Properties

Label 3600.2.x.d.3007.1
Level $3600$
Weight $2$
Character 3600.3007
Analytic conductor $28.746$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3600,2,Mod(2143,3600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3600.2143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3600.x (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.7461447277\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 3007.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 3600.3007
Dual form 3600.2.x.d.2143.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.82843 + 2.82843i) q^{7} +5.65685i q^{11} +(-3.00000 + 3.00000i) q^{13} +(-1.00000 - 1.00000i) q^{17} -5.65685 q^{19} +(2.82843 + 2.82843i) q^{23} -4.00000i q^{29} +(-5.00000 - 5.00000i) q^{37} +(-2.82843 - 2.82843i) q^{43} +(2.82843 - 2.82843i) q^{47} -9.00000i q^{49} +(1.00000 - 1.00000i) q^{53} +11.3137 q^{59} +4.00000 q^{61} +(2.82843 - 2.82843i) q^{67} -5.65685i q^{71} +(3.00000 - 3.00000i) q^{73} +(-16.0000 - 16.0000i) q^{77} -5.65685 q^{79} +(2.82843 + 2.82843i) q^{83} -8.00000i q^{89} -16.9706i q^{91} +(3.00000 + 3.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{13} - 4 q^{17} - 20 q^{37} + 4 q^{53} + 16 q^{61} + 12 q^{73} - 64 q^{77} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.82843 + 2.82843i −1.06904 + 1.06904i −0.0716124 + 0.997433i \(0.522814\pi\)
−0.997433 + 0.0716124i \(0.977186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.65685i 1.70561i 0.522233 + 0.852803i \(0.325099\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) −3.00000 + 3.00000i −0.832050 + 0.832050i −0.987797 0.155747i \(-0.950222\pi\)
0.155747 + 0.987797i \(0.450222\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 1.00000i −0.242536 0.242536i 0.575363 0.817898i \(-0.304861\pi\)
−0.817898 + 0.575363i \(0.804861\pi\)
\(18\) 0 0
\(19\) −5.65685 −1.29777 −0.648886 0.760886i \(-0.724765\pi\)
−0.648886 + 0.760886i \(0.724765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 + 2.82843i 0.589768 + 0.589768i 0.937568 0.347801i \(-0.113071\pi\)
−0.347801 + 0.937568i \(0.613071\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000i 0.742781i −0.928477 0.371391i \(-0.878881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 5.00000i −0.821995 0.821995i 0.164399 0.986394i \(-0.447432\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −2.82843 2.82843i −0.431331 0.431331i 0.457750 0.889081i \(-0.348656\pi\)
−0.889081 + 0.457750i \(0.848656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.82843 2.82843i 0.412568 0.412568i −0.470064 0.882632i \(-0.655769\pi\)
0.882632 + 0.470064i \(0.155769\pi\)
\(48\) 0 0
\(49\) 9.00000i 1.28571i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.00000 1.00000i 0.137361 0.137361i −0.635083 0.772444i \(-0.719034\pi\)
0.772444 + 0.635083i \(0.219034\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.3137 1.47292 0.736460 0.676481i \(-0.236496\pi\)
0.736460 + 0.676481i \(0.236496\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.82843 2.82843i 0.345547 0.345547i −0.512901 0.858448i \(-0.671429\pi\)
0.858448 + 0.512901i \(0.171429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.65685i 0.671345i −0.941979 0.335673i \(-0.891036\pi\)
0.941979 0.335673i \(-0.108964\pi\)
\(72\) 0 0
\(73\) 3.00000 3.00000i 0.351123 0.351123i −0.509404 0.860527i \(-0.670134\pi\)
0.860527 + 0.509404i \(0.170134\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −16.0000 16.0000i −1.82337 1.82337i
\(78\) 0 0
\(79\) −5.65685 −0.636446 −0.318223 0.948016i \(-0.603086\pi\)
−0.318223 + 0.948016i \(0.603086\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.82843 + 2.82843i 0.310460 + 0.310460i 0.845088 0.534628i \(-0.179548\pi\)
