Properties

Label 600.6.a.w.1.1
Level $600$
Weight $6$
Character 600.1
Self dual yes
Analytic conductor $96.230$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,6,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.2302918878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 71x^{2} - 30x + 360 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.61388\) of defining polynomial
Character \(\chi\) \(=\) 600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -242.714 q^{7} +81.0000 q^{9} +142.542 q^{11} -1080.72 q^{13} -1329.42 q^{17} +1551.52 q^{19} -2184.42 q^{21} -1087.52 q^{23} +729.000 q^{27} +4374.67 q^{29} +2623.69 q^{31} +1282.88 q^{33} +2081.24 q^{37} -9726.46 q^{39} -15998.1 q^{41} -4083.17 q^{43} +4819.20 q^{47} +42102.9 q^{49} -11964.7 q^{51} +20686.4 q^{53} +13963.7 q^{57} -12562.3 q^{59} +41811.0 q^{61} -19659.8 q^{63} +60479.5 q^{67} -9787.71 q^{69} -27123.5 q^{71} +57295.5 q^{73} -34596.9 q^{77} -27152.5 q^{79} +6561.00 q^{81} +74516.5 q^{83} +39372.0 q^{87} +80563.6 q^{89} +262305. q^{91} +23613.2 q^{93} -88537.3 q^{97} +11545.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 36 q^{3} + 6 q^{7} + 324 q^{9} + 342 q^{11} - 222 q^{13} + 618 q^{17} + 1520 q^{19} + 54 q^{21} + 752 q^{23} + 2916 q^{27} + 4002 q^{29} + 3012 q^{31} + 3078 q^{33} + 14142 q^{37} - 1998 q^{39} - 18900 q^{41}+ \cdots + 27702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −242.714 −1.87219 −0.936093 0.351752i \(-0.885586\pi\)
−0.936093 + 0.351752i \(0.885586\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 142.542 0.355190 0.177595 0.984104i \(-0.443168\pi\)
0.177595 + 0.984104i \(0.443168\pi\)
\(12\) 0 0
\(13\) −1080.72 −1.77359 −0.886797 0.462160i \(-0.847075\pi\)
−0.886797 + 0.462160i \(0.847075\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1329.42 −1.11568 −0.557838 0.829950i \(-0.688369\pi\)
−0.557838 + 0.829950i \(0.688369\pi\)
\(18\) 0 0
\(19\) 1551.52 0.985995 0.492998 0.870031i \(-0.335901\pi\)
0.492998 + 0.870031i \(0.335901\pi\)
\(20\) 0 0
\(21\) −2184.42 −1.08091
\(22\) 0 0
\(23\) −1087.52 −0.428666 −0.214333 0.976761i \(-0.568758\pi\)
−0.214333 + 0.976761i \(0.568758\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 4374.67 0.965940 0.482970 0.875637i \(-0.339558\pi\)
0.482970 + 0.875637i \(0.339558\pi\)
\(30\) 0 0
\(31\) 2623.69 0.490352 0.245176 0.969479i \(-0.421154\pi\)
0.245176 + 0.969479i \(0.421154\pi\)
\(32\) 0 0
\(33\) 1282.88 0.205069
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2081.24 0.249930 0.124965 0.992161i \(-0.460118\pi\)
0.124965 + 0.992161i \(0.460118\pi\)
\(38\) 0 0
\(39\) −9726.46 −1.02398
\(40\) 0 0
\(41\) −15998.1 −1.48631 −0.743155 0.669120i \(-0.766671\pi\)
−0.743155 + 0.669120i \(0.766671\pi\)
\(42\) 0 0
\(43\) −4083.17 −0.336764 −0.168382 0.985722i \(-0.553854\pi\)
−0.168382 + 0.985722i \(0.553854\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4819.20 0.318222 0.159111 0.987261i \(-0.449137\pi\)
0.159111 + 0.987261i \(0.449137\pi\)
\(48\) 0 0
\(49\) 42102.9 2.50508
\(50\) 0 0
\(51\) −11964.7 −0.644136
\(52\) 0 0
\(53\) 20686.4 1.01157 0.505785 0.862659i \(-0.331203\pi\)
0.505785 + 0.862659i \(0.331203\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 13963.7 0.569265
\(58\) 0 0
\(59\) −12562.3 −0.469827 −0.234913 0.972016i \(-0.575481\pi\)
−0.234913 + 0.972016i \(0.575481\pi\)
\(60\) 0 0
\(61\) 41811.0 1.43869 0.719343 0.694655i \(-0.244443\pi\)
0.719343 + 0.694655i \(0.244443\pi\)
\(62\) 0 0
\(63\) −19659.8 −0.624062
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 60479.5 1.64597 0.822984 0.568065i \(-0.192308\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(68\) 0 0
\(69\) −9787.71 −0.247490
\(70\) 0 0
\(71\) −27123.5 −0.638557 −0.319278 0.947661i \(-0.603441\pi\)
−0.319278 + 0.947661i \(0.603441\pi\)
\(72\) 0 0
\(73\) 57295.5 1.25838 0.629192 0.777250i \(-0.283386\pi\)
0.629192 + 0.777250i \(0.283386\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −34596.9 −0.664983
\(78\) 0 0
\(79\) −27152.5 −0.489488 −0.244744 0.969588i \(-0.578704\pi\)
−0.244744 + 0.969588i \(0.578704\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 74516.5 1.18729 0.593645 0.804727i \(-0.297688\pi\)
