Properties

Label 360.3.u.b.253.1
Level $360$
Weight $3$
Character 360.253
Analytic conductor $9.809$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,3,Mod(37,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 360.u (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.80928951697\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 253.1
Root \(-1.27574 - 0.610320i\) of defining polynomial
Character \(\chi\) \(=\) 360.253
Dual form 360.3.u.b.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.88606 - 0.665418i) q^{2} +(3.11444 + 2.51004i) q^{4} +(-2.34539 + 4.41578i) q^{5} +(1.47907 - 1.47907i) q^{7} +(-4.20379 - 6.80648i) q^{8} +(7.36189 - 6.76776i) q^{10} +11.3076i q^{11} +(-3.17204 + 3.17204i) q^{13} +(-3.77383 + 1.80542i) q^{14} +(3.39943 + 15.6347i) q^{16} +(9.94834 - 9.94834i) q^{17} -11.2705 q^{19} +(-18.3883 + 7.86567i) q^{20} +(7.52426 - 21.3267i) q^{22} +(-1.67851 - 1.67851i) q^{23} +(-13.9983 - 20.7135i) q^{25} +(8.09340 - 3.87192i) q^{26} +(8.31902 - 0.893952i) q^{28} -41.1865 q^{29} -29.2537 q^{31} +(3.99209 - 31.7500i) q^{32} +(-25.3830 + 12.1433i) q^{34} +(3.06227 + 10.0003i) q^{35} +(-8.60159 - 8.60159i) q^{37} +(21.2568 + 7.49961i) q^{38} +(39.9155 - 2.59916i) q^{40} +19.6639 q^{41} +(-25.1228 + 25.1228i) q^{43} +(-28.3824 + 35.2167i) q^{44} +(2.04886 + 4.28268i) q^{46} +(-41.7392 + 41.7392i) q^{47} +44.6247i q^{49} +(12.6185 + 48.3815i) q^{50} +(-17.8411 + 1.91718i) q^{52} +(-2.16209 + 2.16209i) q^{53} +(-49.9317 - 26.5206i) q^{55} +(-16.2850 - 3.84958i) q^{56} +(77.6802 + 27.4063i) q^{58} -38.9669 q^{59} +87.5112i q^{61} +(55.1742 + 19.4660i) q^{62} +(-28.6564 + 57.2260i) q^{64} +(-6.56738 - 21.4467i) q^{65} +(-31.1362 - 31.1362i) q^{67} +(55.9542 - 6.01278i) q^{68} +(0.878753 - 20.8988i) q^{70} -134.120 q^{71} +(-26.1299 - 26.1299i) q^{73} +(10.4994 + 21.9468i) q^{74} +(-35.1013 - 28.2894i) q^{76} +(16.7247 + 16.7247i) q^{77} -23.1510i q^{79} +(-77.0125 - 21.6583i) q^{80} +(-37.0873 - 13.0847i) q^{82} +(68.3496 - 68.3496i) q^{83} +(20.5970 + 67.2625i) q^{85} +(64.1002 - 30.6659i) q^{86} +(76.9647 - 47.5346i) q^{88} -75.2561i q^{89} +9.38338i q^{91} +(-1.01449 - 9.44074i) q^{92} +(106.497 - 50.9485i) q^{94} +(26.4337 - 49.7681i) q^{95} +(57.5730 - 57.5730i) q^{97} +(29.6941 - 84.1648i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} - 4 q^{7} - 4 q^{8} + 6 q^{10} - 56 q^{16} + 12 q^{17} + 24 q^{20} + 92 q^{22} + 4 q^{23} - 28 q^{25} - 100 q^{26} + 68 q^{28} - 136 q^{31} - 128 q^{32} + 188 q^{38} + 156 q^{40} + 8 q^{41}+ \cdots - 546 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88606 0.665418i −0.943029 0.332709i
\(3\) 0 0
\(4\) 3.11444 + 2.51004i 0.778609 + 0.627509i
\(5\) −2.34539 + 4.41578i −0.469078 + 0.883157i
\(6\) 0 0
\(7\) 1.47907 1.47907i 0.211296 0.211296i −0.593522 0.804818i \(-0.702263\pi\)
0.804818 + 0.593522i \(0.202263\pi\)
\(8\) −4.20379 6.80648i −0.525473 0.850810i
\(9\) 0 0
\(10\) 7.36189 6.76776i 0.736189 0.676776i
\(11\) 11.3076i 1.02796i 0.857802 + 0.513980i \(0.171829\pi\)
−0.857802 + 0.513980i \(0.828171\pi\)
\(12\) 0 0
\(13\) −3.17204 + 3.17204i −0.244003 + 0.244003i −0.818504 0.574501i \(-0.805196\pi\)
0.574501 + 0.818504i \(0.305196\pi\)
\(14\) −3.77383 + 1.80542i −0.269559 + 0.128958i
\(15\) 0 0
\(16\) 3.39943 + 15.6347i 0.212464 + 0.977169i
\(17\) 9.94834 9.94834i 0.585197 0.585197i −0.351130 0.936327i \(-0.614203\pi\)
0.936327 + 0.351130i \(0.114203\pi\)
\(18\) 0 0
\(19\) −11.2705 −0.593185 −0.296592 0.955004i \(-0.595850\pi\)
−0.296592 + 0.955004i \(0.595850\pi\)
\(20\) −18.3883 + 7.86567i −0.919417 + 0.393283i
\(21\) 0 0
\(22\) 7.52426 21.3267i 0.342012 0.969396i
\(23\) −1.67851 1.67851i −0.0729787 0.0729787i 0.669675 0.742654i \(-0.266433\pi\)
−0.742654 + 0.669675i \(0.766433\pi\)
\(24\) 0 0
\(25\) −13.9983 20.7135i −0.559932 0.828539i
\(26\) 8.09340 3.87192i 0.311284 0.148920i
\(27\) 0 0
\(28\) 8.31902 0.893952i 0.297108 0.0319269i
\(29\) −41.1865 −1.42022 −0.710112 0.704088i \(-0.751356\pi\)
−0.710112 + 0.704088i \(0.751356\pi\)
\(30\) 0 0
\(31\) −29.2537 −0.943668 −0.471834 0.881687i \(-0.656408\pi\)
−0.471834 + 0.881687i \(0.656408\pi\)
\(32\) 3.99209 31.7500i 0.124753 0.992188i
\(33\) 0 0
\(34\) −25.3830 + 12.1433i −0.746558 + 0.357157i
\(35\) 3.06227 + 10.0003i 0.0874934 + 0.285722i
\(36\) 0 0
\(37\) −8.60159 8.60159i −0.232475 0.232475i 0.581250 0.813725i \(-0.302564\pi\)
−0.813725 + 0.581250i \(0.802564\pi\)
\(38\) 21.2568 + 7.49961i 0.559391 + 0.197358i
\(39\) 0 0
\(40\) 39.9155 2.59916i 0.997887 0.0649791i
\(41\) 19.6639 0.479607 0.239804 0.970821i \(-0.422917\pi\)
0.239804 + 0.970821i \(0.422917\pi\)
\(42\) 0 0
\(43\) −25.1228 + 25.1228i −0.584251 + 0.584251i −0.936069 0.351818i \(-0.885564\pi\)
0.351818 + 0.936069i \(0.385564\pi\)
\(44\) −28.3824 + 35.2167i −0.645054 + 0.800379i
\(45\) 0 0
\(46\) 2.04886 + 4.28268i 0.0445404 + 0.0931018i
\(47\) −41.7392 + 41.7392i −0.888068 + 0.888068i −0.994337 0.106269i \(-0.966109\pi\)
0.106269 + 0.994337i \(0.466109\pi\)
\(48\) 0 0
\(49\) 44.6247i 0.910708i
\(50\) 12.6185 + 48.3815i 0.252370 + 0.967631i
\(51\) 0 0
\(52\) −17.8411 + 1.91718i −0.343098 + 0.0368689i
\(53\) −2.16209 + 2.16209i −0.0407941 + 0.0407941i −0.727210 0.686415i \(-0.759183\pi\)
0.686415 + 0.727210i \(0.259183\pi\)
\(54\) 0 0
\(55\) −49.9317 26.5206i −0.907850 0.482193i
\(56\) −16.2850 3.84958i −0.290804 0.0687425i
\(57\) 0 0
\(58\) 77.6802 + 27.4063i 1.33931 + 0.472522i
\(59\) −38.9669 −0.660456 −0.330228 0.943901i \(-0.607126\pi\)
−0.330228 + 0.943901i \(0.607126\pi\)
\(60\) 0 0
\(61\) 87.5112i 1.43461i 0.696759 + 0.717305i \(0.254625\pi\)
−0.696759 + 0.717305i \(0.745375\pi\)
\(62\) 55.1742 + 19.4660i 0.889907 + 0.313967i
\(63\) 0 0
\(64\) −28.6564 + 57.2260i −0.447756 + 0.894156i
\(65\) −6.56738 21.4467i −0.101037 0.329950i
\(66\) 0 0
\(67\) −31.1362 31.1362i −0.464719 0.464719i 0.435479 0.900199i \(-0.356579\pi\)
−0.900199 + 0.435479i \(0.856579\pi\)
\(68\) 55.9542 6.01278i 0.822856 0.0884232i
\(69\) 0 0
\(70\) 0.878753 20.8988i 0.0125536 0.298554i
\(71\) −134.120 −1.88902 −0.944510 0.328483i \(-0.893463\pi\)
−0.944510 + 0.328483i \(0.893463\pi\)
\(72\) 0 0