−0.534628 + 0.845088i \(0.679548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.00000i 0.847998i −0.905663 0.423999i \(-0.860626\pi\)
0.905663 0.423999i \(-0.139374\pi\)
\(90\) 0 0
\(91\) 16.9706i 1.77900i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.00000 + 3.00000i 0.304604 + 0.304604i 0.842812 0.538208i \(-0.180899\pi\)
−0.538208 + 0.842812i \(0.680899\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 2.82843 + 2.82843i 0.278693 + 0.278693i 0.832587 0.553894i \(-0.186859\pi\)
−0.553894 + 0.832587i \(0.686859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.48528 8.48528i 0.820303 0.820303i −0.165848 0.986151i \(-0.553036\pi\)
0.986151 + 0.165848i \(0.0530362\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.0000 11.0000i 1.03479 1.03479i 0.0354205 0.999372i \(-0.488723\pi\)
0.999372 0.0354205i \(-0.0112770\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.65685 0.518563
\(120\) 0 0
\(121\) −21.0000 −1.90909
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.48528 + 8.48528i −0.752947 + 0.752947i −0.975028 0.222081i \(-0.928715\pi\)
0.222081 + 0.975028i \(0.428715\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.65685i 0.494242i 0.968985 + 0.247121i \(0.0794845\pi\)
−0.968985 + 0.247121i \(0.920516\pi\)
\(132\) 0 0
\(133\) 16.0000 16.0000i 1.38738 1.38738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.00000 + 5.00000i 0.427179 + 0.427179i 0.887666 0.460487i \(-0.152325\pi\)
−0.460487 + 0.887666i \(0.652325\pi\)
\(138\) 0 0
\(139\) 16.9706 1.43942 0.719712 0.694273i \(-0.244274\pi\)
0.719712 + 0.694273i \(0.244274\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.9706 16.9706i −1.41915 1.41915i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0000i 1.47462i 0.675556 + 0.737309i \(0.263904\pi\)
−0.675556 + 0.737309i \(0.736096\pi\)
\(150\) 0 0
\(151\) 11.3137i 0.920697i 0.887738 + 0.460348i \(0.152275\pi\)
−0.887738 + 0.460348i \(0.847725\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.0000 11.0000i −0.877896 0.877896i 0.115421 0.993317i \(-0.463178\pi\)
−0.993317 + 0.115421i \(0.963178\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) −8.48528 8.48528i −0.664619 0.664619i 0.291847 0.956465i \(-0.405730\pi\)
−0.956465 + 0.291847i \(0.905730\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.48528 + 8.48528i −0.656611 + 0.656611i −0.954577 0.297966i \(-0.903692\pi\)
0.297966 + 0.954577i \(0.403692\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.00000 5.00000i 0.380143 0.380143i −0.491011 0.871154i \(-0.663372\pi\)
0.871154 + 0.491011i \(0.163372\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.6274 −1.69125 −0.845626 0.533775i \(-0.820773\pi\)
−0.845626 + 0.533775i \(0.820773\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.65685 5.65685i 0.413670 0.413670i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.9706i 1.22795i −0.789327 0.613973i \(-0.789570\pi\)
0.789327 0.613973i \(-0.210430\pi\)
\(192\) 0 0
\(193\) 5.00000 5.00000i 0.359908 0.359908i −0.503871 0.863779i \(-0.668091\pi\)
0.863779 + 0.503871i \(0.168091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.0000 11.0000i −0.783718 0.783718i 0.196738 0.980456i \(-0.436965\pi\)
−0.980456 + 0.196738i \(0.936965\pi\)
\(198\) 0 0
\(199\) −16.9706 −1.20301 −0.601506 0.798869i \(-0.705432\pi\)
−0.601506 + 0.798869i \(0.705432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 11.3137 + 11.3137i 0.794067 + 0.794067i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 32.0000i 2.21349i
\(210\) 0 0
\(211\) 22.6274i 1.55774i 0.627188 + 0.778868i \(0.284206\pi\)