0.593645 + 0.804727i \(0.297688\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 39372.0 0.557686
\(88\) 0 0
\(89\) 80563.6 1.07811 0.539056 0.842270i \(-0.318781\pi\)
0.539056 + 0.842270i \(0.318781\pi\)
\(90\) 0 0
\(91\) 262305. 3.32050
\(92\) 0 0
\(93\) 23613.2 0.283105
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −88537.3 −0.955426 −0.477713 0.878516i \(-0.658534\pi\)
−0.477713 + 0.878516i \(0.658534\pi\)
\(98\) 0 0
\(99\) 11545.9 0.118397
\(100\) 0 0
\(101\) −97292.1 −0.949018 −0.474509 0.880251i \(-0.657374\pi\)
−0.474509 + 0.880251i \(0.657374\pi\)
\(102\) 0 0
\(103\) −93587.8 −0.869213 −0.434607 0.900620i \(-0.643113\pi\)
−0.434607 + 0.900620i \(0.643113\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −218604. −1.84586 −0.922929 0.384971i \(-0.874212\pi\)
−0.922929 + 0.384971i \(0.874212\pi\)
\(108\) 0 0
\(109\) −107862. −0.869562 −0.434781 0.900536i \(-0.643174\pi\)
−0.434781 + 0.900536i \(0.643174\pi\)
\(110\) 0 0
\(111\) 18731.2 0.144297
\(112\) 0 0
\(113\) 125811. 0.926875 0.463438 0.886130i \(-0.346616\pi\)
0.463438 + 0.886130i \(0.346616\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −87538.2 −0.591198
\(118\) 0 0
\(119\) 322667. 2.08875
\(120\) 0 0
\(121\) −140733. −0.873840
\(122\) 0 0
\(123\) −143983. −0.858121
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −114751. −0.631318 −0.315659 0.948873i \(-0.602226\pi\)
−0.315659 + 0.948873i \(0.602226\pi\)
\(128\) 0 0
\(129\) −36748.5 −0.194431
\(130\) 0 0
\(131\) 125378. 0.638329 0.319164 0.947699i \(-0.396598\pi\)
0.319164 + 0.947699i \(0.396598\pi\)
\(132\) 0 0
\(133\) −376576. −1.84597
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 144988. 0.659982 0.329991 0.943984i \(-0.392954\pi\)
0.329991 + 0.943984i \(0.392954\pi\)
\(138\) 0 0
\(139\) 414038. 1.81762 0.908810 0.417210i \(-0.136992\pi\)
0.908810 + 0.417210i \(0.136992\pi\)
\(140\) 0 0
\(141\) 43372.8 0.183725
\(142\) 0 0
\(143\) −154048. −0.629963
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 378926. 1.44631
\(148\) 0 0
\(149\) 127390. 0.470077 0.235038 0.971986i \(-0.424478\pi\)
0.235038 + 0.971986i \(0.424478\pi\)
\(150\) 0 0
\(151\) −156233. −0.557609 −0.278805 0.960348i \(-0.589938\pi\)
−0.278805 + 0.960348i \(0.589938\pi\)
\(152\) 0 0
\(153\) −107683. −0.371892
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 472338. 1.52934 0.764669 0.644424i \(-0.222903\pi\)
0.764669 + 0.644424i \(0.222903\pi\)
\(158\) 0 0
\(159\) 186178. 0.584031
\(160\) 0 0
\(161\) 263957. 0.802543
\(162\) 0 0
\(163\) 175546. 0.517514 0.258757 0.965942i \(-0.416687\pi\)
0.258757 + 0.965942i \(0.416687\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −102842. −0.285350 −0.142675 0.989770i \(-0.545570\pi\)
−0.142675 + 0.989770i \(0.545570\pi\)
\(168\) 0 0
\(169\) 796658. 2.14563
\(170\) 0 0
\(171\) 125674. 0.328665
\(172\) 0 0
\(173\) 309138. 0.785302 0.392651 0.919687i \(-0.371558\pi\)
0.392651 + 0.919687i \(0.371558\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −113060. −0.271254
\(178\) 0 0
\(179\) 774268. 1.80617 0.903086 0.429461i \(-0.141296\pi\)
0.903086 + 0.429461i \(0.141296\pi\)
\(180\) 0 0
\(181\) −142119. −0.322446 −0.161223 0.986918i \(-0.551544\pi\)
−0.161223 + 0.986918i \(0.551544\pi\)
\(182\) 0 0
\(183\) 376299. 0.830626
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −189498. −0.396278
\(188\) 0 0
\(189\) −176938. −0.360303
\(190\) 0 0
\(191\) −557037. −1.10484 −0.552422 0.833565i \(-0.686296\pi\)
−0.552422 + 0.833565i \(0.686296\pi\)
\(192\) 0 0
\(193\) 127912. 0.247183 0.123591 0.992333i \(-0.460559\pi\)
0.123591 + 0.992333i \(0.460559\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 916132. 1.68187 0.840935 0.541136i \(-0.182006\pi\)
0.840935 + 0.541136i \(0.182006\pi\)
\(198\) 0 0
\(199\) −443136. −0.793240 −0.396620 0.917983i \(-0.629817\pi\)
−0.396620 + 0.917983i \(0.629817\pi\)
\(200\) 0 0
\(201\) 544316. 0.950300
\(202\) 0 0
\(203\) −1.06179e6 −1.80842
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −88089.4 −0.142889
\(208\) 0 0
\(209\) 221158. 0.350216