\(73\) −26.1299 26.1299i −0.357943 0.357943i 0.505111 0.863054i \(-0.331452\pi\)
−0.863054 + 0.505111i \(0.831452\pi\)
\(74\) 10.4994 + 21.9468i 0.141884 + 0.296578i
\(75\) 0 0
\(76\) −35.1013 28.2894i −0.461859 0.372229i
\(77\) 16.7247 + 16.7247i 0.217204 + 0.217204i
\(78\) 0 0
\(79\) 23.1510i 0.293050i −0.989207 0.146525i \(-0.953191\pi\)
0.989207 0.146525i \(-0.0468090\pi\)
\(80\) −77.0125 21.6583i −0.962656 0.270729i
\(81\) 0 0
\(82\) −37.0873 13.0847i −0.452284 0.159570i
\(83\) 68.3496 68.3496i 0.823489 0.823489i −0.163118 0.986607i \(-0.552155\pi\)
0.986607 + 0.163118i \(0.0521550\pi\)
\(84\) 0 0
\(85\) 20.5970 + 67.2625i 0.242318 + 0.791323i
\(86\) 64.1002 30.6659i 0.745352 0.356580i
\(87\) 0 0
\(88\) 76.9647 47.5346i 0.874599 0.540165i
\(89\) 75.2561i 0.845574i −0.906229 0.422787i \(-0.861052\pi\)
0.906229 0.422787i \(-0.138948\pi\)
\(90\) 0 0
\(91\) 9.38338i 0.103114i
\(92\) −1.01449 9.44074i −0.0110271 0.102617i
\(93\) 0 0
\(94\) 106.497 50.9485i 1.13294 0.542006i
\(95\) 26.4337 49.7681i 0.278250 0.523875i
\(96\) 0 0
\(97\) 57.5730 57.5730i 0.593536 0.593536i −0.345049 0.938585i \(-0.612138\pi\)
0.938585 + 0.345049i \(0.112138\pi\)
\(98\) 29.6941 84.1648i 0.303001 0.858824i
\(99\) 0 0
\(100\) 8.39476 99.6470i 0.0839476 0.996470i
\(101\) 112.245i 1.11133i 0.831405 + 0.555666i \(0.187537\pi\)
−0.831405 + 0.555666i \(0.812463\pi\)
\(102\) 0 0
\(103\) 25.4523 + 25.4523i 0.247109 + 0.247109i 0.819783 0.572674i \(-0.194094\pi\)
−0.572674 + 0.819783i \(0.694094\pi\)
\(104\) 34.9250 + 8.25586i 0.335818 + 0.0793833i
\(105\) 0 0
\(106\) 5.51652 2.63913i 0.0520426 0.0248975i
\(107\) −66.0387 66.0387i −0.617184 0.617184i 0.327624 0.944808i \(-0.393752\pi\)
−0.944808 + 0.327624i \(0.893752\pi\)
\(108\) 0 0
\(109\) 91.2619 0.837266 0.418633 0.908156i \(-0.362509\pi\)
0.418633 + 0.908156i \(0.362509\pi\)
\(110\) 76.5269 + 83.2450i 0.695699 + 0.756772i
\(111\) 0 0
\(112\) 28.1529 + 18.0969i 0.251365 + 0.161579i
\(113\) 127.312 + 127.312i 1.12666 + 1.12666i 0.990717 + 0.135940i \(0.0434056\pi\)
0.135940 + 0.990717i \(0.456594\pi\)
\(114\) 0 0
\(115\) 11.3487 3.47518i 0.0986844 0.0302190i
\(116\) −128.273 103.380i −1.10580 0.891204i
\(117\) 0 0
\(118\) 73.4938 + 25.9293i 0.622829 + 0.219740i
\(119\) 29.4287i 0.247300i
\(120\) 0 0
\(121\) −6.86087 −0.0567014
\(122\) 58.2316 165.051i 0.477308 1.35288i
\(123\) 0 0
\(124\) −91.1088 73.4279i −0.734749 0.592160i
\(125\) 124.298 13.2323i 0.994381 0.105858i
\(126\) 0 0
\(127\) −14.5303 + 14.5303i −0.114412 + 0.114412i −0.761995 0.647583i \(-0.775780\pi\)
0.647583 + 0.761995i \(0.275780\pi\)
\(128\) 92.1268 88.8631i 0.719741 0.694243i
\(129\) 0 0
\(130\) −1.88459 + 44.8199i −0.0144968 + 0.344768i
\(131\) 51.9051i 0.396222i 0.980180 + 0.198111i \(0.0634807\pi\)
−0.980180 + 0.198111i \(0.936519\pi\)
\(132\) 0 0
\(133\) −16.6699 + 16.6699i −0.125338 + 0.125338i
\(134\) 38.0061 + 79.4433i 0.283628 + 0.592860i
\(135\) 0 0
\(136\) −109.534 25.8925i −0.805396 0.190386i
\(137\) 98.7636 98.7636i 0.720902 0.720902i −0.247887 0.968789i \(-0.579736\pi\)
0.968789 + 0.247887i \(0.0797362\pi\)
\(138\) 0 0
\(139\) 48.6381 0.349914 0.174957 0.984576i \(-0.444021\pi\)
0.174957 + 0.984576i \(0.444021\pi\)
\(140\) −15.5638 + 38.8316i −0.111170 + 0.277369i
\(141\) 0 0
\(142\) 252.959 + 89.2462i 1.78140 + 0.628494i
\(143\) −35.8681 35.8681i −0.250826 0.250826i
\(144\) 0 0
\(145\) 96.5984 181.871i 0.666196 1.25428i
\(146\) 31.8952 + 66.6697i 0.218460 + 0.456642i
\(147\) 0 0
\(148\) −5.19880 48.3794i −0.0351270 0.326888i
\(149\) 222.425 1.49278 0.746391 0.665508i \(-0.231785\pi\)
0.746391 + 0.665508i \(0.231785\pi\)
\(150\) 0 0
\(151\) −199.700 −1.32252 −0.661259 0.750157i \(-0.729978\pi\)
−0.661259 + 0.750157i \(0.729978\pi\)
\(152\) 47.3788 + 76.7125i 0.311703 + 0.504688i
\(153\) 0 0
\(154\) −20.4149 42.6728i −0.132564 0.277096i
\(155\) 68.6113 129.178i 0.442654 0.833407i
\(156\) 0 0
\(157\) −191.183 191.183i −1.21773 1.21773i −0.968426 0.249302i \(-0.919799\pi\)
−0.249302 0.968426i \(-0.580201\pi\)
\(158\) −15.4051 + 43.6641i −0.0975006 + 0.276355i
\(159\) 0 0
\(160\) 130.838 + 92.0944i 0.817739 + 0.575590i
\(161\) −4.96529 −0.0308403
\(162\) 0 0
\(163\) 100.849 100.849i 0.618705 0.618705i −0.326494 0.945199i \(-0.605867\pi\)
0.945199 + 0.326494i \(0.105867\pi\)
\(164\) 61.2420 + 49.3571i 0.373427 + 0.300958i
\(165\) 0 0
\(166\) −174.392 + 83.4303i −1.05056 + 0.502592i
\(167\) −208.556 + 208.556i −1.24884 + 1.24884i −0.292609 + 0.956232i \(0.594523\pi\)
−0.956232 + 0.292609i \(0.905477\pi\)
\(168\) 0 0
\(169\) 148.876i 0.880925i
\(170\) 5.91054 140.567i 0.0347679 0.826862i
\(171\) 0 0
\(172\) −141.302 + 15.1842i −0.821526 + 0.0882803i
\(173\) −122.257 + 122.257i −0.706689 + 0.706689i −0.965838 0.259148i \(-0.916558\pi\)
0.259148 + 0.965838i \(0.416558\pi\)
\(174\) 0 0
\(175\) −51.3413 9.93224i −0.293379 0.0567556i
\(176\) −176.790 + 38.4393i −1.00449 + 0.218405i
\(177\) 0 0
\(178\) −50.0768 + 141.937i −0.281330 + 0.797402i
\(179\) −63.7773 −0.356298 −0.178149 0.984004i \(-0.557011\pi\)
−0.178149 + 0.984004i \(0.557011\pi\)
\(180\) 0 0
\(181\) 192.099i 1.06132i −0.847585 0.530660i \(-0.821944\pi\)
0.847585 0.530660i \(-0.178056\pi\)
\(182\) 6.24387 17.6976i 0.0343070 0.0972396i
\(183\) 0 0
\(184\) −4.36865 + 18.4809i −0.0237427 + 0.100439i
\(185\) 58.1568 17.8087i 0.314361 0.0962631i
\(186\) 0 0
\(187\) 112.491 + 112.491i 0.601559 + 0.601559i
\(188\) −234.761 + 25.2272i −1.24873 + 0.134187i
\(189\) 0 0
\(190\) −82.9722 + 76.2761i −0.436696 + 0.401453i
\(191\) 170.796 0.894218 0.447109 0.894480i \(-0.352454\pi\)
0.447109 + 0.894480i \(0.352454\pi\)
\(192\) 0 0
\(193\) 111.295 + 111.295i 0.576656 + 0.576656i 0.933980 0.357325i \(-0.116311\pi\)
−0.357325 + 0.933980i \(0.616311\pi\)
\(194\) −146.896 + 70.2760i −0.757197 + 0.362247i
\(195\) 0 0
\(196\) −112.010 + 138.981i −0.571477 + 0.709085i
\(197\) −96.8892 96.8892i −0.491823 0.491823i 0.417057 0.908880i \(-0.363062\pi\)
−0.908880 + 0.417057i \(0.863062\pi\)
\(198\) 0 0
\(199\) 139.805i 0.702540i 0.936274 + 0.351270i \(0.114250\pi\)
−0.936274 + 0.351270i \(0.885750\pi\)
\(200\) −82.1400 + 182.354i −0.410700 + 0.911771i
