Properties

Label 360.6.f.c.289.8
Level $360$
Weight $6$
Character 360.289
Analytic conductor $57.738$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,6,Mod(289,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.289");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 360.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.7381751327\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 142x^{6} + 5761x^{4} + 52020x^{2} + 129600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{2}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.8
Root \(-2.61388i\) of defining polynomial
Character \(\chi\) \(=\) 360.289
Dual form 360.6.f.c.289.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(45.4388 + 32.5625i) q^{5} -242.714i q^{7} -142.542 q^{11} +1080.72i q^{13} +1329.42i q^{17} -1551.52 q^{19} -1087.52i q^{23} +(1004.36 + 2959.20i) q^{25} +4374.67 q^{29} +2623.69 q^{31} +(7903.37 - 11028.6i) q^{35} +2081.24i q^{37} +15998.1 q^{41} +4083.17i q^{43} -4819.20i q^{47} -42102.9 q^{49} +20686.4i q^{53} +(-6476.94 - 4641.53i) q^{55} -12562.3 q^{59} +41811.0 q^{61} +(-35190.9 + 49106.5i) q^{65} +60479.5i q^{67} +27123.5 q^{71} -57295.5i q^{73} +34596.9i q^{77} +27152.5 q^{79} +74516.5i q^{83} +(-43289.1 + 60407.0i) q^{85} +80563.6 q^{89} +262305. q^{91} +(-70499.4 - 50521.6i) q^{95} -88537.3i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 66 q^{5} - 684 q^{11} - 3040 q^{19} - 564 q^{25} + 8004 q^{29} + 6024 q^{31} + 4476 q^{35} + 37800 q^{41} - 34368 q^{49} + 39968 q^{55} + 86028 q^{59} - 38960 q^{61} - 84204 q^{65} - 162072 q^{71}+ \cdots - 42048 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 45.4388 + 32.5625i 0.812833 + 0.582496i
\(6\) 0 0
\(7\) 242.714i 1.87219i −0.351752 0.936093i \(-0.614414\pi\)
0.351752 0.936093i \(-0.385586\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −142.542 −0.355190 −0.177595 0.984104i \(-0.556832\pi\)
−0.177595 + 0.984104i \(0.556832\pi\)
\(12\) 0 0
\(13\) 1080.72i 1.77359i 0.462160 + 0.886797i \(0.347075\pi\)
−0.462160 + 0.886797i \(0.652925\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1329.42i 1.11568i 0.829950 + 0.557838i \(0.188369\pi\)
−0.829950 + 0.557838i \(0.811631\pi\)
\(18\) 0 0
\(19\) −1551.52 −0.985995 −0.492998 0.870031i \(-0.664099\pi\)
−0.492998 + 0.870031i \(0.664099\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1087.52i 0.428666i −0.976761 0.214333i \(-0.931242\pi\)
0.976761 0.214333i \(-0.0687577\pi\)
\(24\) 0 0
\(25\) 1004.36 + 2959.20i 0.321396 + 0.946945i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4374.67 0.965940 0.482970 0.875637i \(-0.339558\pi\)
0.482970 + 0.875637i \(0.339558\pi\)
\(30\) 0 0
\(31\) 2623.69 0.490352 0.245176 0.969479i \(-0.421154\pi\)
0.245176 + 0.969479i \(0.421154\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7903.37 11028.6i 1.09054 1.52178i
\(36\) 0 0
\(37\) 2081.24i 0.249930i 0.992161 + 0.124965i \(0.0398818\pi\)
−0.992161 + 0.124965i \(0.960118\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 15998.1 1.48631 0.743155 0.669120i \(-0.233329\pi\)
0.743155 + 0.669120i \(0.233329\pi\)
\(42\) 0 0
\(43\) 4083.17i 0.336764i 0.985722 + 0.168382i \(0.0538543\pi\)
−0.985722 + 0.168382i \(0.946146\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4819.20i 0.318222i −0.987261 0.159111i \(-0.949137\pi\)
0.987261 0.159111i \(-0.0508627\pi\)
\(48\) 0 0
\(49\) −42102.9 −2.50508
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 20686.4i 1.01157i 0.862659 + 0.505785i \(0.168797\pi\)
−0.862659 + 0.505785i \(0.831203\pi\)
\(54\) 0 0
\(55\) −6476.94 4641.53i −0.288711 0.206897i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12562.3 −0.469827 −0.234913 0.972016i \(-0.575481\pi\)
−0.234913 + 0.972016i \(0.575481\pi\)
\(60\) 0 0
\(61\) 41811.0 1.43869 0.719343 0.694655i \(-0.244443\pi\)
0.719343 + 0.694655i \(0.244443\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −35190.9 + 49106.5i −1.03311 + 1.44164i
\(66\) 0 0
\(67\) 60479.5i 1.64597i 0.568065 + 0.822984i \(0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 27123.5 0.638557 0.319278 0.947661i \(-0.396559\pi\)
0.319278 + 0.947661i \(0.396559\pi\)
\(72\) 0 0
\(73\) 57295.5i 1.25838i −0.777250 0.629192i \(-0.783386\pi\)
0.777250 0.629192i \(-0.216614\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 34596.9i 0.664983i
