pi\)
−0.910350 + 0.413840i \(0.864187\pi\)
\(68\) −9003.55 7372.42i −0.236125 0.193347i
\(69\) 0 0
\(70\) −3079.25 + 1458.46i −0.0751105 + 0.0355753i
\(71\) 42335.7 0.996693 0.498346 0.866978i \(-0.333941\pi\)
0.498346 + 0.866978i \(0.333941\pi\)
\(72\) 0 0
\(73\) 146.390 0.00321517 0.00160759 0.999999i \(-0.499488\pi\)
0.00160759 + 0.999999i \(0.499488\pi\)
\(74\) 28761.0 13622.3i 0.610554 0.289183i
\(75\) 0 0
\(76\) 68738.4 + 56285.3i 1.36510 + 1.11779i
\(77\) 8671.51i 0.166674i
\(78\) 0 0
\(79\) 37898.9i 0.683218i 0.939842 + 0.341609i \(0.110972\pi\)
−0.939842 + 0.341609i \(0.889028\pi\)
\(80\) 49260.4 9911.53i 0.860544 0.173147i
\(81\) 0 0
\(82\) −20982.5 44300.5i −0.344605 0.727568i
\(83\) −62590.3 −0.997267 −0.498634 0.866813i \(-0.666165\pi\)
−0.498634 + 0.866813i \(0.666165\pi\)
\(84\) 0 0
\(85\) 17844.4 0.267889
\(86\) 42416.8 + 89554.9i 0.618432 + 1.30570i
\(87\) 0 0
\(88\) 30867.9 124102.i 0.424913 1.70834i
\(89\) 35939.1i 0.480941i −0.970656 0.240470i \(-0.922698\pi\)
0.970656 0.240470i \(-0.0773017\pi\)
\(90\) 0 0
\(91\) 9761.98i 0.123576i
\(92\) −21254.4 + 25956.8i −0.261805 + 0.319729i
\(93\) 0 0
\(94\) 497.378 235.578i 0.00580587 0.00274989i
\(95\) −136234. −1.54874
\(96\) 0 0
\(97\) −96305.1 −1.03925 −0.519625 0.854395i \(-0.673928\pi\)
−0.519625 + 0.854395i \(0.673928\pi\)
\(98\) −85153.9 + 40332.3i −0.895652 + 0.424216i
\(99\) 0 0
\(100\) 14538.7 17755.4i 0.145387 0.177554i
\(101\) 106306.i 1.03694i 0.855095 + 0.518472i \(0.173499\pi\)
−0.855095 + 0.518472i \(0.826501\pi\)
\(102\) 0 0
\(103\) 114350.i 1.06205i 0.847356 + 0.531025i \(0.178193\pi\)
−0.847356 + 0.531025i \(0.821807\pi\)
\(104\) 34749.6 139709.i 0.315041 1.26660i
\(105\) 0 0
\(106\) −52963.3 111822.i −0.457836 0.966634i
\(107\) 20578.7 0.173763 0.0868817 0.996219i \(-0.472310\pi\)
0.0868817 + 0.996219i \(0.472310\pi\)
\(108\) 0 0
\(109\) −182954. −1.47494 −0.737470 0.675380i \(-0.763980\pi\)
−0.737470 + 0.675380i \(0.763980\pi\)
\(110\) 83941.9 + 177227.i 0.661450 + 1.39653i
\(111\) 0 0
\(112\) −12322.2 + 2479.30i −0.0928201 + 0.0186760i
\(113\) 181726.i 1.33882i −0.742894 0.669409i \(-0.766547\pi\)
0.742894 0.669409i \(-0.233453\pi\)
\(114\) 0 0
\(115\) 51444.6i 0.362740i
\(116\) −122848. 100592.i −0.847660 0.694093i
\(117\) 0 0
\(118\) −98466.0 + 46637.4i −0.651000 + 0.308340i
\(119\) −4463.65 −0.0288950
\(120\) 0 0
\(121\) 338040. 2.09896
\(122\) −4762.76 + 2255.83i −0.0289707 + 0.0137217i
\(123\) 0 0
\(124\) 146898. + 120285.i 0.857947 + 0.702517i
\(125\) 188534.i 1.07923i
\(126\) 0 0
\(127\) 171256.i 0.942188i −0.882083 0.471094i \(-0.843859\pi\)
0.882083 0.471094i \(-0.156141\pi\)
\(128\) 185174. + 8380.52i 0.998977 + 0.0452112i
\(129\) 0 0
\(130\) 94497.9 + 199514.i 0.490415 + 1.03542i
\(131\) 164660. 0.838321 0.419160 0.907912i \(-0.362324\pi\)
0.419160 + 0.907912i \(0.362324\pi\)
\(132\) 0 0
\(133\) 34078.1 0.167050
\(134\) −73641.5 155480.i −0.354291 0.748019i
\(135\) 0 0
\(136\) 63881.6 + 15889.2i 0.296161 + 0.0736640i
\(137\) 148406.i 0.675537i −0.941229 0.337769i \(-0.890328\pi\)
0.941229 0.337769i \(-0.109672\pi\)
\(138\) 0 0
\(139\) 33933.7i 0.148968i 0.997222 + 0.0744841i \(0.0237310\pi\)
−0.997222 + 0.0744841i \(0.976269\pi\)
\(140\) 12210.8 14912.4i 0.0526532 0.0643026i
\(141\) 0 0
\(142\) −216437. + 102513.i −0.900765 + 0.426638i
\(143\) 561853. 2.29765
\(144\) 0 0
\(145\) 243475. 0.961689
\(146\) −748.404 + 354.474i −0.00290572 + 0.00137627i
\(147\) 0 0
\(148\) −114052. + 139286.i −0.428005 + 0.522700i
\(149\) 127386.i 0.470063i 0.971988 + 0.235032i \(0.0755194\pi\)
−0.971988 + 0.235032i \(0.924481\pi\)
\(150\) 0 0
\(151\) 233416.i 0.833082i −0.909117 0.416541i \(-0.863242\pi\)
0.909117 0.416541i \(-0.136758\pi\)
\(152\) −487709. 121308.i −1.71219 0.425872i
\(153\) 0 0
\(154\) −20997.5 44332.2i −0.0713454 0.150632i
\(155\) −291141. −0.973360
\(156\) 0 0
\(157\) −489218. −1.58399 −0.791996 0.610526i \(-0.790958\pi\)
−0.791996 + 0.610526i \(0.790958\pi\)
\(158\) −91769.9 193755.i −0.292454 0.617461i
\(159\) 0 0
\(160\) −227839. + 169953.i −0.703603 + 0.524841i
\(161\) 12868.5i 0.0391259i
\(162\) 0 0
\(163\) 186891.i 0.550959i −0.961307 0.275480i \(-0.911163\pi\)
0.961307 0.275480i \(-0.0888367\pi\)
\(164\) 214542. + 175674.i 0.622877 + 0.510033i
\(165\) 0 0
\(166\) 319987. 151558.i 0.901284 0.426884i
\(167\) −533479. −1.48022 −0.740110 0.672485i \(-0.765227\pi\)
−0.740110 + 0.672485i \(0.765227\pi\)
\(168\) 0 0
\(169\) 261216. 0.703529
\(170\) −91227.6 + 43209.0i −0.242105 + 0.114671i
\(171\) 0 0
\(172\) −433703. 355131.i −1.11782 0.915309i
\(173\) 249914.i 0.634856i 0.948282 + 0.317428i \(0.102819\pi\)
−0.948282 + 0.317428i \(0.897181\pi\)
\(174\) 0 0
\(175\) 8802.52i 0.0217276i
\(176\) 142697. + 709205.i 0.347243 + 1.72580i
\(177\) 0 0
\(178\) 87024.2 + 183735.i 0.205869 + 0.434652i
\(179\) 314346. 0.733289 0.366644 0.930361i \(-0.380507\pi\)
0.366644 + 0.930361i \(0.380507\pi\)
\(180\) 0 0
\(181\) −179049. −0.406233 −0.203116 0.979155i \(-0.565107\pi\)