−0.627188 + 0.778868i \(0.715794\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) 8.48528 + 8.48528i 0.568216 + 0.568216i 0.931629 0.363412i \(-0.118388\pi\)
−0.363412 + 0.931629i \(0.618388\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.7990 + 19.7990i −1.31411 + 1.31411i −0.395744 + 0.918361i \(0.629513\pi\)
−0.918361 + 0.395744i \(0.870487\pi\)
\(228\) 0 0
\(229\) 12.0000i 0.792982i 0.918039 + 0.396491i \(0.129772\pi\)
−0.918039 + 0.396491i \(0.870228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.0000 15.0000i 0.982683 0.982683i −0.0171699 0.999853i \(-0.505466\pi\)
0.999853 + 0.0171699i \(0.00546562\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.3137 −0.731823 −0.365911 0.930650i \(-0.619243\pi\)
−0.365911 + 0.930650i \(0.619243\pi\)
\(240\) 0 0
\(241\) 8.00000 0.515325 0.257663 0.966235i \(-0.417048\pi\)
0.257663 + 0.966235i \(0.417048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 16.9706 16.9706i 1.07981 1.07981i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.65685i 0.357057i 0.983935 + 0.178529i \(0.0571337\pi\)
−0.983935 + 0.178529i \(0.942866\pi\)
\(252\) 0 0
\(253\) −16.0000 + 16.0000i −1.00591 + 1.00591i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.0000 21.0000i −1.30994 1.30994i −0.921452 0.388492i \(-0.872996\pi\)
−0.388492 0.921452i \(-0.627004\pi\)
\(258\) 0 0
\(259\) 28.2843 1.75750
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.82843 + 2.82843i 0.174408 + 0.174408i 0.788913 0.614505i \(-0.210644\pi\)
−0.614505 + 0.788913i \(0.710644\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.00000i 0.365826i −0.983129 0.182913i \(-0.941447\pi\)
0.983129 0.182913i \(-0.0585527\pi\)
\(270\) 0 0
\(271\) 11.3137i 0.687259i 0.939105 + 0.343629i \(0.111656\pi\)
−0.939105 + 0.343629i \(0.888344\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3.00000 3.00000i −0.180253 0.180253i 0.611213 0.791466i \(-0.290682\pi\)
−0.791466 + 0.611213i \(0.790682\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.00000 −0.477240 −0.238620 0.971113i \(-0.576695\pi\)
−0.238620 + 0.971113i \(0.576695\pi\)
\(282\) 0 0
\(283\) 14.1421 + 14.1421i 0.840663 + 0.840663i 0.988945 0.148282i \(-0.0473744\pi\)
−0.148282 + 0.988945i \(0.547374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.00000 + 5.00000i −0.292103 + 0.292103i −0.837911 0.545807i \(-0.816223\pi\)
0.545807 + 0.837911i \(0.316223\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.9706 −0.981433
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −2.82843 + 2.82843i −0.161427 + 0.161427i −0.783199 0.621772i \(-0.786413\pi\)
0.621772 + 0.783199i \(0.286413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.65685i 0.320771i 0.987054 + 0.160385i \(0.0512737\pi\)
−0.987054 + 0.160385i \(0.948726\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.0000 + 11.0000i 0.617822 + 0.617822i 0.944972 0.327151i \(-0.106088\pi\)
−0.327151 + 0.944972i \(0.606088\pi\)
\(318\) 0 0
\(319\) 22.6274 1.26689
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.65685 + 5.65685i 0.314756 + 0.314756i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.0000i 0.882109i
\(330\) 0 0
\(331\) 22.6274i 1.24372i −0.783130 0.621858i \(-0.786378\pi\)
0.783130 0.621858i \(-0.213622\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.00000 1.00000i −0.0544735 0.0544735i 0.679345 0.733819i \(-0.262264\pi\)
−0.733819 + 0.679345i \(0.762264\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 5.65685 + 5.65685i 0.305441 + 0.305441i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.82843 2.82843i 0.151838 0.151838i −0.627100 0.778938i \(-0.715758\pi\)
0.778938 + 0.627100i \(0.215758\pi\)
\(348\) 0 0
\(349\) 28.0000i 1.49881i −0.662114 0.749403i \(-0.730341\pi\)