\(78\) 0 0
\(79\) 27152.5 0.489488 0.244744 0.969588i \(-0.421296\pi\)
0.244744 + 0.969588i \(0.421296\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 74516.5i 1.18729i 0.804727 + 0.593645i \(0.202312\pi\)
−0.804727 + 0.593645i \(0.797688\pi\)
\(84\) 0 0
\(85\) −43289.1 + 60407.0i −0.649877 + 0.906859i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 80563.6 1.07811 0.539056 0.842270i \(-0.318781\pi\)
0.539056 + 0.842270i \(0.318781\pi\)
\(90\) 0 0
\(91\) 262305. 3.32050
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −70499.4 50521.6i −0.801450 0.574338i
\(96\) 0 0
\(97\) 88537.3i 0.955426i −0.878516 0.477713i \(-0.841466\pi\)
0.878516 0.477713i \(-0.158534\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 97292.1 0.949018 0.474509 0.880251i \(-0.342626\pi\)
0.474509 + 0.880251i \(0.342626\pi\)
\(102\) 0 0
\(103\) 93587.8i 0.869213i 0.900620 + 0.434607i \(0.143113\pi\)
−0.900620 + 0.434607i \(0.856887\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 218604.i 1.84586i 0.384971 + 0.922929i \(0.374212\pi\)
−0.384971 + 0.922929i \(0.625788\pi\)
\(108\) 0 0
\(109\) 107862. 0.869562 0.434781 0.900536i \(-0.356826\pi\)
0.434781 + 0.900536i \(0.356826\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 125811.i 0.926875i 0.886130 + 0.463438i \(0.153384\pi\)
−0.886130 + 0.463438i \(0.846616\pi\)
\(114\) 0 0
\(115\) 35412.5 49415.7i 0.249696 0.348434i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 322667. 2.08875
\(120\) 0 0
\(121\) −140733. −0.873840
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −50722.0 + 167167.i −0.290350 + 0.956921i
\(126\) 0 0
\(127\) 114751.i 0.631318i −0.948873 0.315659i \(-0.897774\pi\)
0.948873 0.315659i \(-0.102226\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −125378. −0.638329 −0.319164 0.947699i \(-0.603402\pi\)
−0.319164 + 0.947699i \(0.603402\pi\)
\(132\) 0 0
\(133\) 376576.i 1.84597i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 144988.i 0.659982i −0.943984 0.329991i \(-0.892954\pi\)
0.943984 0.329991i \(-0.107046\pi\)
\(138\) 0 0
\(139\) −414038. −1.81762 −0.908810 0.417210i \(-0.863008\pi\)
−0.908810 + 0.417210i \(0.863008\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 154048.i 0.629963i
\(144\) 0 0
\(145\) 198780. + 142450.i 0.785148 + 0.562656i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 127390. 0.470077 0.235038 0.971986i \(-0.424478\pi\)
0.235038 + 0.971986i \(0.424478\pi\)
\(150\) 0 0
\(151\) −156233. −0.557609 −0.278805 0.960348i \(-0.589938\pi\)
−0.278805 + 0.960348i \(0.589938\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 119217. + 85433.9i 0.398575 + 0.285628i
\(156\) 0 0
\(157\) 472338.i 1.52934i 0.644424 + 0.764669i \(0.277097\pi\)
−0.644424 + 0.764669i \(0.722903\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −263957. −0.802543
\(162\) 0 0
\(163\) 175546.i 0.517514i −0.965942 0.258757i \(-0.916687\pi\)
0.965942 0.258757i \(-0.0833128\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 102842.i 0.285350i 0.989770 + 0.142675i \(0.0455703\pi\)
−0.989770 + 0.142675i \(0.954430\pi\)
\(168\) 0 0
\(169\) −796658. −2.14563
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 309138.i 0.785302i 0.919687 + 0.392651i \(0.128442\pi\)
−0.919687 + 0.392651i \(0.871558\pi\)
\(174\) 0 0
\(175\) 718239. 243773.i 1.77286 0.601714i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 774268. 1.80617 0.903086 0.429461i \(-0.141296\pi\)
0.903086 + 0.429461i \(0.141296\pi\)
\(180\) 0 0
\(181\) −142119. −0.322446 −0.161223 0.986918i \(-0.551544\pi\)
−0.161223 + 0.986918i \(0.551544\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −67770.5 + 94569.1i −0.145583 + 0.203151i
\(186\) 0 0
\(187\) 189498.i 0.396278i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 557037. 1.10484 0.552422 0.833565i \(-0.313704\pi\)
0.552422 + 0.833565i \(0.313704\pi\)
\(192\) 0 0
\(193\) 127912.i 0.247183i −0.992333 0.123591i \(-0.960559\pi\)
0.992333 0.123591i \(-0.0394412\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 916132.i 1.68187i −0.541136 0.840935i \(-0.682006\pi\)
0.541136 0.840935i \(-0.317994\pi\)
\(198\) 0 0
\(199\) 443136. 0.793240 0.396620 0.917983i \(-0.370183\pi\)
0.396620 + 0.917983i \(0.370183\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.06179e6i 1.80842i