\(201\) 0 0
\(202\) 74.6896 211.700i 0.369751 1.04802i
\(203\) −60.9179 + 60.9179i −0.300088 + 0.300088i
\(204\) 0 0
\(205\) −46.1195 + 86.8315i −0.224973 + 0.423569i
\(206\) −31.0681 64.9409i −0.150816 0.315247i
\(207\) 0 0
\(208\) −60.3771 38.8108i −0.290274 0.186590i
\(209\) 127.442i 0.609770i
\(210\) 0 0
\(211\) 9.55891i 0.0453029i 0.999743 + 0.0226514i \(0.00721080\pi\)
−0.999743 + 0.0226514i \(0.992789\pi\)
\(212\) −12.1606 + 1.30677i −0.0573614 + 0.00616399i
\(213\) 0 0
\(214\) 80.6095 + 168.496i 0.376680 + 0.787365i
\(215\) −52.0141 169.860i −0.241926 0.790044i
\(216\) 0 0
\(217\) −43.2684 + 43.2684i −0.199394 + 0.199394i
\(218\) −172.125 60.7274i −0.789566 0.278566i
\(219\) 0 0
\(220\) −88.9415 207.927i −0.404279 0.945124i
\(221\) 63.1131i 0.285580i
\(222\) 0 0
\(223\) 276.355 + 276.355i 1.23926 + 1.23926i 0.960304 + 0.278957i \(0.0899888\pi\)
0.278957 + 0.960304i \(0.410011\pi\)
\(224\) −41.0560 52.8652i −0.183286 0.236006i
\(225\) 0 0
\(226\) −155.403 324.834i −0.687622 1.43732i
\(227\) −160.929 160.929i −0.708938 0.708938i 0.257374 0.966312i \(-0.417143\pi\)
−0.966312 + 0.257374i \(0.917143\pi\)
\(228\) 0 0
\(229\) 40.2472 0.175752 0.0878760 0.996131i \(-0.471992\pi\)
0.0878760 + 0.996131i \(0.471992\pi\)
\(230\) −23.7168 0.997243i −0.103116 0.00433584i
\(231\) 0 0
\(232\) 173.139 + 280.335i 0.746290 + 1.20834i
\(233\) 241.061 + 241.061i 1.03460 + 1.03460i 0.999380 + 0.0352176i \(0.0112124\pi\)
0.0352176 + 0.999380i \(0.488788\pi\)
\(234\) 0 0
\(235\) −86.4166 282.206i −0.367730 1.20088i
\(236\) −121.360 97.8083i −0.514237 0.414442i
\(237\) 0 0
\(238\) −19.5824 + 55.5042i −0.0822789 + 0.233211i
\(239\) 249.002i 1.04185i 0.853603 + 0.520925i \(0.174413\pi\)
−0.853603 + 0.520925i \(0.825587\pi\)
\(240\) 0 0
\(241\) 324.753 1.34752 0.673762 0.738948i \(-0.264677\pi\)
0.673762 + 0.738948i \(0.264677\pi\)
\(242\) 12.9400 + 4.56535i 0.0534711 + 0.0188651i
\(243\) 0 0
\(244\) −219.656 + 272.548i −0.900231 + 1.11700i
\(245\) −197.053 104.662i −0.804298 0.427193i
\(246\) 0 0
\(247\) 35.7505 35.7505i 0.144739 0.144739i
\(248\) 122.976 + 199.115i 0.495872 + 0.802882i
\(249\) 0 0
\(250\) −243.238 57.7530i −0.972951 0.231012i
\(251\) 166.729i 0.664260i 0.943234 + 0.332130i \(0.107767\pi\)
−0.943234 + 0.332130i \(0.892233\pi\)
\(252\) 0 0
\(253\) 18.9799 18.9799i 0.0750192 0.0750192i
\(254\) 37.0738 17.7363i 0.145960 0.0698280i
\(255\) 0 0
\(256\) −232.888 + 106.298i −0.909718 + 0.415227i
\(257\) −184.509 + 184.509i −0.717933 + 0.717933i −0.968182 0.250248i \(-0.919488\pi\)
0.250248 + 0.968182i \(0.419488\pi\)
\(258\) 0 0
\(259\) −25.4448 −0.0982424
\(260\) 33.3784 83.2789i 0.128378 0.320303i
\(261\) 0 0
\(262\) 34.5386 97.8962i 0.131827 0.373649i
\(263\) −3.85637 3.85637i −0.0146630 0.0146630i 0.699737 0.714400i \(-0.253300\pi\)
−0.714400 + 0.699737i \(0.753300\pi\)
\(264\) 0 0
\(265\) −4.47638 14.6183i −0.0168920 0.0551632i
\(266\) 42.5329 20.3480i 0.159898 0.0764962i
\(267\) 0 0
\(268\) −18.8187 175.125i −0.0702190 0.653450i
\(269\) 163.125 0.606413 0.303206 0.952925i \(-0.401943\pi\)
0.303206 + 0.952925i \(0.401943\pi\)
\(270\) 0 0
\(271\) 100.647 0.371391 0.185696 0.982607i \(-0.440546\pi\)
0.185696 + 0.982607i \(0.440546\pi\)
\(272\) 189.358 + 121.721i 0.696169 + 0.447502i
\(273\) 0 0
\(274\) −251.993 + 120.555i −0.919682 + 0.439981i
\(275\) 234.219 158.287i 0.851704 0.575587i
\(276\) 0 0
\(277\) 172.773 + 172.773i 0.623729 + 0.623729i 0.946483 0.322754i \(-0.104609\pi\)
−0.322754 + 0.946483i \(0.604609\pi\)
\(278\) −91.7343 32.3647i −0.329980 0.116420i
\(279\) 0 0
\(280\) 55.1936 62.8823i 0.197120 0.224580i
\(281\) 300.384 1.06898 0.534491 0.845174i \(-0.320503\pi\)
0.534491 + 0.845174i \(0.320503\pi\)
\(282\) 0 0
\(283\) −151.310 + 151.310i −0.534663 + 0.534663i −0.921957 0.387293i \(-0.873410\pi\)
0.387293 + 0.921957i \(0.373410\pi\)
\(284\) −417.709 336.647i −1.47081 1.18538i
\(285\) 0 0
\(286\) 43.7820 + 91.5165i 0.153084 + 0.319988i
\(287\) 29.0844 29.0844i 0.101339 0.101339i
\(288\) 0 0
\(289\) 91.0610i 0.315090i
\(290\) −303.211 + 278.741i −1.04555 + 0.961175i
\(291\) 0 0
\(292\) −15.7929 146.967i −0.0540852 0.503311i
\(293\) −154.132 + 154.132i −0.526048 + 0.526048i −0.919391 0.393344i \(-0.871318\pi\)
0.393344 + 0.919391i \(0.371318\pi\)
\(294\) 0 0
\(295\) 91.3925 172.069i 0.309805 0.583286i
\(296\) −22.3873 + 94.7058i −0.0756328 + 0.319952i
\(297\) 0 0
\(298\) −419.506 148.005i −1.40774 0.496662i
\(299\) 10.6486 0.0356141
\(300\) 0 0
\(301\) 74.3170i 0.246900i
\(302\) 376.647 + 132.884i 1.24717 + 0.440014i
\(303\) 0 0
\(304\) −38.3133 176.211i −0.126031 0.579642i
\(305\) −386.431 205.248i −1.26699 0.672944i
\(306\) 0 0
\(307\) −97.0784 97.0784i −0.316216 0.316216i 0.531096 0.847312i \(-0.321781\pi\)
−0.847312 + 0.531096i \(0.821781\pi\)
\(308\) 10.1084 + 94.0678i 0.0328195 + 0.305415i
\(309\) 0 0
\(310\) −215.362 + 197.982i −0.694718 + 0.638652i
\(311\) 74.0447 0.238086 0.119043 0.992889i \(-0.462017\pi\)
0.119043 + 0.992889i \(0.462017\pi\)
\(312\) 0 0
\(313\) −125.892 125.892i −0.402212 0.402212i 0.476800 0.879012i \(-0.341797\pi\)
−0.879012 + 0.476800i \(0.841797\pi\)
\(314\) 233.366 + 487.800i 0.743204 + 1.55350i
\(315\) 0 0
\(316\) 58.1098 72.1023i 0.183892 0.228172i
\(317\) −257.161 257.161i −0.811233 0.811233i 0.173585 0.984819i \(-0.444465\pi\)
−0.984819 + 0.173585i \(0.944465\pi\)
\(318\) 0 0
\(319\) 465.719i 1.45993i
\(320\) −185.487 260.758i −0.579648 0.814867i
\(321\) 0 0
\(322\) 9.36482 + 3.30399i 0.0290833 + 0.0102608i
\(323\) −112.123 + 112.123i −0.347130 + 0.347130i
\(324\) 0 0
\(325\) 110.107 + 21.3008i 0.338791 + 0.0655409i
\(326\) −257.314 + 123.100i −0.789306 + 0.377608i
\(327\) 0 0
\(328\) −82.6628 133.842i −0.252021 0.408055i
\(329\) 123.471i 0.375291i
\(330\) 0 0
\(331\) 403.967i 1.22045i 0.792230 + 0.610223i \(0.208920\pi\)
−0.792230 + 0.610223i \(0.791080\pi\)
\(332\) 384.430 41.3105i 1.15792 0.124429i
\(333\) 0 0
\(334\) 532.127 254.572i 1.59319 0.762193i
\(335\) 210.517 64.4642i 0.628409 0.192430i
\(336\) 0 0
\(337\) −101.745 + 101.745i −0.301915 + 0.301915i −0.841763 0.539848i \(-0.818482\pi\)
0.539848 + 0.841763i \(0.318482\pi\)