0.662114 0.749403i \(-0.269659\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.0000 + 11.0000i −0.585471 + 0.585471i −0.936401 0.350931i \(-0.885865\pi\)
0.350931 + 0.936401i \(0.385865\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.3137 0.597115 0.298557 0.954392i \(-0.403495\pi\)
0.298557 + 0.954392i \(0.403495\pi\)
\(360\) 0 0
\(361\) 13.0000 0.684211
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.48528 8.48528i 0.442928 0.442928i −0.450067 0.892995i \(-0.648600\pi\)
0.892995 + 0.450067i \(0.148600\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.65685i 0.293689i
\(372\) 0 0
\(373\) −9.00000 + 9.00000i −0.466002 + 0.466002i −0.900617 0.434614i \(-0.856885\pi\)
0.434614 + 0.900617i \(0.356885\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 + 12.0000i 0.618031 + 0.618031i
\(378\) 0 0
\(379\) −16.9706 −0.871719 −0.435860 0.900015i \(-0.643556\pi\)
−0.435860 + 0.900015i \(0.643556\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.1421 14.1421i −0.722629 0.722629i 0.246511 0.969140i \(-0.420716\pi\)
−0.969140 + 0.246511i \(0.920716\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.00000i 0.101404i −0.998714 0.0507020i \(-0.983854\pi\)
0.998714 0.0507020i \(-0.0161459\pi\)
\(390\) 0 0
\(391\) 5.65685i 0.286079i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9.00000 9.00000i −0.451697 0.451697i 0.444220 0.895918i \(-0.353481\pi\)
−0.895918 + 0.444220i \(0.853481\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 28.2843 28.2843i 1.40200 1.40200i
\(408\) 0 0
\(409\) 10.0000i 0.494468i 0.968956 + 0.247234i \(0.0795217\pi\)
−0.968956 + 0.247234i \(0.920478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −32.0000 + 32.0000i −1.57462 + 1.57462i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.3137 −0.552711 −0.276355 0.961056i \(-0.589127\pi\)
−0.276355 + 0.961056i \(0.589127\pi\)
\(420\) 0 0
\(421\) −4.00000 −0.194948 −0.0974740 0.995238i \(-0.531076\pi\)
−0.0974740 + 0.995238i \(0.531076\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −11.3137 + 11.3137i −0.547509 + 0.547509i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.9706i 0.817443i −0.912659 0.408722i \(-0.865975\pi\)
0.912659 0.408722i \(-0.134025\pi\)
\(432\) 0 0
\(433\) −21.0000 + 21.0000i −1.00920 + 1.00920i −0.00923827 + 0.999957i \(0.502941\pi\)
−0.999957 + 0.00923827i \(0.997059\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16.0000 16.0000i −0.765384 0.765384i
\(438\) 0 0
\(439\) −5.65685 −0.269987 −0.134993 0.990846i \(-0.543101\pi\)
−0.134993 + 0.990846i \(0.543101\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.4558 25.4558i −1.20944 1.20944i −0.971207 0.238236i \(-0.923431\pi\)
−0.238236 0.971207i \(-0.576569\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.00000i 0.0943858i 0.998886 + 0.0471929i \(0.0150276\pi\)
−0.998886 + 0.0471929i \(0.984972\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17.0000 + 17.0000i 0.795226 + 0.795226i 0.982339 0.187112i \(-0.0599128\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) −25.4558 25.4558i −1.18303 1.18303i −0.978954 0.204079i \(-0.934580\pi\)
−0.204079 0.978954i \(-0.565420\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.4558 + 25.4558i −1.17796 + 1.17796i −0.197692 + 0.980264i \(0.563345\pi\)
−0.980264 + 0.197692i \(0.936655\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.0000 16.0000i 0.735681 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.6274 1.03387 0.516937 0.856024i \(-0.327072\pi\)
0.516937 + 0.856024i \(0.327072\pi\)
\(480\) 0 0
\(481\) 30.0000 1.36788
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −19.7990 + 19.7990i −0.897178 + 0.897178i −0.995186 0.0980078i \(-0.968753\pi\)
