Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3600,2,Mod(2143,3600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3600.2143");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3600.x (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(28.7461447277\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(\zeta_{8})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | no (minimal twist has level 240) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
Embedding invariants
Embedding label | 3007.2 | ||
Root | \(0.707107 - 0.707107i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3600.3007 |
Dual form | 3600.2.x.d.2143.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(2801\) | \(3151\) |
\(\chi(n)\) | \(e\left(\frac{1}{4}\right)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.82843 | − | 2.82843i | 1.06904 | − | 1.06904i | 0.0716124 | − | 0.997433i | \(-0.477186\pi\) |
0.997433 | − | 0.0716124i | \(-0.0228145\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − | 5.65685i | − | 1.70561i | −0.522233 | − | 0.852803i | \(-0.674901\pi\) | ||
0.522233 | − | 0.852803i | \(-0.325099\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −3.00000 | + | 3.00000i | −0.832050 | + | 0.832050i | −0.987797 | − | 0.155747i | \(-0.950222\pi\) |
0.155747 | + | 0.987797i | \(0.450222\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −1.00000 | − | 1.00000i | −0.242536 | − | 0.242536i | 0.575363 | − | 0.817898i | \(-0.304861\pi\) |
−0.817898 | + | 0.575363i | \(0.804861\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 5.65685 | 1.29777 | 0.648886 | − | 0.760886i | \(-0.275235\pi\) | ||||
0.648886 | + | 0.760886i | \(0.275235\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −2.82843 | − | 2.82843i | −0.589768 | − | 0.589768i | 0.347801 | − | 0.937568i | \(-0.386929\pi\) |
−0.937568 | + | 0.347801i | \(0.886929\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − | 4.00000i | − | 0.742781i | −0.928477 | − | 0.371391i | \(-0.878881\pi\) | ||
0.928477 | − | 0.371391i | \(-0.121119\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −5.00000 | − | 5.00000i | −0.821995 | − | 0.821995i | 0.164399 | − | 0.986394i | \(-0.447432\pi\) |
−0.986394 | + | 0.164399i | \(0.947432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 2.82843 | + | 2.82843i | 0.431331 | + | 0.431331i | 0.889081 | − | 0.457750i | \(-0.151344\pi\) |
−0.457750 | + | 0.889081i | \(0.651344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −2.82843 | + | 2.82843i | −0.412568 | + | 0.412568i | −0.882632 | − | 0.470064i | \(-0.844231\pi\) |
0.470064 | + | 0.882632i | \(0.344231\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | − | 9.00000i | − | 1.28571i | ||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 1.00000 | − | 1.00000i | 0.137361 | − | 0.137361i | −0.635083 | − | 0.772444i | \(-0.719034\pi\) |
0.772444 | + | 0.635083i | \(0.219034\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −11.3137 | −1.47292 | −0.736460 | − | 0.676481i | \(-0.763504\pi\) | ||||
−0.736460 | + | 0.676481i | \(0.763504\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 4.00000 | 0.512148 | 0.256074 | − | 0.966657i | \(-0.417571\pi\) | ||||
0.256074 | + | 0.966657i | \(0.417571\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −2.82843 | + | 2.82843i | −0.345547 | + | 0.345547i | −0.858448 | − | 0.512901i | \(-0.828571\pi\) |
0.512901 | + | 0.858448i | \(0.328571\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 5.65685i | 0.671345i | 0.941979 | + | 0.335673i | \(0.108964\pi\) | ||||
−0.941979 | + | 0.335673i | \(0.891036\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 3.00000 | − | 3.00000i | 0.351123 | − | 0.351123i | −0.509404 | − | 0.860527i | \(-0.670134\pi\) |
0.860527 | + | 0.509404i | \(0.170134\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −16.0000 | − | 16.0000i | −1.82337 | − | 1.82337i | ||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 5.65685 | 0.636446 | 0.318223 | − | 0.948016i | \(-0.396914\pi\) | ||||
