Properties

Label 40.3.i.a.37.10
Level $40$
Weight $3$
Character 40.37
Analytic conductor $1.090$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,3,Mod(13,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.13");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 40.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08992105744\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 3x^{16} + 11x^{14} + x^{12} - 40x^{10} + 4x^{8} + 176x^{6} - 192x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.10
Root \(-1.27574 + 0.610320i\) of defining polynomial
Character \(\chi\) \(=\) 40.37
Dual form 40.3.i.a.13.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.88606 - 0.665418i) q^{2} +(-3.60765 - 3.60765i) q^{3} +(3.11444 - 2.51004i) q^{4} +(2.34539 + 4.41578i) q^{5} +(-9.20485 - 4.40365i) q^{6} +(1.47907 + 1.47907i) q^{7} +(4.20379 - 6.80648i) q^{8} +17.0303i q^{9} +(7.36189 + 6.76776i) q^{10} +11.3076i q^{11} +(-20.2912 - 2.18047i) q^{12} +(-3.17204 - 3.17204i) q^{13} +(3.77383 + 1.80542i) q^{14} +(7.46927 - 24.3920i) q^{15} +(3.39943 - 15.6347i) q^{16} +(-9.94834 - 9.94834i) q^{17} +(11.3323 + 32.1202i) q^{18} -11.2705 q^{19} +(18.3883 + 7.86567i) q^{20} -10.6720i q^{21} +(7.52426 + 21.3267i) q^{22} +(1.67851 - 1.67851i) q^{23} +(-39.7212 + 9.38962i) q^{24} +(-13.9983 + 20.7135i) q^{25} +(-8.09340 - 3.87192i) q^{26} +(28.9707 - 28.9707i) q^{27} +(8.31902 + 0.893952i) q^{28} +41.1865 q^{29} +(-2.14339 - 50.9749i) q^{30} -29.2537 q^{31} +(-3.99209 - 31.7500i) q^{32} +(40.7938 - 40.7938i) q^{33} +(-25.3830 - 12.1433i) q^{34} +(-3.06227 + 10.0003i) q^{35} +(42.7468 + 53.0399i) q^{36} +(-8.60159 + 8.60159i) q^{37} +(-21.2568 + 7.49961i) q^{38} +22.8873i q^{39} +(39.9155 + 2.59916i) q^{40} -19.6639 q^{41} +(-7.10133 - 20.1280i) q^{42} +(-25.1228 - 25.1228i) q^{43} +(28.3824 + 35.2167i) q^{44} +(-75.2023 + 39.9428i) q^{45} +(2.04886 - 4.28268i) q^{46} +(41.7392 + 41.7392i) q^{47} +(-68.6686 + 44.1406i) q^{48} -44.6247i q^{49} +(-12.6185 + 48.3815i) q^{50} +71.7804i q^{51} +(-17.8411 - 1.91718i) q^{52} +(2.16209 + 2.16209i) q^{53} +(35.3628 - 73.9181i) q^{54} +(-49.9317 + 26.5206i) q^{55} +(16.2850 - 3.84958i) q^{56} +(40.6601 + 40.6601i) q^{57} +(77.6802 - 27.4063i) q^{58} +38.9669 q^{59} +(-37.9622 - 94.7154i) q^{60} -87.5112i q^{61} +(-55.1742 + 19.4660i) q^{62} +(-25.1891 + 25.1891i) q^{63} +(-28.6564 - 57.2260i) q^{64} +(6.56738 - 21.4467i) q^{65} +(49.7945 - 104.084i) q^{66} +(-31.1362 + 31.1362i) q^{67} +(-55.9542 - 6.01278i) q^{68} -12.1110 q^{69} +(0.878753 + 20.8988i) q^{70} +134.120 q^{71} +(115.917 + 71.5919i) q^{72} +(-26.1299 + 26.1299i) q^{73} +(-10.4994 + 21.9468i) q^{74} +(125.228 - 24.2260i) q^{75} +(-35.1013 + 28.2894i) q^{76} +(-16.7247 + 16.7247i) q^{77} +(15.2296 + 43.1667i) q^{78} +23.1510i q^{79} +(77.0125 - 21.6583i) q^{80} -55.7594 q^{81} +(-37.0873 + 13.0847i) q^{82} +(-68.3496 - 68.3496i) q^{83} +(-26.7871 - 33.2372i) q^{84} +(20.5970 - 67.2625i) q^{85} +(-64.1002 - 30.6659i) q^{86} +(-148.587 - 148.587i) q^{87} +(76.9647 + 47.5346i) q^{88} -75.2561i q^{89} +(-115.257 + 125.375i) q^{90} -9.38338i q^{91} +(1.01449 - 9.44074i) q^{92} +(105.537 + 105.537i) q^{93} +(106.497 + 50.9485i) q^{94} +(-26.4337 - 49.7681i) q^{95} +(-100.141 + 128.945i) q^{96} +(57.5730 + 57.5730i) q^{97} +(-29.6941 - 84.1648i) q^{98} -192.572 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 16 q^{6} - 4 q^{7} + 4 q^{8} + 6 q^{10} - 44 q^{12} - 4 q^{15} - 56 q^{16} - 12 q^{17} + 10 q^{18} - 24 q^{20} + 92 q^{22} - 4 q^{23} - 28 q^{25} + 100 q^{26} + 68 q^{28} + 100 q^{30} - 136 q^{31}+ \cdots + 546 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/40\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.88606 0.665418i 0.943029 0.332709i
\(3\) −3.60765 3.60765i −1.20255 1.20255i −0.973388 0.229164i \(-0.926401\pi\)
−0.229164 0.973388i \(-0.573599\pi\)
\(4\) 3.11444 2.51004i 0.778609 0.627509i
\(5\) 2.34539 + 4.41578i 0.469078 + 0.883157i
\(6\) −9.20485 4.40365i −1.53414 0.733941i
\(7\) 1.47907 + 1.47907i 0.211296 + 0.211296i 0.804818 0.593522i \(-0.202263\pi\)
−0.593522 + 0.804818i \(0.702263\pi\)
\(8\) 4.20379 6.80648i 0.525473 0.850810i
\(9\) 17.0303i 1.89226i
\(10\) 7.36189 + 6.76776i 0.736189 + 0.676776i
\(11\) 11.3076i 1.02796i 0.857802 + 0.513980i \(0.171829\pi\)
−0.857802 + 0.513980i \(0.828171\pi\)
\(12\) −20.2912 2.18047i −1.69093 0.181705i
\(13\) −3.17204 3.17204i −0.244003 0.244003i 0.574501 0.818504i \(-0.305196\pi\)
−0.818504 + 0.574501i \(0.805196\pi\)
\(14\) 3.77383 + 1.80542i 0.269559 + 0.128958i
\(15\) 7.46927 24.3920i 0.497951 1.62613i
\(16\) 3.39943 15.6347i 0.212464 0.977169i
\(17\) −9.94834 9.94834i −0.585197 0.585197i 0.351130 0.936327i \(-0.385797\pi\)
−0.936327 + 0.351130i \(0.885797\pi\)
\(18\) 11.3323 + 32.1202i 0.629572 + 1.78446i
\(19\) −11.2705 −0.593185 −0.296592 0.955004i \(-0.595850\pi\)
−0.296592 + 0.955004i \(0.595850\pi\)
\(20\) 18.3883 + 7.86567i 0.919417 + 0.393283i
\(21\) 10.6720i 0.508190i
\(22\) 7.52426 + 21.3267i 0.342012 + 0.969396i
\(23\) 1.67851 1.67851i 0.0729787 0.0729787i −0.669675 0.742654i \(-0.733567\pi\)
0.742654 + 0.669675i \(0.233567\pi\)
\(24\) −39.7212 + 9.38962i −1.65505 + 0.391234i
\(25\) −13.9983 + 20.7135i −0.559932 + 0.828539i
\(26\) −8.09340 3.87192i −0.311284 0.148920i
\(27\) 28.9707 28.9707i 1.07299 1.07299i
\(28\) 8.31902 + 0.893952i 0.297108 + 0.0319269i
\(29\) 41.1865 1.42022 0.710112 0.704088i \(-0.248644\pi\)
0.710112 + 0.704088i \(0.248644\pi\)
\(30\) −2.14339 50.9749i −0.0714464 1.69916i
\(31\) −29.2537 −0.943668 −0.471834 0.881687i \(-0.656408\pi\)
−0.471834 + 0.881687i \(0.656408\pi\)
\(32\) −3.99209 31.7500i −0.124753 0.992188i
\(33\) 40.7938 40.7938i 1.23617 1.23617i
\(34\) −25.3830 12.1433i −0.746558 0.357157i
\(35\) −3.06227 + 10.0003i −0.0874934 + 0.285722i
\(36\) 42.7468 + 53.0399i 1.18741 + 1.47333i
\(37\) −8.60159 + 8.60159i −0.232475 + 0.232475i −0.813725 0.581250i \(-0.802564\pi\)
0.581250 + 0.813725i \(0.302564\pi\)
\(38\) −21.2568 + 7.49961i −0.559391 + 0.197358i
\(39\) 22.8873i 0.586853i
\(40\) 39.9155 + 2.59916i 0.997887 + 0.0649791i
\(41\) −19.6639 −0.479607 −0.239804 0.970821i \(-0.577083\pi\)
−0.239804 + 0.970821i \(0.577083\pi\)
\(42\) −7.10133 20.1280i −0.169079 0.479238i
\(43\) −25.1228 25.1228i −0.584251 0.584251i 0.351818 0.936069i \(-0.385564\pi\)
−0.936069 + 0.351818i \(0.885564\pi\)
\(44\) 28.3824 + 35.2167i 0.645054 + 0.800379i
\(45\) −75.2023 + 39.9428i −1.67116 + 0.887617i
\(46\) 2.04886 4.28268i 0.0445404 0.0931018i
\(47\) 41.7392 + 41.7392i 0.888068 + 0.888068i 0.994337 0.106269i \(-0.0338906\pi\)
−0.106269 + 0.994337i \(0.533891\pi\)
\(48\) −68.6686 + 44.1406i −1.43060 + 0.919596i
\(49\) 44.6247i 0.910708i
\(50\) −12.6185 + 48.3815i −0.252370 + 0.967631i
\(51\) 71.7804i 1.40746i
\(52\) −17.8411 1.91718i −0.343098 0.0368689i
\(53\) 2.16209 + 2.16209i 0.0407941 + 0.0407941i 0.727210 0.686415i \(-0.240817\pi\)
−0.686415 + 0.727210i \(0.740817\pi\)
\(54\) 35.3628 73.9181i 0.654867 1.36885i
\(55\) −49.9317 + 26.5206i −0.907850 + 0.482193i
\(56\) 16.2850 3.84958i 0.290804 0.0687425i
\(57\) 40.6601 + 40.6601i 0.713335 + 0.713335i
\(58\) 77.6802 27.4063i 1.33931 0.472522i
\(59\) 38.9669 0.660456 0.330228 0.943901i \(-0.392874\pi\)
0.330228 + 0.943901i \(0.392874\pi\)
\(60\) −37.9622 94.7154i −0.632703 1.57859i
\(61\) 87.5112i 1.43461i −0.696759 0.717305i \(-0.745375\pi\)
0.696759 0.717305i \(-0.254625\pi\)
\(62\) −55.1742 + 19.4660i −0.889907 + 0.313967i
\(63\) −25.1891 + 25.1891i −0.399828 + 0.399828i
\(64\) −28.6564 57.2260i −0.447756 0.894156i