−0.203116 + 0.979155i \(0.565107\pi\)
\(182\) −23638.0 49907.2i −0.0528972 0.111682i
\(183\) 0 0
\(184\) 45808.0 184168.i 0.0997462 0.401023i
\(185\) 276054.i 0.593014i
\(186\) 0 0
\(187\) 256907.i 0.537244i
\(188\) −1972.36 + 2408.74i −0.00406997 + 0.00497045i
\(189\) 0 0
\(190\) 696485. 329883.i 1.39968 0.662943i
\(191\) −608739. −1.20739 −0.603695 0.797215i \(-0.706306\pi\)
−0.603695 + 0.797215i \(0.706306\pi\)
\(192\) 0 0
\(193\) −441.035 −0.000852276 −0.000426138 1.00000i \(-0.500136\pi\)
−0.000426138 1.00000i \(0.500136\pi\)
\(194\) 492350. 233197.i 0.939225 0.444855i
\(195\) 0 0
\(196\) 337679. 412389.i 0.627861 0.766774i
\(197\) 686826.i 1.26090i 0.776229 + 0.630451i \(0.217130\pi\)
−0.776229 + 0.630451i \(0.782870\pi\)
\(198\) 0 0
\(199\) 1.09668e6i 1.96313i 0.191132 + 0.981564i \(0.438784\pi\)
−0.191132 + 0.981564i \(0.561216\pi\)
\(200\) −31334.2 + 125977.i −0.0553916 + 0.222698i
\(201\) 0 0
\(202\) −257414. 543480.i −0.443868 0.937142i
\(203\) −60903.7 −0.103730
\(204\) 0 0
\(205\) −425206. −0.706667
\(206\) −276892. 584606.i −0.454614 0.959831i
\(207\) 0 0
\(208\) 160642. + 798391.i 0.257454 + 1.27955i
\(209\) 1.96138e6i 3.10596i
\(210\) 0 0
\(211\) 174943.i 0.270514i 0.990811 + 0.135257i \(0.0431860\pi\)
−0.990811 + 0.135257i \(0.956814\pi\)
\(212\) 541539. + 443431.i 0.827542 + 0.677620i
\(213\) 0 0
\(214\) −105207. + 49830.0i −0.157039 + 0.0743801i
\(215\) 859569. 1.26819
\(216\) 0 0
\(217\) 72826.9 0.104989
\(218\) 935332. 443010.i 1.33298 0.631354i
\(219\) 0 0
\(220\) −858290. 702797.i −1.19558 0.978979i
\(221\) 289214.i 0.398326i
\(222\) 0 0
\(223\) 285814.i 0.384877i 0.981309 + 0.192438i \(0.0616396\pi\)
−0.981309 + 0.192438i \(0.938360\pi\)
\(224\) 56992.4 42512.5i 0.0758921 0.0566105i
\(225\) 0 0
\(226\) 440039. + 929057.i 0.573086 + 1.20996i
\(227\) −876427. −1.12889 −0.564444 0.825471i \(-0.690909\pi\)
−0.564444 + 0.825471i \(0.690909\pi\)
\(228\) 0 0
\(229\) −73250.8 −0.0923047 −0.0461524 0.998934i \(-0.514696\pi\)
−0.0461524 + 0.998934i \(0.514696\pi\)
\(230\) 124570. + 263005.i 0.155272 + 0.327827i
\(231\) 0 0
\(232\) 871623. + 216798.i 1.06319 + 0.264445i
\(233\) 313500.i 0.378310i 0.981947 + 0.189155i \(0.0605748\pi\)
−0.981947 + 0.189155i \(0.939425\pi\)
\(234\) 0 0
\(235\) 4773.95i 0.00563908i
\(236\) 390468. 476858.i 0.456358 0.557326i
\(237\) 0 0
\(238\) 22820.0 10808.5i 0.0261140 0.0123686i
\(239\) −15468.8 −0.0175171 −0.00875854 0.999962i \(-0.502788\pi\)
−0.00875854 + 0.999962i \(0.502788\pi\)
\(240\) 0 0
\(241\) 653692. 0.724987 0.362494 0.931986i \(-0.381925\pi\)
0.362494 + 0.931986i \(0.381925\pi\)
\(242\) −1.72820e6 + 818543.i −1.89694 + 0.898468i
\(243\) 0 0
\(244\) 18886.8 23065.5i 0.0203088 0.0248021i
\(245\) 817326.i 0.869922i
\(246\) 0 0
\(247\) 2.20803e6i 2.30283i
\(248\) −1.04226e6 259241.i −1.07609 0.267655i
\(249\) 0 0
\(250\) −456522. 963859.i −0.461968 0.975357i
\(251\) 1.15934e6 1.16152 0.580760 0.814075i \(-0.302755\pi\)
0.580760 + 0.814075i \(0.302755\pi\)
\(252\) 0 0
\(253\) 740651. 0.727466
\(254\) 414687. + 875531.i 0.403307 + 0.851505i
\(255\) 0 0
\(256\) −966978. + 405543.i −0.922182 + 0.386756i
\(257\) 660113.i 0.623427i 0.950176 + 0.311713i \(0.100903\pi\)
−0.950176 + 0.311713i \(0.899097\pi\)
\(258\) 0 0
\(259\) 69053.1i 0.0639638i
\(260\) −966222. 791176.i −0.886429 0.725838i
\(261\) 0 0
\(262\) −841809. + 398714.i −0.757635 + 0.358846i
\(263\) 56534.1 0.0503989 0.0251995 0.999682i \(-0.491978\pi\)
0.0251995 + 0.999682i \(0.491978\pi\)
\(264\) 0 0
\(265\) −1.07329e6 −0.938864
\(266\) −174221. + 82518.1i −0.150972 + 0.0715064i
\(267\) 0 0
\(268\) 752970. + 616558.i 0.640384 + 0.524369i
\(269\) 688131.i 0.579816i 0.957054 + 0.289908i \(0.0936248\pi\)
−0.957054 + 0.289908i \(0.906375\pi\)
\(270\) 0 0
\(271\) 669194.i 0.553514i −0.960940 0.276757i \(-0.910740\pi\)
0.960940 0.276757i \(-0.0892598\pi\)
\(272\) −365063. + 73453.2i −0.299189 + 0.0601989i
\(273\) 0 0
\(274\) 359355. + 758710.i 0.289166 + 0.610519i
\(275\) −506631. −0.403980
\(276\) 0 0
\(277\) −333722. −0.261328 −0.130664 0.991427i \(-0.541711\pi\)
−0.130664 + 0.991427i \(0.541711\pi\)
\(278\) −82168.2 173482.i −0.0637664 0.134631i
\(279\) 0 0
\(280\) −26317.1 + 105806.i −0.0200605 + 0.0806521i
\(281\) 59934.8i 0.0452807i −0.999744 0.0226404i \(-0.992793\pi\)
0.999744 0.0226404i \(-0.00720726\pi\)
\(282\) 0 0
\(283\) 1.72304e6i 1.27888i −0.768841 0.639440i \(-0.779166\pi\)
0.768841 0.639440i \(-0.220834\pi\)
\(284\) 858285. 1.04818e6i 0.631445 0.771151i
\(285\) 0 0
\(286\) −2.87242e6 + 1.36049e6i −2.07650 + 0.983515i
\(287\) 106362. 0.0762226
\(288\) 0 0
\(289\) 1.28761e6 0.906862
\(290\) −1.24474e6 + 589560.i −0.869130 + 0.411654i
\(291\) 0 0
\(292\) 2967.81 3624.43i 0.00203694 0.00248761i
\(293\) 2.17996e6i 1.48347i −0.670692 0.741736i \(-0.734003\pi\)
0.670692 0.741736i \(-0.265997\pi\)
\(294\) 0 0
\(295\) 945099.i 0.632298i
\(296\) 245808. 988254.i 0.163067 0.655601i
\(297\) 0 0