\(338\) 99.0650 280.789i 0.293092 0.830738i
\(339\) 0 0
\(340\) −104.683 + 261.184i −0.307892 + 0.768188i
\(341\) 330.788i 0.970053i
\(342\) 0 0
\(343\) 138.478 + 138.478i 0.403726 + 0.403726i
\(344\) 276.609 + 65.3870i 0.804095 + 0.190078i
\(345\) 0 0
\(346\) 311.937 149.232i 0.901551 0.431307i
\(347\) 196.538 + 196.538i 0.566391 + 0.566391i 0.931116 0.364724i \(-0.118837\pi\)
−0.364724 + 0.931116i \(0.618837\pi\)
\(348\) 0 0
\(349\) 454.536 1.30240 0.651198 0.758908i \(-0.274267\pi\)
0.651198 + 0.758908i \(0.274267\pi\)
\(350\) 90.2236 + 52.8962i 0.257782 + 0.151132i
\(351\) 0 0
\(352\) 359.015 + 45.1408i 1.01993 + 0.128241i
\(353\) −204.788 204.788i −0.580135 0.580135i 0.354805 0.934940i \(-0.384547\pi\)
−0.934940 + 0.354805i \(0.884547\pi\)
\(354\) 0 0
\(355\) 314.565 592.247i 0.886097 1.66830i
\(356\) 188.896 234.380i 0.530606 0.658372i
\(357\) 0 0
\(358\) 120.288 + 42.4386i 0.336000 + 0.118544i
\(359\) 27.2061i 0.0757831i −0.999282 0.0378916i \(-0.987936\pi\)
0.999282 0.0378916i \(-0.0120641\pi\)
\(360\) 0 0
\(361\) −233.976 −0.648132
\(362\) −127.826 + 362.310i −0.353111 + 1.00086i
\(363\) 0 0
\(364\) −23.5526 + 29.2239i −0.0647050 + 0.0802855i
\(365\) 176.669 54.0991i 0.484023 0.148217i
\(366\) 0 0
\(367\) 50.4416 50.4416i 0.137443 0.137443i −0.635038 0.772481i \(-0.719016\pi\)
0.772481 + 0.635038i \(0.219016\pi\)
\(368\) 20.5370 31.9490i 0.0558072 0.0868179i
\(369\) 0 0
\(370\) −121.537 5.11040i −0.328479 0.0138119i
\(371\) 6.39578i 0.0172393i
\(372\) 0 0
\(373\) −105.787 + 105.787i −0.283612 + 0.283612i −0.834548 0.550936i \(-0.814271\pi\)
0.550936 + 0.834548i \(0.314271\pi\)
\(374\) −137.312 287.019i −0.367143 0.767432i
\(375\) 0 0
\(376\) 459.560 + 108.634i 1.22223 + 0.288921i
\(377\) 130.645 130.645i 0.346540 0.346540i
\(378\) 0 0
\(379\) −595.709 −1.57179 −0.785896 0.618359i \(-0.787798\pi\)
−0.785896 + 0.618359i \(0.787798\pi\)
\(380\) 207.246 88.6501i 0.545384 0.233290i
\(381\) 0 0
\(382\) −322.131 113.651i −0.843274 0.297514i
\(383\) 59.2677 + 59.2677i 0.154746 + 0.154746i 0.780234 0.625488i \(-0.215100\pi\)
−0.625488 + 0.780234i \(0.715100\pi\)
\(384\) 0 0
\(385\) −113.079 + 34.6268i −0.293711 + 0.0899397i
\(386\) −135.851 283.966i −0.351945 0.735662i
\(387\) 0 0
\(388\) 323.818 34.7971i 0.834582 0.0896833i
\(389\) 254.508 0.654263 0.327131 0.944979i \(-0.393918\pi\)
0.327131 + 0.944979i \(0.393918\pi\)
\(390\) 0 0
\(391\) −33.3968 −0.0854138
\(392\) 303.737 187.593i 0.774839 0.478553i
\(393\) 0 0
\(394\) 118.267 + 247.211i 0.300170 + 0.627438i
\(395\) 102.230 + 54.2981i 0.258810 + 0.137464i
\(396\) 0 0
\(397\) −372.832 372.832i −0.939122 0.939122i 0.0591281 0.998250i \(-0.481168\pi\)
−0.998250 + 0.0591281i \(0.981168\pi\)
\(398\) 93.0291 263.681i 0.233741 0.662516i
\(399\) 0 0
\(400\) 276.263 289.273i 0.690657 0.723183i
\(401\) −471.865 −1.17672 −0.588360 0.808599i \(-0.700226\pi\)
−0.588360 + 0.808599i \(0.700226\pi\)
\(402\) 0 0
\(403\) 92.7940 92.7940i 0.230258 0.230258i
\(404\) −281.738 + 349.579i −0.697372 + 0.865294i
\(405\) 0 0
\(406\) 155.431 74.3589i 0.382834 0.183150i
\(407\) 97.2629 97.2629i 0.238975 0.238975i
\(408\) 0 0
\(409\) 182.192i 0.445457i 0.974880 + 0.222729i \(0.0714964\pi\)
−0.974880 + 0.222729i \(0.928504\pi\)
\(410\) 144.763 133.081i 0.353082 0.324587i
\(411\) 0 0
\(412\) 15.3833 + 143.156i 0.0373382 + 0.347465i
\(413\) −57.6349 + 57.6349i −0.139552 + 0.139552i
\(414\) 0 0
\(415\) 141.511 + 462.123i 0.340989 + 1.11355i
\(416\) 88.0493 + 113.375i 0.211657 + 0.272537i
\(417\) 0 0
\(418\) −84.8022 + 240.363i −0.202876 + 0.575031i
\(419\) 452.553 1.08008 0.540039 0.841640i \(-0.318410\pi\)
0.540039 + 0.841640i \(0.318410\pi\)
\(420\) 0 0
\(421\) 65.0180i 0.154437i −0.997014 0.0772186i \(-0.975396\pi\)
0.997014 0.0772186i \(-0.0246039\pi\)
\(422\) 6.36068 18.0287i 0.0150727 0.0427220i
\(423\) 0 0
\(424\) 23.8052 + 5.62726i 0.0561443 + 0.0132718i
\(425\) −345.325 66.8048i −0.812528 0.157188i
\(426\) 0 0
\(427\) 129.436 + 129.436i 0.303128 + 0.303128i
\(428\) −39.9137 371.433i −0.0932564 0.867833i
\(429\) 0 0
\(430\) −14.9260 + 354.976i −0.0347117 + 0.825526i
\(431\) 433.432 1.00564 0.502821 0.864391i \(-0.332296\pi\)
0.502821 + 0.864391i \(0.332296\pi\)
\(432\) 0 0
\(433\) −280.632 280.632i −0.648112 0.648112i 0.304425 0.952536i \(-0.401536\pi\)
−0.952536 + 0.304425i \(0.901536\pi\)
\(434\) 110.398 52.8152i 0.254374 0.121694i
\(435\) 0 0
\(436\) 284.230 + 229.071i 0.651903 + 0.525392i
\(437\) 18.9177 + 18.9177i 0.0432899 + 0.0432899i
\(438\) 0 0
\(439\) 557.674i 1.27033i −0.772377 0.635164i \(-0.780932\pi\)
0.772377 0.635164i \(-0.219068\pi\)
\(440\) 29.3902 + 451.346i 0.0667959 + 1.02579i
\(441\) 0 0
\(442\) 41.9966 119.035i 0.0950150 0.269310i
\(443\) −128.300 + 128.300i −0.289616 + 0.289616i −0.836928 0.547313i \(-0.815651\pi\)
0.547313 + 0.836928i \(0.315651\pi\)
\(444\) 0 0
\(445\) 332.315 + 176.505i 0.746775 + 0.396640i
\(446\) −337.330 705.114i −0.756346 1.58097i
\(447\) 0 0
\(448\) 42.2566 + 127.026i 0.0943227 + 0.283541i
\(449\) 512.154i 1.14065i 0.821417 + 0.570327i \(0.193184\pi\)
−0.821417 + 0.570327i \(0.806816\pi\)
\(450\) 0 0
\(451\) 222.351i 0.493017i
\(452\) 76.9475 + 716.065i 0.170238 + 1.58421i
\(453\) 0 0
\(454\) 196.436 + 410.606i 0.432679 + 0.904419i
\(455\) −41.4350 22.0077i −0.0910659 0.0483685i
\(456\) 0 0
\(457\) −388.529 + 388.529i −0.850173 + 0.850173i −0.990154 0.139981i \(-0.955296\pi\)
0.139981 + 0.990154i \(0.455296\pi\)
\(458\) −75.9086 26.7812i −0.165739 0.0584743i
\(459\) 0 0
\(460\) 44.0676 + 17.6624i 0.0957992 + 0.0383966i
\(461\) 36.0020i 0.0780954i −0.999237 0.0390477i \(-0.987568\pi\)
0.999237 0.0390477i \(-0.0124324\pi\)
\(462\) 0 0
\(463\) −338.658 338.658i −0.731442 0.731442i 0.239463 0.970905i \(-0.423029\pi\)
−0.970905 + 0.239463i \(0.923029\pi\)
\(464\) −140.011 643.939i −0.301747 1.38780i
\(465\) 0 0
\(466\) −294.249 615.062i −0.631436 1.31988i
\(467\) 43.6060 + 43.6060i 0.0933748 + 0.0933748i 0.752251 0.658876i \(-0.228968\pi\)
−0.658876 + 0.752251i \(0.728968\pi\)
\(468\) 0 0
\(469\) −92.1055 −0.196387
\(470\) −24.7982 + 589.760i −0.0527622 + 1.25481i
\(471\) 0 0