\(65\) 6.56738 21.4467i 0.101037 0.329950i
\(66\) 49.7945 104.084i 0.754462 1.57704i
\(67\) −31.1362 + 31.1362i −0.464719 + 0.464719i −0.900199 0.435479i \(-0.856579\pi\)
0.435479 + 0.900199i \(0.356579\pi\)
\(68\) −55.9542 6.01278i −0.822856 0.0884232i
\(69\) −12.1110 −0.175521
\(70\) 0.878753 + 20.8988i 0.0125536 + 0.298554i
\(71\) 134.120 1.88902 0.944510 0.328483i \(-0.106537\pi\)
0.944510 + 0.328483i \(0.106537\pi\)
\(72\) 115.917 + 71.5919i 1.60995 + 0.994332i
\(73\) −26.1299 + 26.1299i −0.357943 + 0.357943i −0.863054 0.505111i \(-0.831452\pi\)
0.505111 + 0.863054i \(0.331452\pi\)
\(74\) −10.4994 + 21.9468i −0.141884 + 0.296578i
\(75\) 125.228 24.2260i 1.66971 0.323013i
\(76\) −35.1013 + 28.2894i −0.461859 + 0.372229i
\(77\) −16.7247 + 16.7247i −0.217204 + 0.217204i
\(78\) 15.2296 + 43.1667i 0.195251 + 0.553420i
\(79\) 23.1510i 0.293050i 0.989207 + 0.146525i \(0.0468090\pi\)
−0.989207 + 0.146525i \(0.953191\pi\)
\(80\) 77.0125 21.6583i 0.962656 0.270729i
\(81\) −55.7594 −0.688388
\(82\) −37.0873 + 13.0847i −0.452284 + 0.159570i
\(83\) −68.3496 68.3496i −0.823489 0.823489i 0.163118 0.986607i \(-0.447845\pi\)
−0.986607 + 0.163118i \(0.947845\pi\)
\(84\) −26.7871 33.2372i −0.318894 0.395681i
\(85\) 20.5970 67.2625i 0.242318 0.791323i
\(86\) −64.1002 30.6659i −0.745352 0.356580i
\(87\) −148.587 148.587i −1.70789 1.70789i
\(88\) 76.9647 + 47.5346i 0.874599 + 0.540165i
\(89\) 75.2561i 0.845574i −0.906229 0.422787i \(-0.861052\pi\)
0.906229 0.422787i \(-0.138948\pi\)
\(90\) −115.257 + 125.375i −1.28064 + 1.39306i
\(91\) 9.38338i 0.103114i
\(92\) 1.01449 9.44074i 0.0110271 0.102617i
\(93\) 105.537 + 105.537i 1.13481 + 1.13481i
\(94\) 106.497 + 50.9485i 1.13294 + 0.542006i
\(95\) −26.4337 49.7681i −0.278250 0.523875i
\(96\) −100.141 + 128.945i −1.04314 + 1.34318i
\(97\) 57.5730 + 57.5730i 0.593536 + 0.593536i 0.938585 0.345049i \(-0.112138\pi\)
−0.345049 + 0.938585i \(0.612138\pi\)
\(98\) −29.6941 84.1648i −0.303001 0.858824i
\(99\) −192.572 −1.94517
\(100\) 8.39476 + 99.6470i 0.0839476 + 0.996470i
\(101\) 112.245i 1.11133i 0.831405 + 0.555666i \(0.187537\pi\)
−0.831405 + 0.555666i \(0.812463\pi\)
\(102\) 47.7640 + 135.382i 0.468274 + 1.32727i
\(103\) 25.4523 25.4523i 0.247109 0.247109i −0.572674 0.819783i \(-0.694094\pi\)
0.819783 + 0.572674i \(0.194094\pi\)
\(104\) −34.9250 + 8.25586i −0.335818 + 0.0793833i
\(105\) 47.1252 25.0300i 0.448811 0.238380i
\(106\) 5.51652 + 2.63913i 0.0520426 + 0.0248975i
\(107\) 66.0387 66.0387i 0.617184 0.617184i −0.327624 0.944808i \(-0.606248\pi\)
0.944808 + 0.327624i \(0.106248\pi\)
\(108\) 17.5099 162.945i 0.162129 1.50875i
\(109\) 91.2619 0.837266 0.418633 0.908156i \(-0.362509\pi\)
0.418633 + 0.908156i \(0.362509\pi\)
\(110\) −76.5269 + 83.2450i −0.695699 + 0.756772i
\(111\) 62.0631 0.559127
\(112\) 28.1529 18.0969i 0.251365 0.161579i
\(113\) −127.312 + 127.312i −1.12666 + 1.12666i −0.135940 + 0.990717i \(0.543406\pi\)
−0.990717 + 0.135940i \(0.956594\pi\)
\(114\) 103.743 + 49.6314i 0.910029 + 0.435363i
\(115\) 11.3487 + 3.47518i 0.0986844 + 0.0302190i
\(116\) 128.273 103.380i 1.10580 0.891204i
\(117\) 54.0210 54.0210i 0.461718 0.461718i
\(118\) 73.4938 25.9293i 0.622829 0.219740i
\(119\) 29.4287i 0.247300i
\(120\) −134.624 153.378i −1.12187 1.27815i
\(121\) −6.86087 −0.0567014
\(122\) −58.2316 165.051i −0.477308 1.35288i
\(123\) 70.9406 + 70.9406i 0.576753 + 0.576753i
\(124\) −91.1088 + 73.4279i −0.734749 + 0.592160i
\(125\) −124.298 13.2323i −0.994381 0.105858i
\(126\) −30.7469 + 64.2695i −0.244023 + 0.510076i
\(127\) −14.5303 14.5303i −0.114412 0.114412i 0.647583 0.761995i \(-0.275780\pi\)
−0.761995 + 0.647583i \(0.775780\pi\)
\(128\) −92.1268 88.8631i −0.719741 0.694243i
\(129\) 181.269i 1.40518i
\(130\) −1.88459 44.8199i −0.0144968 0.344768i
\(131\) 51.9051i 0.396222i 0.980180 + 0.198111i \(0.0634807\pi\)
−0.980180 + 0.198111i \(0.936519\pi\)
\(132\) 24.6557 229.443i 0.186786 1.73821i
\(133\) −16.6699 16.6699i −0.125338 0.125338i
\(134\) −38.0061 + 79.4433i −0.283628 + 0.592860i
\(135\) 195.876 + 59.9808i 1.45093 + 0.444302i
\(136\) −109.534 + 25.8925i −0.805396 + 0.190386i
\(137\) −98.7636 98.7636i −0.720902 0.720902i 0.247887 0.968789i \(-0.420264\pi\)
−0.968789 + 0.247887i \(0.920264\pi\)
\(138\) −22.8420 + 8.05887i −0.165522 + 0.0583976i
\(139\) 48.6381 0.349914 0.174957 0.984576i \(-0.444021\pi\)
0.174957 + 0.984576i \(0.444021\pi\)
\(140\) 15.5638 + 38.8316i 0.111170 + 0.277369i
\(141\) 301.161i 2.13589i
\(142\) 252.959 89.2462i 1.78140 0.628494i
\(143\) 35.8681 35.8681i 0.250826 0.250826i
\(144\) 266.264 + 57.8935i 1.84906 + 0.402038i
\(145\) 96.5984 + 181.871i 0.666196 + 1.25428i
\(146\) −31.8952 + 66.6697i −0.218460 + 0.456642i
\(147\) −160.990 + 160.990i −1.09517 + 1.09517i
\(148\) −5.19880 + 48.3794i −0.0351270 + 0.326888i
\(149\) −222.425 −1.49278 −0.746391 0.665508i \(-0.768215\pi\)
−0.746391 + 0.665508i \(0.768215\pi\)
\(150\) 220.067 129.021i 1.46711 0.860138i
\(151\) −199.700 −1.32252 −0.661259 0.750157i \(-0.729978\pi\)
−0.661259 + 0.750157i \(0.729978\pi\)
\(152\) −47.3788 + 76.7125i −0.311703 + 0.504688i
\(153\) 169.424 169.424i 1.10734 1.10734i
\(154\) −20.4149 + 42.6728i −0.132564 + 0.277096i
\(155\) −68.6113 129.178i −0.442654 0.833407i
\(156\) 57.4479 + 71.2809i 0.368256 + 0.456929i
\(157\) −191.183 + 191.183i −1.21773 + 1.21773i −0.249302 + 0.968426i \(0.580201\pi\)
−0.968426 + 0.249302i \(0.919799\pi\)
\(158\) 15.4051 + 43.6641i 0.0975006 + 0.276355i
\(159\) 15.6001i 0.0981141i
\(160\) 130.838 92.0944i 0.817739 0.575590i
\(161\) 4.96529 0.0308403
\(162\) −105.166 + 37.1034i −0.649170 + 0.229033i
\(163\) 100.849 + 100.849i 0.618705 + 0.618705i 0.945199 0.326494i \(-0.105867\pi\)
−0.326494 + 0.945199i \(0.605867\pi\)
\(164\) −61.2420 + 49.3571i −0.373427 + 0.300958i
\(165\) 275.814 + 84.4592i 1.67160 + 0.511874i
\(166\) −174.392 83.4303i −1.05056 0.502592i
\(167\) 208.556 + 208.556i 1.24884 + 1.24884i 0.956232 + 0.292609i \(0.0945233\pi\)
0.292609 + 0.956232i \(0.405477\pi\)
\(168\) −72.6386 44.8627i −0.432373 0.267040i
\(169\) 148.876i 0.880925i
\(170\) −5.91054 140.567i −0.0347679 0.826862i
\(171\) 191.941i 1.12246i
\(172\) −141.302 15.1842i −0.821526 0.0882803i
\(173\) 122.257 + 122.257i 0.706689 + 0.706689i 0.965838 0.259148i \(-0.0834419\pi\)
−0.259148 + 0.965838i \(0.583442\pi\)
\(174\) −379.116 181.371i −2.17883 1.04236i
\(175\) −51.3413 + 9.93224i −0.293379 + 0.0567556i
\(176\) 176.790 + 38.4393i 1.00449 + 0.218405i
\(177\) −140.579 140.579i −0.794232 0.794232i
\(178\) −50.0768 141.937i −0.281330 0.797402i
\(179\) 63.7773 0.356298 0.178149 0.984004i \(-0.442989\pi\)
0.178149 + 0.984004i \(0.442989\pi\)
\(180\) −133.955 + 313.160i −0.744194 + 1.73978i
\(181\) 192.099i 1.06132i 0.847585 + 0.530660i \(0.178056\pi\)
−0.847585 + 0.530660i \(0.821944\pi\)
\(182\) −6.24387 17.6976i −0.0343070 0.0972396i
\(183\) −315.710 + 315.710i −1.72519 + 1.72519i
\(184\) −4.36865 18.4809i −0.0237427 0.100439i
\(185\) −58.1568 17.8087i −0.314361 0.0962631i
\(186\) 269.276 + 128.823i 1.44772 + 0.692597i
\(187\) 112.491 112.491i 0.601559 0.601559i
\(188\) 234.761 + 25.2272i 1.24873 + 0.134187i
\(189\) 85.6996 0.453437
\(190\) −82.9722 76.2761i −0.436696 0.401453i
\(191\) −170.796 −0.894218 −0.447109 0.894480i \(-0.647546\pi\)
−0.447109 + 0.894480i \(0.647546\pi\)
\(192\) −103.069 + 309.834i −0.536819 + 1.61372i
\(193\) 111.295 111.295i 0.576656 0.576656i −0.357325 0.933980i \(-0.616311\pi\)
0.933980 + 0.357325i \(0.116311\pi\)
\(194\) 146.896 + 70.2760i 0.757197 + 0.362247i
\(195\) −101.065 + 53.6796i −0.518283 + 0.275280i