\(210\) 0 0
\(211\) 496576. 0.767856 0.383928 0.923363i \(-0.374571\pi\)
0.383928 + 0.923363i \(0.374571\pi\)
\(212\) 0 0
\(213\) −244111. −0.368671
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −636805. −0.918031
\(218\) 0 0
\(219\) 515659. 0.726529
\(220\) 0 0
\(221\) 1.43672e6 1.97876
\(222\) 0 0
\(223\) 94509.5 0.127266 0.0636332 0.997973i \(-0.479731\pi\)
0.0636332 + 0.997973i \(0.479731\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.16373e6 −1.49895 −0.749477 0.662030i \(-0.769695\pi\)
−0.749477 + 0.662030i \(0.769695\pi\)
\(228\) 0 0
\(229\) 820259. 1.03362 0.516811 0.856099i \(-0.327119\pi\)
0.516811 + 0.856099i \(0.327119\pi\)
\(230\) 0 0
\(231\) −311372. −0.383928
\(232\) 0 0
\(233\) 1.22012e6 1.47236 0.736178 0.676788i \(-0.236629\pi\)
0.736178 + 0.676788i \(0.236629\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −244372. −0.282606
\(238\) 0 0
\(239\) −1.02798e6 −1.16410 −0.582048 0.813154i \(-0.697748\pi\)
−0.582048 + 0.813154i \(0.697748\pi\)
\(240\) 0 0
\(241\) −755090. −0.837445 −0.418723 0.908114i \(-0.637522\pi\)
−0.418723 + 0.908114i \(0.637522\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.67676e6 −1.74875
\(248\) 0 0
\(249\) 670648. 0.685482
\(250\) 0 0
\(251\) 1.87333e6 1.87686 0.938428 0.345476i \(-0.112283\pi\)
0.938428 + 0.345476i \(0.112283\pi\)
\(252\) 0 0
\(253\) −155018. −0.152258
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 55931.3 0.0528229 0.0264114 0.999651i \(-0.491592\pi\)
0.0264114 + 0.999651i \(0.491592\pi\)
\(258\) 0 0
\(259\) −505146. −0.467915
\(260\) 0 0
\(261\) 354348. 0.321980
\(262\) 0 0
\(263\) −613008. −0.546483 −0.273242 0.961945i \(-0.588096\pi\)
−0.273242 + 0.961945i \(0.588096\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 725072. 0.622448
\(268\) 0 0
\(269\) 452657. 0.381407 0.190704 0.981648i \(-0.438923\pi\)
0.190704 + 0.981648i \(0.438923\pi\)
\(270\) 0 0
\(271\) −550844. −0.455623 −0.227811 0.973705i \(-0.573157\pi\)
−0.227811 + 0.973705i \(0.573157\pi\)
\(272\) 0 0
\(273\) 2.36075e6 1.91709
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −992154. −0.776926 −0.388463 0.921464i \(-0.626994\pi\)
−0.388463 + 0.921464i \(0.626994\pi\)
\(278\) 0 0
\(279\) 212519. 0.163451
\(280\) 0 0
\(281\) −731905. −0.552954 −0.276477 0.961021i \(-0.589167\pi\)
−0.276477 + 0.961021i \(0.589167\pi\)
\(282\) 0 0
\(283\) 459405. 0.340981 0.170490 0.985359i \(-0.445465\pi\)
0.170490 + 0.985359i \(0.445465\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.88296e6 2.78265
\(288\) 0 0
\(289\) 347487. 0.244734
\(290\) 0 0
\(291\) −796836. −0.551615
\(292\) 0 0
\(293\) 364973. 0.248366 0.124183 0.992259i \(-0.460369\pi\)
0.124183 + 0.992259i \(0.460369\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 103913. 0.0683564
\(298\) 0 0
\(299\) 1.17531e6 0.760279
\(300\) 0 0
\(301\) 991041. 0.630486
\(302\) 0 0
\(303\) −875629. −0.547916
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 307960. 0.186487 0.0932434 0.995643i \(-0.470277\pi\)
0.0932434 + 0.995643i \(0.470277\pi\)
\(308\) 0 0
\(309\) −842291. −0.501841
\(310\) 0 0
\(311\) −1.30555e6 −0.765405 −0.382703 0.923872i \(-0.625007\pi\)
−0.382703 + 0.923872i \(0.625007\pi\)
\(312\) 0 0
\(313\) 2.66546e6 1.53784 0.768921 0.639344i \(-0.220794\pi\)
0.768921 + 0.639344i \(0.220794\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.23744e6 1.25056 0.625278 0.780402i \(-0.284986\pi\)
0.625278 + 0.780402i \(0.284986\pi\)
\(318\) 0 0
\(319\) 623574. 0.343093
\(320\) 0 0
\(321\) −1.96743e6 −1.06571
\(322\) 0 0
\(323\) −2.06262e6 −1.10005
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −970755. −0.502042
\(328\) 0 0
\(329\) −1.16968e6 −0.595771
\(330\) 0 0
\(331\) 2.09233e6 1.04969 0.524844 0.851199i \(-0.324124\pi\)
0.524844 + 0.851199i \(0.324124\pi\)
\(332\) 0 0
\(333\) 168581. 0.0833100
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.01282e6 0.485802 0.242901 0.970051i \(-0.421901\pi\)
0.242901 + 0.970051i \(0.421901\pi\)
\(338\) 0 0
\(339\) 1.13230e6 0.535132
\(340\) 0 0
\(341\) 373986. 0.174168
\(342\) 0 0
\(343\) −6.13967e6 −2.81780