\(298\) −308457. 651249.i −0.201212 0.424821i
\(299\) 833791. 0.539361
\(300\) 0 0
\(301\) −215015. −0.136790
\(302\) 565202. + 1.19332e6i 0.356604 + 0.752901i
\(303\) 0 0
\(304\) 2.78711e6 560785.i 1.72969 0.348026i
\(305\) 45714.1i 0.0281385i
\(306\) 0 0
\(307\) 623275.i 0.377428i 0.982032 + 0.188714i \(0.0604319\pi\)
−0.982032 + 0.188714i \(0.939568\pi\)
\(308\) 214695. + 175800.i 0.128957 + 0.105595i
\(309\) 0 0
\(310\) 1.48843e6 704979.i 0.879677 0.416650i
\(311\) 706360. 0.414119 0.207059 0.978328i \(-0.433611\pi\)
0.207059 + 0.978328i \(0.433611\pi\)
\(312\) 0 0
\(313\) 963254. 0.555750 0.277875 0.960617i \(-0.410370\pi\)
0.277875 + 0.960617i \(0.410370\pi\)
\(314\) 2.50108e6 1.18461e6i 1.43154 0.678033i
\(315\) 0 0
\(316\) 938329. + 768336.i 0.528612 + 0.432846i
\(317\) 1.49739e6i 0.836927i 0.908234 + 0.418463i \(0.137431\pi\)
−0.908234 + 0.418463i \(0.862569\pi\)
\(318\) 0 0
\(319\) 3.50533e6i 1.92864i
\(320\) 753274. 1.42056e6i 0.411223 0.775507i
\(321\) 0 0
\(322\) −31160.3 65789.1i −0.0167480 0.0353601i
\(323\) 1.00962e6 0.538456
\(324\) 0 0
\(325\) −570342. −0.299521
\(326\) 452545. + 955462.i 0.235840 + 0.497931i
\(327\) 0 0
\(328\) −1.52221e6 378617.i −0.781248 0.194319i
\(329\) 1194.17i 0.000608243i
\(330\) 0 0
\(331\) 530245.i 0.266015i 0.991115 + 0.133008i \(0.0424635\pi\)
−0.991115 + 0.133008i \(0.957536\pi\)
\(332\) −1.26891e6 + 1.54965e6i −0.631809 + 0.771595i
\(333\) 0 0
\(334\) 2.72736e6 1.29179e6i 1.33775 0.633614i
\(335\) −1.49233e6 −0.726530
\(336\) 0 0
\(337\) 135027. 0.0647658 0.0323829 0.999476i \(-0.489690\pi\)
0.0323829 + 0.999476i \(0.489690\pi\)
\(338\) −1.33544e6 + 632517.i −0.635817 + 0.301148i
\(339\) 0 0
\(340\) 361764. 441804.i 0.169718 0.207268i
\(341\) 4.19157e6i 1.95205i
\(342\) 0 0
\(343\) 410747.i 0.188512i
\(344\) 3.07719e6 + 765388.i 1.40203 + 0.348727i
\(345\) 0 0
\(346\) −605151. 1.27766e6i −0.271753 0.573753i
\(347\) −3.36046e6 −1.49822 −0.749108 0.662448i \(-0.769518\pi\)
−0.749108 + 0.662448i \(0.769518\pi\)
\(348\) 0 0
\(349\) −1.82741e6 −0.803106 −0.401553 0.915836i \(-0.631529\pi\)
−0.401553 + 0.915836i \(0.631529\pi\)
\(350\) 21314.7 + 45002.0i 0.00930058 + 0.0196364i
\(351\) 0 0
\(352\) −2.44682e6 3.28021e6i −1.05256 1.41106i
\(353\) 1.55874e6i 0.665788i 0.942964 + 0.332894i \(0.108025\pi\)
−0.942964 + 0.332894i \(0.891975\pi\)
\(354\) 0 0
\(355\) 2.07741e6i 0.874888i
\(356\) −889805. 728603.i −0.372109 0.304695i
\(357\) 0 0
\(358\) −1.60706e6 + 761168.i −0.662712 + 0.313887i
\(359\) −3.96723e6 −1.62462 −0.812308 0.583229i \(-0.801789\pi\)
−0.812308 + 0.583229i \(0.801789\pi\)
\(360\) 0 0
\(361\) −5.23191e6 −2.11297
\(362\) 915369. 433555.i 0.367134 0.173889i
\(363\) 0 0
\(364\) 241694. + 197907.i 0.0956121 + 0.0782904i
\(365\) 7183.35i 0.00282225i
\(366\) 0 0
\(367\) 3.09712e6i 1.20031i −0.799884 0.600154i \(-0.795106\pi\)
0.799884 0.600154i \(-0.204894\pi\)
\(368\) 211762. + 1.05246e6i 0.0815135 + 0.405123i
\(369\) 0 0
\(370\) 668448. + 1.41130e6i 0.253842 + 0.535939i
\(371\) 268477. 0.101268
\(372\) 0 0
\(373\) 3.19318e6 1.18837 0.594185 0.804329i \(-0.297475\pi\)
0.594185 + 0.804329i \(0.297475\pi\)
\(374\) −622084. 1.31341e6i −0.229969 0.485536i
\(375\) 0 0
\(376\) 4250.88 17090.4i 0.00155063 0.00623423i
\(377\) 3.94614e6i 1.42994i
\(378\) 0 0
\(379\) 2.20894e6i 0.789925i 0.918697 + 0.394963i \(0.129242\pi\)
−0.918697 + 0.394963i \(0.870758\pi\)
\(380\) −2.76192e6 + 3.37299e6i −0.981188 + 1.19827i
\(381\) 0 0
\(382\) 3.11212e6 1.47402e6i 1.09118 0.516828i
\(383\) 4.28671e6 1.49323 0.746615 0.665256i \(-0.231678\pi\)
0.746615 + 0.665256i \(0.231678\pi\)
\(384\) 0 0
\(385\) −425511. −0.146305
\(386\) 2254.75 1067.94i 0.000770247 0.000364820i
\(387\) 0 0
\(388\) −1.95242e6 + 2.38439e6i −0.658407 + 0.804078i
\(389\) 2.57450e6i 0.862618i −0.902204 0.431309i \(-0.858052\pi\)
0.902204 0.431309i \(-0.141948\pi\)
\(390\) 0 0
\(391\) 381250.i 0.126115i
\(392\) −727774. + 2.92597e6i −0.239211 + 0.961733i
\(393\) 0 0
\(394\) −1.66311e6 3.51133e6i −0.539734 1.13954i
\(395\) −1.85970e6 −0.599722
\(396\) 0 0
\(397\) 3.61737e6 1.15191 0.575953 0.817483i \(-0.304631\pi\)
0.575953 + 0.817483i \(0.304631\pi\)
\(398\) −2.65555e6 5.60669e6i −0.840324 1.77418i
\(399\) 0 0
\(400\) −144853. 719920.i −0.0452665 0.224975i
\(401\) 2.51173e6i 0.780032i 0.920808 + 0.390016i \(0.127530\pi\)
−0.920808 + 0.390016i \(0.872470\pi\)
\(402\) 0 0
\(403\) 4.71867e6i 1.44730i
\(404\) 2.63201e6 + 2.15518e6i 0.802294 + 0.656946i
\(405\) 0 0
\(406\) 311364. 147474.i 0.0937461 0.0444019i
\(407\) 3.97437e6 1.18928
\(408\) 0 0
\(409\) −960413. −0.283890 −0.141945 0.989875i \(-0.545336\pi\)
−0.141945 + 0.989875i \(0.545336\pi\)
\(410\) 2.17382e6 1.02961e6i 0.638653 0.302491i
\(411\) 0 0
\(412\) 2.83117e6 + 2.31826e6i 0.821718 + 0.672851i
\(413\) 236410.i 0.0682010i
\(414\) 0 0
\(415\) 3.07130e6i 0.875392i
\(416\) −2.75452e6 3.69271e6i −0.780391 1.04619i
\(417\) 0 0
\(418\) 4.74935e6 + 1.00273e7i 1.32952 + 2.80702i