\(204\) 0 0
\(205\) 726935. + 520939.i 1.20812 + 0.865770i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 221158. 0.350216
\(210\) 0 0
\(211\) 496576. 0.767856 0.383928 0.923363i \(-0.374571\pi\)
0.383928 + 0.923363i \(0.374571\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −132958. + 185534.i −0.196164 + 0.273733i
\(216\) 0 0
\(217\) 636805.i 0.918031i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.43672e6 −1.97876
\(222\) 0 0
\(223\) 94509.5i 0.127266i −0.997973 0.0636332i \(-0.979731\pi\)
0.997973 0.0636332i \(-0.0202688\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.16373e6i 1.49895i 0.662030 + 0.749477i \(0.269695\pi\)
−0.662030 + 0.749477i \(0.730305\pi\)
\(228\) 0 0
\(229\) −820259. −1.03362 −0.516811 0.856099i \(-0.672881\pi\)
−0.516811 + 0.856099i \(0.672881\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.22012e6i 1.47236i 0.676788 + 0.736178i \(0.263371\pi\)
−0.676788 + 0.736178i \(0.736629\pi\)
\(234\) 0 0
\(235\) 156925. 218978.i 0.185363 0.258661i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.02798e6 −1.16410 −0.582048 0.813154i \(-0.697748\pi\)
−0.582048 + 0.813154i \(0.697748\pi\)
\(240\) 0 0
\(241\) −755090. −0.837445 −0.418723 0.908114i \(-0.637522\pi\)
−0.418723 + 0.908114i \(0.637522\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.91311e6 1.37098e6i −2.03622 1.45920i
\(246\) 0 0
\(247\) 1.67676e6i 1.74875i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.87333e6 −1.87686 −0.938428 0.345476i \(-0.887717\pi\)
−0.938428 + 0.345476i \(0.887717\pi\)
\(252\) 0 0
\(253\) 155018.i 0.152258i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 55931.3i 0.0528229i −0.999651 0.0264114i \(-0.991592\pi\)
0.999651 0.0264114i \(-0.00840800\pi\)
\(258\) 0 0
\(259\) 505146. 0.467915
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 613008.i 0.546483i −0.961945 0.273242i \(-0.911904\pi\)
0.961945 0.273242i \(-0.0880959\pi\)
\(264\) 0 0
\(265\) −673603. + 939967.i −0.589236 + 0.822239i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 452657. 0.381407 0.190704 0.981648i \(-0.438923\pi\)
0.190704 + 0.981648i \(0.438923\pi\)
\(270\) 0 0
\(271\) −550844. −0.455623 −0.227811 0.973705i \(-0.573157\pi\)
−0.227811 + 0.973705i \(0.573157\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −143164. 421811.i −0.114157 0.336346i
\(276\) 0 0
\(277\) 992154.i 0.776926i −0.921464 0.388463i \(-0.873006\pi\)
0.921464 0.388463i \(-0.126994\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 731905. 0.552954 0.276477 0.961021i \(-0.410833\pi\)
0.276477 + 0.961021i \(0.410833\pi\)
\(282\) 0 0
\(283\) 459405.i 0.340981i −0.985359 0.170490i \(-0.945465\pi\)
0.985359 0.170490i \(-0.0545352\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.88296e6i 2.78265i
\(288\) 0 0
\(289\) −347487. −0.244734
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 364973.i 0.248366i 0.992259 + 0.124183i \(0.0396309\pi\)
−0.992259 + 0.124183i \(0.960369\pi\)
\(294\) 0 0
\(295\) −570813. 409059.i −0.381891 0.273672i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.17531e6 0.760279
\(300\) 0 0
\(301\) 991041. 0.630486
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.89984e6 + 1.36147e6i 1.16941 + 0.838030i
\(306\) 0 0
\(307\) 307960.i 0.186487i 0.995643 + 0.0932434i \(0.0297235\pi\)
−0.995643 + 0.0932434i \(0.970277\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.30555e6 0.765405 0.382703 0.923872i \(-0.374993\pi\)
0.382703 + 0.923872i \(0.374993\pi\)
\(312\) 0 0
\(313\) 2.66546e6i 1.53784i −0.639344 0.768921i \(-0.720794\pi\)
0.639344 0.768921i \(-0.279206\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.23744e6i 1.25056i −0.780402 0.625278i \(-0.784986\pi\)
0.780402 0.625278i \(-0.215014\pi\)
\(318\) 0 0
\(319\) −623574. −0.343093
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.06262e6i 1.10005i
\(324\) 0 0
\(325\) −3.19806e6 + 1.08543e6i −1.67949 + 0.570027i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.16968e6 −0.595771
\(330\) 0 0
\(331\) 2.09233e6 1.04969 0.524844 0.851199i \(-0.324124\pi\)
0.524844 + 0.851199i \(0.324124\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.96937e6 + 2.74811e6i −0.958770 + 1.33790i
\(336\) 0 0