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.64429e6 0.733084 0.366542 0.930402i \(-0.380542\pi\)
0.366542 + 0.930402i \(0.380542\pi\)
\(348\) 0 0
\(349\) 898528. 0.394882 0.197441 0.980315i \(-0.436737\pi\)
0.197441 + 0.980315i \(0.436737\pi\)
\(350\) 0 0
\(351\) −787843. −0.341328
\(352\) 0 0
\(353\) −853045. −0.364364 −0.182182 0.983265i \(-0.558316\pi\)
−0.182182 + 0.983265i \(0.558316\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.90400e6 1.20594
\(358\) 0 0
\(359\) −2.05799e6 −0.842767 −0.421384 0.906882i \(-0.638455\pi\)
−0.421384 + 0.906882i \(0.638455\pi\)
\(360\) 0 0
\(361\) −68869.5 −0.0278137
\(362\) 0 0
\(363\) −1.26659e6 −0.504512
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.38094e6 −1.69786 −0.848930 0.528505i \(-0.822753\pi\)
−0.848930 + 0.528505i \(0.822753\pi\)
\(368\) 0 0
\(369\) −1.29585e6 −0.495437
\(370\) 0 0
\(371\) −5.02088e6 −1.89385
\(372\) 0 0
\(373\) 456550. 0.169909 0.0849545 0.996385i \(-0.472926\pi\)
0.0849545 + 0.996385i \(0.472926\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.72778e6 −1.71318
\(378\) 0 0
\(379\) 935559. 0.334559 0.167280 0.985909i \(-0.446502\pi\)
0.167280 + 0.985909i \(0.446502\pi\)
\(380\) 0 0
\(381\) −1.03276e6 −0.364492
\(382\) 0 0
\(383\) 2.78295e6 0.969413 0.484707 0.874677i \(-0.338926\pi\)
0.484707 + 0.874677i \(0.338926\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −330737. −0.112255
\(388\) 0 0
\(389\) −2.18050e6 −0.730604 −0.365302 0.930889i \(-0.619034\pi\)
−0.365302 + 0.930889i \(0.619034\pi\)
\(390\) 0 0
\(391\) 1.44577e6 0.478252
\(392\) 0 0
\(393\) 1.12841e6 0.368539
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.05032e6 −0.334462 −0.167231 0.985918i \(-0.553483\pi\)
−0.167231 + 0.985918i \(0.553483\pi\)
\(398\) 0 0
\(399\) −3.38919e6 −1.06577
\(400\) 0 0
\(401\) −2.63701e6 −0.818937 −0.409469 0.912324i \(-0.634286\pi\)
−0.409469 + 0.912324i \(0.634286\pi\)
\(402\) 0 0
\(403\) −2.83547e6 −0.869685
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 296664. 0.0887727
\(408\) 0 0
\(409\) −2.72798e6 −0.806368 −0.403184 0.915119i \(-0.632096\pi\)
−0.403184 + 0.915119i \(0.632096\pi\)
\(410\) 0 0
\(411\) 1.30490e6 0.381041
\(412\) 0 0
\(413\) 3.04903e6 0.879603
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.72634e6 1.04940
\(418\) 0 0
\(419\) −5.94093e6 −1.65318 −0.826589 0.562806i \(-0.809722\pi\)
−0.826589 + 0.562806i \(0.809722\pi\)
\(420\) 0 0
\(421\) 474301. 0.130422 0.0652108 0.997872i \(-0.479228\pi\)
0.0652108 + 0.997872i \(0.479228\pi\)
\(422\) 0 0
\(423\) 390355. 0.106074
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.01481e7 −2.69349
\(428\) 0 0
\(429\) −1.38643e6 −0.363710
\(430\) 0 0
\(431\) 3.17898e6 0.824319 0.412159 0.911112i \(-0.364775\pi\)
0.412159 + 0.911112i \(0.364775\pi\)
\(432\) 0 0
\(433\) 2.09103e6 0.535970 0.267985 0.963423i \(-0.413642\pi\)
0.267985 + 0.963423i \(0.413642\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.68732e6 −0.422662
\(438\) 0 0
\(439\) −758627. −0.187874 −0.0939371 0.995578i \(-0.529945\pi\)
−0.0939371 + 0.995578i \(0.529945\pi\)
\(440\) 0 0
\(441\) 3.41034e6 0.835028
\(442\) 0 0
\(443\) −940168. −0.227613 −0.113806 0.993503i \(-0.536304\pi\)
−0.113806 + 0.993503i \(0.536304\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.14651e6 0.271399
\(448\) 0 0
\(449\) 3.83158e6 0.896937 0.448469 0.893799i \(-0.351970\pi\)
0.448469 + 0.893799i \(0.351970\pi\)
\(450\) 0 0
\(451\) −2.28040e6 −0.527923
\(452\) 0 0
\(453\) −1.40610e6 −0.321936
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.01368e6 −0.451024 −0.225512 0.974240i \(-0.572406\pi\)
−0.225512 + 0.974240i \(0.572406\pi\)
\(458\) 0 0
\(459\) −969144. −0.214712
\(460\) 0 0
\(461\) −152998. −0.0335300 −0.0167650 0.999859i \(-0.505337\pi\)
−0.0167650 + 0.999859i \(0.505337\pi\)
\(462\) 0 0
\(463\) −5.40324e6 −1.17139 −0.585696 0.810531i \(-0.699179\pi\)
−0.585696 + 0.810531i \(0.699179\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.41706e6 −0.300674 −0.150337 0.988635i \(-0.548036\pi\)
−0.150337 + 0.988635i \(0.548036\pi\)
\(468\) 0 0
\(469\) −1.46792e7 −3.08156
\(470\) 0 0
\(471\) 4.25104e6 0.882963