\(419\) 2.90137e6 0.807361 0.403680 0.914900i \(-0.367731\pi\)
0.403680 + 0.914900i \(0.367731\pi\)
\(420\) 0 0
\(421\) 5.00572e6 1.37645 0.688226 0.725496i \(-0.258390\pi\)
0.688226 + 0.725496i \(0.258390\pi\)
\(422\) −423612. 894376.i −0.115794 0.244478i
\(423\) 0 0
\(424\) −3.84230e6 955693.i −1.03795 0.258169i
\(425\) 260788.i 0.0700351i
\(426\) 0 0
\(427\) 11435.1i 0.00303507i
\(428\) 417198. 509502.i 0.110086 0.134442i
\(429\) 0 0
\(430\) −4.39446e6 + 2.08139e6i −1.14613 + 0.542853i
\(431\) −1.08969e6 −0.282558 −0.141279 0.989970i \(-0.545122\pi\)
−0.141279 + 0.989970i \(0.545122\pi\)
\(432\) 0 0
\(433\) −322643. −0.0826994 −0.0413497 0.999145i \(-0.513166\pi\)
−0.0413497 + 0.999145i \(0.513166\pi\)
\(434\) −372320. + 176346.i −0.0948838 + 0.0449408i
\(435\) 0 0
\(436\) −3.70907e6 + 4.52969e6i −0.934434 + 1.14118i
\(437\) 2.91068e6i 0.729107i
\(438\) 0 0
\(439\) 4.70640e6i 1.16554i 0.812637 + 0.582770i \(0.198031\pi\)
−0.812637 + 0.582770i \(0.801969\pi\)
\(440\) 6.08970e6 + 1.51469e6i 1.49956 + 0.372985i
\(441\) 0 0
\(442\) −700313. 1.47858e6i −0.170505 0.359988i
\(443\) 6.83494e6 1.65472 0.827362 0.561669i \(-0.189841\pi\)
0.827362 + 0.561669i \(0.189841\pi\)
\(444\) 0 0
\(445\) 1.76353e6 0.422165
\(446\) −692081. 1.46120e6i −0.164748 0.347834i
\(447\) 0 0
\(448\) −188426. + 355345.i −0.0443554 + 0.0836478i
\(449\) 4.80959e6i 1.12588i −0.826498 0.562940i \(-0.809670\pi\)
0.826498 0.562940i \(-0.190330\pi\)
\(450\) 0 0
\(451\) 6.12172e6i 1.41720i
\(452\) −4.49931e6 3.68419e6i −1.03586 0.848195i
\(453\) 0 0
\(454\) 4.48065e6 2.12221e6i 1.02024 0.483225i
\(455\) −479020. −0.108474
\(456\) 0 0
\(457\) −6.10756e6 −1.36797 −0.683986 0.729495i \(-0.739755\pi\)
−0.683986 + 0.729495i \(0.739755\pi\)
\(458\) 374488. 177372.i 0.0834207 0.0395114i
\(459\) 0 0
\(460\) −1.27370e6 1.04295e6i −0.280655 0.229810i
\(461\) 2.67820e6i 0.586936i 0.955969 + 0.293468i \(0.0948094\pi\)
−0.955969 + 0.293468i \(0.905191\pi\)
\(462\) 0 0
\(463\) 992564.i 0.215182i −0.994195 0.107591i \(-0.965686\pi\)
0.994195 0.107591i \(-0.0343137\pi\)
\(464\) −4.98105e6 + 1.00222e6i −1.07405 + 0.216107i
\(465\) 0 0
\(466\) −759120. 1.60274e6i −0.161937 0.341899i
\(467\) −2.95034e6 −0.626009 −0.313004 0.949752i \(-0.601335\pi\)
−0.313004 + 0.949752i \(0.601335\pi\)
\(468\) 0 0
\(469\) 373297. 0.0783650
\(470\) 11559.8 + 24406.3i 0.00241383 + 0.00509634i
\(471\) 0 0
\(472\) −841547. + 3.38338e6i −0.173869 + 0.699031i
\(473\) 1.23753e7i 2.54332i
\(474\) 0 0
\(475\) 1.99101e6i 0.404892i
\(476\) −90492.9 + 110514.i −0.0183062 + 0.0223564i
\(477\) 0 0
\(478\) 79082.7 37456.7i 0.0158311 0.00749825i
\(479\) −3.80895e6 −0.758519 −0.379259 0.925290i \(-0.623821\pi\)
−0.379259 + 0.925290i \(0.623821\pi\)
\(480\) 0 0
\(481\) 4.47416e6 0.881757
\(482\) −3.34193e6 + 1.58287e6i −0.655210 + 0.310333i
\(483\) 0 0
\(484\) 6.85318e6 8.36944e6i 1.32978 1.62399i
\(485\) 4.72569e6i 0.912244i
\(486\) 0 0
\(487\) 1.27019e6i 0.242687i −0.992611 0.121344i \(-0.961280\pi\)
0.992611 0.121344i \(-0.0387203\pi\)
\(488\) −40705.3 + 163653.i −0.00773752 + 0.0311082i
\(489\) 0 0
\(490\) −1.97910e6 4.17850e6i −0.372373 0.786195i
\(491\) −685153. −0.128258 −0.0641289 0.997942i \(-0.520427\pi\)
−0.0641289 + 0.997942i \(0.520427\pi\)
\(492\) 0 0
\(493\) −1.80437e6 −0.334354
\(494\) 5.34660e6 + 1.12883e7i 0.985735 + 2.08119i
\(495\) 0 0
\(496\) 5.95620e6 1.19843e6i 1.08709 0.218730i
\(497\) 519651.i 0.0943672i
\(498\) 0 0
\(499\) 6.74866e6i 1.21329i 0.794971 + 0.606647i \(0.207486\pi\)
−0.794971 + 0.606647i \(0.792514\pi\)
\(500\) 4.66785e6 + 3.82220e6i 0.835010 + 0.683735i
\(501\) 0 0
\(502\) −5.92702e6 + 2.80727e6i −1.04973 + 0.497193i
\(503\) −6.00484e6 −1.05823 −0.529117 0.848549i \(-0.677477\pi\)
−0.529117 + 0.848549i \(0.677477\pi\)
\(504\) 0 0
\(505\) −5.21645e6 −0.910220
\(506\) −3.78651e6 + 1.79344e6i −0.657450 + 0.311394i
\(507\) 0 0
\(508\) −4.24009e6 3.47193e6i −0.728980 0.596914i
\(509\) 3.46748e6i 0.593225i −0.954998 0.296612i \(-0.904143\pi\)
0.954998 0.296612i \(-0.0958569\pi\)
\(510\) 0 0
\(511\) 1796.87i 0.000304413i
\(512\) 3.96158e6 4.41478e6i 0.667873 0.744275i
\(513\) 0 0
\(514\) −1.59842e6 3.37476e6i −0.266860 0.563424i
\(515\) −5.61118e6 −0.932257
\(516\) 0 0
\(517\) 68730.9 0.0113090
\(518\) −167208. 353027.i −0.0273799 0.0578075i
\(519\) 0 0
\(520\) 6.85550e6 + 1.70516e6i 1.11181 + 0.276540i
\(521\) 5.52394e6i 0.891569i 0.895140 + 0.445784i \(0.147075\pi\)
−0.895140 + 0.445784i \(0.852925\pi\)
\(522\) 0 0
\(523\) 438511.i 0.0701013i 0.999386 + 0.0350506i \(0.0111592\pi\)
−0.999386 + 0.0350506i \(0.988841\pi\)
\(524\) 3.33820e6 4.07677e6i 0.531110 0.648617i
\(525\) 0 0
\(526\) −289025. + 136894.i −0.0455482 + 0.0215734i
\(527\) 2.15761e6 0.338412
\(528\) 0 0
\(529\) −5.33722e6 −0.829231
\(530\) 5.48709e6 2.59891e6i 0.848502 0.401884i
\(531\) 0 0
\(532\) 690876. 843731.i 0.105833 0.129248i
\(533\) 6.89155e6i 1.05075i
\(534\) 0 0
\(535\) 1.00980e6i 0.152528i
\(536\) −5.34244e6 1.32882e6i −0.803207 0.199781i