\(337\) 1.01282e6i 0.485802i 0.970051 + 0.242901i \(0.0780990\pi\)
−0.970051 + 0.242901i \(0.921901\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −373986. −0.174168
\(342\) 0 0
\(343\) 6.13967e6i 2.81780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.64429e6i 0.733084i −0.930402 0.366542i \(-0.880542\pi\)
0.930402 0.366542i \(-0.119458\pi\)
\(348\) 0 0
\(349\) −898528. −0.394882 −0.197441 0.980315i \(-0.563263\pi\)
−0.197441 + 0.980315i \(0.563263\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 853045.i 0.364364i −0.983265 0.182182i \(-0.941684\pi\)
0.983265 0.182182i \(-0.0583160\pi\)
\(354\) 0 0
\(355\) 1.23246e6 + 883209.i 0.519040 + 0.371957i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.05799e6 −0.842767 −0.421384 0.906882i \(-0.638455\pi\)
−0.421384 + 0.906882i \(0.638455\pi\)
\(360\) 0 0
\(361\) −68869.5 −0.0278137
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.86569e6 2.60344e6i 0.733004 1.02286i
\(366\) 0 0
\(367\) 4.38094e6i 1.69786i −0.528505 0.848930i \(-0.677247\pi\)
0.528505 0.848930i \(-0.322753\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.02088e6 1.89385
\(372\) 0 0
\(373\) 456550.i 0.169909i −0.996385 0.0849545i \(-0.972926\pi\)
0.996385 0.0849545i \(-0.0270745\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.72778e6i 1.71318i
\(378\) 0 0
\(379\) −935559. −0.334559 −0.167280 0.985909i \(-0.553498\pi\)
−0.167280 + 0.985909i \(0.553498\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.78295e6i 0.969413i 0.874677 + 0.484707i \(0.161074\pi\)
−0.874677 + 0.484707i \(0.838926\pi\)
\(384\) 0 0
\(385\) −1.12656e6 + 1.57204e6i −0.387350 + 0.540520i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.18050e6 −0.730604 −0.365302 0.930889i \(-0.619034\pi\)
−0.365302 + 0.930889i \(0.619034\pi\)
\(390\) 0 0
\(391\) 1.44577e6 0.478252
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.23378e6 + 884154.i 0.397872 + 0.285125i
\(396\) 0 0
\(397\) 1.05032e6i 0.334462i −0.985918 0.167231i \(-0.946517\pi\)
0.985918 0.167231i \(-0.0534826\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.63701e6 0.818937 0.409469 0.912324i \(-0.365714\pi\)
0.409469 + 0.912324i \(0.365714\pi\)
\(402\) 0 0
\(403\) 2.83547e6i 0.869685i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 296664.i 0.0887727i
\(408\) 0 0
\(409\) 2.72798e6 0.806368 0.403184 0.915119i \(-0.367904\pi\)
0.403184 + 0.915119i \(0.367904\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.04903e6i 0.879603i
\(414\) 0 0
\(415\) −2.42644e6 + 3.38594e6i −0.691592 + 0.965069i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.94093e6 −1.65318 −0.826589 0.562806i \(-0.809722\pi\)
−0.826589 + 0.562806i \(0.809722\pi\)
\(420\) 0 0
\(421\) 474301. 0.130422 0.0652108 0.997872i \(-0.479228\pi\)
0.0652108 + 0.997872i \(0.479228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.93401e6 + 1.33522e6i −1.05648 + 0.358574i
\(426\) 0 0
\(427\) 1.01481e7i 2.69349i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.17898e6 −0.824319 −0.412159 0.911112i \(-0.635225\pi\)
−0.412159 + 0.911112i \(0.635225\pi\)
\(432\) 0 0
\(433\) 2.09103e6i 0.535970i −0.963423 0.267985i \(-0.913642\pi\)
0.963423 0.267985i \(-0.0863578\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.68732e6i 0.422662i
\(438\) 0 0
\(439\) 758627. 0.187874 0.0939371 0.995578i \(-0.470055\pi\)
0.0939371 + 0.995578i \(0.470055\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 940168.i 0.227613i −0.993503 0.113806i \(-0.963696\pi\)
0.993503 0.113806i \(-0.0363043\pi\)
\(444\) 0 0
\(445\) 3.66071e6 + 2.62335e6i 0.876325 + 0.627996i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.83158e6 0.896937 0.448469 0.893799i \(-0.351970\pi\)
0.448469 + 0.893799i \(0.351970\pi\)
\(450\) 0 0
\(451\) −2.28040e6 −0.527923
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.19188e7 + 8.54131e6i 2.69901 + 1.93418i
\(456\) 0 0
\(457\) 2.01368e6i 0.451024i −0.974240 0.225512i \(-0.927594\pi\)
0.974240 0.225512i \(-0.0724055\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 152998. 0.0335300 0.0167650 0.999859i \(-0.494663\pi\)
0.0167650 + 0.999859i \(0.494663\pi\)
\(462\) 0 0
\(463\) 5.40324e6i 1.17139i 0.810531 + 0.585696i \(0.199179\pi\)
−0.810531 + 0.585696i \(0.800821\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.41706e6i 0.300674i 0.988635 + 0.150337i \(0.0480359\pi\)