\(196\) −112.010 138.981i −0.571477 0.709085i
\(197\) 96.8892 96.8892i 0.491823 0.491823i −0.417057 0.908880i \(-0.636938\pi\)
0.908880 + 0.417057i \(0.136938\pi\)
\(198\) −363.201 + 128.141i −1.83435 + 0.647175i
\(199\) 139.805i 0.702540i −0.936274 0.351270i \(-0.885750\pi\)
0.936274 0.351270i \(-0.114250\pi\)
\(200\) 82.1400 + 182.354i 0.410700 + 0.911771i
\(201\) 224.657 1.11770
\(202\) 74.6896 + 211.700i 0.369751 + 1.04802i
\(203\) 60.9179 + 60.9179i 0.300088 + 0.300088i
\(204\) 180.171 + 223.555i 0.883193 + 1.09586i
\(205\) −46.1195 86.8315i −0.224973 0.423569i
\(206\) 31.0681 64.9409i 0.150816 0.315247i
\(207\) 28.5856 + 28.5856i 0.138095 + 0.138095i
\(208\) −60.3771 + 38.8108i −0.290274 + 0.186590i
\(209\) 127.442i 0.609770i
\(210\) 72.2254 78.5659i 0.343931 0.374123i
\(211\) 9.55891i 0.0453029i −0.999743 0.0226514i \(-0.992789\pi\)
0.999743 0.0226514i \(-0.00721080\pi\)
\(212\) 12.1606 + 1.30677i 0.0573614 + 0.00616399i
\(213\) −483.860 483.860i −2.27164 2.27164i
\(214\) 80.6095 168.496i 0.376680 0.787365i
\(215\) 52.0141 169.860i 0.241926 0.790044i
\(216\) −75.4019 318.975i −0.349083 1.47674i
\(217\) −43.2684 43.2684i −0.199394 0.199394i
\(218\) 172.125 60.7274i 0.789566 0.278566i
\(219\) 188.535 0.860890
\(220\) −88.9415 + 207.927i −0.404279 + 0.945124i
\(221\) 63.1131i 0.285580i
\(222\) 117.055 41.2979i 0.527273 0.186027i
\(223\) 276.355 276.355i 1.23926 1.23926i 0.278957 0.960304i \(-0.410011\pi\)
0.960304 0.278957i \(-0.0899888\pi\)
\(224\) 41.0560 52.8652i 0.183286 0.236006i
\(225\) −352.757 238.396i −1.56781 1.05954i
\(226\) −155.403 + 324.834i −0.687622 + 1.43732i
\(227\) 160.929 160.929i 0.708938 0.708938i −0.257374 0.966312i \(-0.582857\pi\)
0.966312 + 0.257374i \(0.0828572\pi\)
\(228\) 228.692 + 24.5750i 1.00303 + 0.107785i
\(229\) 40.2472 0.175752 0.0878760 0.996131i \(-0.471992\pi\)
0.0878760 + 0.996131i \(0.471992\pi\)
\(230\) 23.7168 0.997243i 0.103116 0.00433584i
\(231\) 120.674 0.522398
\(232\) 173.139 280.335i 0.746290 1.20834i
\(233\) −241.061 + 241.061i −1.03460 + 1.03460i −0.0352176 + 0.999380i \(0.511212\pi\)
−0.999380 + 0.0352176i \(0.988788\pi\)
\(234\) 65.9402 137.833i 0.281796 0.589031i
\(235\) −86.4166 + 282.206i −0.367730 + 1.20088i
\(236\) 121.360 97.8083i 0.514237 0.414442i
\(237\) 83.5208 83.5208i 0.352408 0.352408i
\(238\) −19.5824 55.5042i −0.0822789 0.233211i
\(239\) 249.002i 1.04185i 0.853603 + 0.520925i \(0.174413\pi\)
−0.853603 + 0.520925i \(0.825587\pi\)
\(240\) −355.970 199.699i −1.48321 0.832077i
\(241\) 324.753 1.34752 0.673762 0.738948i \(-0.264677\pi\)
0.673762 + 0.738948i \(0.264677\pi\)
\(242\) −12.9400 + 4.56535i −0.0534711 + 0.0188651i
\(243\) −59.5755 59.5755i −0.245167 0.245167i
\(244\) −219.656 272.548i −0.900231 1.11700i
\(245\) 197.053 104.662i 0.804298 0.427193i
\(246\) 181.003 + 86.5929i 0.735786 + 0.352004i
\(247\) 35.7505 + 35.7505i 0.144739 + 0.144739i
\(248\) −122.976 + 199.115i −0.495872 + 0.802882i
\(249\) 493.163i 1.98058i
\(250\) −243.238 + 57.7530i −0.972951 + 0.231012i
\(251\) 166.729i 0.664260i 0.943234 + 0.332130i \(0.107767\pi\)
−0.943234 + 0.332130i \(0.892233\pi\)
\(252\) −15.2243 + 141.676i −0.0604139 + 0.562205i
\(253\) 18.9799 + 18.9799i 0.0750192 + 0.0750192i
\(254\) −37.0738 17.7363i −0.145960 0.0698280i
\(255\) −316.967 + 168.353i −1.24301 + 0.660207i
\(256\) −232.888 106.298i −0.909718 0.415227i
\(257\) 184.509 + 184.509i 0.717933 + 0.717933i 0.968182 0.250248i \(-0.0805122\pi\)
−0.250248 + 0.968182i \(0.580512\pi\)
\(258\) 120.620 + 341.883i 0.467518 + 1.32513i
\(259\) −25.4448 −0.0982424
\(260\) −33.3784 83.2789i −0.128378 0.320303i
\(261\) 701.421i 2.68743i
\(262\) 34.5386 + 97.8962i 0.131827 + 0.373649i
\(263\) 3.85637 3.85637i 0.0146630 0.0146630i −0.699737 0.714400i \(-0.746700\pi\)
0.714400 + 0.699737i \(0.246700\pi\)
\(264\) −106.174 449.150i −0.402173 1.70133i
\(265\) −4.47638 + 14.6183i −0.0168920 + 0.0551632i
\(266\) −42.5329 20.3480i −0.159898 0.0764962i
\(267\) −271.498 + 271.498i −1.01685 + 1.01685i
\(268\) −18.8187 + 175.125i −0.0702190 + 0.653450i
\(269\) −163.125 −0.606413 −0.303206 0.952925i \(-0.598057\pi\)
−0.303206 + 0.952925i \(0.598057\pi\)
\(270\) 409.346 17.2122i 1.51610 0.0637488i
\(271\) 100.647 0.371391 0.185696 0.982607i \(-0.440546\pi\)
0.185696 + 0.982607i \(0.440546\pi\)
\(272\) −189.358 + 121.721i −0.696169 + 0.447502i
\(273\) −33.8520 + 33.8520i −0.124000 + 0.124000i
\(274\) −251.993 120.555i −0.919682 0.439981i
\(275\) −234.219 158.287i −0.851704 0.575587i
\(276\) −37.7189 + 30.3990i −0.136663 + 0.110141i
\(277\) 172.773 172.773i 0.623729 0.623729i −0.322754 0.946483i \(-0.604609\pi\)
0.946483 + 0.322754i \(0.104609\pi\)
\(278\) 91.7343 32.3647i 0.329980 0.116420i
\(279\) 498.201i 1.78567i
\(280\) 55.1936 + 62.8823i 0.197120 + 0.224580i
\(281\) −300.384 −1.06898 −0.534491 0.845174i \(-0.679497\pi\)
−0.534491 + 0.845174i \(0.679497\pi\)
\(282\) −200.398 568.008i −0.710632 2.01421i
\(283\) −151.310 151.310i −0.534663 0.534663i 0.387293 0.921957i \(-0.373410\pi\)
−0.921957 + 0.387293i \(0.873410\pi\)
\(284\) 417.709 336.647i 1.47081 1.18538i
\(285\) −84.1825 + 274.910i −0.295377 + 0.964597i
\(286\) 43.7820 91.5165i 0.153084 0.319988i
\(287\) −29.0844 29.0844i −0.101339 0.101339i
\(288\) 540.714 67.9867i 1.87748 0.236065i
\(289\) 91.0610i 0.315090i
\(290\) 303.211 + 278.741i 1.04555 + 0.961175i
\(291\) 415.407i 1.42752i
\(292\) −15.7929 + 146.967i −0.0540852 + 0.503311i
\(293\) 154.132 + 154.132i 0.526048 + 0.526048i 0.919391 0.393344i \(-0.128682\pi\)
−0.393344 + 0.919391i \(0.628682\pi\)
\(294\) −196.511 + 410.763i −0.668406 + 1.39715i
\(295\) 91.3925 + 172.069i 0.309805 + 0.583286i
\(296\) 22.3873 + 94.7058i 0.0756328 + 0.319952i
\(297\) 327.588 + 327.588i 1.10299 + 1.10299i
\(298\) −419.506 + 148.005i −1.40774 + 0.496662i
\(299\) −10.6486 −0.0356141
\(300\) 329.207 389.777i 1.09736 1.29926i
\(301\) 74.3170i 0.246900i
\(302\) −376.647 + 132.884i −1.24717 + 0.440014i
\(303\) 404.940 404.940i 1.33643 1.33643i
\(304\) −38.3133 + 176.211i −0.126031 + 0.579642i
\(305\) 386.431 205.248i 1.26699 0.672944i
\(306\) 206.805 432.281i 0.675835 1.41268i
\(307\) −97.0784 + 97.0784i −0.316216 + 0.316216i −0.847312 0.531096i \(-0.821781\pi\)
0.531096 + 0.847312i \(0.321781\pi\)
\(308\) −10.1084 + 94.0678i −0.0328195 + 0.305415i
\(309\) −183.646 −0.594324
\(310\) −215.362 197.982i −0.694718 0.638652i
\(311\) −74.0447 −0.238086 −0.119043 0.992889i \(-0.537983\pi\)
−0.119043 + 0.992889i \(0.537983\pi\)
\(312\) 155.782 + 96.2132i 0.499301 + 0.308376i
\(313\) −125.892 + 125.892i −0.402212 + 0.402212i −0.879012 0.476800i \(-0.841797\pi\)
0.476800 + 0.879012i \(0.341797\pi\)
\(314\) −233.366 + 487.800i −0.743204 + 1.55350i
\(315\) −170.308 52.1515i −0.540661 0.165560i
\(316\) 58.1098 + 72.1023i 0.183892 + 0.228172i
\(317\) 257.161 257.161i 0.811233 0.811233i −0.173585 0.984819i \(-0.555535\pi\)
0.984819 + 0.173585i \(0.0555353\pi\)
\(318\) −10.3806 29.4228i −0.0326435 0.0925245i
\(319\) 465.719i 1.45993i
\(320\) 185.487 260.758i 0.579648 0.814867i
\(321\) −476.489 −1.48439
\(322\) 9.36482 3.30399i 0.0290833 0.0102608i
\(323\) 112.123 + 112.123i 0.347130 + 0.347130i
\(324\) −173.659 + 139.958i −0.535985 + 0.431970i
\(325\) 110.107 21.3008i 0.338791 0.0655409i
\(326\) 257.314 + 123.100i 0.789306 + 0.377608i
\(327\) −329.242 329.242i −1.00685 1.00685i
\(328\) −82.6628 + 133.842i −0.252021 + 0.408055i
\(329\) 123.471i 0.375291i
\(330\) 576.402 24.2365i 1.74667 0.0734440i
\(331\) 403.967i 1.22045i −0.792230 0.610223i \(-0.791080\pi\)