\(472\) 163.808 + 265.227i 0.347052 + 0.561922i
\(473\) −284.077 284.077i −0.600586 0.600586i
\(474\) 0 0
\(475\) 157.768 + 233.451i 0.332143 + 0.491476i
\(476\) 73.8671 91.6538i 0.155183 0.192550i
\(477\) 0 0
\(478\) 165.691 469.632i 0.346633 0.982495i
\(479\) 870.273i 1.81685i −0.418043 0.908427i \(-0.637284\pi\)
0.418043 0.908427i \(-0.362716\pi\)
\(480\) 0 0
\(481\) 54.5692 0.113449
\(482\) −612.504 216.097i −1.27075 0.448334i
\(483\) 0 0
\(484\) −21.3677 17.2210i −0.0441482 0.0355806i
\(485\) 119.199 + 389.261i 0.245771 + 0.802600i
\(486\) 0 0
\(487\) −611.867 + 611.867i −1.25640 + 1.25640i −0.303603 + 0.952799i \(0.598190\pi\)
−0.952799 + 0.303603i \(0.901810\pi\)
\(488\) 595.644 367.879i 1.22058 0.753849i
\(489\) 0 0
\(490\) 302.009 + 328.522i 0.616345 + 0.670453i
\(491\) 719.282i 1.46493i 0.680803 + 0.732467i \(0.261631\pi\)
−0.680803 + 0.732467i \(0.738369\pi\)
\(492\) 0 0
\(493\) −409.738 + 409.738i −0.831111 + 0.831111i
\(494\) −91.2167 + 43.6386i −0.184649 + 0.0883372i
\(495\) 0 0
\(496\) −99.4459 457.373i −0.200496 0.922123i
\(497\) −198.374 + 198.374i −0.399143 + 0.399143i
\(498\) 0 0
\(499\) 186.103 0.372952 0.186476 0.982459i \(-0.440293\pi\)
0.186476 + 0.982459i \(0.440293\pi\)
\(500\) 420.331 + 270.780i 0.840661 + 0.541561i
\(501\) 0 0
\(502\) 110.945 314.461i 0.221006 0.626417i
\(503\) 302.420 + 302.420i 0.601232 + 0.601232i 0.940639 0.339408i \(-0.110227\pi\)
−0.339408 + 0.940639i \(0.610227\pi\)
\(504\) 0 0
\(505\) −495.648 263.257i −0.981481 0.521302i
\(506\) −48.4267 + 23.1676i −0.0957049 + 0.0457857i
\(507\) 0 0
\(508\) −81.7255 + 8.78213i −0.160877 + 0.0172877i
\(509\) 107.882 0.211949 0.105975 0.994369i \(-0.466204\pi\)
0.105975 + 0.994369i \(0.466204\pi\)
\(510\) 0 0
\(511\) −77.2960 −0.151264
\(512\) 509.973 45.5168i 0.996041 0.0888999i
\(513\) 0 0
\(514\) 470.770 225.219i 0.915895 0.438169i
\(515\) −172.087 + 52.6962i −0.334150 + 0.102323i
\(516\) 0 0
\(517\) −471.968 471.968i −0.912898 0.912898i
\(518\) 47.9903 + 16.9314i 0.0926455 + 0.0326861i
\(519\) 0 0
\(520\) −118.369 + 134.858i −0.227633 + 0.259343i
\(521\) 374.569 0.718942 0.359471 0.933156i \(-0.382957\pi\)
0.359471 + 0.933156i \(0.382957\pi\)
\(522\) 0 0
\(523\) −161.196 + 161.196i −0.308213 + 0.308213i −0.844216 0.536003i \(-0.819934\pi\)
0.536003 + 0.844216i \(0.319934\pi\)
\(524\) −130.284 + 161.655i −0.248633 + 0.308502i
\(525\) 0 0
\(526\) 4.70725 + 9.83945i 0.00894914 + 0.0187062i
\(527\) −291.026 + 291.026i −0.552231 + 0.552231i
\(528\) 0 0
\(529\) 523.365i 0.989348i
\(530\) −1.28455 + 30.5496i −0.00242367 + 0.0576407i
\(531\) 0 0
\(532\) −93.7596 + 10.0753i −0.176240 + 0.0189385i
\(533\) −62.3747 + 62.3747i −0.117026 + 0.117026i
\(534\) 0 0
\(535\) 446.499 136.726i 0.834577 0.255563i
\(536\) −81.0380 + 342.818i −0.151190 + 0.639585i
\(537\) 0 0
\(538\) −307.663 108.546i −0.571865 0.201759i
\(539\) −504.596 −0.936171
\(540\) 0 0
\(541\) 319.556i 0.590676i −0.955393 0.295338i \(-0.904568\pi\)
0.955393 0.295338i \(-0.0954323\pi\)
\(542\) −189.826 66.9724i −0.350233 0.123565i
\(543\) 0 0
\(544\) −276.145 355.575i −0.507620 0.653630i
\(545\) −214.045 + 402.993i −0.392743 + 0.739437i
\(546\) 0 0
\(547\) 631.421 + 631.421i 1.15433 + 1.15433i 0.985674 + 0.168659i \(0.0539438\pi\)
0.168659 + 0.985674i \(0.446056\pi\)
\(548\) 555.493 59.6927i 1.01367 0.108928i
\(549\) 0 0
\(550\) −547.077 + 142.684i −0.994686 + 0.259426i
\(551\) 464.193 0.842456
\(552\) 0 0
\(553\) −34.2420 34.2420i −0.0619205 0.0619205i
\(554\) −210.894 440.826i −0.380675 0.795716i
\(555\) 0 0
\(556\) 151.480 + 122.083i 0.272447 + 0.219575i
\(557\) −405.826 405.826i −0.728592 0.728592i 0.241747 0.970339i \(-0.422280\pi\)
−0.970339 + 0.241747i \(0.922280\pi\)
\(558\) 0 0
\(559\) 159.381i 0.285118i
\(560\) −145.941 + 81.8729i −0.260610 + 0.146202i
\(561\) 0 0
\(562\) −566.542 199.881i −1.00808 0.355660i
\(563\) 241.881 241.881i 0.429628 0.429628i −0.458873 0.888502i \(-0.651747\pi\)
0.888502 + 0.458873i \(0.151747\pi\)
\(564\) 0 0
\(565\) −860.780 + 263.587i −1.52351 + 0.466525i
\(566\) 386.063 184.695i 0.682091 0.326316i
\(567\) 0 0
\(568\) 563.813 + 912.888i 0.992629 + 1.60720i
\(569\) 416.031i 0.731162i −0.930780 0.365581i \(-0.880870\pi\)
0.930780 0.365581i \(-0.119130\pi\)
\(570\) 0 0
\(571\) 907.558i 1.58942i 0.606991 + 0.794709i \(0.292377\pi\)
−0.606991 + 0.794709i \(0.707623\pi\)
\(572\) −21.6786 201.739i −0.0378997 0.352690i
\(573\) 0 0
\(574\) −74.2081 + 35.5016i −0.129282 + 0.0618494i
\(575\) −11.2715 + 58.2641i −0.0196026 + 0.101329i
\(576\) 0 0
\(577\) 467.070 467.070i 0.809480 0.809480i −0.175075 0.984555i \(-0.556017\pi\)
0.984555 + 0.175075i \(0.0560167\pi\)
\(578\) 60.5936 171.746i 0.104833 0.297139i
\(579\) 0 0
\(580\) 757.352 323.959i 1.30578 0.558551i
\(581\) 202.188i 0.348000i
\(582\) 0 0
\(583\) −24.4479 24.4479i −0.0419347 0.0419347i
\(584\) −68.0080 + 287.697i −0.116452 + 0.492631i
\(585\) 0 0
\(586\) 393.264 188.140i 0.671100 0.321058i
\(587\) −247.149 247.149i −0.421038 0.421038i 0.464523 0.885561i \(-0.346226\pi\)
−0.885561 + 0.464523i \(0.846226\pi\)
\(588\) 0 0
\(589\) 329.704 0.559769
\(590\) −286.870 + 263.719i −0.486220 + 0.446981i
\(591\) 0 0
\(592\) 105.243 163.724i 0.177775 0.276560i
\(593\) −315.219 315.219i −0.531567 0.531567i 0.389472 0.921038i \(-0.372658\pi\)
−0.921038 + 0.389472i \(0.872658\pi\)
\(594\) 0 0
\(595\) 129.951 + 69.0217i 0.218405 + 0.116003i
\(596\) 692.727 + 558.294i 1.16229 + 0.936734i
\(597\) 0 0
\(598\) −20.0839 7.08579i −0.0335851 0.0118491i
\(599\) 423.660i 0.707278i −0.935382 0.353639i \(-0.884944\pi\)
0.935382 0.353639i \(-0.115056\pi\)
\(600\) 0 0
\(601\) 293.629 0.488568 0.244284 0.969704i \(-0.421447\pi\)
0.244284 + 0.969704i \(0.421447\pi\)
\(602\) 49.4519 140.166i 0.0821460 0.232834i
\(603\) 0 0
\(604\) −621.954 501.255i −1.02973 0.829893i
\(605\) 16.0914 30.2961i 0.0265974 0.0500762i
\(606\) 0 0
\(607\) −143.784 + 143.784i −0.236876 + 0.236876i −0.815555 0.578679i \(-0.803568\pi\)
0.578679 + 0.815555i \(0.303568\pi\)
\(608\) −44.9929 + 357.839i −0.0740015 + 0.588551i
\(609\) 0 0
\(610\) 592.255 + 644.248i 0.970910 + 1.05614i
\(611\) 264.797i 0.433383i