−0.988635 + 0.150337i \(0.951964\pi\)
\(468\) 0 0
\(469\) 1.46792e7 3.08156
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 582023.i 0.119615i
\(474\) 0 0
\(475\) −1.55830e6 4.59128e6i −0.316895 0.933683i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.46163e6 −0.490213 −0.245106 0.969496i \(-0.578823\pi\)
−0.245106 + 0.969496i \(0.578823\pi\)
\(480\) 0 0
\(481\) −2.24924e6 −0.443274
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.88300e6 4.02303e6i 0.556532 0.776602i
\(486\) 0 0
\(487\) 2.88009e6i 0.550280i 0.961404 + 0.275140i \(0.0887242\pi\)
−0.961404 + 0.275140i \(0.911276\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.55154e6 0.477637 0.238819 0.971064i \(-0.423240\pi\)
0.238819 + 0.971064i \(0.423240\pi\)
\(492\) 0 0
\(493\) 5.81575e6i 1.07768i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.58324e6i 1.19550i
\(498\) 0 0
\(499\) 8.58040e6 1.54261 0.771305 0.636466i \(-0.219604\pi\)
0.771305 + 0.636466i \(0.219604\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.22134e6i 1.27262i 0.771434 + 0.636309i \(0.219540\pi\)
−0.771434 + 0.636309i \(0.780460\pi\)
\(504\) 0 0
\(505\) 4.42083e6 + 3.16808e6i 0.771393 + 0.552799i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −73769.6 −0.0126207 −0.00631035 0.999980i \(-0.502009\pi\)
−0.00631035 + 0.999980i \(0.502009\pi\)
\(510\) 0 0
\(511\) −1.39064e7 −2.35593
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.04746e6 + 4.25252e6i −0.506313 + 0.706526i
\(516\) 0 0
\(517\) 686938.i 0.113029i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.33407e6 −1.02232 −0.511162 0.859484i \(-0.670785\pi\)
−0.511162 + 0.859484i \(0.670785\pi\)
\(522\) 0 0
\(523\) 411025.i 0.0657074i −0.999460 0.0328537i \(-0.989540\pi\)
0.999460 0.0328537i \(-0.0104595\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.48797e6i 0.547074i
\(528\) 0 0
\(529\) 5.25364e6 0.816246
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.72895e7i 2.63611i
\(534\) 0 0
\(535\) −7.11829e6 + 9.93309e6i −1.07520 + 1.50037i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.00144e6 0.889782
\(540\) 0 0
\(541\) 239548. 0.0351884 0.0175942 0.999845i \(-0.494399\pi\)
0.0175942 + 0.999845i \(0.494399\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.90110e6 + 3.51225e6i 0.706809 + 0.506517i
\(546\) 0 0
\(547\) 1.55307e6i 0.221933i 0.993824 + 0.110967i \(0.0353946\pi\)
−0.993824 + 0.110967i \(0.964605\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.78741e6 −0.952412
\(552\) 0 0
\(553\) 6.59028e6i 0.916413i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.19125e7i 1.62691i −0.581627 0.813455i \(-0.697584\pi\)
0.581627 0.813455i \(-0.302416\pi\)
\(558\) 0 0
\(559\) −4.41275e6 −0.597283
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.67271e6i 0.222408i −0.993798 0.111204i \(-0.964529\pi\)
0.993798 0.111204i \(-0.0354707\pi\)
\(564\) 0 0
\(565\) −4.09671e6 + 5.71668e6i −0.539901 + 0.753395i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.26524e7 1.63829 0.819146 0.573585i \(-0.194448\pi\)
0.819146 + 0.573585i \(0.194448\pi\)
\(570\) 0 0
\(571\) −5.80638e6 −0.745273 −0.372637 0.927977i \(-0.621546\pi\)
−0.372637 + 0.927977i \(0.621546\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.21820e6 1.09227e6i 0.405923 0.137772i
\(576\) 0 0
\(577\) 1.15669e7i 1.44636i −0.690658 0.723182i \(-0.742679\pi\)
0.690658 0.723182i \(-0.257321\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.80862e7 2.22283
\(582\) 0 0
\(583\) 2.94869e6i 0.359300i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 829454.i 0.0993566i −0.998765 0.0496783i \(-0.984180\pi\)
0.998765 0.0496783i \(-0.0158196\pi\)
\(588\) 0 0
\(589\) −4.07072e6 −0.483485
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.42831e7i 1.66796i −0.551798 0.833978i \(-0.686058\pi\)
0.551798 0.833978i \(-0.313942\pi\)
\(594\) 0 0
\(595\) 1.46616e7 + 1.05069e7i 1.69781 + 1.21669i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.51569e7 −1.72601 −0.863007 0.505192i \(-0.831421\pi\)
−0.863007 + 0.505192i \(0.831421\pi\)
\(600\) 0 0
\(601\) −4.20502e6 −0.474877 −0.237439 0.971403i \(-0.576308\pi\)
−0.237439 + 0.971403i \(0.576308\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.39472e6 4.58261e6i −0.710286 0.509008i