\(537\) 0 0
\(538\) −1.66627e6 3.51800e6i −0.248193 0.524011i
\(539\) −1.17671e7 −1.74461
\(540\) 0 0
\(541\) −3.99542e6 −0.586908 −0.293454 0.955973i \(-0.594805\pi\)
−0.293454 + 0.955973i \(0.594805\pi\)
\(542\) 1.62041e6 + 3.42119e6i 0.236934 + 0.500240i
\(543\) 0 0
\(544\) 1.68849e6 1.25950e6i 0.244625 0.182474i
\(545\) 8.97753e6i 1.29469i
\(546\) 0 0
\(547\) 1.10987e7i 1.58601i 0.609217 + 0.793004i \(0.291484\pi\)
−0.609217 + 0.793004i \(0.708516\pi\)
\(548\) −3.67434e6 3.00867e6i −0.522670 0.427980i
\(549\) 0 0
\(550\) 2.59010e6 1.22678e6i 0.365099 0.172925i
\(551\) 1.37756e7 1.93300
\(552\) 0 0
\(553\) 465192. 0.0646873
\(554\) 1.70612e6 808087.i 0.236176 0.111862i
\(555\) 0 0
\(556\) 840154. + 687947.i 0.115258 + 0.0943774i
\(557\) 4.66176e6i 0.636666i −0.947979 0.318333i \(-0.896877\pi\)
0.947979 0.318333i \(-0.103123\pi\)
\(558\) 0 0
\(559\) 1.39315e7i 1.88568i
\(560\) −121659. 604648.i −0.0163936 0.0814766i
\(561\) 0 0
\(562\) 145128. + 306411.i 0.0193826 + 0.0409226i
\(563\) 9.51764e6 1.26549 0.632744 0.774361i \(-0.281928\pi\)
0.632744 + 0.774361i \(0.281928\pi\)
\(564\) 0 0
\(565\) 8.91730e6 1.17520
\(566\) 4.17224e6 + 8.80889e6i 0.547430 + 1.15579i
\(567\) 0 0
\(568\) −1.84980e6 + 7.43699e6i −0.240577 + 0.967223i
\(569\) 1.24323e7i 1.60979i 0.593416 + 0.804896i \(0.297779\pi\)
−0.593416 + 0.804896i \(0.702221\pi\)
\(570\) 0 0
\(571\) 8.54645e6i 1.09697i −0.836160 0.548486i \(-0.815205\pi\)
0.836160 0.548486i \(-0.184795\pi\)
\(572\) 1.13906e7 1.39108e7i 1.45565 1.77771i
\(573\) 0 0
\(574\) −543768. + 257550.i −0.0688864 + 0.0326274i
\(575\) −751841. −0.0948323
\(576\) 0 0
\(577\) 1.17304e7 1.46680 0.733402 0.679795i \(-0.237931\pi\)
0.733402 + 0.679795i \(0.237931\pi\)
\(578\) −6.58280e6 + 3.11788e6i −0.819580 + 0.388186i
\(579\) 0 0
\(580\) 4.93604e6 6.02813e6i 0.609269 0.744068i
\(581\) 768266.i 0.0944216i
\(582\) 0 0
\(583\) 1.54522e7i 1.88287i
\(584\) −6396.29 + 25715.9i −0.000776061 + 0.00312010i
\(585\) 0 0
\(586\) 5.27863e6 + 1.11448e7i 0.635005 + 1.34069i
\(587\) 1.03092e7 1.23489 0.617444 0.786615i \(-0.288168\pi\)
0.617444 + 0.786615i \(0.288168\pi\)
\(588\) 0 0
\(589\) −1.64724e7 −1.95645
\(590\) −2.28850e6 4.83172e6i −0.270658 0.571442i
\(591\) 0 0
\(592\) 1.13633e6 + 5.64756e6i 0.133260 + 0.662303i
\(593\) 8.53081e6i 0.996216i −0.867115 0.498108i \(-0.834028\pi\)
0.867115 0.498108i \(-0.165972\pi\)
\(594\) 0 0
\(595\) 219031.i 0.0253638i
\(596\) 3.15392e6 + 2.58254e6i 0.363693 + 0.297804i
\(597\) 0 0
\(598\) −4.26267e6 + 2.01897e6i −0.487449 + 0.230875i
\(599\) −1.46201e7 −1.66489 −0.832443 0.554110i \(-0.813059\pi\)
−0.832443 + 0.554110i \(0.813059\pi\)
\(600\) 0 0
\(601\) 1.37185e7 1.54925 0.774623 0.632423i \(-0.217940\pi\)
0.774623 + 0.632423i \(0.217940\pi\)
\(602\) 1.09924e6 520646.i 0.123624 0.0585533i
\(603\) 0 0
\(604\) −5.77908e6 4.73211e6i −0.644564 0.527791i
\(605\) 1.65876e7i 1.84245i
\(606\) 0 0
\(607\) 5.51308e6i 0.607327i −0.952779 0.303663i \(-0.901790\pi\)
0.952779 0.303663i \(-0.0982098\pi\)
\(608\) −1.28909e7 + 9.61575e6i −1.41424 + 1.05493i
\(609\) 0 0
\(610\) −110694. 233709.i −0.0120448 0.0254302i
\(611\) 77374.0 0.00838479
\(612\) 0 0
\(613\) 1.13872e7 1.22395 0.611976 0.790876i \(-0.290375\pi\)
0.611976 + 0.790876i \(0.290375\pi\)
\(614\) −1.50922e6 3.18643e6i −0.161559 0.341102i
\(615\) 0 0
\(616\) −1.52330e6 378889.i −0.161746 0.0402309i
\(617\) 5.15049e6i 0.544673i −0.962202 0.272336i \(-0.912204\pi\)
0.962202 0.272336i \(-0.0877963\pi\)
\(618\) 0 0
\(619\) 1.08291e7i 1.13597i −0.823039 0.567984i \(-0.807723\pi\)
0.823039 0.567984i \(-0.192277\pi\)
\(620\) −5.90238e6 + 7.20827e6i −0.616663 + 0.753098i
\(621\) 0 0
\(622\) −3.61119e6 + 1.71041e6i −0.374261 + 0.177265i
\(623\) −441135. −0.0455356
\(624\) 0 0
\(625\) −7.01029e6 −0.717853
\(626\) −4.92454e6 + 2.33246e6i −0.502261 + 0.237891i
\(627\) 0 0
\(628\) −9.91805e6 + 1.21124e7i −1.00352 + 1.22555i
\(629\) 2.04580e6i 0.206176i
\(630\) 0 0
\(631\) 155430.i 0.0155404i 0.999970 + 0.00777021i \(0.00247336\pi\)
−0.999970 + 0.00777021i \(0.997527\pi\)
\(632\) −6.65759e6 1.65594e6i −0.663017 0.164912i
\(633\) 0 0
\(634\) −3.62584e6 7.65527e6i −0.358250 0.756376i
\(635\) 8.40355e6 0.827044
\(636\) 0 0
\(637\) −1.32469e7 −1.29349
\(638\) −8.48793e6 1.79206e7i −0.825563 1.74302i
\(639\) 0 0
\(640\) −411232. + 9.08650e6i −0.0396860 + 0.876893i
\(641\) 2.71820e6i 0.261298i −0.991429 0.130649i \(-0.958294\pi\)
0.991429 0.130649i \(-0.0417062\pi\)
\(642\) 0 0
\(643\) 1.66240e7i 1.58566i −0.609445 0.792828i \(-0.708608\pi\)
0.609445 0.792828i \(-0.291392\pi\)
\(644\) 318608. + 260887.i 0.0302721 + 0.0247878i
\(645\) 0 0
\(646\) −5.16157e6 + 2.44472e6i −0.486632 + 0.230488i
\(647\) 1.27360e7 1.19611 0.598057 0.801454i \(-0.295940\pi\)
0.598057 + 0.801454i \(0.295940\pi\)
\(648\) 0 0
\(649\) −1.36066e7 −1.26806
\(650\) 2.91582e6 1.38105e6i 0.270693 0.128211i
\(651\) 0 0
\(652\) −4.62718e6 3.78890e6i −0.426283 0.349055i
\(653\) 2.05017e7i 1.88151i 0.339086 + 0.940755i \(0.389882\pi\)