\(612\) 0 0
\(613\) 304.429 304.429i 0.496622 0.496622i −0.413763 0.910385i \(-0.635786\pi\)
0.910385 + 0.413763i \(0.135786\pi\)
\(614\) 118.498 + 247.693i 0.192993 + 0.403409i
\(615\) 0 0
\(616\) 43.5293 184.144i 0.0706645 0.298935i
\(617\) −815.279 + 815.279i −1.32136 + 1.32136i −0.408683 + 0.912676i \(0.634012\pi\)
−0.912676 + 0.408683i \(0.865988\pi\)
\(618\) 0 0
\(619\) −1062.25 −1.71607 −0.858036 0.513589i \(-0.828316\pi\)
−0.858036 + 0.513589i \(0.828316\pi\)
\(620\) 537.927 230.100i 0.867625 0.371129i
\(621\) 0 0
\(622\) −139.653 49.2707i −0.224522 0.0792133i
\(623\) −111.309 111.309i −0.178667 0.178667i
\(624\) 0 0
\(625\) −233.095 + 579.906i −0.372953 + 0.927850i
\(626\) 153.669 + 321.212i 0.245478 + 0.513118i
\(627\) 0 0
\(628\) −115.551 1075.31i −0.183999 1.71227i
\(629\) −171.143 −0.272088
\(630\) 0 0
\(631\) 842.984 1.33595 0.667975 0.744184i \(-0.267161\pi\)
0.667975 + 0.744184i \(0.267161\pi\)
\(632\) −157.577 + 97.3218i −0.249330 + 0.153990i
\(633\) 0 0
\(634\) 313.901 + 656.140i 0.495112 + 1.03492i
\(635\) −30.0835 98.2421i −0.0473756 0.154712i
\(636\) 0 0
\(637\) −141.551 141.551i −0.222216 0.222216i
\(638\) −309.898 + 878.373i −0.485734 + 1.37676i
\(639\) 0 0
\(640\) 176.327 + 615.231i 0.275511 + 0.961298i
\(641\) 169.581 0.264557 0.132278 0.991213i \(-0.457771\pi\)
0.132278 + 0.991213i \(0.457771\pi\)
\(642\) 0 0
\(643\) 493.738 493.738i 0.767867 0.767867i −0.209864 0.977731i \(-0.567302\pi\)
0.977731 + 0.209864i \(0.0673021\pi\)
\(644\) −15.4641 12.4630i −0.0240125 0.0193526i
\(645\) 0 0
\(646\) 286.079 136.862i 0.442847 0.211860i
\(647\) 509.311 509.311i 0.787189 0.787189i −0.193844 0.981032i \(-0.562095\pi\)
0.981032 + 0.193844i \(0.0620954\pi\)
\(648\) 0 0
\(649\) 440.620i 0.678922i
\(650\) −193.495 113.442i −0.297684 0.174526i
\(651\) 0 0
\(652\) 567.222 60.9530i 0.869972 0.0934863i
\(653\) 239.798 239.798i 0.367226 0.367226i −0.499239 0.866464i \(-0.666387\pi\)
0.866464 + 0.499239i \(0.166387\pi\)
\(654\) 0 0
\(655\) −229.202 121.738i −0.349927 0.185859i
\(656\) 66.8461 + 307.439i 0.101899 + 0.468657i
\(657\) 0 0
\(658\) 82.1597 232.873i 0.124863 0.353911i
\(659\) −900.540 −1.36653 −0.683263 0.730173i \(-0.739440\pi\)
−0.683263 + 0.730173i \(0.739440\pi\)
\(660\) 0 0
\(661\) 59.7896i 0.0904533i 0.998977 + 0.0452267i \(0.0144010\pi\)
−0.998977 + 0.0452267i \(0.985599\pi\)
\(662\) 268.807 761.906i 0.406053 1.15092i
\(663\) 0 0
\(664\) −752.547 177.893i −1.13335 0.267911i
\(665\) −34.5133 112.708i −0.0518997 0.169486i
\(666\) 0 0
\(667\) 69.1320 + 69.1320i 0.103646 + 0.103646i
\(668\) −1173.02 + 126.051i −1.75602 + 0.188700i
\(669\) 0 0
\(670\) −439.943 18.4987i −0.656632 0.0276101i
\(671\) −989.538 −1.47472
\(672\) 0 0
\(673\) 190.854 + 190.854i 0.283587 + 0.283587i 0.834538 0.550951i \(-0.185735\pi\)
−0.550951 + 0.834538i \(0.685735\pi\)
\(674\) 259.601 124.194i 0.385164 0.184265i
\(675\) 0 0
\(676\) −373.685 + 463.666i −0.552788 + 0.685896i
\(677\) −503.850 503.850i −0.744240 0.744240i 0.229151 0.973391i \(-0.426405\pi\)
−0.973391 + 0.229151i \(0.926405\pi\)
\(678\) 0 0
\(679\) 170.310i 0.250824i
\(680\) 371.235 422.950i 0.545934 0.621985i
\(681\) 0 0
\(682\) −220.112 + 623.886i −0.322745 + 0.914788i
\(683\) −141.973 + 141.973i −0.207866 + 0.207866i −0.803360 0.595494i \(-0.796956\pi\)
0.595494 + 0.803360i \(0.296956\pi\)
\(684\) 0 0
\(685\) 204.480 + 667.758i 0.298510 + 0.974829i
\(686\) −169.032 353.323i −0.246402 0.515048i
\(687\) 0 0
\(688\) −478.190 307.384i −0.695044 0.446779i
\(689\) 13.7165i 0.0199078i
\(690\) 0 0
\(691\) 1271.56i 1.84017i −0.391717 0.920086i \(-0.628119\pi\)
0.391717 0.920086i \(-0.371881\pi\)
\(692\) −687.633 + 73.8922i −0.993689 + 0.106781i
\(693\) 0 0
\(694\) −239.902 501.462i −0.345680 0.722568i
\(695\) −114.075 + 214.775i −0.164137 + 0.309029i
\(696\) 0 0
\(697\) 195.623 195.623i 0.280665 0.280665i
\(698\) −857.282 302.457i −1.22820 0.433319i
\(699\) 0 0
\(700\) −134.969 159.802i −0.192813 0.228288i
\(701\) 799.199i 1.14008i 0.821615 + 0.570042i \(0.193073\pi\)
−0.821615 + 0.570042i \(0.806927\pi\)
\(702\) 0 0
\(703\) 96.9443 + 96.9443i 0.137901 + 0.137901i
\(704\) −647.086 324.034i −0.919156 0.460275i
\(705\) 0 0
\(706\) 249.972 + 522.511i 0.354068 + 0.740101i
\(707\) 166.018 + 166.018i 0.234821 + 0.234821i
\(708\) 0 0
\(709\) 479.020 0.675628 0.337814 0.941213i \(-0.390313\pi\)
0.337814 + 0.941213i \(0.390313\pi\)
\(710\) −987.379 + 907.695i −1.39067 + 1.27844i
\(711\) 0 0
\(712\) −512.229 + 316.361i −0.719423 + 0.444327i
\(713\) 49.1027 + 49.1027i 0.0688677 + 0.0688677i
\(714\) 0 0
\(715\) 242.510 74.2610i 0.339175 0.103862i
\(716\) −198.631 160.083i −0.277417 0.223580i
\(717\) 0 0
\(718\) −18.1035 + 51.3124i −0.0252137 + 0.0714657i
\(719\) 800.764i 1.11372i 0.830607 + 0.556859i \(0.187994\pi\)
−0.830607 + 0.556859i \(0.812006\pi\)
\(720\) 0 0
\(721\) 75.2916 0.104427
\(722\) 441.292 + 155.692i 0.611207 + 0.215639i
\(723\) 0 0
\(724\) 482.175 598.280i 0.665988 0.826353i
\(725\) 576.541 + 853.116i 0.795229 + 1.17671i
\(726\) 0 0
\(727\) 144.435 144.435i 0.198673 0.198673i −0.600758 0.799431i \(-0.705134\pi\)
0.799431 + 0.600758i \(0.205134\pi\)
\(728\) 63.8678 39.4457i 0.0877305 0.0541837i
\(729\) 0 0
\(730\) −369.206 15.5244i −0.505761 0.0212662i
\(731\) 499.860i 0.683803i
\(732\) 0 0
\(733\) −748.614 + 748.614i −1.02130 + 1.02130i −0.0215340 + 0.999768i \(0.506855\pi\)
−0.999768 + 0.0215340i \(0.993145\pi\)
\(734\) −128.701 + 61.5711i −0.175341 + 0.0838843i
\(735\) 0 0
\(736\) −59.9935 + 46.5920i −0.0815129 + 0.0633043i
\(737\) 352.074 352.074i 0.477713 0.477713i
\(738\) 0 0
\(739\) −731.874 −0.990358 −0.495179 0.868791i \(-0.664897\pi\)
−0.495179 + 0.868791i \(0.664897\pi\)
\(740\) 225.826 + 90.5118i 0.305170 + 0.122313i
\(741\) 0 0
\(742\) 4.25587 12.0628i 0.00573567 0.0162572i
\(743\) 676.219 + 676.219i 0.910119 + 0.910119i 0.996281 0.0861618i \(-0.0274602\pi\)
−0.0861618 + 0.996281i \(0.527460\pi\)
\(744\) 0 0
\(745\) −521.672 + 982.179i −0.700231 + 1.31836i
\(746\) 269.914 129.128i 0.361814 0.173094i
\(747\) 0 0
\(748\) 67.9898 + 632.705i 0.0908955 + 0.845863i
\(749\) −195.352 −0.260817
\(750\) 0 0