\(606\) 0 0
\(607\) 242069.i 0.0266666i −0.999911 0.0133333i \(-0.995756\pi\)
0.999911 0.0133333i \(-0.00424425\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.20819e6 0.564396
\(612\) 0 0
\(613\) 1.13279e7i 1.21759i 0.793329 + 0.608793i \(0.208346\pi\)
−0.793329 + 0.608793i \(0.791654\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.54069e7i 1.62931i −0.579947 0.814654i \(-0.696927\pi\)
0.579947 0.814654i \(-0.303073\pi\)
\(618\) 0 0
\(619\) −1.49269e7 −1.56583 −0.782914 0.622129i \(-0.786268\pi\)
−0.782914 + 0.622129i \(0.786268\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.95539e7i 2.01843i
\(624\) 0 0
\(625\) −7.74813e6 + 5.94423e6i −0.793409 + 0.608689i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.76683e6 −0.278841
\(630\) 0 0
\(631\) 1.64446e7 1.64418 0.822091 0.569357i \(-0.192808\pi\)
0.822091 + 0.569357i \(0.192808\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.73659e6 5.21416e6i 0.367740 0.513156i
\(636\) 0 0
\(637\) 4.55014e7i 4.44300i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.47616e6 −0.334160 −0.167080 0.985943i \(-0.553434\pi\)
−0.167080 + 0.985943i \(0.553434\pi\)
\(642\) 0 0
\(643\) 1.62205e7i 1.54716i 0.633697 + 0.773581i \(0.281537\pi\)
−0.633697 + 0.773581i \(0.718463\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.87206e6i 0.739312i 0.929169 + 0.369656i \(0.120524\pi\)
−0.929169 + 0.369656i \(0.879476\pi\)
\(648\) 0 0
\(649\) 1.79065e6 0.166878
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.37332e7i 1.26034i 0.776457 + 0.630171i \(0.217015\pi\)
−0.776457 + 0.630171i \(0.782985\pi\)
\(654\) 0 0
\(655\) −5.69704e6 4.08264e6i −0.518855 0.371824i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.18405e6 0.375305 0.187652 0.982236i \(-0.439912\pi\)
0.187652 + 0.982236i \(0.439912\pi\)
\(660\) 0 0
\(661\) 1.95785e6 0.174291 0.0871455 0.996196i \(-0.472226\pi\)
0.0871455 + 0.996196i \(0.472226\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.22623e7 + 1.71112e7i −1.07527 + 1.50046i
\(666\) 0 0
\(667\) 4.75755e6i 0.414066i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.95983e6 −0.511008
\(672\) 0 0
\(673\) 8.85319e6i 0.753463i −0.926322 0.376732i \(-0.877048\pi\)
0.926322 0.376732i \(-0.122952\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.29523e6i 0.611740i 0.952073 + 0.305870i \(0.0989474\pi\)
−0.952073 + 0.305870i \(0.901053\pi\)
\(678\) 0 0
\(679\) −2.14892e7 −1.78874
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.10456e6i 0.664779i 0.943142 + 0.332390i \(0.107855\pi\)
−0.943142 + 0.332390i \(0.892145\pi\)
\(684\) 0 0
\(685\) 4.72119e6 6.58810e6i 0.384437 0.536455i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.23562e7 −1.79411
\(690\) 0 0
\(691\) 2.30304e7 1.83487 0.917437 0.397882i \(-0.130255\pi\)
0.917437 + 0.397882i \(0.130255\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.88134e7 1.34821e7i −1.47742 1.05876i
\(696\) 0 0
\(697\) 2.12681e7i 1.65824i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.60749e7 −1.23553 −0.617766 0.786362i \(-0.711962\pi\)
−0.617766 + 0.786362i \(0.711962\pi\)
\(702\) 0 0
\(703\) 3.22910e6i 0.246430i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.36141e7i 1.77674i
\(708\) 0 0
\(709\) −2.10037e7 −1.56921 −0.784605 0.619996i \(-0.787134\pi\)
−0.784605 + 0.619996i \(0.787134\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.85332e6i 0.210197i
\(714\) 0 0
\(715\) 5.01618e6 6.99974e6i 0.366951 0.512055i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.42531e7 −1.02822 −0.514112 0.857723i \(-0.671878\pi\)
−0.514112 + 0.857723i \(0.671878\pi\)
\(720\) 0 0
\(721\) 2.27150e7 1.62733
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.39376e6 + 1.29455e7i 0.310450 + 0.914692i
\(726\) 0 0
\(727\) 4.59136e6i 0.322185i −0.986939 0.161092i \(-0.948498\pi\)
0.986939 0.161092i \(-0.0515017\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.42822e6 −0.375720
\(732\) 0 0
\(733\) 4.59016e6i 0.315550i −0.987475 0.157775i \(-0.949568\pi\)
0.987475 0.157775i \(-0.0504321\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.62087e6i 0.584632i
\(738\) 0 0
\(739\) −307856. −0.0207365 −0.0103683 0.999946i \(-0.503300\pi\)
−0.0103683 + 0.999946i \(0.503300\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.44444e6i 0.428266i 0.976805 + 0.214133i \(0.0686926\pi\)