0.0980078 + 0.995186i \(0.468753\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 28.2843i 1.27645i −0.769849 0.638226i \(-0.779669\pi\)
0.769849 0.638226i \(-0.220331\pi\)
\(492\) 0 0
\(493\) −4.00000 + 4.00000i −0.180151 + 0.180151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16.0000 + 16.0000i 0.717698 + 0.717698i
\(498\) 0 0
\(499\) −28.2843 −1.26618 −0.633089 0.774079i \(-0.718213\pi\)
−0.633089 + 0.774079i \(0.718213\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 31.1127 + 31.1127i 1.38725 + 1.38725i 0.831052 + 0.556195i \(0.187739\pi\)
0.556195 + 0.831052i \(0.312261\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.0000i 0.886484i 0.896402 + 0.443242i \(0.146172\pi\)
−0.896402 + 0.443242i \(0.853828\pi\)
\(510\) 0 0
\(511\) 16.9706i 0.750733i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0000 + 16.0000i 0.703679 + 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) −25.4558 25.4558i −1.11311 1.11311i −0.992728 0.120378i \(-0.961589\pi\)
−0.120378 0.992728i \(-0.538411\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000i 0.304348i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 50.9117 2.19292
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.48528 8.48528i 0.362804 0.362804i −0.502040 0.864844i \(-0.667417\pi\)
0.864844 + 0.502040i \(0.167417\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.6274i 0.963960i
\(552\) 0 0
\(553\) 16.0000 16.0000i 0.680389 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.0000 + 17.0000i 0.720313 + 0.720313i 0.968669 0.248356i \(-0.0798902\pi\)
−0.248356 + 0.968669i \(0.579890\pi\)
\(558\) 0 0
\(559\) 16.9706 0.717778
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.48528 8.48528i −0.357612 0.357612i 0.505320 0.862932i \(-0.331374\pi\)
−0.862932 + 0.505320i \(0.831374\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.0000i 0.922288i −0.887325 0.461144i \(-0.847439\pi\)
0.887325 0.461144i \(-0.152561\pi\)
\(570\) 0 0
\(571\) 11.3137i 0.473464i −0.971575 0.236732i \(-0.923924\pi\)
0.971575 0.236732i \(-0.0760763\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −23.0000 23.0000i −0.957503 0.957503i 0.0416305 0.999133i \(-0.486745\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.0000 −0.663792
\(582\) 0 0
\(583\) 5.65685 + 5.65685i 0.234283 + 0.234283i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.1421 14.1421i 0.583708 0.583708i −0.352212 0.935920i \(-0.614570\pi\)
0.935920 + 0.352212i \(0.114570\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.0000 21.0000i 0.862367 0.862367i −0.129246 0.991613i \(-0.541256\pi\)
0.991613 + 0.129246i \(0.0412557\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.3137 0.462266 0.231133 0.972922i \(-0.425757\pi\)
0.231133 + 0.972922i \(0.425757\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8.48528 + 8.48528i −0.344407 + 0.344407i −0.858021 0.513614i \(-0.828306\pi\)
0.513614 + 0.858021i \(0.328306\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.9706i 0.686555i
\(612\) 0 0
\(613\) −3.00000 + 3.00000i −0.121169 + 0.121169i −0.765091 0.643922i \(-0.777306\pi\)
0.643922 + 0.765091i \(0.277306\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.0000 + 23.0000i 0.925945 + 0.925945i 0.997441 0.0714958i \(-0.0227772\pi\)
−0.0714958 + 0.997441i \(0.522777\pi\)
\(618\) 0 0
\(619\) −39.5980 −1.59158 −0.795789 0.605575i \(-0.792943\pi\)
−0.795789 + 0.605575i \(0.792943\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.6274 + 22.6274i 0.906548 + 0.906548i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.0000i 0.398726i
\(630\) 0 0
\(631\) 22.6274i 0.900783i −0.892831 0.450392i \(-0.851284\pi\)