\(472\) 0 0
\(473\) −582023. −0.119615
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.67560e6 0.337190
\(478\) 0 0
\(479\) −2.46163e6 −0.490213 −0.245106 0.969496i \(-0.578823\pi\)
−0.245106 + 0.969496i \(0.578823\pi\)
\(480\) 0 0
\(481\) −2.24924e6 −0.443274
\(482\) 0 0
\(483\) 2.37561e6 0.463348
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.88009e6 0.550280 0.275140 0.961404i \(-0.411276\pi\)
0.275140 + 0.961404i \(0.411276\pi\)
\(488\) 0 0
\(489\) 1.57991e6 0.298787
\(490\) 0 0
\(491\) −2.55154e6 −0.477637 −0.238819 0.971064i \(-0.576760\pi\)
−0.238819 + 0.971064i \(0.576760\pi\)
\(492\) 0 0
\(493\) −5.81575e6 −1.07768
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.58324e6 1.19550
\(498\) 0 0
\(499\) −8.58040e6 −1.54261 −0.771305 0.636466i \(-0.780396\pi\)
−0.771305 + 0.636466i \(0.780396\pi\)
\(500\) 0 0
\(501\) −925574. −0.164747
\(502\) 0 0
\(503\) 7.22134e6 1.27262 0.636309 0.771434i \(-0.280460\pi\)
0.636309 + 0.771434i \(0.280460\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.16993e6 1.23878
\(508\) 0 0
\(509\) −73769.6 −0.0126207 −0.00631035 0.999980i \(-0.502009\pi\)
−0.00631035 + 0.999980i \(0.502009\pi\)
\(510\) 0 0
\(511\) −1.39064e7 −2.35593
\(512\) 0 0
\(513\) 1.13106e6 0.189755
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 686938. 0.113029
\(518\) 0 0
\(519\) 2.78224e6 0.453395
\(520\) 0 0
\(521\) 6.33407e6 1.02232 0.511162 0.859484i \(-0.329215\pi\)
0.511162 + 0.859484i \(0.329215\pi\)
\(522\) 0 0
\(523\) 411025. 0.0657074 0.0328537 0.999460i \(-0.489540\pi\)
0.0328537 + 0.999460i \(0.489540\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.48797e6 −0.547074
\(528\) 0 0
\(529\) −5.25364e6 −0.816246
\(530\) 0 0
\(531\) −1.01754e6 −0.156609
\(532\) 0 0
\(533\) 1.72895e7 2.63611
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.96841e6 1.04279
\(538\) 0 0
\(539\) 6.00144e6 0.889782
\(540\) 0 0
\(541\) 239548. 0.0351884 0.0175942 0.999845i \(-0.494399\pi\)
0.0175942 + 0.999845i \(0.494399\pi\)
\(542\) 0 0
\(543\) −1.27907e6 −0.186164
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.55307e6 0.221933 0.110967 0.993824i \(-0.464605\pi\)
0.110967 + 0.993824i \(0.464605\pi\)
\(548\) 0 0
\(549\) 3.38669e6 0.479562
\(550\) 0 0
\(551\) 6.78741e6 0.952412
\(552\) 0 0
\(553\) 6.59028e6 0.916413
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.19125e7 1.62691 0.813455 0.581627i \(-0.197584\pi\)
0.813455 + 0.581627i \(0.197584\pi\)
\(558\) 0 0
\(559\) 4.41275e6 0.597283
\(560\) 0 0
\(561\) −1.70548e6 −0.228791
\(562\) 0 0
\(563\) −1.67271e6 −0.222408 −0.111204 0.993798i \(-0.535471\pi\)
−0.111204 + 0.993798i \(0.535471\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.59244e6 −0.208021
\(568\) 0 0
\(569\) 1.26524e7 1.63829 0.819146 0.573585i \(-0.194448\pi\)
0.819146 + 0.573585i \(0.194448\pi\)
\(570\) 0 0
\(571\) −5.80638e6 −0.745273 −0.372637 0.927977i \(-0.621546\pi\)
−0.372637 + 0.927977i \(0.621546\pi\)
\(572\) 0 0
\(573\) −5.01333e6 −0.637881
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.15669e7 −1.44636 −0.723182 0.690658i \(-0.757321\pi\)
−0.723182 + 0.690658i \(0.757321\pi\)
\(578\) 0 0
\(579\) 1.15121e6 0.142711
\(580\) 0 0
\(581\) −1.80862e7 −2.22283
\(582\) 0 0
\(583\) 2.94869e6 0.359300
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 829454. 0.0993566 0.0496783 0.998765i \(-0.484180\pi\)
0.0496783 + 0.998765i \(0.484180\pi\)
\(588\) 0 0
\(589\) 4.07072e6 0.483485
\(590\) 0 0
\(591\) 8.24519e6 0.971028
\(592\) 0 0
\(593\) −1.42831e7 −1.66796 −0.833978 0.551798i \(-0.813942\pi\)
−0.833978 + 0.551798i \(0.813942\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.98823e6 −0.457977
\(598\) 0 0
\(599\) −1.51569e7 −1.72601 −0.863007 0.505192i \(-0.831421\pi\)
−0.863007 + 0.505192i \(0.831421\pi\)
\(600\) 0 0
\(601\) −4.20502e6 −0.474877 −0.237439 0.971403i \(-0.576308\pi\)
−0.237439 + 0.971403i \(0.576308\pi\)
\(602\) 0 0
\(603\) 4.89884e6 0.548656
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −242069. −0.0266666 −0.0133333 0.999911i \(-0.504244\pi\)
−0.0133333 + 0.999911i \(0.504244\pi\)
\(608\) 0 0