0.792230 0.610223i \(-0.208920\pi\)
\(332\) −384.430 41.3105i −1.15792 0.124429i
\(333\) −146.488 146.488i −0.439904 0.439904i
\(334\) 532.127 + 254.572i 1.59319 + 0.762193i
\(335\) −210.517 64.4642i −0.628409 0.192430i
\(336\) −166.853 36.2787i −0.496587 0.107972i
\(337\) −101.745 101.745i −0.301915 0.301915i 0.539848 0.841763i \(-0.318482\pi\)
−0.841763 + 0.539848i \(0.818482\pi\)
\(338\) −99.0650 280.789i −0.293092 0.830738i
\(339\) 918.598 2.70973
\(340\) −104.683 261.184i −0.307892 0.768188i
\(341\) 330.788i 0.970053i
\(342\) −127.721 362.011i −0.373453 1.05851i
\(343\) 138.478 138.478i 0.403726 0.403726i
\(344\) −276.609 + 65.3870i −0.804095 + 0.190078i
\(345\) −28.4049 53.4794i −0.0823332 0.155013i
\(346\) 311.937 + 149.232i 0.901551 + 0.431307i
\(347\) −196.538 + 196.538i −0.566391 + 0.566391i −0.931116 0.364724i \(-0.881163\pi\)
0.364724 + 0.931116i \(0.381163\pi\)
\(348\) −835.722 89.8058i −2.40150 0.258063i
\(349\) 454.536 1.30240 0.651198 0.758908i \(-0.274267\pi\)
0.651198 + 0.758908i \(0.274267\pi\)
\(350\) −90.2236 + 52.8962i −0.257782 + 0.151132i
\(351\) −183.793 −0.523626
\(352\) 359.015 45.1408i 1.01993 0.128241i
\(353\) 204.788 204.788i 0.580135 0.580135i −0.354805 0.934940i \(-0.615453\pi\)
0.934940 + 0.354805i \(0.115453\pi\)
\(354\) −358.684 171.596i −1.01323 0.484736i
\(355\) 314.565 + 592.247i 0.886097 + 1.66830i
\(356\) −188.896 234.380i −0.530606 0.658372i
\(357\) −106.169 + 106.169i −0.297391 + 0.297391i
\(358\) 120.288 42.4386i 0.336000 0.118544i
\(359\) 27.2061i 0.0757831i −0.999282 0.0378916i \(-0.987936\pi\)
0.999282 0.0378916i \(-0.0120641\pi\)
\(360\) −44.2646 + 679.774i −0.122957 + 1.88826i
\(361\) −233.976 −0.648132
\(362\) 127.826 + 362.310i 0.353111 + 1.00086i
\(363\) 24.7516 + 24.7516i 0.0681863 + 0.0681863i
\(364\) −23.5526 29.2239i −0.0647050 0.0802855i
\(365\) −176.669 54.0991i −0.484023 0.148217i
\(366\) −385.369 + 805.528i −1.05292 + 2.20090i
\(367\) 50.4416 + 50.4416i 0.137443 + 0.137443i 0.772481 0.635038i \(-0.219016\pi\)
−0.635038 + 0.772481i \(0.719016\pi\)
\(368\) −20.5370 31.9490i −0.0558072 0.0868179i
\(369\) 334.883i 0.907542i
\(370\) −121.537 + 5.11040i −0.328479 + 0.0138119i
\(371\) 6.39578i 0.0172393i
\(372\) 593.592 + 63.7867i 1.59568 + 0.171470i
\(373\) −105.787 105.787i −0.283612 0.283612i 0.550936 0.834548i \(-0.314271\pi\)
−0.834548 + 0.550936i \(0.814271\pi\)
\(374\) 137.312 287.019i 0.367143 0.767432i
\(375\) 400.685 + 496.161i 1.06849 + 1.32309i
\(376\) 459.560 108.634i 1.22223 0.288921i
\(377\) −130.645 130.645i −0.346540 0.346540i
\(378\) 161.635 57.0261i 0.427605 0.150863i
\(379\) −595.709 −1.57179 −0.785896 0.618359i \(-0.787798\pi\)
−0.785896 + 0.618359i \(0.787798\pi\)
\(380\) −207.246 88.6501i −0.545384 0.233290i
\(381\) 104.841i 0.275173i
\(382\) −322.131 + 113.651i −0.843274 + 0.297514i
\(383\) −59.2677 + 59.2677i −0.154746 + 0.154746i −0.780234 0.625488i \(-0.784900\pi\)
0.625488 + 0.780234i \(0.284900\pi\)
\(384\) 11.7744 + 652.949i 0.0306624 + 1.70039i
\(385\) −113.079 34.6268i −0.293711 0.0899397i
\(386\) 135.851 283.966i 0.351945 0.735662i
\(387\) 427.850 427.850i 1.10555 1.10555i
\(388\) 323.818 + 34.7971i 0.834582 + 0.0896833i
\(389\) −254.508 −0.654263 −0.327131 0.944979i \(-0.606082\pi\)
−0.327131 + 0.944979i \(0.606082\pi\)
\(390\) −154.896 + 168.493i −0.397168 + 0.432035i
\(391\) −33.3968 −0.0854138
\(392\) −303.737 187.593i −0.774839 0.478553i
\(393\) 187.256 187.256i 0.476478 0.476478i
\(394\) 118.267 247.211i 0.300170 0.627438i
\(395\) −102.230 + 54.2981i −0.258810 + 0.137464i
\(396\) −599.752 + 483.362i −1.51453 + 1.22061i
\(397\) −372.832 + 372.832i −0.939122 + 0.939122i −0.998250 0.0591281i \(-0.981168\pi\)
0.0591281 + 0.998250i \(0.481168\pi\)
\(398\) −93.0291 263.681i −0.233741 0.662516i
\(399\) 120.279i 0.301450i
\(400\) 276.263 + 289.273i 0.690657 + 0.723183i
\(401\) 471.865 1.17672 0.588360 0.808599i \(-0.299774\pi\)
0.588360 + 0.808599i \(0.299774\pi\)
\(402\) 423.717 149.491i 1.05402 0.371868i
\(403\) 92.7940 + 92.7940i 0.230258 + 0.230258i
\(404\) 281.738 + 349.579i 0.697372 + 0.865294i
\(405\) −130.778 246.222i −0.322908 0.607955i
\(406\) 155.431 + 74.3589i 0.382834 + 0.183150i
\(407\) −97.2629 97.2629i −0.238975 0.238975i
\(408\) 488.572 + 301.749i 1.19748 + 0.739582i
\(409\) 182.192i 0.445457i −0.974880 0.222729i \(-0.928504\pi\)
0.974880 0.222729i \(-0.0714964\pi\)
\(410\) −144.763 133.081i −0.353082 0.324587i
\(411\) 712.610i 1.73384i
\(412\) 15.3833 143.156i 0.0373382 0.347465i
\(413\) 57.6349 + 57.6349i 0.139552 + 0.139552i
\(414\) 72.9355 + 34.8928i 0.176173 + 0.0842820i
\(415\) 141.511 462.123i 0.340989 1.11355i
\(416\) −88.0493 + 113.375i −0.211657 + 0.272537i
\(417\) −175.469 175.469i −0.420790 0.420790i
\(418\) −84.8022 240.363i −0.202876 0.575031i
\(419\) −452.553 −1.08008 −0.540039 0.841640i \(-0.681590\pi\)
−0.540039 + 0.841640i \(0.681590\pi\)
\(420\) 83.9422 196.240i 0.199862 0.467238i
\(421\) 65.0180i 0.154437i 0.997014 + 0.0772186i \(0.0246039\pi\)
−0.997014 + 0.0772186i \(0.975396\pi\)
\(422\) −6.36068 18.0287i −0.0150727 0.0427220i
\(423\) −710.833 + 710.833i −1.68046 + 1.68046i
\(424\) 23.8052 5.62726i 0.0561443 0.0132718i
\(425\) 345.325 66.8048i 0.812528 0.157188i
\(426\) −1234.56 590.619i −2.89802 1.38643i
\(427\) 129.436 129.436i 0.303128 0.303128i
\(428\) 39.9137 371.433i 0.0932564 0.867833i
\(429\) −258.799 −0.603261
\(430\) −14.9260 354.976i −0.0347117 0.825526i
\(431\) −433.432 −1.00564 −0.502821 0.864391i \(-0.667704\pi\)
−0.502821 + 0.864391i \(0.667704\pi\)
\(432\) −354.464 551.432i −0.820519 1.27646i
\(433\) −280.632 + 280.632i −0.648112 + 0.648112i −0.952536 0.304425i \(-0.901536\pi\)
0.304425 + 0.952536i \(0.401536\pi\)
\(434\) −110.398 52.8152i −0.254374 0.121694i
\(435\) 307.633 1004.62i 0.707203 2.30947i
\(436\) 284.230 229.071i 0.651903 0.525392i
\(437\) −18.9177 + 18.9177i −0.0432899 + 0.0432899i
\(438\) 355.588 125.455i 0.811845 0.286426i
\(439\) 557.674i 1.27033i 0.772377 + 0.635164i \(0.219068\pi\)
−0.772377 + 0.635164i \(0.780932\pi\)
\(440\) −29.3902 + 451.346i −0.0667959 + 1.02579i
\(441\) 759.973 1.72330
\(442\) 41.9966 + 119.035i 0.0950150 + 0.269310i
\(443\) 128.300 + 128.300i 0.289616 + 0.289616i 0.836928 0.547313i \(-0.184349\pi\)
−0.547313 + 0.836928i \(0.684349\pi\)
\(444\) 193.292 155.781i 0.435341 0.350857i
\(445\) 332.315 176.505i 0.746775 0.396640i
\(446\) 337.330 705.114i 0.756346 1.58097i
\(447\) 802.431 + 802.431i 1.79515 + 1.79515i
\(448\) 42.2566 127.026i 0.0943227 0.283541i
\(449\) 512.154i 1.14065i 0.821417 + 0.570327i \(0.193184\pi\)
−0.821417 + 0.570327i \(0.806816\pi\)
\(450\) −823.954 214.897i −1.83101 0.477549i
\(451\) 222.351i 0.493017i
\(452\) −76.9475 + 716.065i −0.170238 + 1.58421i
\(453\) 720.450 + 720.450i 1.59040 + 1.59040i
\(454\) 196.436 410.606i 0.432679 0.904419i
\(455\) 41.4350 22.0077i 0.0910659 0.0483685i
\(456\) 447.679 105.826i 0.981751 0.232074i
\(457\) −388.529 388.529i −0.850173 0.850173i 0.139981 0.990154i \(-0.455296\pi\)
−0.990154 + 0.139981i \(0.955296\pi\)
\(458\) 75.9086 26.7812i 0.165739 0.0584743i
\(459\) −576.421 −1.25582
\(460\) 44.0676 17.6624i 0.0957992 0.0383966i
\(461\) 36.0020i 0.0780954i −0.999237 0.0390477i \(-0.987568\pi\)
0.999237 0.0390477i \(-0.0124324\pi\)
\(462\) 227.598 80.2987i 0.492637 0.173807i
\(463\) −338.658 + 338.658i −0.731442 + 0.731442i −0.970905 0.239463i \(-0.923029\pi\)
0.239463 + 0.970905i \(0.423029\pi\)
\(464\) 140.011 643.939i 0.301747 1.38780i
\(465\) −218.504 + 713.556i −0.469901 + 1.53453i
\(466\) −294.249 + 615.062i −0.631436 + 1.31988i