−0.339086 + 0.940755i \(0.610118\pi\)
\(654\) 0 0
\(655\) 8.07987e6i 0.735870i
\(656\) 8.69893e6 1.75028e6i 0.789235 0.158799i
\(657\) 0 0
\(658\) −2891.61 6105.09i −0.000260361 0.000549702i
\(659\) −1.44326e7 −1.29459 −0.647294 0.762241i \(-0.724099\pi\)
−0.647294 + 0.762241i \(0.724099\pi\)
\(660\) 0 0
\(661\) 8.96109e6 0.797733 0.398866 0.917009i \(-0.369404\pi\)
0.398866 + 0.917009i \(0.369404\pi\)
\(662\) −1.28396e6 2.71083e6i −0.113869 0.240412i
\(663\) 0 0
\(664\) 2.73479e6 1.09950e7i 0.240715 0.967780i
\(665\) 1.67221e6i 0.146635i
\(666\) 0 0
\(667\) 5.20191e6i 0.452739i
\(668\) −1.08154e7 + 1.32083e7i −0.937779 + 1.14526i
\(669\) 0 0
\(670\) 7.62940e6 3.61359e6i 0.656604 0.310994i
\(671\) −658149. −0.0564310
\(672\) 0 0
\(673\) 1.16050e7 0.987663 0.493831 0.869558i \(-0.335596\pi\)
0.493831 + 0.869558i \(0.335596\pi\)
\(674\) −690312. + 326959.i −0.0585323 + 0.0277232i
\(675\) 0 0
\(676\) 5.29570e6 6.46736e6i 0.445714 0.544328i
\(677\) 1.43607e7i 1.20422i −0.798414 0.602109i \(-0.794327\pi\)
0.798414 0.602109i \(-0.205673\pi\)
\(678\) 0 0
\(679\) 1.18210e6i 0.0983965i
\(680\) −779684. + 3.13467e6i −0.0646616 + 0.259968i
\(681\) 0 0
\(682\) 1.01496e7 + 2.14290e7i 0.835582 + 1.76417i
\(683\) −1.01202e6 −0.0830116 −0.0415058 0.999138i \(-0.513215\pi\)
−0.0415058 + 0.999138i \(0.513215\pi\)
\(684\) 0 0
\(685\) 7.28227e6 0.592980
\(686\) 994597. + 2.09990e6i 0.0806932 + 0.170368i
\(687\) 0 0
\(688\) −1.75852e7 + 3.53826e6i −1.41637 + 0.284983i
\(689\) 1.73954e7i 1.39600i
\(690\) 0 0
\(691\) 5.32225e6i 0.424034i 0.977266 + 0.212017i \(0.0680032\pi\)
−0.977266 + 0.212017i \(0.931997\pi\)
\(692\) 6.18755e6 + 5.06658e6i 0.491195 + 0.402207i
\(693\) 0 0
\(694\) 1.71800e7 8.13713e6i 1.35402 0.641317i
\(695\) −1.66512e6 −0.130763
\(696\) 0 0
\(697\) 3.15115e6 0.245690
\(698\) 9.34246e6 4.42496e6i 0.725810 0.343772i
\(699\) 0 0
\(700\) −217939. 178456.i −0.0168109 0.0137653i
\(701\) 1.62964e7i 1.25255i 0.779601 + 0.626277i \(0.215422\pi\)
−0.779601 + 0.626277i \(0.784578\pi\)
\(702\) 0 0
\(703\) 1.56189e7i 1.19196i
\(704\) 2.04520e7 + 1.08449e7i 1.55526 + 0.824699i
\(705\) 0 0
\(706\) −3.77438e6 7.96888e6i −0.284993 0.601708i
\(707\) 1.30486e6 0.0981782
\(708\) 0 0
\(709\) −4.36798e6 −0.326336 −0.163168 0.986598i \(-0.552171\pi\)
−0.163168 + 0.986598i \(0.552171\pi\)
\(710\) −5.03033e6 1.06206e7i −0.374499 0.790683i
\(711\) 0 0
\(712\) 6.31331e6 + 1.57030e6i 0.466720 + 0.116087i
\(713\) 6.22029e6i 0.458234i
\(714\) 0 0
\(715\) 2.75701e7i 2.01685i
\(716\) 6.37282e6 7.78279e6i 0.464568 0.567353i
\(717\) 0 0
\(718\) 2.02820e7 9.60639e6i 1.46825 0.695423i
\(719\) 5.23447e6 0.377616 0.188808 0.982014i \(-0.439538\pi\)
0.188808 + 0.982014i \(0.439538\pi\)
\(720\) 0 0
\(721\) 1.40360e6 0.100555
\(722\) 2.67476e7 1.26687e7i 1.90960 0.904462i
\(723\) 0 0
\(724\) −3.62991e6 + 4.43302e6i −0.257365 + 0.314306i
\(725\) 3.55829e6i 0.251418i
\(726\) 0 0
\(727\) 2.28365e7i 1.60248i 0.598341 + 0.801242i \(0.295827\pi\)
−0.598341 + 0.801242i \(0.704173\pi\)
\(728\) −1.71486e6 426535.i −0.119922 0.0298282i
\(729\) 0 0
\(730\) −17394.0 36724.2i −0.00120807 0.00255061i
\(731\) −6.37016e6 −0.440917
\(732\) 0 0
\(733\) −1.85011e7 −1.27186 −0.635928 0.771749i \(-0.719382\pi\)
−0.635928 + 0.771749i \(0.719382\pi\)
\(734\) 7.49948e6 + 1.58337e7i 0.513796 + 1.08478i
\(735\) 0 0
\(736\) −3.63108e6 4.86783e6i −0.247082 0.331239i
\(737\) 2.14852e7i 1.45704i
\(738\) 0 0
\(739\) 1.90057e7i 1.28018i 0.768299 + 0.640091i \(0.221103\pi\)
−0.768299 + 0.640091i \(0.778897\pi\)
\(740\) −6.83475e6 5.59653e6i −0.458821 0.375698i
\(741\) 0 0
\(742\) −1.37256e6 + 650099.i −0.0915212 + 0.0433481i
\(743\) −6.44452e6 −0.428271 −0.214136 0.976804i \(-0.568693\pi\)
−0.214136 + 0.976804i \(0.568693\pi\)
\(744\) 0 0
\(745\) −6.25084e6 −0.412617
\(746\) −1.63248e7 + 7.73208e6i −1.07399 + 0.508686i
\(747\) 0 0
\(748\) 6.36068e6 + 5.20834e6i 0.415671 + 0.340366i
\(749\) 252594.i 0.0164520i
\(750\) 0 0
\(751\) 8.18850e6i 0.529791i −0.964277 0.264896i \(-0.914663\pi\)
0.964277 0.264896i \(-0.0853375\pi\)
\(752\) 19651.1 + 97666.2i 0.00126719 + 0.00629796i
\(753\) 0 0
\(754\) −9.55532e6 2.01742e7i −0.612092 1.29232i
\(755\) 1.14537e7 0.731272
\(756\) 0 0
\(757\) −4.18430e6 −0.265389 −0.132694 0.991157i \(-0.542363\pi\)
−0.132694 + 0.991157i \(0.542363\pi\)
\(758\) −5.34881e6 1.12930e7i −0.338130 0.713897i
\(759\) 0 0
\(760\) 5.95256e6 2.39319e7i 0.373826 1.50295i
\(761\) 1.61530e6i 0.101110i −0.998721 0.0505548i \(-0.983901\pi\)
0.998721 0.0505548i \(-0.0160990\pi\)
\(762\) 0 0
\(763\) 2.24567e6i 0.139648i
\(764\) −1.23411e7 + 1.50716e7i −0.764931 + 0.934170i
\(765\) 0 0
\(766\) −2.19154e7 + 1.03800e7i −1.34951 + 0.639183i
\(767\) −1.53177e7 −0.940169
\(768\) 0 0
\(769\) 1.54128e7 0.939864 0.469932 0.882703i \(-0.344278\pi\)
0.469932 + 0.882703i \(0.344278\pi\)
\(770\) 2.17538e6 1.03035e6i 0.132224 0.0626263i
\(771\) 0 0
\(772\) −8941.23 + 10919.5i −0.000539951 + 0.000659414i