0.892831 0.450392i \(-0.148716\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 27.0000 + 27.0000i 1.06978 + 1.06978i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 48.0000 1.89589 0.947943 0.318440i \(-0.103159\pi\)
0.947943 + 0.318440i \(0.103159\pi\)
\(642\) 0 0
\(643\) 19.7990 + 19.7990i 0.780796 + 0.780796i 0.979965 0.199169i \(-0.0638243\pi\)
−0.199169 + 0.979965i \(0.563824\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.48528 8.48528i 0.333591 0.333591i −0.520358 0.853948i \(-0.674201\pi\)
0.853948 + 0.520358i \(0.174201\pi\)
\(648\) 0 0
\(649\) 64.0000i 2.51222i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −23.0000 + 23.0000i −0.900060 + 0.900060i −0.995441 0.0953813i \(-0.969593\pi\)
0.0953813 + 0.995441i \(0.469593\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11.3137 −0.440720 −0.220360 0.975419i \(-0.570723\pi\)
−0.220360 + 0.975419i \(0.570723\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.3137 11.3137i 0.438069 0.438069i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.6274i 0.873522i
\(672\) 0 0
\(673\) 35.0000 35.0000i 1.34915 1.34915i 0.462566 0.886585i \(-0.346929\pi\)
0.886585 0.462566i \(-0.153071\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.00000 + 5.00000i 0.192166 + 0.192166i 0.796631 0.604466i \(-0.206613\pi\)
−0.604466 + 0.796631i \(0.706613\pi\)
\(678\) 0 0
\(679\) −16.9706 −0.651270
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.48528 + 8.48528i 0.324680 + 0.324680i 0.850559 0.525879i \(-0.176264\pi\)
−0.525879 + 0.850559i \(0.676264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000i 0.228582i
\(690\) 0 0
\(691\) 22.6274i 0.860788i −0.902641 0.430394i \(-0.858375\pi\)
0.902641 0.430394i \(-0.141625\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.0000 1.05755 0.528773 0.848763i \(-0.322652\pi\)
0.528773 + 0.848763i \(0.322652\pi\)
\(702\) 0 0
\(703\) 28.2843 + 28.2843i 1.06676 + 1.06676i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 50.9117 50.9117i 1.91473 1.91473i
\(708\) 0 0
\(709\) 28.0000i 1.05156i −0.850620 0.525781i \(-0.823773\pi\)
0.850620 0.525781i \(-0.176227\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −11.3137 −0.421930 −0.210965 0.977494i \(-0.567661\pi\)
−0.210965 + 0.977494i \(0.567661\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −31.1127 + 31.1127i −1.15391 + 1.15391i −0.168144 + 0.985763i \(0.553777\pi\)
−0.985763 + 0.168144i \(0.946223\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.65685i 0.209226i
\(732\) 0 0
\(733\) −17.0000 + 17.0000i −0.627909 + 0.627909i −0.947542 0.319632i \(-0.896441\pi\)
0.319632 + 0.947542i \(0.396441\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.0000 + 16.0000i 0.589368 + 0.589368i
\(738\) 0 0
\(739\) 28.2843 1.04045 0.520227 0.854028i \(-0.325847\pi\)
0.520227 + 0.854028i \(0.325847\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25.4558 25.4558i −0.933884 0.933884i 0.0640616 0.997946i \(-0.479595\pi\)
−0.997946 + 0.0640616i \(0.979595\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 48.0000i 1.75388i
\(750\) 0 0
\(751\) 33.9411i 1.23853i −0.785182 0.619265i \(-0.787431\pi\)
0.785182 0.619265i \(-0.212569\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 5.00000 + 5.00000i 0.181728 + 0.181728i 0.792108 0.610380i \(-0.208983\pi\)
−0.610380 + 0.792108i \(0.708983\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) −28.2843 28.2843i −1.02396 1.02396i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −33.9411 + 33.9411i −1.22554 + 1.22554i
\(768\) 0 0
\(769\) 8.00000i 0.288487i 0.989542 + 0.144244i \(0.0460749\pi\)
−0.989542 + 0.144244i \(0.953925\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.0000 + 17.0000i −0.611448 + 0.611448i −0.943323 0.331876i \(-0.892319\pi\)