\(609\) −9.55613e6 −1.04409
\(610\) 0 0
\(611\) −5.20819e6 −0.564396
\(612\) 0 0
\(613\) −1.13279e7 −1.21759 −0.608793 0.793329i \(-0.708346\pi\)
−0.608793 + 0.793329i \(0.708346\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.54069e7 1.62931 0.814654 0.579947i \(-0.196927\pi\)
0.814654 + 0.579947i \(0.196927\pi\)
\(618\) 0 0
\(619\) 1.49269e7 1.56583 0.782914 0.622129i \(-0.213732\pi\)
0.782914 + 0.622129i \(0.213732\pi\)
\(620\) 0 0
\(621\) −792804. −0.0824968
\(622\) 0 0
\(623\) −1.95539e7 −2.01843
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.99042e6 0.202197
\(628\) 0 0
\(629\) −2.76683e6 −0.278841
\(630\) 0 0
\(631\) 1.64446e7 1.64418 0.822091 0.569357i \(-0.192808\pi\)
0.822091 + 0.569357i \(0.192808\pi\)
\(632\) 0 0
\(633\) 4.46919e6 0.443322
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −4.55014e7 −4.44300
\(638\) 0 0
\(639\) −2.19700e6 −0.212852
\(640\) 0 0
\(641\) 3.47616e6 0.334160 0.167080 0.985943i \(-0.446566\pi\)
0.167080 + 0.985943i \(0.446566\pi\)
\(642\) 0 0
\(643\) −1.62205e7 −1.54716 −0.773581 0.633697i \(-0.781537\pi\)
−0.773581 + 0.633697i \(0.781537\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.87206e6 −0.739312 −0.369656 0.929169i \(-0.620524\pi\)
−0.369656 + 0.929169i \(0.620524\pi\)
\(648\) 0 0
\(649\) −1.79065e6 −0.166878
\(650\) 0 0
\(651\) −5.73125e6 −0.530025
\(652\) 0 0
\(653\) 1.37332e7 1.26034 0.630171 0.776457i \(-0.282985\pi\)
0.630171 + 0.776457i \(0.282985\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.64094e6 0.419461
\(658\) 0 0
\(659\) 4.18405e6 0.375305 0.187652 0.982236i \(-0.439912\pi\)
0.187652 + 0.982236i \(0.439912\pi\)
\(660\) 0 0
\(661\) 1.95785e6 0.174291 0.0871455 0.996196i \(-0.472226\pi\)
0.0871455 + 0.996196i \(0.472226\pi\)
\(662\) 0 0
\(663\) 1.29305e7 1.14244
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.75755e6 −0.414066
\(668\) 0 0
\(669\) 850586. 0.0734772
\(670\) 0 0
\(671\) 5.95983e6 0.511008
\(672\) 0 0
\(673\) 8.85319e6 0.753463 0.376732 0.926322i \(-0.377048\pi\)
0.376732 + 0.926322i \(0.377048\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.29523e6 −0.611740 −0.305870 0.952073i \(-0.598947\pi\)
−0.305870 + 0.952073i \(0.598947\pi\)
\(678\) 0 0
\(679\) 2.14892e7 1.78874
\(680\) 0 0
\(681\) −1.04736e7 −0.865422
\(682\) 0 0
\(683\) 8.10456e6 0.664779 0.332390 0.943142i \(-0.392145\pi\)
0.332390 + 0.943142i \(0.392145\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7.38233e6 0.596762
\(688\) 0 0
\(689\) −2.23562e7 −1.79411
\(690\) 0 0
\(691\) 2.30304e7 1.83487 0.917437 0.397882i \(-0.130255\pi\)
0.917437 + 0.397882i \(0.130255\pi\)
\(692\) 0 0
\(693\) −2.80235e6 −0.221661
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.12681e7 1.65824
\(698\) 0 0
\(699\) 1.09811e7 0.850065
\(700\) 0 0
\(701\) 1.60749e7 1.23553 0.617766 0.786362i \(-0.288038\pi\)
0.617766 + 0.786362i \(0.288038\pi\)
\(702\) 0 0
\(703\) 3.22910e6 0.246430
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.36141e7 1.77674
\(708\) 0 0
\(709\) 2.10037e7 1.56921 0.784605 0.619996i \(-0.212866\pi\)
0.784605 + 0.619996i \(0.212866\pi\)
\(710\) 0 0
\(711\) −2.19935e6 −0.163163
\(712\) 0 0
\(713\) −2.85332e6 −0.210197
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.25180e6 −0.672091
\(718\) 0 0
\(719\) −1.42531e7 −1.02822 −0.514112 0.857723i \(-0.671878\pi\)
−0.514112 + 0.857723i \(0.671878\pi\)
\(720\) 0 0
\(721\) 2.27150e7 1.62733
\(722\) 0 0
\(723\) −6.79581e6 −0.483499
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4.59136e6 −0.322185 −0.161092 0.986939i \(-0.551502\pi\)
−0.161092 + 0.986939i \(0.551502\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 5.42822e6 0.375720
\(732\) 0 0
\(733\) 4.59016e6 0.315550 0.157775 0.987475i \(-0.449568\pi\)
0.157775 + 0.987475i \(0.449568\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.62087e6 0.584632
\(738\) 0 0
\(739\) 307856. 0.0207365 0.0103683 0.999946i \(-0.496700\pi\)
0.0103683 + 0.999946i \(0.496700\pi\)
\(740\) 0 0
\(741\) −1.50908e7 −1.00964
\(742\) 0 0
\(743\) 6.44444e6 0.428266 0.214133 0.976805i \(-0.431307\pi\)