\(751\) −59.2858 −0.0789424 −0.0394712 0.999221i \(-0.512567\pi\)
−0.0394712 + 0.999221i \(0.512567\pi\)
\(752\) −794.469 510.690i −1.05648 0.679109i
\(753\) 0 0
\(754\) −333.339 + 159.471i −0.442094 + 0.211500i
\(755\) 468.375 881.834i 0.620364 1.16799i
\(756\) 0 0
\(757\) 597.444 + 597.444i 0.789225 + 0.789225i 0.981367 0.192142i \(-0.0615434\pi\)
−0.192142 + 0.981367i \(0.561543\pi\)
\(758\) 1123.54 + 396.396i 1.48225 + 0.522949i
\(759\) 0 0
\(760\) −449.868 + 29.2939i −0.591931 + 0.0385446i
\(761\) −32.0333 −0.0420937 −0.0210469 0.999778i \(-0.506700\pi\)
−0.0210469 + 0.999778i \(0.506700\pi\)
\(762\) 0 0
\(763\) 134.983 134.983i 0.176911 0.176911i
\(764\) 531.932 + 428.703i 0.696246 + 0.561130i
\(765\) 0 0
\(766\) −72.3445 151.220i −0.0944445 0.197415i
\(767\) 123.605 123.605i 0.161153 0.161153i
\(768\) 0 0
\(769\) 1416.08i 1.84145i 0.390208 + 0.920727i \(0.372403\pi\)
−0.390208 + 0.920727i \(0.627597\pi\)
\(770\) 236.314 + 9.93655i 0.306902 + 0.0129046i
\(771\) 0 0
\(772\) 67.2664 + 625.973i 0.0871327 + 0.810846i
\(773\) −77.7861 + 77.7861i −0.100629 + 0.100629i −0.755629 0.655000i \(-0.772669\pi\)
0.655000 + 0.755629i \(0.272669\pi\)
\(774\) 0 0
\(775\) 409.502 + 605.946i 0.528390 + 0.781865i
\(776\) −633.894 149.845i −0.816874 0.193099i
\(777\) 0 0
\(778\) −480.017 169.354i −0.616989 0.217679i
\(779\) −221.622 −0.284496
\(780\) 0 0
\(781\) 1516.57i 1.94184i
\(782\) 62.9883 + 22.2228i 0.0805477 + 0.0284180i
\(783\) 0 0
\(784\) −697.693 + 151.698i −0.889915 + 0.193493i
\(785\) 1292.62 395.825i 1.64665 0.504235i
\(786\) 0 0
\(787\) −494.548 494.548i −0.628396 0.628396i 0.319268 0.947664i \(-0.396563\pi\)
−0.947664 + 0.319268i \(0.896563\pi\)
\(788\) −58.5598 544.951i −0.0743145 0.691562i
\(789\) 0 0
\(790\) −156.680 170.435i −0.198330 0.215740i
\(791\) 376.609 0.476117
\(792\) 0 0
\(793\) −277.589 277.589i −0.350050 0.350050i
\(794\) 455.093 + 951.271i 0.573165 + 1.19807i
\(795\) 0 0
\(796\) −350.917 + 435.415i −0.440850 + 0.547004i
\(797\) 562.627 + 562.627i 0.705931 + 0.705931i 0.965677 0.259746i \(-0.0836388\pi\)
−0.259746 + 0.965677i \(0.583639\pi\)
\(798\) 0 0
\(799\) 830.472i 1.03939i
\(800\) −713.535 + 361.756i −0.891919 + 0.452195i
\(801\) 0 0
\(802\) 889.965 + 313.988i 1.10968 + 0.391506i
\(803\) 295.465 295.465i 0.367951 0.367951i
\(804\) 0 0
\(805\) 11.6455 21.9256i 0.0144665 0.0272368i
\(806\) −236.762 + 113.268i −0.293749 + 0.140531i
\(807\) 0 0
\(808\) 763.991 471.852i 0.945533 0.583976i
\(809\) 440.667i 0.544706i 0.962197 + 0.272353i \(0.0878018\pi\)
−0.962197 + 0.272353i \(0.912198\pi\)
\(810\) 0 0
\(811\) 911.348i 1.12373i 0.827228 + 0.561867i \(0.189917\pi\)
−0.827228 + 0.561867i \(0.810083\pi\)
\(812\) −342.631 + 36.8188i −0.421960 + 0.0453433i
\(813\) 0 0
\(814\) −248.164 + 118.723i −0.304870 + 0.145851i
\(815\) 208.797 + 681.857i 0.256193 + 0.836634i
\(816\) 0 0
\(817\) 283.147 283.147i 0.346569 0.346569i
\(818\) 121.234 343.625i 0.148208 0.420079i
\(819\) 0 0
\(820\) −361.587 + 154.670i −0.440959 + 0.188622i
\(821\) 893.060i 1.08777i −0.839159 0.543885i \(-0.816953\pi\)
0.839159 0.543885i \(-0.183047\pi\)
\(822\) 0 0
\(823\) −852.293 852.293i −1.03559 1.03559i −0.999343 0.0362500i \(-0.988459\pi\)
−0.0362500 0.999343i \(-0.511541\pi\)
\(824\) 66.2445 280.236i 0.0803938 0.340093i
\(825\) 0 0
\(826\) 147.054 70.3515i 0.178032 0.0851713i
\(827\) 608.192 + 608.192i 0.735419 + 0.735419i 0.971688 0.236269i \(-0.0759245\pi\)
−0.236269 + 0.971688i \(0.575925\pi\)
\(828\) 0 0
\(829\) 1550.55 1.87039 0.935195 0.354133i \(-0.115224\pi\)
0.935195 + 0.354133i \(0.115224\pi\)
\(830\) 40.6081 965.756i 0.0489254 1.16356i
\(831\) 0 0
\(832\) −90.6240 272.422i −0.108923 0.327431i
\(833\) 443.942 + 443.942i 0.532943 + 0.532943i
\(834\) 0 0
\(835\) −431.794 1410.09i −0.517119 1.68873i
\(836\) 319.884 396.910i 0.382636 0.474773i
\(837\) 0 0
\(838\) −853.541 301.137i −1.01855 0.359352i
\(839\) 736.198i 0.877471i −0.898616 0.438736i \(-0.855426\pi\)
0.898616 0.438736i \(-0.144574\pi\)
\(840\) 0 0
\(841\) 855.330 1.01704
\(842\) −43.2642 + 122.628i −0.0513827 + 0.145639i
\(843\) 0 0
\(844\) −23.9932 + 29.7706i −0.0284280 + 0.0352732i
\(845\) −657.406 349.173i −0.777995 0.413222i
\(846\) 0 0
\(847\) −10.1477 + 10.1477i −0.0119808 + 0.0119808i
\(848\) −41.1535 26.4537i −0.0485300 0.0311954i
\(849\) 0 0
\(850\) 606.849 + 355.783i 0.713940 + 0.418568i
\(851\) 28.8757i 0.0339315i
\(852\) 0 0
\(853\) 369.135 369.135i 0.432749 0.432749i −0.456813 0.889563i \(-0.651009\pi\)
0.889563 + 0.456813i \(0.151009\pi\)
\(854\) −157.994 330.252i −0.185005 0.386712i
\(855\) 0 0
\(856\) −171.878 + 727.103i −0.200793 + 0.849420i
\(857\) 715.466 715.466i 0.834849 0.834849i −0.153326 0.988176i \(-0.548999\pi\)
0.988176 + 0.153326i \(0.0489986\pi\)
\(858\) 0 0
\(859\) −151.972 −0.176918 −0.0884588 0.996080i \(-0.528194\pi\)
−0.0884588 + 0.996080i \(0.528194\pi\)
\(860\) 264.359 659.574i 0.307394 0.766947i
\(861\) 0 0
\(862\) −817.477 288.413i −0.948350 0.334586i
\(863\) −744.617 744.617i −0.862824 0.862824i 0.128841 0.991665i \(-0.458874\pi\)
−0.991665 + 0.128841i \(0.958874\pi\)
\(864\) 0 0
\(865\) −253.121 826.602i −0.292625 0.955610i
\(866\) 342.551 + 716.027i 0.395556 + 0.826821i
\(867\) 0 0
\(868\) −243.362 + 26.1514i −0.280371 + 0.0301284i
\(869\) 261.781 0.301244
\(870\) 0 0
\(871\) 197.531 0.226786
\(872\) −383.646 621.173i −0.439961 0.712354i
\(873\) 0 0
\(874\) −23.0917 48.2680i −0.0264207 0.0552266i
\(875\) 164.274 203.417i 0.187742 0.232477i
\(876\) 0 0
\(877\) −603.681 603.681i −0.688348 0.688348i 0.273519 0.961867i \(-0.411812\pi\)
−0.961867 + 0.273519i \(0.911812\pi\)
\(878\) −371.087 + 1051.81i −0.422650 + 1.19796i
\(879\) 0 0
\(880\) 244.903 870.823i 0.278298 0.989571i
\(881\) 639.526 0.725910 0.362955 0.931807i \(-0.381768\pi\)
0.362955 + 0.931807i \(0.381768\pi\)
\(882\) 0 0
\(883\) 1033.88 1033.88i 1.17087 1.17087i 0.188870 0.982002i \(-0.439518\pi\)
0.982002 0.188870i \(-0.0604825\pi\)
\(884\) −158.416 + 196.562i −0.179204 + 0.222355i
\(885\) 0 0
\(886\) 327.354 156.608i 0.369474 0.176758i
\(887\) −801.770 + 801.770i −0.903912 + 0.903912i −0.995772 0.0918602i \(-0.970719\pi\)