0.331876 + 0.943323i \(0.392319\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −14.1421 + 14.1421i −0.504113 + 0.504113i −0.912713 0.408601i \(-0.866017\pi\)
0.408601 + 0.912713i \(0.366017\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 62.2254i 2.21248i
\(792\) 0 0
\(793\) −12.0000 + 12.0000i −0.426132 + 0.426132i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.0000 + 27.0000i 0.956389 + 0.956389i 0.999088 0.0426989i \(-0.0135956\pi\)
−0.0426989 + 0.999088i \(0.513596\pi\)
\(798\) 0 0
\(799\) −5.65685 −0.200125
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 16.9706 + 16.9706i 0.598878 + 0.598878i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.0000i 1.12506i 0.826777 + 0.562530i \(0.190172\pi\)
−0.826777 + 0.562530i \(0.809828\pi\)
\(810\) 0 0
\(811\) 33.9411i 1.19183i 0.803046 + 0.595917i \(0.203211\pi\)
−0.803046 + 0.595917i \(0.796789\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000 + 16.0000i 0.559769 + 0.559769i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −52.0000 −1.81481 −0.907406 0.420255i \(-0.861941\pi\)
−0.907406 + 0.420255i \(0.861941\pi\)
\(822\) 0 0
\(823\) −19.7990 19.7990i −0.690149 0.690149i 0.272115 0.962265i \(-0.412277\pi\)
−0.962265 + 0.272115i \(0.912277\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.82843 + 2.82843i −0.0983540 + 0.0983540i −0.754572 0.656218i \(-0.772155\pi\)
0.656218 + 0.754572i \(0.272155\pi\)
\(828\) 0 0
\(829\) 38.0000i 1.31979i 0.751356 + 0.659897i \(0.229400\pi\)
−0.751356 + 0.659897i \(0.770600\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −9.00000 + 9.00000i −0.311832 + 0.311832i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.3137 −0.390593 −0.195296 0.980744i \(-0.562567\pi\)
−0.195296 + 0.980744i \(0.562567\pi\)
\(840\) 0 0
\(841\) 13.0000 0.448276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 59.3970 59.3970i 2.04090 2.04090i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 28.2843i 0.969572i
\(852\) 0 0
\(853\) 21.0000 21.0000i 0.719026 0.719026i −0.249380 0.968406i \(-0.580227\pi\)
0.968406 + 0.249380i \(0.0802267\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.00000 + 5.00000i 0.170797 + 0.170797i 0.787329 0.616533i \(-0.211463\pi\)
−0.616533 + 0.787329i \(0.711463\pi\)
\(858\) 0 0
\(859\) −39.5980 −1.35107 −0.675533 0.737330i \(-0.736086\pi\)
−0.675533 + 0.737330i \(0.736086\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.7990 + 19.7990i 0.673965 + 0.673965i 0.958628 0.284662i \(-0.0918815\pi\)
−0.284662 + 0.958628i \(0.591881\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 32.0000i 1.08553i
\(870\) 0 0
\(871\) 16.9706i 0.575026i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.0000 + 29.0000i 0.979260 + 0.979260i 0.999789 0.0205288i \(-0.00653499\pi\)
−0.0205288 + 0.999789i \(0.506535\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −24.0000 −0.808581 −0.404290 0.914631i \(-0.632481\pi\)
−0.404290 + 0.914631i \(0.632481\pi\)
\(882\) 0 0
\(883\) 36.7696 + 36.7696i 1.23739 + 1.23739i 0.961062 + 0.276332i \(0.0891188\pi\)
0.276332 + 0.961062i \(0.410881\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.4558 + 25.4558i −0.854724 + 0.854724i −0.990711 0.135987i \(-0.956579\pi\)
0.135987 + 0.990711i \(0.456579\pi\)
\(888\) 0 0
\(889\) 48.0000i 1.60987i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.0000 + 16.0000i −0.535420 + 0.535420i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −2.00000 −0.0666297
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −31.1127 + 31.1127i −1.03308 + 1.03308i −0.0336464 + 0.999434i \(0.510712\pi\)