−0.976805 + 0.214133i \(0.931307\pi\)
\(744\) 0 0
\(745\) 5.78844e6 + 4.14813e6i 0.382094 + 0.273818i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.30581e7 3.45579
\(750\) 0 0
\(751\) −5.56856e6 −0.360282 −0.180141 0.983641i \(-0.557655\pi\)
−0.180141 + 0.983641i \(0.557655\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.09903e6 5.08734e6i −0.453244 0.324805i
\(756\) 0 0
\(757\) 7.47540e6i 0.474127i −0.971494 0.237064i \(-0.923815\pi\)
0.971494 0.237064i \(-0.0761850\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.31205e7 −0.821278 −0.410639 0.911798i \(-0.634694\pi\)
−0.410639 + 0.911798i \(0.634694\pi\)
\(762\) 0 0
\(763\) 2.61795e7i 1.62798i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.35763e7i 0.833281i
\(768\) 0 0
\(769\) 1.56508e7 0.954378 0.477189 0.878801i \(-0.341656\pi\)
0.477189 + 0.878801i \(0.341656\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.07890e7i 1.25137i −0.780078 0.625683i \(-0.784821\pi\)
0.780078 0.625683i \(-0.215179\pi\)
\(774\) 0 0
\(775\) 2.63514e6 + 7.76403e6i 0.157597 + 0.464336i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.48215e7 −1.46549
\(780\) 0 0
\(781\) −3.86624e6 −0.226809
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.53805e7 + 2.14624e7i −0.890833 + 1.24310i
\(786\) 0 0
\(787\) 3.31541e7i 1.90809i −0.299656 0.954047i \(-0.596872\pi\)
0.299656 0.954047i \(-0.403128\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.05360e7 1.73528
\(792\) 0 0
\(793\) 4.51859e7i 2.55165i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.00986e6i 0.112078i −0.998429 0.0560389i \(-0.982153\pi\)
0.998429 0.0560389i \(-0.0178471\pi\)
\(798\) 0 0
\(799\) 6.40671e6 0.355033
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.16702e6i 0.446966i
\(804\) 0 0
\(805\) −1.19939e7 8.59510e6i −0.652333 0.467478i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.55183e7 1.90801 0.954006 0.299787i \(-0.0969156\pi\)
0.954006 + 0.299787i \(0.0969156\pi\)
\(810\) 0 0
\(811\) 8.99587e6 0.480276 0.240138 0.970739i \(-0.422807\pi\)
0.240138 + 0.970739i \(0.422807\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.71622e6 7.97659e6i 0.301450 0.420652i
\(816\) 0 0
\(817\) 6.33514e6i 0.332048i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.39427e7 −1.75747 −0.878736 0.477308i \(-0.841613\pi\)
−0.878736 + 0.477308i \(0.841613\pi\)
\(822\) 0 0
\(823\) 1.15878e7i 0.596348i 0.954511 + 0.298174i \(0.0963776\pi\)
−0.954511 + 0.298174i \(0.903622\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 743207.i 0.0377873i −0.999821 0.0188937i \(-0.993986\pi\)
0.999821 0.0188937i \(-0.00601440\pi\)
\(828\) 0 0
\(829\) −2.94662e7 −1.48915 −0.744574 0.667540i \(-0.767347\pi\)
−0.744574 + 0.667540i \(0.767347\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.59723e7i 2.79486i
\(834\) 0 0
\(835\) −3.34878e6 + 4.67299e6i −0.166215 + 0.231942i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.18433e7 1.56175 0.780877 0.624685i \(-0.214773\pi\)
0.780877 + 0.624685i \(0.214773\pi\)
\(840\) 0 0
\(841\) −1.37342e6 −0.0669596
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.61992e7 2.59412e7i −1.74404 1.24982i
\(846\) 0 0
\(847\) 3.41578e7i 1.63599i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.26340e6 0.107136
\(852\) 0 0
\(853\) 9.10862e6i 0.428627i −0.976765 0.214314i \(-0.931249\pi\)
0.976765 0.214314i \(-0.0687515\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.41175e6i 0.205191i 0.994723 + 0.102596i \(0.0327148\pi\)
−0.994723 + 0.102596i \(0.967285\pi\)
\(858\) 0 0
\(859\) 9.64496e6 0.445982 0.222991 0.974821i \(-0.428418\pi\)
0.222991 + 0.974821i \(0.428418\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.95068e7i 0.891579i 0.895138 + 0.445790i \(0.147077\pi\)
−0.895138 + 0.445790i \(0.852923\pi\)
\(864\) 0 0
\(865\) −1.00663e7 + 1.40468e7i −0.457436 + 0.638320i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.87037e6 −0.173861
\(870\) 0 0
\(871\) −6.53613e7 −2.91928
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.05738e7 + 1.23109e7i 1.79153 + 0.543589i
\(876\) 0 0
\(877\) 5.18933e6i 0.227831i −0.993490 0.113915i \(-0.963661\pi\)
0.993490 0.113915i \(-0.0363393\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.43979e7 0.624972 0.312486 0.949922i \(-0.398838\pi\)