\(467\) −43.6060 + 43.6060i −0.0933748 + 0.0933748i −0.752251 0.658876i \(-0.771032\pi\)
0.658876 + 0.752251i \(0.271032\pi\)
\(468\) 32.6503 303.840i 0.0697655 0.649230i
\(469\) −92.1055 −0.196387
\(470\) 24.7982 + 589.760i 0.0527622 + 1.25481i
\(471\) 1379.45 2.92876
\(472\) 163.808 265.227i 0.347052 0.561922i
\(473\) 284.077 284.077i 0.600586 0.600586i
\(474\) 101.949 213.101i 0.215082 0.449581i
\(475\) 157.768 233.451i 0.332143 0.491476i
\(476\) −73.8671 91.6538i −0.155183 0.192550i
\(477\) −36.8211 + 36.8211i −0.0771931 + 0.0771931i
\(478\) 165.691 + 469.632i 0.346633 + 0.982495i
\(479\) 870.273i 1.81685i −0.418043 0.908427i \(-0.637284\pi\)
0.418043 0.908427i \(-0.362716\pi\)
\(480\) −804.264 139.774i −1.67555 0.291196i
\(481\) 54.5692 0.113449
\(482\) 612.504 216.097i 1.27075 0.448334i
\(483\) −17.9130 17.9130i −0.0370870 0.0370870i
\(484\) −21.3677 + 17.2210i −0.0441482 + 0.0355806i
\(485\) −119.199 + 389.261i −0.245771 + 0.802600i
\(486\) −152.005 72.7202i −0.312768 0.149630i
\(487\) −611.867 611.867i −1.25640 1.25640i −0.952799 0.303603i \(-0.901810\pi\)
−0.303603 0.952799i \(-0.598190\pi\)
\(488\) −595.644 367.879i −1.22058 0.753849i
\(489\) 727.656i 1.48805i
\(490\) 302.009 328.522i 0.616345 0.670453i
\(491\) 719.282i 1.46493i 0.680803 + 0.732467i \(0.261631\pi\)
−0.680803 + 0.732467i \(0.738369\pi\)
\(492\) 399.003 + 42.8765i 0.810982 + 0.0871473i
\(493\) −409.738 409.738i −0.831111 0.831111i
\(494\) 91.2167 + 43.6386i 0.184649 + 0.0883372i
\(495\) −451.655 850.354i −0.912435 1.71789i
\(496\) −99.4459 + 457.373i −0.200496 + 0.922123i
\(497\) 198.374 + 198.374i 0.399143 + 0.399143i
\(498\) 328.160 + 930.135i 0.658956 + 1.86774i
\(499\) 186.103 0.372952 0.186476 0.982459i \(-0.440293\pi\)
0.186476 + 0.982459i \(0.440293\pi\)
\(500\) −420.331 + 270.780i −0.840661 + 0.541561i
\(501\) 1504.80i 3.00359i
\(502\) 110.945 + 314.461i 0.221006 + 0.626417i
\(503\) −302.420 + 302.420i −0.601232 + 0.601232i −0.940639 0.339408i \(-0.889773\pi\)
0.339408 + 0.940639i \(0.389773\pi\)
\(504\) 65.5597 + 277.339i 0.130079 + 0.550276i
\(505\) −495.648 + 263.257i −0.981481 + 0.521302i
\(506\) 48.4267 + 23.1676i 0.0957049 + 0.0457857i
\(507\) −537.094 + 537.094i −1.05936 + 1.05936i
\(508\) −81.7255 8.78213i −0.160877 0.0172877i
\(509\) −107.882 −0.211949 −0.105975 0.994369i \(-0.533796\pi\)
−0.105975 + 0.994369i \(0.533796\pi\)
\(510\) −485.793 + 528.439i −0.952534 + 1.03615i
\(511\) −77.2960 −0.151264
\(512\) −509.973 45.5168i −0.996041 0.0888999i
\(513\) −326.514 + 326.514i −0.636481 + 0.636481i
\(514\) 470.770 + 225.219i 0.915895 + 0.438169i
\(515\) 172.087 + 52.6962i 0.334150 + 0.102323i
\(516\) 454.991 + 564.550i 0.881766 + 1.09409i
\(517\) −471.968 + 471.968i −0.912898 + 0.912898i
\(518\) −47.9903 + 16.9314i −0.0926455 + 0.0326861i
\(519\) 882.124i 1.69966i
\(520\) −118.369 134.858i −0.227633 0.259343i
\(521\) −374.569 −0.718942 −0.359471 0.933156i \(-0.617043\pi\)
−0.359471 + 0.933156i \(0.617043\pi\)
\(522\) 466.738 + 1322.92i 0.894134 + 2.53433i
\(523\) −161.196 161.196i −0.308213 0.308213i 0.536003 0.844216i \(-0.319934\pi\)
−0.844216 + 0.536003i \(0.819934\pi\)
\(524\) 130.284 + 161.655i 0.248633 + 0.308502i
\(525\) 221.054 + 149.390i 0.421055 + 0.284552i
\(526\) 4.70725 9.83945i 0.00894914 0.0187062i
\(527\) 291.026 + 291.026i 0.552231 + 0.552231i
\(528\) −499.123 776.474i −0.945308 1.47059i
\(529\) 523.365i 0.989348i
\(530\) 1.28455 + 30.5496i 0.00242367 + 0.0576407i
\(531\) 663.619i 1.24975i
\(532\) −93.7596 10.0753i −0.176240 0.0189385i
\(533\) 62.3747 + 62.3747i 0.117026 + 0.117026i
\(534\) −331.402 + 692.721i −0.620602 + 1.29723i
\(535\) 446.499 + 136.726i 0.834577 + 0.255563i
\(536\) 81.0380 + 342.818i 0.151190 + 0.639585i
\(537\) −230.087 230.087i −0.428467 0.428467i
\(538\) −307.663 + 108.546i −0.571865 + 0.201759i
\(539\) 504.596 0.936171
\(540\) 760.597 304.849i 1.40851 0.564536i
\(541\) 319.556i 0.590676i 0.955393 + 0.295338i \(0.0954323\pi\)
−0.955393 + 0.295338i \(0.904568\pi\)
\(542\) 189.826 66.9724i 0.350233 0.123565i
\(543\) 693.026 693.026i 1.27629 1.27629i
\(544\) −276.145 + 355.575i −0.507620 + 0.653630i
\(545\) 214.045 + 402.993i 0.392743 + 0.739437i
\(546\) −41.3211 + 86.3726i −0.0756797 + 0.158192i
\(547\) 631.421 631.421i 1.15433 1.15433i 0.168659 0.985674i \(-0.446056\pi\)
0.985674 0.168659i \(-0.0539438\pi\)
\(548\) −555.493 59.6927i −1.01367 0.108928i
\(549\) 1490.35 2.71466
\(550\) −547.077 142.684i −0.994686 0.259426i
\(551\) −464.193 −0.842456
\(552\) −50.9119 + 82.4331i −0.0922318 + 0.149335i
\(553\) −34.2420 + 34.2420i −0.0619205 + 0.0619205i
\(554\) 210.894 440.826i 0.380675 0.795716i
\(555\) 145.562 + 274.057i 0.262274 + 0.493797i
\(556\) 151.480 122.083i 0.272447 0.219575i
\(557\) 405.826 405.826i 0.728592 0.728592i −0.241747 0.970339i \(-0.577720\pi\)
0.970339 + 0.241747i \(0.0777204\pi\)
\(558\) −331.512 939.636i −0.594107 1.68393i
\(559\) 159.381i 0.285118i
\(560\) 145.941 + 81.8729i 0.260610 + 0.146202i
\(561\) −811.661 −1.44681
\(562\) −566.542 + 199.881i −1.00808 + 0.355660i
\(563\) −241.881 241.881i −0.429628 0.429628i 0.458873 0.888502i \(-0.348253\pi\)
−0.888502 + 0.458873i \(0.848253\pi\)
\(564\) −755.926 937.947i −1.34029 1.66303i
\(565\) −860.780 263.587i −1.52351 0.466525i
\(566\) −386.063 184.695i −0.682091 0.326316i
\(567\) −82.4724 82.4724i −0.145454 0.145454i
\(568\) 563.813 912.888i 0.992629 1.60720i
\(569\) 416.031i 0.731162i −0.930780 0.365581i \(-0.880870\pi\)
0.930780 0.365581i \(-0.119130\pi\)
\(570\) 24.1571 + 574.513i 0.0423809 + 1.00792i
\(571\) 907.558i 1.58942i −0.606991 0.794709i \(-0.707623\pi\)
0.606991 0.794709i \(-0.292377\pi\)
\(572\) 21.6786 201.739i 0.0378997 0.352690i
\(573\) 616.171 + 616.171i 1.07534 + 1.07534i
\(574\) −74.2081 35.5016i −0.129282 0.0618494i
\(575\) 11.2715 + 58.2641i 0.0196026 + 0.101329i
\(576\) 974.578 488.028i 1.69198 0.847270i
\(577\) 467.070 + 467.070i 0.809480 + 0.809480i 0.984555 0.175075i \(-0.0560167\pi\)
−0.175075 + 0.984555i \(0.556017\pi\)
\(578\) −60.5936 171.746i −0.104833 0.297139i
\(579\) −803.025 −1.38692
\(580\) 757.352 + 323.959i 1.30578 + 0.558551i
\(581\) 202.188i 0.348000i
\(582\) −276.420 783.482i −0.474948 1.34619i
\(583\) −24.4479 + 24.4479i −0.0419347 + 0.0419347i
\(584\) 68.0080 + 287.697i 0.116452 + 0.492631i
\(585\) 365.245 + 111.845i 0.624351 + 0.191188i
\(586\) 393.264 + 188.140i 0.671100 + 0.321058i
\(587\) 247.149 247.149i 0.421038 0.421038i −0.464523 0.885561i \(-0.653774\pi\)
0.885561 + 0.464523i \(0.153774\pi\)
\(588\) −97.3026 + 905.486i −0.165481 + 1.53994i
\(589\) 329.704 0.559769
\(590\) 286.870 + 263.719i 0.486220 + 0.446981i
\(591\) −699.086 −1.18289
\(592\) 105.243 + 163.724i 0.177775 + 0.276560i
\(593\) 315.219 315.219i 0.531567 0.531567i −0.389472 0.921038i \(-0.627342\pi\)
0.921038 + 0.389472i \(0.127342\pi\)
\(594\) 835.833 + 399.867i 1.40713 + 0.673177i
\(595\) 129.951 69.0217i 0.218405 0.116003i
\(596\) −692.727 + 558.294i −1.16229 + 0.936734i
\(597\) −504.370 + 504.370i −0.844840 + 0.844840i
\(598\) −20.0839 + 7.08579i −0.0335851 + 0.0118491i
\(599\) 423.660i 0.707278i −0.935382 0.353639i \(-0.884944\pi\)
0.935382 0.353639i \(-0.115056\pi\)
\(600\) 361.538 954.203i 0.602563 1.59034i
\(601\) 293.629 0.488568 0.244284 0.969704i \(-0.421447\pi\)
0.244284 + 0.969704i \(0.421447\pi\)
\(602\) −49.4519 140.166i −0.0821460 0.232834i
\(603\) −530.260 530.260i −0.879370 0.879370i
\(604\) −621.954 + 501.255i −1.02973 + 0.829893i
\(605\) −16.0914 30.2961i −0.0265974 0.0500762i
\(606\) 494.286 1033.19i 0.815653 1.70494i