0.318223 | + | 0.948016i | \(0.396914\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −2.82843 | − | 2.82843i | −0.310460 | − | 0.310460i | 0.534628 | − | 0.845088i | \(-0.320452\pi\) |
−0.845088 | + | 0.534628i | \(0.820452\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − | 8.00000i | − | 0.847998i | −0.905663 | − | 0.423999i | \(-0.860626\pi\) | ||
0.905663 | − | 0.423999i | \(-0.139374\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 16.9706i | 1.77900i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 3.00000 | + | 3.00000i | 0.304604 | + | 0.304604i | 0.842812 | − | 0.538208i | \(-0.180899\pi\) |
−0.538208 | + | 0.842812i | \(0.680899\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −18.0000 | −1.79107 | −0.895533 | − | 0.444994i | \(-0.853206\pi\) | ||||
−0.895533 | + | 0.444994i | \(0.853206\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −2.82843 | − | 2.82843i | −0.278693 | − | 0.278693i | 0.553894 | − | 0.832587i | \(-0.313141\pi\) |
−0.832587 | + | 0.553894i | \(0.813141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −8.48528 | + | 8.48528i | −0.820303 | + | 0.820303i | −0.986151 | − | 0.165848i | \(-0.946964\pi\) |
0.165848 | + | 0.986151i | \(0.446964\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 10.0000i | 0.957826i | 0.877862 | + | 0.478913i | \(0.158969\pi\) | ||||
−0.877862 | + | 0.478913i | \(0.841031\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 11.0000 | − | 11.0000i | 1.03479 | − | 1.03479i | 0.0354205 | − | 0.999372i | \(-0.488723\pi\) |
0.999372 | − | 0.0354205i | \(-0.0112770\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −5.65685 | −0.518563 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −21.0000 | −1.90909 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.48528 | − | 8.48528i | 0.752947 | − | 0.752947i | −0.222081 | − | 0.975028i | \(-0.571285\pi\) |
0.975028 | + | 0.222081i | \(0.0712850\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | − | 5.65685i | − | 0.494242i | −0.968985 | − | 0.247121i | \(-0.920516\pi\) | ||
0.968985 | − | 0.247121i | \(-0.0794845\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 16.0000 | − | 16.0000i | 1.38738 | − | 1.38738i | ||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 5.00000 | + | 5.00000i | 0.427179 | + | 0.427179i | 0.887666 | − | 0.460487i | \(-0.152325\pi\) |
−0.460487 | + | 0.887666i | \(0.652325\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −16.9706 | −1.43942 | −0.719712 | − | 0.694273i | \(-0.755726\pi\) | ||||
−0.719712 | + | 0.694273i | \(0.755726\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 16.9706 | + | 16.9706i | 1.41915 | + | 1.41915i | ||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 18.0000i | 1.47462i | 0.675556 | + | 0.737309i | \(0.263904\pi\) | ||||
−0.675556 | + | 0.737309i | \(0.736096\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | − | 11.3137i | − | 0.920697i | −0.887738 | − | 0.460348i | \(-0.847725\pi\) | ||
0.887738 | − | 0.460348i | \(-0.152275\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −11.0000 | − | 11.0000i | −0.877896 | − | 0.877896i | 0.115421 | − | 0.993317i | \(-0.463178\pi\) |
−0.993317 | + | 0.115421i | \(0.963178\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −16.0000 | −1.26098 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 8.48528 | + | 8.48528i | 0.664619 | + | 0.664619i | 0.956465 | − | 0.291847i | \(-0.0942697\pi\) |
−0.291847 | + | 0.956465i | \(0.594270\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 8.48528 | − | 8.48528i | 0.656611 | − | 0.656611i | −0.297966 | − | 0.954577i | \(-0.596308\pi\) |
0.954577 | + | 0.297966i | \(0.0963081\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | − | 5.00000i | − | 0.384615i | ||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 5.00000 | − | 5.00000i | 0.380143 | − | 0.380143i | −0.491011 | − | 0.871154i | \(-0.663372\pi\) |
0.871154 | + | 0.491011i | \(0.163372\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 22.6274 | 1.69125 | 0.845626 | − | 0.533775i | \(-0.179227\pi\) | ||||
0.845626 | + | 0.533775i | \(0.179227\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −18.0000 | −1.33793 | −0.668965 | − | 0.743294i | \(-0.733262\pi\) | ||||