\(773\) 2.31379e7i 1.39276i 0.717674 + 0.696379i \(0.245207\pi\)
−0.717674 + 0.696379i \(0.754793\pi\)
\(774\) 0 0
\(775\) 4.25490e6i 0.254469i
\(776\) 4.20791e6 1.69176e7i 0.250849 1.00852i
\(777\) 0 0
\(778\) 6.23399e6 + 1.31619e7i 0.369247 + 0.779594i
\(779\) −2.40577e7 −1.42040
\(780\) 0 0
\(781\) −2.99087e7 −1.75457
\(782\) −923172. 1.94910e6i −0.0539841 0.113977i
\(783\) 0 0
\(784\) −3.36437e6 1.67210e7i −0.195485 0.971564i
\(785\) 2.40059e7i 1.39041i
\(786\) 0 0
\(787\) 2.90198e7i 1.67016i −0.550130 0.835079i \(-0.685422\pi\)
0.550130 0.835079i \(-0.314578\pi\)
\(788\) 1.70049e7 + 1.39242e7i 0.975572 + 0.798832i
\(789\) 0 0
\(790\) 9.50753e6 4.50315e6i 0.542001 0.256713i
\(791\) −2.23060e6 −0.126760
\(792\) 0 0
\(793\) −740913. −0.0418393
\(794\) −1.84935e7 + 8.75924e6i −1.04104 + 0.493077i
\(795\) 0 0
\(796\) 2.71525e7 + 2.22334e7i 1.51889 + 1.24372i
\(797\) 3.03335e7i 1.69152i 0.533565 + 0.845759i \(0.320852\pi\)
−0.533565 + 0.845759i \(0.679148\pi\)
\(798\) 0 0
\(799\) 35379.2i 0.00196056i
\(800\) 2.48379e6 + 3.32977e6i 0.137211 + 0.183945i
\(801\) 0 0
\(802\) −6.08200e6 1.28410e7i −0.333895 0.704956i
\(803\) −103419. −0.00565995
\(804\) 0 0
\(805\) −631458. −0.0343443
\(806\) 1.14260e7 + 2.41238e7i 0.619520 + 1.30800i
\(807\) 0 0
\(808\) −1.86745e7 4.64489e6i −1.00628 0.250292i
\(809\) 2.52104e7i 1.35428i 0.735854 + 0.677140i \(0.236781\pi\)
−0.735854 + 0.677140i \(0.763219\pi\)
\(810\) 0 0
\(811\) 2.17678e7i 1.16215i −0.813849 0.581076i \(-0.802632\pi\)
0.813849 0.581076i \(-0.197368\pi\)
\(812\) −1.23472e6 + 1.50790e6i −0.0657170 + 0.0802568i
\(813\) 0 0
\(814\) −2.03186e7 + 9.62369e6i −1.07481 + 0.509074i
\(815\) 9.17074e6 0.483627
\(816\) 0 0
\(817\) 4.86335e7 2.54906
\(818\) 4.91002e6 2.32558e6i 0.256566 0.121520i
\(819\) 0 0
\(820\) −8.62032e6 + 1.05276e7i −0.447702 + 0.546755i
\(821\) 1.68043e7i 0.870087i −0.900409 0.435044i \(-0.856733\pi\)
0.900409 0.435044i \(-0.143267\pi\)
\(822\) 0 0
\(823\) 8.63167e6i 0.444217i 0.975022 + 0.222108i \(0.0712939\pi\)
−0.975022 + 0.222108i \(0.928706\pi\)
\(824\) −2.00876e7 4.99637e6i −1.03065 0.256352i
\(825\) 0 0
\(826\) 572452. + 1.20862e6i 0.0291937 + 0.0616369i
\(827\) 2.57523e7 1.30934 0.654668 0.755916i \(-0.272808\pi\)
0.654668 + 0.755916i \(0.272808\pi\)
\(828\) 0 0
\(829\) 6.21533e6 0.314107 0.157054 0.987590i \(-0.449800\pi\)
0.157054 + 0.987590i \(0.449800\pi\)
\(830\) 7.43697e6 + 1.57017e7i 0.374715 + 0.791138i
\(831\) 0 0
\(832\) 2.30239e7 + 1.22087e7i 1.15311 + 0.611451i
\(833\) 6.05711e6i 0.302449i
\(834\) 0 0
\(835\) 2.61778e7i 1.29932i
\(836\) −4.85612e7 3.97636e7i −2.40311 1.96775i
\(837\) 0 0
\(838\) −1.48330e7 + 7.02548e6i −0.729655 + 0.345594i
\(839\) −1.38503e7 −0.679287 −0.339644 0.940554i \(-0.610306\pi\)
−0.339644 + 0.940554i \(0.610306\pi\)
\(840\) 0 0
\(841\) −4.10826e6 −0.200294
\(842\) −2.55912e7 + 1.21210e7i −1.24397 + 0.589195i
\(843\) 0 0
\(844\) 4.33135e6 + 3.54666e6i 0.209299 + 0.171381i
\(845\) 1.28178e7i 0.617551i
\(846\) 0 0
\(847\) 4.14928e6i 0.198730i
\(848\) 2.19575e7 4.41801e6i 1.04856 0.210978i
\(849\) 0 0
\(850\) 631482. + 1.33325e6i 0.0299788 + 0.0632944i
\(851\) 5.89797e6 0.279176
\(852\) 0 0
\(853\) −1.81244e7 −0.852886 −0.426443 0.904515i \(-0.640233\pi\)
−0.426443 + 0.904515i \(0.640233\pi\)
\(854\) 27689.3 + 58460.7i 0.00129917 + 0.00274296i
\(855\) 0 0
\(856\) −899155. + 3.61500e6i −0.0419421 + 0.168626i
\(857\) 1.66848e7i 0.776011i 0.921657 + 0.388006i \(0.126836\pi\)
−0.921657 + 0.388006i \(0.873164\pi\)
\(858\) 0 0
\(859\) 1.14999e7i 0.531756i 0.964007 + 0.265878i \(0.0856618\pi\)
−0.964007 + 0.265878i \(0.914338\pi\)
\(860\) 1.74263e7 2.12818e7i 0.803449 0.981211i
\(861\) 0 0
\(862\) 5.57091e6 2.63861e6i 0.255363 0.120950i
\(863\) 3.96199e7 1.81086 0.905432 0.424491i \(-0.139547\pi\)
0.905432 + 0.424491i \(0.139547\pi\)
\(864\) 0 0
\(865\) −1.22633e7 −0.557271
\(866\) 1.64948e6 781259.i 0.0747399 0.0353998i
\(867\) 0 0
\(868\) 1.47644e6 1.80310e6i 0.0665145 0.0812307i
\(869\) 2.67742e7i 1.20273i
\(870\) 0 0
\(871\) 2.41870e7i 1.08028i
\(872\) 7.99388e6 3.21389e7i 0.356014 1.43133i
\(873\) 0 0
\(874\) 7.04804e6 + 1.48806e7i 0.312097 + 0.658933i
\(875\) 2.31416e6 0.102182
\(876\) 0 0
\(877\) 2.19126e7 0.962045 0.481022 0.876708i \(-0.340266\pi\)
0.481022 + 0.876708i \(0.340266\pi\)
\(878\) −1.13962e7 2.40610e7i −0.498914 1.05336i
\(879\) 0 0
\(880\) −3.48007e7 + 7.00214e6i −1.51489 + 0.304806i
\(881\) 1.94063e7i 0.842371i −0.906974 0.421186i \(-0.861614\pi\)
0.906974 0.421186i \(-0.138386\pi\)
\(882\) 0 0
\(883\) 1.49520e7i 0.645353i 0.946509 + 0.322677i \(0.104583\pi\)
−0.946509 + 0.322677i \(0.895417\pi\)
\(884\) 7.16056e6 + 5.86331e6i 0.308188 + 0.252355i
\(885\) 0 0
\(886\) −3.49430e7 + 1.65504e7i −1.49546 + 0.708310i
\(887\) 1.73689e7 0.741246 0.370623 0.928783i \(-0.379144\pi\)
0.370623 + 0.928783i \(0.379144\pi\)
\(888\) 0 0
\(889\) −2.10209e6 −0.0892067
\(890\) −9.01587e6 + 4.27027e6i −0.381533 + 0.180709i