\(607\) −143.784 143.784i −0.236876 0.236876i 0.578679 0.815555i \(-0.303568\pi\)
−0.815555 + 0.578679i \(0.803568\pi\)
\(608\) 44.9929 + 357.839i 0.0740015 + 0.588551i
\(609\) 439.542i 0.721743i
\(610\) 592.255 644.248i 0.970910 1.05614i
\(611\) 264.797i 0.433383i
\(612\) 102.400 952.919i 0.167320 1.55706i
\(613\) 304.429 + 304.429i 0.496622 + 0.496622i 0.910385 0.413763i \(-0.135786\pi\)
−0.413763 + 0.910385i \(0.635786\pi\)
\(614\) −118.498 + 247.693i −0.192993 + 0.403409i
\(615\) −146.875 + 479.641i −0.238821 + 0.779905i
\(616\) 43.5293 + 184.144i 0.0706645 + 0.298935i
\(617\) 815.279 + 815.279i 1.32136 + 1.32136i 0.912676 + 0.408683i \(0.134012\pi\)
0.408683 + 0.912676i \(0.365988\pi\)
\(618\) −346.367 + 122.201i −0.560465 + 0.197737i
\(619\) −1062.25 −1.71607 −0.858036 0.513589i \(-0.828316\pi\)
−0.858036 + 0.513589i \(0.828316\pi\)
\(620\) −537.927 230.100i −0.867625 0.371129i
\(621\) 97.2552i 0.156611i
\(622\) −139.653 + 49.2707i −0.224522 + 0.0792133i
\(623\) 111.309 111.309i 0.178667 0.178667i
\(624\) 357.836 + 77.8037i 0.573455 + 0.124685i
\(625\) −233.095 579.906i −0.372953 0.927850i
\(626\) −153.669 + 321.212i −0.245478 + 0.513118i
\(627\) −459.766 + 459.766i −0.733280 + 0.733280i
\(628\) −115.551 + 1075.31i −0.183999 + 1.71227i
\(629\) 171.143 0.272088
\(630\) −355.914 + 14.9655i −0.564943 + 0.0237547i
\(631\) 842.984 1.33595 0.667975 0.744184i \(-0.267161\pi\)
0.667975 + 0.744184i \(0.267161\pi\)
\(632\) 157.577 + 97.3218i 0.249330 + 0.153990i
\(633\) −34.4852 + 34.4852i −0.0544791 + 0.0544791i
\(634\) 313.901 656.140i 0.495112 1.03492i
\(635\) 30.0835 98.2421i 0.0473756 0.154712i
\(636\) −39.1569 48.5856i −0.0615675 0.0763925i
\(637\) −141.551 + 141.551i −0.222216 + 0.222216i
\(638\) 309.898 + 878.373i 0.485734 + 1.37676i
\(639\) 2284.12i 3.57452i
\(640\) 176.327 615.231i 0.275511 0.961298i
\(641\) −169.581 −0.264557 −0.132278 0.991213i \(-0.542229\pi\)
−0.132278 + 0.991213i \(0.542229\pi\)
\(642\) −898.687 + 317.065i −1.39982 + 0.493870i
\(643\) 493.738 + 493.738i 0.767867 + 0.767867i 0.977731 0.209864i \(-0.0673021\pi\)
−0.209864 + 0.977731i \(0.567302\pi\)
\(644\) 15.4641 12.4630i 0.0240125 0.0193526i
\(645\) −800.443 + 425.146i −1.24100 + 0.659141i
\(646\) 286.079 + 136.862i 0.442847 + 0.211860i
\(647\) −509.311 509.311i −0.787189 0.787189i 0.193844 0.981032i \(-0.437905\pi\)
−0.981032 + 0.193844i \(0.937905\pi\)
\(648\) −234.401 + 379.526i −0.361730 + 0.585688i
\(649\) 440.620i 0.678922i
\(650\) 193.495 113.442i 0.297684 0.174526i
\(651\) 312.195i 0.479562i
\(652\) 567.222 + 60.9530i 0.869972 + 0.0934863i
\(653\) −239.798 239.798i −0.367226 0.367226i 0.499239 0.866464i \(-0.333613\pi\)
−0.866464 + 0.499239i \(0.833613\pi\)
\(654\) −840.052 401.886i −1.28448 0.614504i
\(655\) −229.202 + 121.738i −0.349927 + 0.185859i
\(656\) −66.8461 + 307.439i −0.101899 + 0.468657i
\(657\) −445.000 445.000i −0.677322 0.677322i
\(658\) 82.1597 + 232.873i 0.124863 + 0.353911i
\(659\) 900.540 1.36653 0.683263 0.730173i \(-0.260560\pi\)
0.683263 + 0.730173i \(0.260560\pi\)
\(660\) 1071.00 429.260i 1.62273 0.650394i
\(661\) 59.7896i 0.0904533i −0.998977 0.0452267i \(-0.985599\pi\)
0.998977 0.0452267i \(-0.0144010\pi\)
\(662\) −268.807 761.906i −0.406053 1.15092i
\(663\) 227.690 227.690i 0.343424 0.343424i
\(664\) −752.547 + 177.893i −1.13335 + 0.267911i
\(665\) 34.5133 112.708i 0.0518997 0.169486i
\(666\) −373.761 178.809i −0.561202 0.268482i
\(667\) 69.1320 69.1320i 0.103646 0.103646i
\(668\) 1173.02 + 126.051i 1.75602 + 0.188700i
\(669\) −1993.99 −2.98055
\(670\) −439.943 + 18.4987i −0.656632 + 0.0276101i
\(671\) 989.538 1.47472
\(672\) −338.835 + 42.6035i −0.504219 + 0.0633981i
\(673\) 190.854 190.854i 0.283587 0.283587i −0.550951 0.834538i \(-0.685735\pi\)
0.834538 + 0.550951i \(0.185735\pi\)
\(674\) −259.601 124.194i −0.385164 0.184265i
\(675\) 194.543 + 1005.62i 0.288212 + 1.48981i
\(676\) −373.685 463.666i −0.552788 0.685896i
\(677\) 503.850 503.850i 0.744240 0.744240i −0.229151 0.973391i \(-0.573595\pi\)
0.973391 + 0.229151i \(0.0735949\pi\)
\(678\) 1732.53 611.252i 2.55535 0.901551i
\(679\) 170.310i 0.250824i
\(680\) −371.235 422.950i −0.545934 0.621985i
\(681\) −1161.15 −1.70507
\(682\) −220.112 623.886i −0.322745 0.914788i
\(683\) 141.973 + 141.973i 0.207866 + 0.207866i 0.803360 0.595494i \(-0.203044\pi\)
−0.595494 + 0.803360i \(0.703044\pi\)
\(684\) −481.778 597.787i −0.704354 0.873957i
\(685\) 204.480 667.758i 0.298510 0.974829i
\(686\) 169.032 353.323i 0.246402 0.515048i
\(687\) −145.198 145.198i −0.211351 0.211351i
\(688\) −478.190 + 307.384i −0.695044 + 0.446779i
\(689\) 13.7165i 0.0199078i
\(690\) −89.1596 81.9642i −0.129217 0.118789i
\(691\) 1271.56i 1.84017i 0.391717 + 0.920086i \(0.371881\pi\)
−0.391717 + 0.920086i \(0.628119\pi\)
\(692\) 687.633 + 73.8922i 0.993689 + 0.106781i
\(693\) −284.828 284.828i −0.411007 0.411007i
\(694\) −239.902 + 501.462i −0.345680 + 0.722568i
\(695\) 114.075 + 214.775i 0.164137 + 0.309029i
\(696\) −1635.98 + 386.726i −2.35055 + 0.555641i
\(697\) 195.623 + 195.623i 0.280665 + 0.280665i
\(698\) 857.282 302.457i 1.22820 0.433319i
\(699\) 1739.33 2.48831
\(700\) −134.969 + 159.802i −0.192813 + 0.228288i
\(701\) 799.199i 1.14008i 0.821615 + 0.570042i \(0.193073\pi\)
−0.821615 + 0.570042i \(0.806927\pi\)
\(702\) −346.644 + 122.299i −0.493794 + 0.174215i
\(703\) 96.9443 96.9443i 0.137901 0.137901i
\(704\) 647.086 324.034i 0.919156 0.460275i
\(705\) 1329.86 706.340i 1.88633 1.00190i
\(706\) 249.972 522.511i 0.354068 0.740101i
\(707\) −166.018 + 166.018i −0.234821 + 0.234821i
\(708\) −790.683 84.9659i −1.11678 0.120008i
\(709\) 479.020 0.675628 0.337814 0.941213i \(-0.390313\pi\)
0.337814 + 0.941213i \(0.390313\pi\)
\(710\) 987.379 + 907.695i 1.39067 + 1.27844i
\(711\) −394.269 −0.554528
\(712\) −512.229 316.361i −0.719423 0.444327i
\(713\) −49.1027 + 49.1027i −0.0688677 + 0.0688677i
\(714\) −129.594 + 270.887i −0.181504 + 0.379393i
\(715\) 242.510 + 74.2610i 0.339175 + 0.103862i
\(716\) 198.631 160.083i 0.277417 0.223580i
\(717\) 898.313 898.313i 1.25288 1.25288i
\(718\) −18.1035 51.3124i −0.0252137 0.0714657i
\(719\) 800.764i 1.11372i 0.830607 + 0.556859i \(0.187994\pi\)
−0.830607 + 0.556859i \(0.812006\pi\)
\(720\) 368.848 + 1311.55i 0.512290 + 1.82159i
\(721\) 75.2916 0.104427
\(722\) −441.292 + 155.692i −0.611207 + 0.215639i
\(723\) −1171.60 1171.60i −1.62047 1.62047i
\(724\) 482.175 + 598.280i 0.665988 + 0.826353i
\(725\) −576.541 + 853.116i −0.795229 + 1.17671i
\(726\) 63.1532 + 30.2128i 0.0869879 + 0.0416155i
\(727\) 144.435 + 144.435i 0.198673 + 0.198673i 0.799431 0.600758i \(-0.205134\pi\)
−0.600758 + 0.799431i \(0.705134\pi\)
\(728\) −63.8678 39.4457i −0.0877305 0.0541837i
\(729\) 931.690i 1.27804i
\(730\) −369.206 + 15.5244i −0.505761 + 0.0212662i
\(731\) 499.860i 0.683803i
\(732\) −190.815 + 1775.70i −0.260677 + 2.42583i
\(733\) −748.614 748.614i −1.02130 1.02130i −0.999768 0.0215340i \(-0.993145\pi\)
−0.0215340 0.999768i \(-0.506855\pi\)
\(734\) 128.701 + 61.5711i 0.175341 + 0.0838843i
\(735\) −1088.48 333.314i −1.48093 0.453488i
\(736\) −59.9935 46.5920i −0.0815129 0.0633043i
\(737\) −352.074 352.074i −0.477713 0.477713i
\(738\) −222.837 631.609i −0.301948 0.855839i
\(739\) −731.874 −0.990358 −0.495179 0.868791i \(-0.664897\pi\)
−0.495179 + 0.868791i \(0.664897\pi\)
\(740\) −225.826 + 90.5118i −0.305170 + 0.122313i
\(741\) 257.951i 0.348112i
\(742\) 4.25587 + 12.0628i 0.00573567 + 0.0162572i
\(743\) −676.219 + 676.219i −0.910119 + 0.910119i −0.996281 0.0861618i \(-0.972540\pi\)
0.0861618 + 0.996281i \(0.472540\pi\)