0.214133 + 0.976805i \(0.431307\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.03583e6 0.395763
\(748\) 0 0
\(749\) 5.30581e7 3.45579
\(750\) 0 0
\(751\) −5.56856e6 −0.360282 −0.180141 0.983641i \(-0.557655\pi\)
−0.180141 + 0.983641i \(0.557655\pi\)
\(752\) 0 0
\(753\) 1.68600e7 1.08360
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7.47540e6 −0.474127 −0.237064 0.971494i \(-0.576185\pi\)
−0.237064 + 0.971494i \(0.576185\pi\)
\(758\) 0 0
\(759\) −1.39516e6 −0.0879062
\(760\) 0 0
\(761\) 1.31205e7 0.821278 0.410639 0.911798i \(-0.365306\pi\)
0.410639 + 0.911798i \(0.365306\pi\)
\(762\) 0 0
\(763\) 2.61795e7 1.62798
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.35763e7 0.833281
\(768\) 0 0
\(769\) −1.56508e7 −0.954378 −0.477189 0.878801i \(-0.658344\pi\)
−0.477189 + 0.878801i \(0.658344\pi\)
\(770\) 0 0
\(771\) 503382. 0.0304973
\(772\) 0 0
\(773\) −2.07890e7 −1.25137 −0.625683 0.780078i \(-0.715179\pi\)
−0.625683 + 0.780078i \(0.715179\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4.54631e6 −0.270151
\(778\) 0 0
\(779\) −2.48215e7 −1.46549
\(780\) 0 0
\(781\) −3.86624e6 −0.226809
\(782\) 0 0
\(783\) 3.18913e6 0.185895
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −3.31541e7 −1.90809 −0.954047 0.299656i \(-0.903128\pi\)
−0.954047 + 0.299656i \(0.903128\pi\)
\(788\) 0 0
\(789\) −5.51707e6 −0.315512
\(790\) 0 0
\(791\) −3.05360e7 −1.73528
\(792\) 0 0
\(793\) −4.51859e7 −2.55165
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.00986e6 0.112078 0.0560389 0.998429i \(-0.482153\pi\)
0.0560389 + 0.998429i \(0.482153\pi\)
\(798\) 0 0
\(799\) −6.40671e6 −0.355033
\(800\) 0 0
\(801\) 6.52565e6 0.359370
\(802\) 0 0
\(803\) 8.16702e6 0.446966
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.07392e6 0.220205
\(808\) 0 0
\(809\) 3.55183e7 1.90801 0.954006 0.299787i \(-0.0969156\pi\)
0.954006 + 0.299787i \(0.0969156\pi\)
\(810\) 0 0
\(811\) 8.99587e6 0.480276 0.240138 0.970739i \(-0.422807\pi\)
0.240138 + 0.970739i \(0.422807\pi\)
\(812\) 0 0
\(813\) −4.95760e6 −0.263054
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.33514e6 −0.332048
\(818\) 0 0
\(819\) 2.12467e7 1.10683
\(820\) 0 0
\(821\) 3.39427e7 1.75747 0.878736 0.477308i \(-0.158387\pi\)
0.878736 + 0.477308i \(0.158387\pi\)
\(822\) 0 0
\(823\) −1.15878e7 −0.596348 −0.298174 0.954511i \(-0.596378\pi\)
−0.298174 + 0.954511i \(0.596378\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 743207. 0.0377873 0.0188937 0.999821i \(-0.493986\pi\)
0.0188937 + 0.999821i \(0.493986\pi\)
\(828\) 0 0
\(829\) 2.94662e7 1.48915 0.744574 0.667540i \(-0.232653\pi\)
0.744574 + 0.667540i \(0.232653\pi\)
\(830\) 0 0
\(831\) −8.92938e6 −0.448558
\(832\) 0 0
\(833\) −5.59723e7 −2.79486
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.91267e6 0.0943683
\(838\) 0 0
\(839\) 3.18433e7 1.56175 0.780877 0.624685i \(-0.214773\pi\)
0.780877 + 0.624685i \(0.214773\pi\)
\(840\) 0 0
\(841\) −1.37342e6 −0.0669596
\(842\) 0 0
\(843\) −6.58714e6 −0.319248
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.41578e7 1.63599
\(848\) 0 0
\(849\) 4.13465e6 0.196865
\(850\) 0 0
\(851\) −2.26340e6 −0.107136
\(852\) 0 0
\(853\) 9.10862e6 0.428627 0.214314 0.976765i \(-0.431249\pi\)
0.214314 + 0.976765i \(0.431249\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.41175e6 −0.205191 −0.102596 0.994723i \(-0.532715\pi\)
−0.102596 + 0.994723i \(0.532715\pi\)
\(858\) 0 0
\(859\) −9.64496e6 −0.445982 −0.222991 0.974821i \(-0.571582\pi\)
−0.222991 + 0.974821i \(0.571582\pi\)
\(860\) 0 0
\(861\) 3.49467e7 1.60656
\(862\) 0 0
\(863\) 1.95068e7 0.891579 0.445790 0.895138i \(-0.352923\pi\)
0.445790 + 0.895138i \(0.352923\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.12739e6 0.141297
\(868\) 0 0
\(869\) −3.87037e6 −0.173861
\(870\) 0 0
\(871\) −6.53613e7 −2.91928
\(872\) 0 0
\(873\) −7.17152e6 −0.318475
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5.18933e6 −0.227831 −0.113915 0.993490i \(-0.536339\pi\)
−0.113915 + 0.993490i \(0.536339\pi\)
\(878\) 0 0
\(879\) 3.28476e6 0.143394
\(880\) 0 0
\(881\) −1.43979e7 −0.624972 −0.312486 0.949922i \(-0.601162\pi\)
−0.312486 + 0.949922i \(0.601162\pi\)