\(891\) 0 0
\(892\) 7.07640e6 + 5.79440e6i 0.297783 + 0.243835i
\(893\) 270105.i 0.0113346i
\(894\) 0 0
\(895\) 1.54249e7i 0.643674i
\(896\) 102867. 2.27293e6i 0.00428061 0.0945835i
\(897\) 0 0
\(898\) 1.16461e7 + 2.45885e7i 0.481937 + 1.01752i
\(899\) 2.94392e7 1.21486
\(900\) 0 0
\(901\) 7.95403e6 0.326419
\(902\) 1.48234e7 + 3.12967e7i 0.606639 + 1.28080i
\(903\) 0 0
\(904\) 3.19233e7 + 7.94026e6i 1.29923 + 0.323157i
\(905\) 8.78592e6i 0.356587i
\(906\) 0 0
\(907\) 1.98414e6i 0.0800854i 0.999198 + 0.0400427i \(0.0127494\pi\)
−0.999198 + 0.0400427i \(0.987251\pi\)
\(908\) −1.77681e7 + 2.16992e7i −0.715196 + 0.873432i
\(909\) 0 0
\(910\) 2.44894e6 1.15992e6i 0.0980337 0.0464327i
\(911\) −2.02590e7 −0.808766 −0.404383 0.914590i \(-0.632514\pi\)
−0.404383 + 0.914590i \(0.632514\pi\)
\(912\) 0 0
\(913\) 4.42178e7 1.75558
\(914\) 3.12243e7 1.47891e7i 1.23631 0.585566i
\(915\) 0 0
\(916\) −1.48504e6 + 1.81360e6i −0.0584788 + 0.0714171i
\(917\) 2.02113e6i 0.0793725i
\(918\) 0 0
\(919\) 3.99374e7i 1.55988i −0.625856 0.779939i \(-0.715250\pi\)
0.625856 0.779939i \(-0.284750\pi\)
\(920\) 9.03712e6 + 2.24780e6i 0.352014 + 0.0875563i
\(921\) 0 0
\(922\) −6.48509e6 1.36920e7i −0.251240 0.530445i
\(923\) −3.36698e7 −1.30088
\(924\) 0 0
\(925\) −4.03442e6 −0.155034
\(926\) 2.40343e6 + 5.07439e6i 0.0921095 + 0.194472i
\(927\) 0 0
\(928\) 2.30383e7 1.71851e7i 0.878174 0.655060i
\(929\) 2.41714e7i 0.918888i 0.888207 + 0.459444i \(0.151951\pi\)
−0.888207 + 0.459444i \(0.848049\pi\)
\(930\) 0 0
\(931\) 4.62435e7i 1.74854i
\(932\) 7.76185e6 + 6.35567e6i 0.292702 + 0.239674i
\(933\) 0 0
\(934\) 1.50833e7 7.14407e6i 0.565757 0.267965i
\(935\) −1.26064e7 −0.471588
\(936\) 0 0
\(937\) −4.42022e7 −1.64473 −0.822366 0.568959i \(-0.807346\pi\)
−0.822366 + 0.568959i \(0.807346\pi\)
\(938\) −1.90844e6 + 903915.i −0.0708226 + 0.0335444i
\(939\) 0 0
\(940\) −118197. 96783.7i −0.00436301 0.00357258i
\(941\) 1.51502e7i 0.557756i 0.960327 + 0.278878i \(0.0899625\pi\)
−0.960327 + 0.278878i \(0.910038\pi\)
\(942\) 0 0
\(943\) 9.08464e6i 0.332681i
\(944\) −3.89033e6 1.93350e7i −0.142088 0.706177i
\(945\) 0 0
\(946\) −2.99659e7 6.32673e7i −1.08868 2.29854i
\(947\) −2.47403e7 −0.896459 −0.448229 0.893919i \(-0.647945\pi\)
−0.448229 + 0.893919i \(0.647945\pi\)
\(948\) 0 0
\(949\) −116425. −0.00419642
\(950\) −4.82110e6 1.01788e7i −0.173316 0.365923i
\(951\) 0 0
\(952\) 195033. 784116.i 0.00697453 0.0280407i
\(953\) 3.53865e6i 0.126213i −0.998007 0.0631067i \(-0.979899\pi\)
0.998007 0.0631067i \(-0.0201009\pi\)
\(954\) 0 0
\(955\) 2.98708e7i 1.05984i
\(956\) −313603. + 382988.i −0.0110978 + 0.0135531i
\(957\) 0 0
\(958\) 1.94729e7 9.22313e6i 0.685514 0.324687i
\(959\) −1.82161e6 −0.0639601
\(960\) 0 0
\(961\) −6.57337e6 −0.229604
\(962\) −2.28737e7 + 1.08339e7i −0.796891 + 0.377439i
\(963\) 0 0
\(964\) 1.32525e7 1.61846e7i 0.459309 0.560930i
\(965\) 21641.6i 0.000748119i
\(966\) 0 0
\(967\) 3.30528e7i 1.13669i 0.822790 + 0.568345i \(0.192416\pi\)
−0.822790 + 0.568345i \(0.807584\pi\)
\(968\) −1.47702e7 + 5.93825e7i −0.506637 + 2.03690i
\(969\) 0 0
\(970\) 1.14430e7 + 2.41596e7i 0.390489 + 0.824443i
\(971\) 6.44600e6 0.219403 0.109701 0.993965i \(-0.465011\pi\)
0.109701 + 0.993965i \(0.465011\pi\)
\(972\) 0 0
\(973\) 416520. 0.0141044
\(974\) 3.07569e6 + 6.49373e6i 0.103883 + 0.219329i
\(975\) 0 0
\(976\) −188174. 935226.i −0.00632317 0.0314262i
\(977\) 1.22343e7i 0.410056i −0.978756 0.205028i \(-0.934271\pi\)
0.978756 0.205028i \(-0.0657286\pi\)
\(978\) 0 0
\(979\) 2.53896e7i 0.846642i
\(980\) 2.02359e7 + 1.65699e7i 0.673067 + 0.551130i
\(981\) 0 0
\(982\) 3.50278e6 1.65905e6i 0.115913 0.0549012i
\(983\) 1.56050e7 0.515086 0.257543 0.966267i \(-0.417087\pi\)
0.257543 + 0.966267i \(0.417087\pi\)
\(984\) 0 0
\(985\) −3.37025e7 −1.10681
\(986\) 9.22464e6 4.36916e6i 0.302174 0.143122i
\(987\) 0 0
\(988\) −5.46679e7 4.47640e7i −1.78172 1.45894i
\(989\) 1.83649e7i 0.597032i
\(990\) 0 0
\(991\) 5.84661e7i 1.89112i 0.325443 + 0.945562i \(0.394487\pi\)
−0.325443 + 0.945562i \(0.605513\pi\)
\(992\) −2.75486e7 + 2.05494e7i −0.888832 + 0.663010i
\(993\) 0 0
\(994\) 1.25830e6 + 2.65667e6i 0.0403942 + 0.0852847i
\(995\) −5.38143e7 −1.72322
\(996\) 0 0
\(997\) −9.50143e6 −0.302727 −0.151364 0.988478i \(-0.548366\pi\)
−0.151364 + 0.988478i \(0.548366\pi\)
\(998\) −1.63414e7 3.45018e7i −0.519355 1.09652i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 36.6.b.b.35.2 yes 8
3.2 odd 2 inner 36.6.b.b.35.7 yes 8
4.3 odd 2 inner 36.6.b.b.35.8 yes 8
8.3 odd 2 576.6.c.c.575.2 8
8.5 even 2 576.6.c.c.575.1 8
12.11 even 2 inner 36.6.b.b.35.1 8
24.5 odd 2 576.6.c.c.575.7 8
24.11 even 2 576.6.c.c.575.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.6.b.b.35.1 8 12.11 even 2 inner
36.6.b.b.35.2 yes 8 1.1 even 1 trivial
36.6.b.b.35.7 yes 8 3.2 odd 2 inner
36.6.b.b.35.8 yes 8 4.3 odd 2 inner
576.6.c.c.575.1 8 8.5 even 2
576.6.c.c.575.2 8 8.3 odd 2
576.6.c.c.575.7 8 24.5 odd 2
576.6.c.c.575.8 8 24.11 even 2