\(744\) 1161.99 274.681i 1.56182 0.369195i
\(745\) −521.672 982.179i −0.700231 1.31836i
\(746\) −269.914 129.128i −0.361814 0.173094i
\(747\) 1164.02 1164.02i 1.55826 1.55826i
\(748\) 67.9898 632.705i 0.0908955 0.845863i
\(749\) 195.352 0.260817
\(750\) 1085.87 + 669.165i 1.44783 + 0.892219i
\(751\) −59.2858 −0.0789424 −0.0394712 0.999221i \(-0.512567\pi\)
−0.0394712 + 0.999221i \(0.512567\pi\)
\(752\) 794.469 510.690i 1.05648 0.679109i
\(753\) 601.502 601.502i 0.798807 0.798807i
\(754\) −333.339 159.471i −0.442094 0.211500i
\(755\) −468.375 881.834i −0.620364 1.16799i
\(756\) 266.906 215.109i 0.353050 0.284536i
\(757\) 597.444 597.444i 0.789225 0.789225i −0.192142 0.981367i \(-0.561543\pi\)
0.981367 + 0.192142i \(0.0615434\pi\)
\(758\) −1123.54 + 396.396i −1.48225 + 0.522949i
\(759\) 136.946i 0.180429i
\(760\) −449.868 29.2939i −0.591931 0.0385446i
\(761\) 32.0333 0.0420937 0.0210469 0.999778i \(-0.493300\pi\)
0.0210469 + 0.999778i \(0.493300\pi\)
\(762\) 69.7631 + 197.736i 0.0915526 + 0.259496i
\(763\) 134.983 + 134.983i 0.176911 + 0.176911i
\(764\) −531.932 + 428.703i −0.696246 + 0.561130i
\(765\) 1145.50 + 350.774i 1.49739 + 0.458528i
\(766\) −72.3445 + 151.220i −0.0944445 + 0.197415i
\(767\) −123.605 123.605i −0.161153 0.161153i
\(768\) 456.692 + 1223.67i 0.594650 + 1.59331i
\(769\) 1416.08i 1.84145i −0.390208 0.920727i \(-0.627597\pi\)
0.390208 0.920727i \(-0.372403\pi\)
\(770\) −236.314 + 9.93655i −0.306902 + 0.0129046i
\(771\) 1331.29i 1.72670i
\(772\) 67.2664 625.973i 0.0871327 0.810846i
\(773\) 77.7861 + 77.7861i 0.100629 + 0.100629i 0.755629 0.655000i \(-0.227331\pi\)
−0.655000 + 0.755629i \(0.727331\pi\)
\(774\) 522.251 1091.65i 0.674742 1.41040i
\(775\) 409.502 605.946i 0.528390 0.781865i
\(776\) 633.894 149.845i 0.816874 0.193099i
\(777\) 91.7960 + 91.7960i 0.118142 + 0.118142i
\(778\) −480.017 + 169.354i −0.616989 + 0.217679i
\(779\) 221.622 0.284496
\(780\) −180.024 + 420.859i −0.230799 + 0.539563i
\(781\) 1516.57i 1.94184i
\(782\) −62.9883 + 22.2228i −0.0805477 + 0.0284180i
\(783\) 1193.20 1193.20i 1.52389 1.52389i
\(784\) −697.693 151.698i −0.889915 0.193493i
\(785\) −1292.62 395.825i −1.64665 0.504235i
\(786\) 228.572 477.779i 0.290804 0.607861i
\(787\) −494.548 + 494.548i −0.628396 + 0.628396i −0.947664 0.319268i \(-0.896563\pi\)
0.319268 + 0.947664i \(0.396563\pi\)
\(788\) 58.5598 544.951i 0.0743145 0.691562i
\(789\) −27.8249 −0.0352661
\(790\) −156.680 + 170.435i −0.198330 + 0.215740i
\(791\) −376.609 −0.476117
\(792\) −809.530 + 1310.73i −1.02213 + 1.65497i
\(793\) −277.589 + 277.589i −0.350050 + 0.350050i
\(794\) −455.093 + 951.271i −0.573165 + 1.19807i
\(795\) 68.8868 36.5884i 0.0866501 0.0460231i
\(796\) −350.917 435.415i −0.440850 0.547004i
\(797\) −562.627 + 562.627i −0.705931 + 0.705931i −0.965677 0.259746i \(-0.916361\pi\)
0.259746 + 0.965677i \(0.416361\pi\)
\(798\) 80.0356 + 226.853i 0.100295 + 0.284276i
\(799\) 830.472i 1.03939i
\(800\) 713.535 + 361.756i 0.891919 + 0.452195i
\(801\) 1281.64 1.60005
\(802\) 889.965 313.988i 1.10968 0.391506i
\(803\) −295.465 295.465i −0.367951 0.367951i
\(804\) 699.681 563.898i 0.870249 0.701365i
\(805\) 11.6455 + 21.9256i 0.0144665 + 0.0272368i
\(806\) 236.762 + 113.268i 0.293749 + 0.140531i
\(807\) 588.499 + 588.499i 0.729243 + 0.729243i
\(808\) 763.991 + 471.852i 0.945533 + 0.583976i
\(809\) 440.667i 0.544706i 0.962197 + 0.272353i \(0.0878018\pi\)
−0.962197 + 0.272353i \(0.912198\pi\)
\(810\) −410.495 377.367i −0.506784 0.465885i
\(811\) 911.348i 1.12373i −0.827228 0.561867i \(-0.810083\pi\)
0.827228 0.561867i \(-0.189917\pi\)
\(812\) 342.631 + 36.8188i 0.421960 + 0.0453433i
\(813\) −363.099 363.099i −0.446617 0.446617i
\(814\) −248.164 118.723i −0.304870 0.145851i
\(815\) −208.797 + 681.857i −0.256193 + 0.836634i
\(816\) 1122.26 + 244.012i 1.37532 + 0.299035i
\(817\) 283.147 + 283.147i 0.346569 + 0.346569i
\(818\) −121.234 343.625i −0.148208 0.420079i
\(819\) 159.802 0.195119
\(820\) −361.587 154.670i −0.440959 0.188622i
\(821\) 893.060i 1.08777i −0.839159 0.543885i \(-0.816953\pi\)
0.839159 0.543885i \(-0.183047\pi\)
\(822\) 474.184 + 1344.02i 0.576866 + 1.63507i
\(823\) −852.293 + 852.293i −1.03559 + 1.03559i −0.0362500 + 0.999343i \(0.511541\pi\)
−0.999343 + 0.0362500i \(0.988459\pi\)
\(824\) −66.2445 280.236i −0.0803938 0.340093i
\(825\) 273.937 + 1416.02i 0.332045 + 1.71639i
\(826\) 147.054 + 70.3515i 0.178032 + 0.0851713i
\(827\) −608.192 + 608.192i −0.735419 + 0.735419i −0.971688 0.236269i \(-0.924075\pi\)
0.236269 + 0.971688i \(0.424075\pi\)
\(828\) 160.779 + 17.2771i 0.194178 + 0.0208661i
\(829\) 1550.55 1.87039 0.935195 0.354133i \(-0.115224\pi\)
0.935195 + 0.354133i \(0.115224\pi\)
\(830\) −40.6081 965.756i −0.0489254 1.16356i
\(831\) −1246.61 −1.50013
\(832\) −90.6240 + 272.422i −0.108923 + 0.327431i
\(833\) −443.942 + 443.942i −0.532943 + 0.532943i
\(834\) −447.706 214.185i −0.536818 0.256817i
\(835\) −431.794 + 1410.09i −0.517119 + 1.68873i
\(836\) −319.884 396.910i −0.382636 0.474773i
\(837\) −847.500 + 847.500i −1.01255 + 1.01255i
\(838\) −853.541 + 301.137i −1.01855 + 0.359352i
\(839\) 736.198i 0.877471i −0.898616 0.438736i \(-0.855426\pi\)
0.898616 0.438736i \(-0.144574\pi\)
\(840\) 27.7382 425.977i 0.0330217 0.507116i
\(841\) 855.330 1.01704
\(842\) 43.2642 + 122.628i 0.0513827 + 0.145639i
\(843\) 1083.68 + 1083.68i 1.28551 + 1.28551i
\(844\) −23.9932 29.7706i −0.0284280 0.0352732i
\(845\) 657.406 349.173i 0.777995 0.413222i
\(846\) −867.671 + 1813.67i −1.02562 + 2.14382i
\(847\) −10.1477 10.1477i −0.0119808 0.0119808i
\(848\) 41.1535 26.4537i 0.0485300 0.0311954i
\(849\) 1091.75i 1.28592i
\(850\) 606.849 355.783i 0.713940 0.418568i
\(851\) 28.8757i 0.0339315i
\(852\) −2721.46 292.445i −3.19420 0.343245i
\(853\) 369.135 + 369.135i 0.432749 + 0.432749i 0.889563 0.456813i \(-0.151009\pi\)
−0.456813 + 0.889563i \(0.651009\pi\)
\(854\) 157.994 330.252i 0.185005 0.386712i
\(855\) 847.568 450.176i 0.991308 0.526521i
\(856\) −171.878 727.103i −0.200793 0.849420i
\(857\) −715.466 715.466i −0.834849 0.834849i 0.153326 0.988176i \(-0.451001\pi\)
−0.988176 + 0.153326i \(0.951001\pi\)
\(858\) −488.110 + 172.210i −0.568893 + 0.200711i
\(859\) −151.972 −0.176918 −0.0884588 0.996080i \(-0.528194\pi\)
−0.0884588 + 0.996080i \(0.528194\pi\)
\(860\) −264.359 659.574i −0.307394 0.766947i
\(861\) 209.853i 0.243731i
\(862\) −817.477 + 288.413i −0.948350 + 0.334586i
\(863\) 744.617 744.617i 0.862824 0.862824i −0.128841 0.991665i \(-0.541126\pi\)
0.991665 + 0.128841i \(0.0411257\pi\)
\(864\) −1035.47 804.166i −1.19846 0.930748i
\(865\) −253.121 + 826.602i −0.292625 + 0.955610i
\(866\) −342.551 + 716.027i −0.395556 + 0.826821i
\(867\) −328.516 + 328.516i −0.378912 + 0.378912i
\(868\) −243.362 26.1514i −0.280371 0.0301284i
\(869\) −261.781 −0.301244
\(870\) −88.2789 2099.48i −0.101470 2.41319i
\(871\) 197.531 0.226786
\(872\) 383.646 621.173i 0.439961 0.712354i
\(873\) −980.488 + 980.488i −1.12313 + 1.12313i
\(874\) −23.0917 + 48.2680i −0.0264207 + 0.0552266i
\(875\) −164.274 203.417i −0.187742 0.232477i
\(876\) 587.180 473.230i 0.670297 0.540217i
\(877\) −603.681 + 603.681i −0.688348 + 0.688348i −0.961867 0.273519i \(-0.911812\pi\)
0.273519 + 0.961867i \(0.411812\pi\)
\(878\) 371.087 + 1051.81i 0.422650 + 1.19796i
\(879\) 1112.11i 1.26520i
\(880\) 244.903 + 870.823i 0.278298 + 0.989571i
\(881\) −639.526 −0.725910 −0.362955 0.931807i \(-0.618232\pi\)
−0.362955 + 0.931807i \(0.618232\pi\)
\(882\) 1433.35 505.700i 1.62512 0.573356i
\(883\) 1033.88 + 1033.88i 1.17087 + 1.17087i 0.982002 + 0.188870i \(0.0604825\pi\)