\(882\) 0 0
\(883\) 2.09749e7 0.905311 0.452656 0.891685i \(-0.350477\pi\)
0.452656 + 0.891685i \(0.350477\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.54403e7 −1.51248 −0.756238 0.654296i \(-0.772965\pi\)
−0.756238 + 0.654296i \(0.772965\pi\)
\(888\) 0 0
\(889\) 2.78517e7 1.18195
\(890\) 0 0
\(891\) 935218. 0.0394656
\(892\) 0 0
\(893\) 7.47710e6 0.313765
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.05778e7 0.438947
\(898\) 0 0
\(899\) 1.14778e7 0.473651
\(900\) 0 0
\(901\) −2.75009e7 −1.12859
\(902\) 0 0
\(903\) 8.91937e6 0.364011
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.52614e7 −1.01962 −0.509812 0.860286i \(-0.670285\pi\)
−0.509812 + 0.860286i \(0.670285\pi\)
\(908\) 0 0
\(909\) −7.88066e6 −0.316339
\(910\) 0 0
\(911\) 1.45292e7 0.580022 0.290011 0.957023i \(-0.406341\pi\)
0.290011 + 0.957023i \(0.406341\pi\)
\(912\) 0 0
\(913\) 1.06217e7 0.421714
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.04310e7 −1.19507
\(918\) 0 0
\(919\) 2.82570e7 1.10366 0.551832 0.833955i \(-0.313929\pi\)
0.551832 + 0.833955i \(0.313929\pi\)
\(920\) 0 0
\(921\) 2.77164e6 0.107668
\(922\) 0 0
\(923\) 2.93128e7 1.13254
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −7.58061e6 −0.289738
\(928\) 0 0
\(929\) 4.09229e6 0.155570 0.0777852 0.996970i \(-0.475215\pi\)
0.0777852 + 0.996970i \(0.475215\pi\)
\(930\) 0 0
\(931\) 6.53238e7 2.47000
\(932\) 0 0
\(933\) −1.17499e7 −0.441907
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.13115e7 1.90926 0.954632 0.297790i \(-0.0962494\pi\)
0.954632 + 0.297790i \(0.0962494\pi\)
\(938\) 0 0
\(939\) 2.39892e7 0.887873
\(940\) 0 0
\(941\) −1.60558e7 −0.591096 −0.295548 0.955328i \(-0.595502\pi\)
−0.295548 + 0.955328i \(0.595502\pi\)
\(942\) 0 0
\(943\) 1.73983e7 0.637130
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.82296e7 1.38524 0.692620 0.721302i \(-0.256456\pi\)
0.692620 + 0.721302i \(0.256456\pi\)
\(948\) 0 0
\(949\) −6.19203e7 −2.23186
\(950\) 0 0
\(951\) 2.01369e7 0.722009
\(952\) 0 0
\(953\) 4.76886e7 1.70092 0.850458 0.526044i \(-0.176325\pi\)
0.850458 + 0.526044i \(0.176325\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.61217e6 0.198085
\(958\) 0 0
\(959\) −3.51907e7 −1.23561
\(960\) 0 0
\(961\) −2.17454e7 −0.759555
\(962\) 0 0
\(963\) −1.77069e7 −0.615286
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −2.70295e6 −0.0929548 −0.0464774 0.998919i \(-0.514800\pi\)
−0.0464774 + 0.998919i \(0.514800\pi\)
\(968\) 0 0
\(969\) −1.85636e7 −0.635115
\(970\) 0 0
\(971\) −2.87085e7 −0.977153 −0.488577 0.872521i \(-0.662484\pi\)
−0.488577 + 0.872521i \(0.662484\pi\)
\(972\) 0 0
\(973\) −1.00493e8 −3.40292
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.40555e6 0.147660 0.0738302 0.997271i \(-0.476478\pi\)
0.0738302 + 0.997271i \(0.476478\pi\)
\(978\) 0 0
\(979\) 1.14837e7 0.382935
\(980\) 0 0
\(981\) −8.73679e6 −0.289854
\(982\) 0 0
\(983\) 2.90145e7 0.957705 0.478853 0.877895i \(-0.341053\pi\)
0.478853 + 0.877895i \(0.341053\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.05272e7 −0.343968
\(988\) 0 0
\(989\) 4.44054e6 0.144359
\(990\) 0 0
\(991\) 1.86483e7 0.603190 0.301595 0.953436i \(-0.402481\pi\)
0.301595 + 0.953436i \(0.402481\pi\)
\(992\) 0 0
\(993\) 1.88310e7 0.606037
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.75822e6 −0.215325 −0.107663 0.994187i \(-0.534337\pi\)
−0.107663 + 0.994187i \(0.534337\pi\)
\(998\) 0 0
\(999\) 1.51723e6 0.0480990
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.6.a.w.1.1 4
5.2 odd 4 120.6.f.b.49.1 8
5.3 odd 4 120.6.f.b.49.5 yes 8
5.4 even 2 600.6.a.v.1.4 4
15.2 even 4 360.6.f.c.289.8 8
15.8 even 4 360.6.f.c.289.7 8
20.3 even 4 240.6.f.f.49.1 8
20.7 even 4 240.6.f.f.49.5 8
60.23 odd 4 720.6.f.o.289.7 8
60.47 odd 4 720.6.f.o.289.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.f.b.49.1 8 5.2 odd 4
120.6.f.b.49.5 yes 8 5.3 odd 4
240.6.f.f.49.1 8 20.3 even 4
240.6.f.f.49.5 8 20.7 even 4
360.6.f.c.289.7 8 15.8 even 4
360.6.f.c.289.8 8 15.2 even 4
600.6.a.v.1.4 4 5.4 even 2
600.6.a.w.1.1 4 1.1 even 1 trivial
720.6.f.o.289.7 8 60.23 odd 4
720.6.f.o.289.8 8 60.47 odd 4