0.312486 + 0.949922i \(0.398838\pi\)
\(882\) 0 0
\(883\) 2.09749e7i 0.905311i −0.891685 0.452656i \(-0.850477\pi\)
0.891685 0.452656i \(-0.149523\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.54403e7i 1.51248i 0.654296 + 0.756238i \(0.272965\pi\)
−0.654296 + 0.756238i \(0.727035\pi\)
\(888\) 0 0
\(889\) −2.78517e7 −1.18195
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.47710e6i 0.313765i
\(894\) 0 0
\(895\) 3.51818e7 + 2.52121e7i 1.46812 + 1.05209i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.14778e7 0.473651
\(900\) 0 0
\(901\) −2.75009e7 −1.12859
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.45773e6 4.62777e6i −0.262095 0.187824i
\(906\) 0 0
\(907\) 2.52614e7i 1.01962i −0.860286 0.509812i \(-0.829715\pi\)
0.860286 0.509812i \(-0.170285\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.45292e7 −0.580022 −0.290011 0.957023i \(-0.593659\pi\)
−0.290011 + 0.957023i \(0.593659\pi\)
\(912\) 0 0
\(913\) 1.06217e7i 0.421714i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.04310e7i 1.19507i
\(918\) 0 0
\(919\) −2.82570e7 −1.10366 −0.551832 0.833955i \(-0.686071\pi\)
−0.551832 + 0.833955i \(0.686071\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.93128e7i 1.13254i
\(924\) 0 0
\(925\) −6.15881e6 + 2.09032e6i −0.236670 + 0.0803266i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.09229e6 0.155570 0.0777852 0.996970i \(-0.475215\pi\)
0.0777852 + 0.996970i \(0.475215\pi\)
\(930\) 0 0
\(931\) 6.53238e7 2.47000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.17052e6 8.61054e6i 0.230830 0.322108i
\(936\) 0 0
\(937\) 5.13115e7i 1.90926i 0.297790 + 0.954632i \(0.403751\pi\)
−0.297790 + 0.954632i \(0.596249\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.60558e7 0.591096 0.295548 0.955328i \(-0.404498\pi\)
0.295548 + 0.955328i \(0.404498\pi\)
\(942\) 0 0
\(943\) 1.73983e7i 0.637130i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.82296e7i 1.38524i −0.721302 0.692620i \(-0.756456\pi\)
0.721302 0.692620i \(-0.243544\pi\)
\(948\) 0 0
\(949\) 6.19203e7 2.23186
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.76886e7i 1.70092i 0.526044 + 0.850458i \(0.323675\pi\)
−0.526044 + 0.850458i \(0.676325\pi\)
\(954\) 0 0
\(955\) 2.53111e7 + 1.81385e7i 0.898053 + 0.643567i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.51907e7 −1.23561
\(960\) 0 0
\(961\) −2.17454e7 −0.759555
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.16514e6 5.81216e6i 0.143983 0.200918i
\(966\) 0 0
\(967\) 2.70295e6i 0.0929548i −0.998919 0.0464774i \(-0.985200\pi\)
0.998919 0.0464774i \(-0.0147995\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.87085e7 0.977153 0.488577 0.872521i \(-0.337516\pi\)
0.488577 + 0.872521i \(0.337516\pi\)
\(972\) 0 0
\(973\) 1.00493e8i 3.40292i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.40555e6i 0.147660i −0.997271 0.0738302i \(-0.976478\pi\)
0.997271 0.0738302i \(-0.0235223\pi\)
\(978\) 0 0
\(979\) −1.14837e7 −0.382935
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.90145e7i 0.957705i 0.877895 + 0.478853i \(0.158947\pi\)
−0.877895 + 0.478853i \(0.841053\pi\)
\(984\) 0 0
\(985\) 2.98316e7 4.16279e7i 0.979683 1.36708i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.44054e6 0.144359
\(990\) 0 0
\(991\) 1.86483e7 0.603190 0.301595 0.953436i \(-0.402481\pi\)
0.301595 + 0.953436i \(0.402481\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.01356e7 + 1.44296e7i 0.644772 + 0.462059i
\(996\) 0 0
\(997\) 6.75822e6i 0.215325i −0.994187 0.107663i \(-0.965663\pi\)
0.994187 0.107663i \(-0.0343366\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.6.f.c.289.8 8
3.2 odd 2 120.6.f.b.49.1 8
4.3 odd 2 720.6.f.o.289.8 8
5.4 even 2 inner 360.6.f.c.289.7 8
12.11 even 2 240.6.f.f.49.5 8
15.2 even 4 600.6.a.v.1.4 4
15.8 even 4 600.6.a.w.1.1 4
15.14 odd 2 120.6.f.b.49.5 yes 8
20.19 odd 2 720.6.f.o.289.7 8
60.59 even 2 240.6.f.f.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.f.b.49.1 8 3.2 odd 2
120.6.f.b.49.5 yes 8 15.14 odd 2
240.6.f.f.49.1 8 60.59 even 2
240.6.f.f.49.5 8 12.11 even 2
360.6.f.c.289.7 8 5.4 even 2 inner
360.6.f.c.289.8 8 1.1 even 1 trivial
600.6.a.v.1.4 4 15.2 even 4
600.6.a.w.1.1 4 15.8 even 4
720.6.f.o.289.7 8 20.19 odd 2
720.6.f.o.289.8 8 4.3 odd 2