0.188870 + 0.982002i \(0.439518\pi\)
\(884\) 158.416 + 196.562i 0.179204 + 0.222355i
\(885\) 291.054 950.479i 0.328875 1.07399i
\(886\) 327.354 + 156.608i 0.369474 + 0.176758i
\(887\) 801.770 + 801.770i 0.903912 + 0.903912i 0.995772 0.0918602i \(-0.0292813\pi\)
−0.0918602 + 0.995772i \(0.529281\pi\)
\(888\) 260.900 422.431i 0.293806 0.475711i
\(889\) 42.9829i 0.0483497i
\(890\) 509.316 554.027i 0.572265 0.622502i
\(891\) 630.503i 0.707635i
\(892\) 167.029 1554.35i 0.187252 1.74255i
\(893\) −470.422 470.422i −0.526788 0.526788i
\(894\) 2047.38 + 979.479i 2.29014 + 1.09561i
\(895\) 149.583 + 281.627i 0.167132 + 0.314667i
\(896\) −4.82729 267.698i −0.00538760 0.298770i
\(897\) 38.4165 + 38.4165i 0.0428278 + 0.0428278i
\(898\) 340.797 + 965.953i 0.379506 + 1.07567i
\(899\) −1204.86 −1.34022
\(900\) −1697.02 + 142.966i −1.88558 + 0.158851i
\(901\) 43.0184i 0.0477452i
\(902\) −147.956 419.367i −0.164031 0.464930i
\(903\) −268.110 + 268.110i −0.296910 + 0.296910i
\(904\) 331.355 + 1401.74i 0.366543 + 1.55060i
\(905\) −848.267 + 450.547i −0.937312 + 0.497842i
\(906\) 1838.21 + 879.410i 2.02893 + 0.970651i
\(907\) 488.802 488.802i 0.538922 0.538922i −0.384291 0.923212i \(-0.625554\pi\)
0.923212 + 0.384291i \(0.125554\pi\)
\(908\) 97.2654 905.140i 0.107120 0.996851i
\(909\) −1911.56 −2.10293
\(910\) 63.5045 69.0794i 0.0697851 0.0759114i
\(911\) 999.285 1.09691 0.548455 0.836180i \(-0.315216\pi\)
0.548455 + 0.836180i \(0.315216\pi\)
\(912\) 773.930 497.487i 0.848607 0.545491i
\(913\) 772.867 772.867i 0.846514 0.846514i
\(914\) −991.323 474.254i −1.08460 0.518878i
\(915\) −2134.57 653.645i −2.33287 0.714366i
\(916\) 125.347 101.022i 0.136842 0.110286i
\(917\) −76.7716 + 76.7716i −0.0837204 + 0.0837204i
\(918\) −1087.16 + 383.561i −1.18427 + 0.417822i
\(919\) 1337.55i 1.45544i −0.685875 0.727719i \(-0.740581\pi\)
0.685875 0.727719i \(-0.259419\pi\)
\(920\) 71.3613 62.6358i 0.0775666 0.0680824i
\(921\) 700.451 0.760533
\(922\) −23.9564 67.9018i −0.0259831 0.0736463i
\(923\) −425.436 425.436i −0.460927 0.460927i
\(924\) 375.832 302.896i 0.406744 0.327810i
\(925\) −57.7611 298.576i −0.0624444 0.322785i
\(926\) −413.379 + 864.078i −0.446414 + 0.933129i
\(927\) 433.461 + 433.461i 0.467595 + 0.467595i
\(928\) −164.420 1307.67i −0.177177 1.40913i
\(929\) 135.066i 0.145388i 0.997354 + 0.0726942i \(0.0231597\pi\)
−0.997354 + 0.0726942i \(0.976840\pi\)
\(930\) 62.7022 + 1491.20i 0.0674217 + 1.60345i
\(931\) 502.943i 0.540218i
\(932\) −145.697 + 1355.84i −0.156328 + 1.45477i
\(933\) 267.128 + 267.128i 0.286310 + 0.286310i
\(934\) −53.2273 + 111.260i −0.0569885 + 0.119122i
\(935\) 760.574 + 232.902i 0.813448 + 0.249093i
\(936\) −140.600 594.785i −0.150214 0.635454i
\(937\) 1002.83 + 1002.83i 1.07026 + 1.07026i 0.997338 + 0.0729231i \(0.0232328\pi\)
0.0729231 + 0.997338i \(0.476767\pi\)
\(938\) −173.716 + 61.2887i −0.185199 + 0.0653397i
\(939\) 908.353 0.967362
\(940\) 439.208 + 1095.82i 0.467243 + 1.16577i
\(941\) 133.203i 0.141554i −0.997492 0.0707772i \(-0.977452\pi\)
0.997492 0.0707772i \(-0.0225479\pi\)
\(942\) 2601.72 917.909i 2.76191 0.974426i
\(943\) −33.0061 + 33.0061i −0.0350011 + 0.0350011i
\(944\) 132.465 609.235i 0.140323 0.645377i
\(945\) 200.999 + 378.431i 0.212697 + 0.400456i
\(946\) 346.756 724.817i 0.366550 0.766191i
\(947\) −671.287 + 671.287i −0.708857 + 0.708857i −0.966295 0.257438i \(-0.917122\pi\)
0.257438 + 0.966295i \(0.417122\pi\)
\(948\) 50.4799 469.760i 0.0532489 0.495528i
\(949\) 165.770 0.174679
\(950\) 142.217 545.285i 0.149702 0.573984i
\(951\) −1855.50 −1.95110
\(952\) −200.306 123.712i −0.210405 0.129949i
\(953\) 834.636 834.636i 0.875798 0.875798i −0.117299 0.993097i \(-0.537423\pi\)
0.993097 + 0.117299i \(0.0374235\pi\)
\(954\) −44.9453 + 93.9482i −0.0471125 + 0.0984782i
\(955\) −400.582 754.196i −0.419458 0.789734i
\(956\) 625.004 + 775.501i 0.653770 + 0.811193i
\(957\) 1680.15 1680.15i 1.75565 1.75565i
\(958\) −579.096 1641.39i −0.604484 1.71335i
\(959\) 292.157i 0.304648i
\(960\) −1609.90 + 271.549i −1.67698 + 0.282864i
\(961\) −105.221 −0.109491
\(962\) 102.921 36.3114i 0.106986 0.0377457i
\(963\) 1124.66 + 1124.66i 1.16787 + 1.16787i
\(964\) 1011.42 815.143i 1.04919 0.845584i
\(965\) 752.482 + 230.424i 0.779774 + 0.238781i
\(966\) −45.7047 21.8654i −0.0473134 0.0226350i
\(967\) 249.412 + 249.412i 0.257923 + 0.257923i 0.824209 0.566286i \(-0.191620\pi\)
−0.566286 + 0.824209i \(0.691620\pi\)
\(968\) −28.8416 + 46.6983i −0.0297951 + 0.0482421i
\(969\) 809.001i 0.834883i
\(970\) 34.2055 + 813.487i 0.0352634 + 0.838646i
\(971\) 1425.94i 1.46852i −0.678867 0.734262i \(-0.737529\pi\)
0.678867 0.734262i \(-0.262471\pi\)
\(972\) −335.081 36.0074i −0.344733 0.0370446i
\(973\) 71.9394 + 71.9394i 0.0739357 + 0.0739357i
\(974\) −1561.17 746.870i −1.60284 0.766807i
\(975\) −474.075 320.383i −0.486230 0.328598i
\(976\) −1368.21 297.488i −1.40186 0.304804i
\(977\) −651.241 651.241i −0.666572 0.666572i 0.290349 0.956921i \(-0.406229\pi\)
−0.956921 + 0.290349i \(0.906229\pi\)
\(978\) −484.196 1372.40i −0.495088 1.40327i
\(979\) 850.963 0.869217
\(980\) 351.003 820.574i 0.358166 0.837320i
\(981\) 1554.22i 1.58432i
\(982\) 478.624 + 1356.61i 0.487397 + 1.38148i
\(983\) −301.766 + 301.766i −0.306985 + 0.306985i −0.843739 0.536754i \(-0.819650\pi\)
0.536754 + 0.843739i \(0.319650\pi\)
\(984\) 781.075 184.637i 0.793775 0.187639i
\(985\) 655.085 + 200.599i 0.665061 + 0.203654i
\(986\) −1045.44 500.142i −1.06028 0.507244i
\(987\) 445.440 445.440i 0.451307 0.451307i
\(988\) 201.078 + 21.6076i 0.203520 + 0.0218701i
\(989\) −84.3377 −0.0852758
\(990\) −1417.69 1303.28i −1.43201 1.31644i
\(991\) −672.650 −0.678759 −0.339380 0.940650i \(-0.610217\pi\)
−0.339380 + 0.940650i \(0.610217\pi\)
\(992\) 116.784 + 928.806i 0.117725 + 0.936296i
\(993\) −1457.37 + 1457.37i −1.46765 + 1.46765i
\(994\) 506.147 + 242.143i 0.509202 + 0.243605i
\(995\) 617.350 327.898i 0.620453 0.329546i
\(996\) 1237.86 + 1535.93i 1.24283 + 1.54209i
\(997\) 65.6794 65.6794i 0.0658771 0.0658771i −0.673401 0.739278i \(-0.735167\pi\)
0.739278 + 0.673401i \(0.235167\pi\)
\(998\) 351.002 123.837i 0.351705 0.124085i
\(999\) 498.388i 0.498887i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 40.3.i.a.37.10 yes 20
3.2 odd 2 360.3.u.b.37.1 20
4.3 odd 2 160.3.m.a.17.10 20
5.2 odd 4 200.3.i.b.93.6 20
5.3 odd 4 inner 40.3.i.a.13.5 20
5.4 even 2 200.3.i.b.157.1 20
8.3 odd 2 160.3.m.a.17.1 20
8.5 even 2 inner 40.3.i.a.37.5 yes 20
15.8 even 4 360.3.u.b.253.6 20
20.3 even 4 160.3.m.a.113.1 20
20.7 even 4 800.3.m.b.593.10 20
20.19 odd 2 800.3.m.b.657.1 20
24.5 odd 2 360.3.u.b.37.6 20
40.3 even 4 160.3.m.a.113.10 20
40.13 odd 4 inner 40.3.i.a.13.10 yes 20
40.19 odd 2 800.3.m.b.657.10 20
40.27 even 4 800.3.m.b.593.1 20
40.29 even 2 200.3.i.b.157.6 20
40.37 odd 4 200.3.i.b.93.1 20
120.53 even 4 360.3.u.b.253.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.i.a.13.5 20 5.3 odd 4 inner
40.3.i.a.13.10 yes 20 40.13 odd 4 inner
40.3.i.a.37.5 yes 20 8.5 even 2 inner
40.3.i.a.37.10 yes 20 1.1 even 1 trivial
160.3.m.a.17.1 20 8.3 odd 2
160.3.m.a.17.10 20 4.3 odd 2
160.3.m.a.113.1 20 20.3 even 4
160.3.m.a.113.10 20 40.3 even 4
200.3.i.b.93.1 20 40.37 odd 4
200.3.i.b.93.6 20 5.2 odd 4
200.3.i.b.157.1 20 5.4 even 2
200.3.i.b.157.6 20 40.29 even 2
360.3.u.b.37.1 20 3.2 odd 2
360.3.u.b.37.6 20 24.5 odd 2
360.3.u.b.253.1 20 120.53 even 4
360.3.u.b.253.6 20 15.8 even 4
800.3.m.b.593.1 20 40.27 even 4
800.3.m.b.593.10 20 20.7 even 4
800.3.m.b.657.1 20 20.19 odd 2
800.3.m.b.657.10 20 40.19 odd 2