−0.999434 + 0.0336464i \(0.989288\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 39.5980i 1.31194i −0.754787 0.655970i \(-0.772260\pi\)
0.754787 0.655970i \(-0.227740\pi\)
\(912\) 0 0
\(913\) −16.0000 + 16.0000i −0.529523 + 0.529523i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −16.0000 16.0000i −0.528367 0.528367i
\(918\) 0 0
\(919\) 16.9706 0.559807 0.279904 0.960028i \(-0.409697\pi\)
0.279904 + 0.960028i \(0.409697\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.9706 + 16.9706i 0.558593 + 0.558593i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.0000i 0.984268i 0.870519 + 0.492134i \(0.163783\pi\)
−0.870519 + 0.492134i \(0.836217\pi\)
\(930\) 0 0
\(931\) 50.9117i 1.66856i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.00000 + 5.00000i 0.163343 + 0.163343i 0.784046 0.620703i \(-0.213153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.7990 + 19.7990i −0.643381 + 0.643381i −0.951385 0.308004i \(-0.900339\pi\)
0.308004 + 0.951385i \(0.400339\pi\)
\(948\) 0 0
\(949\) 18.0000i 0.584305i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.00000 + 5.00000i −0.161966 + 0.161966i −0.783437 0.621471i \(-0.786535\pi\)
0.621471 + 0.783437i \(0.286535\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −28.2843 −0.913347
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −2.82843 + 2.82843i −0.0909561 + 0.0909561i −0.751121 0.660165i \(-0.770486\pi\)
0.660165 + 0.751121i \(0.270486\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 16.9706i 0.544611i −0.962211 0.272306i \(-0.912214\pi\)
0.962211 0.272306i \(-0.0877862\pi\)
\(972\) 0 0
\(973\) −48.0000 + 48.0000i −1.53881 + 1.53881i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.0000 + 25.0000i 0.799821 + 0.799821i 0.983067 0.183246i \(-0.0586605\pi\)
−0.183246 + 0.983067i \(0.558661\pi\)
\(978\) 0 0
\(979\) 45.2548 1.44635
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.4558 25.4558i −0.811915 0.811915i 0.173006 0.984921i \(-0.444652\pi\)
−0.984921 + 0.173006i \(0.944652\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.0000i 0.508770i
\(990\) 0 0
\(991\) 33.9411i 1.07818i 0.842250 + 0.539088i \(0.181231\pi\)
−0.842250 + 0.539088i \(0.818769\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −7.00000 7.00000i −0.221692 0.221692i 0.587519 0.809211i \(-0.300105\pi\)
−0.809211 + 0.587519i \(0.800105\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.2.x.d.3007.1 4
3.2 odd 2 1200.2.w.a.607.2 4
4.3 odd 2 inner 3600.2.x.d.3007.2 4
5.2 odd 4 720.2.x.e.703.1 4
5.3 odd 4 inner 3600.2.x.d.2143.2 4
5.4 even 2 720.2.x.e.127.2 4
12.11 even 2 1200.2.w.a.607.1 4
15.2 even 4 240.2.w.a.223.2 yes 4
15.8 even 4 1200.2.w.a.943.1 4
15.14 odd 2 240.2.w.a.127.1 4
20.3 even 4 inner 3600.2.x.d.2143.1 4
20.7 even 4 720.2.x.e.703.2 4
20.19 odd 2 720.2.x.e.127.1 4
60.23 odd 4 1200.2.w.a.943.2 4
60.47 odd 4 240.2.w.a.223.1 yes 4
60.59 even 2 240.2.w.a.127.2 yes 4
120.29 odd 2 960.2.w.c.127.2 4
120.59 even 2 960.2.w.c.127.1 4
120.77 even 4 960.2.w.c.703.1 4
120.107 odd 4 960.2.w.c.703.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.w.a.127.1 4 15.14 odd 2
240.2.w.a.127.2 yes 4 60.59 even 2
240.2.w.a.223.1 yes 4 60.47 odd 4
240.2.w.a.223.2 yes 4 15.2 even 4
720.2.x.e.127.1 4 20.19 odd 2
720.2.x.e.127.2 4 5.4 even 2
720.2.x.e.703.1 4 5.2 odd 4
720.2.x.e.703.2 4 20.7 even 4
960.2.w.c.127.1 4 120.59 even 2
960.2.w.c.127.2 4 120.29 odd 2
960.2.w.c.703.1 4 120.77 even 4
960.2.w.c.703.2 4 120.107 odd 4
1200.2.w.a.607.1 4 12.11 even 2
1200.2.w.a.607.2 4 3.2 odd 2
1200.2.w.a.943.1 4 15.8 even 4
1200.2.w.a.943.2 4 60.23 odd 4
3600.2.x.d.2143.1 4 20.3 even 4 inner
3600.2.x.d.2143.2 4 5.3 odd 4 inner
3600.2.x.d.3007.1 4 1.1 even 1 trivial
3600.2.x.d.3007.2 4 4.3 odd 2 inner