0.0918602 + 0.995772i \(0.470719\pi\)
\(888\) 0 0
\(889\) 42.9829i 0.0483497i
\(890\) −509.316 554.027i −0.572265 0.622502i
\(891\) 0 0
\(892\) 167.029 + 1554.35i 0.187252 + 1.74255i
\(893\) 470.422 470.422i 0.526788 0.526788i
\(894\) 0 0
\(895\) 149.583 281.627i 0.167132 0.314667i
\(896\) 4.82729 267.698i 0.00538760 0.298770i
\(897\) 0 0
\(898\) 340.797 965.953i 0.379506 1.07567i
\(899\) 1204.86 1.34022
\(900\) 0 0
\(901\) 43.0184i 0.0477452i
\(902\) 147.956 419.367i 0.164031 0.464930i
\(903\) 0 0
\(904\) 331.355 1401.74i 0.366543 1.55060i
\(905\) 848.267 + 450.547i 0.937312 + 0.497842i
\(906\) 0 0
\(907\) 488.802 + 488.802i 0.538922 + 0.538922i 0.923212 0.384291i \(-0.125554\pi\)
−0.384291 + 0.923212i \(0.625554\pi\)
\(908\) −97.2654 905.140i −0.107120 0.996851i
\(909\) 0 0
\(910\) 63.5045 + 69.0794i 0.0697851 + 0.0759114i
\(911\) −999.285 −1.09691 −0.548455 0.836180i \(-0.684784\pi\)
−0.548455 + 0.836180i \(0.684784\pi\)
\(912\) 0 0
\(913\) 772.867 + 772.867i 0.846514 + 0.846514i
\(914\) 991.323 474.254i 1.08460 0.518878i
\(915\) 0 0
\(916\) 125.347 + 101.022i 0.136842 + 0.110286i
\(917\) 76.7716 + 76.7716i 0.0837204 + 0.0837204i
\(918\) 0 0
\(919\) 1337.55i 1.45544i 0.685875 + 0.727719i \(0.259419\pi\)
−0.685875 + 0.727719i \(0.740581\pi\)
\(920\) −71.3613 62.6358i −0.0775666 0.0680824i
\(921\) 0 0
\(922\) −23.9564 + 67.9018i −0.0259831 + 0.0736463i
\(923\) 425.436 425.436i 0.460927 0.460927i
\(924\) 0 0
\(925\) −57.7611 + 298.576i −0.0624444 + 0.322785i
\(926\) 413.379 + 864.078i 0.446414 + 0.933129i
\(927\) 0 0
\(928\) −164.420 + 1307.67i −0.177177 + 1.40913i
\(929\) 135.066i 0.145388i 0.997354 + 0.0726942i \(0.0231597\pi\)
−0.997354 + 0.0726942i \(0.976840\pi\)
\(930\) 0 0
\(931\) 502.943i 0.540218i
\(932\) 145.697 + 1355.84i 0.156328 + 1.45477i
\(933\) 0 0
\(934\) −53.2273 111.260i −0.0569885 0.119122i
\(935\) −760.574 + 232.902i −0.813448 + 0.249093i
\(936\) 0 0
\(937\) 1002.83 1002.83i 1.07026 1.07026i 0.0729231 0.997338i \(-0.476767\pi\)
0.997338 0.0729231i \(-0.0232328\pi\)
\(938\) 173.716 + 61.2887i 0.185199 + 0.0653397i
\(939\) 0 0
\(940\) 439.208 1095.82i 0.467243 1.16577i
\(941\) 133.203i 0.141554i −0.997492 0.0707772i \(-0.977452\pi\)
0.997492 0.0707772i \(-0.0225479\pi\)
\(942\) 0 0
\(943\) −33.0061 33.0061i −0.0350011 0.0350011i
\(944\) −132.465 609.235i −0.140323 0.645377i
\(945\) 0 0
\(946\) 346.756 + 724.817i 0.366550 + 0.766191i
\(947\) 671.287 + 671.287i 0.708857 + 0.708857i 0.966295 0.257438i \(-0.0828784\pi\)
−0.257438 + 0.966295i \(0.582878\pi\)
\(948\) 0 0
\(949\) 165.770 0.174679
\(950\) −142.217 545.285i −0.149702 0.573984i
\(951\) 0 0
\(952\) −200.306 + 123.712i −0.210405 + 0.129949i
\(953\) −834.636 834.636i −0.875798 0.875798i 0.117299 0.993097i \(-0.462577\pi\)
−0.993097 + 0.117299i \(0.962577\pi\)
\(954\) 0 0
\(955\) −400.582 + 754.196i −0.419458 + 0.789734i
\(956\) −625.004 + 775.501i −0.653770 + 0.811193i
\(957\) 0 0
\(958\) −579.096 + 1641.39i −0.604484 + 1.71335i
\(959\) 292.157i 0.304648i
\(960\) 0 0
\(961\) −105.221 −0.109491
\(962\) −102.921 36.3114i −0.106986 0.0377457i
\(963\) 0 0
\(964\) 1011.42 + 815.143i 1.04919 + 0.845584i
\(965\) −752.482 + 230.424i −0.779774 + 0.238781i
\(966\) 0 0
\(967\) 249.412 249.412i 0.257923 0.257923i −0.566286 0.824209i \(-0.691620\pi\)
0.824209 + 0.566286i \(0.191620\pi\)
\(968\) 28.8416 + 46.6983i 0.0297951 + 0.0482421i
\(969\) 0 0
\(970\) 34.2055 813.487i 0.0352634 0.838646i
\(971\) 1425.94i 1.46852i −0.678867 0.734262i \(-0.737529\pi\)
0.678867 0.734262i \(-0.262471\pi\)
\(972\) 0 0
\(973\) 71.9394 71.9394i 0.0739357 0.0739357i
\(974\) 1561.17 746.870i 1.60284 0.766807i
\(975\) 0 0
\(976\) −1368.21 + 297.488i −1.40186 + 0.304804i
\(977\) 651.241 651.241i 0.666572 0.666572i −0.290349 0.956921i \(-0.593771\pi\)
0.956921 + 0.290349i \(0.0937714\pi\)
\(978\) 0 0
\(979\) 850.963 0.869217
\(980\) −351.003 820.574i −0.358166 0.837320i
\(981\) 0 0
\(982\) 478.624 1356.61i 0.487397 1.38148i
\(983\) 301.766 + 301.766i 0.306985 + 0.306985i 0.843739 0.536754i \(-0.180350\pi\)
−0.536754 + 0.843739i \(0.680350\pi\)
\(984\) 0 0
\(985\) 655.085 200.599i 0.665061 0.203654i
\(986\) 1045.44 500.142i 1.06028 0.507244i
\(987\) 0 0
\(988\) 201.078 21.6076i 0.203520 0.0218701i
\(989\) 84.3377 0.0852758
\(990\) 0 0
\(991\) −672.650 −0.678759 −0.339380 0.940650i \(-0.610217\pi\)
−0.339380 + 0.940650i \(0.610217\pi\)
\(992\) −116.784 + 928.806i −0.117725 + 0.936296i
\(993\) 0 0
\(994\) 506.147 242.143i 0.509202 0.243605i
\(995\) −617.350 327.898i −0.620453 0.329546i
\(996\) 0 0
\(997\) 65.6794 + 65.6794i 0.0658771 + 0.0658771i 0.739278 0.673401i \(-0.235167\pi\)
−0.673401 + 0.739278i \(0.735167\pi\)
\(998\) −351.002 123.837i −0.351705 0.124085i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.3.u.b.253.1 20
3.2 odd 2 40.3.i.a.13.10 yes 20
5.2 odd 4 inner 360.3.u.b.37.6 20
8.5 even 2 inner 360.3.u.b.253.6 20
12.11 even 2 160.3.m.a.113.10 20
15.2 even 4 40.3.i.a.37.5 yes 20
15.8 even 4 200.3.i.b.157.6 20
15.14 odd 2 200.3.i.b.93.1 20
24.5 odd 2 40.3.i.a.13.5 20
24.11 even 2 160.3.m.a.113.1 20
40.37 odd 4 inner 360.3.u.b.37.1 20
60.23 odd 4 800.3.m.b.657.10 20
60.47 odd 4 160.3.m.a.17.1 20
60.59 even 2 800.3.m.b.593.1 20
120.29 odd 2 200.3.i.b.93.6 20
120.53 even 4 200.3.i.b.157.1 20
120.59 even 2 800.3.m.b.593.10 20
120.77 even 4 40.3.i.a.37.10 yes 20
120.83 odd 4 800.3.m.b.657.1 20
120.107 odd 4 160.3.m.a.17.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.i.a.13.5 20 24.5 odd 2
40.3.i.a.13.10 yes 20 3.2 odd 2
40.3.i.a.37.5 yes 20 15.2 even 4
40.3.i.a.37.10 yes 20 120.77 even 4
160.3.m.a.17.1 20 60.47 odd 4
160.3.m.a.17.10 20 120.107 odd 4
160.3.m.a.113.1 20 24.11 even 2
160.3.m.a.113.10 20 12.11 even 2
200.3.i.b.93.1 20 15.14 odd 2
200.3.i.b.93.6 20 120.29 odd 2
200.3.i.b.157.1 20 120.53 even 4
200.3.i.b.157.6 20 15.8 even 4
360.3.u.b.37.1 20 40.37 odd 4 inner
360.3.u.b.37.6 20 5.2 odd 4 inner
360.3.u.b.253.1 20 1.1 even 1 trivial
360.3.u.b.253.6 20 8.5 even 2 inner
800.3.m.b.593.1 20 60.59 even 2
800.3.m.b.593.10 20 120.59 even 2
800.3.m.b.657.1 20 120.83 odd 4
800.3.m.b.657.10 20 60.23 odd 4