−0.668965 | + | 0.743294i | \(0.733262\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −5.65685 | + | 5.65685i | −0.413670 | + | 0.413670i | ||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 16.9706i | 1.22795i | 0.789327 | + | 0.613973i | \(0.210430\pi\) | ||||
−0.789327 | + | 0.613973i | \(0.789570\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 5.00000 | − | 5.00000i | 0.359908 | − | 0.359908i | −0.503871 | − | 0.863779i | \(-0.668091\pi\) |
0.863779 | + | 0.503871i | \(0.168091\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −11.0000 | − | 11.0000i | −0.783718 | − | 0.783718i | 0.196738 | − | 0.980456i | \(-0.436965\pi\) |
−0.980456 | + | 0.196738i | \(0.936965\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.9706 | 1.20301 | 0.601506 | − | 0.798869i | \(-0.294568\pi\) | ||||
0.601506 | + | 0.798869i | \(0.294568\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −11.3137 | − | 11.3137i | −0.794067 | − | 0.794067i | ||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − | 32.0000i | − | 2.21349i | ||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | − | 22.6274i | − | 1.55774i | −0.627188 | − | 0.778868i | \(-0.715794\pi\) | ||
0.627188 | − | 0.778868i | \(-0.284206\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 6.00000 | 0.403604 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −8.48528 | − | 8.48528i | −0.568216 | − | 0.568216i | 0.363412 | − | 0.931629i | \(-0.381612\pi\) |
−0.931629 | + | 0.363412i | \(0.881612\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 19.7990 | − | 19.7990i | 1.31411 | − | 1.31411i | 0.395744 | − | 0.918361i | \(-0.370487\pi\) |
0.918361 | − | 0.395744i | \(-0.129513\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 12.0000i | 0.792982i | 0.918039 | + | 0.396491i | \(0.129772\pi\) | ||||
−0.918039 | + | 0.396491i | \(0.870228\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 15.0000 | − | 15.0000i | 0.982683 | − | 0.982683i | −0.0171699 | − | 0.999853i | \(-0.505466\pi\) |
0.999853 | + | 0.0171699i | \(0.00546562\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 11.3137 | 0.731823 | 0.365911 | − | 0.930650i | \(-0.380757\pi\) | ||||
0.365911 | + | 0.930650i | \(0.380757\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 8.00000 | 0.515325 | 0.257663 | − | 0.966235i | \(-0.417048\pi\) | ||||
0.257663 | + | 0.966235i | \(0.417048\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −16.9706 | + | 16.9706i | −1.07981 | + | 1.07981i | ||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | − | 5.65685i | − | 0.357057i | −0.983935 | − | 0.178529i | \(-0.942866\pi\) | ||
0.983935 | − | 0.178529i | \(-0.0571337\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −16.0000 | + | 16.0000i | −1.00591 | + | 1.00591i | ||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −21.0000 | − | 21.0000i | −1.30994 | − | 1.30994i | −0.921452 | − | 0.388492i | \(-0.872996\pi\) |
−0.388492 | − | 0.921452i | \(-0.627004\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −28.2843 | −1.75750 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −2.82843 | − | 2.82843i | −0.174408 | − | 0.174408i | 0.614505 | − | 0.788913i | \(-0.289356\pi\) |
−0.788913 | + | 0.614505i | \(0.789356\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − | 6.00000i | − | 0.365826i | −0.983129 | − | 0.182913i | \(-0.941447\pi\) | ||
0.983129 | − | 0.182913i | \(-0.0585527\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | − | 11.3137i | − | 0.687259i | −0.939105 | − | 0.343629i | \(-0.888344\pi\) | ||
0.939105 | − | 0.343629i | \(-0.111656\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −3.00000 | − | 3.00000i | −0.180253 | − | 0.180253i | 0.611213 | − | 0.791466i | \(-0.290682\pi\) |
−0.791466 | + | 0.611213i | \(0.790682\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −8.00000 | −0.477240 | −0.238620 | − | 0.971113i | \(-0.576695\pi\) | ||||
−0.238620 | + | 0.971113i | \(0.576695\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −14.1421 | − | 14.1421i | −0.840663 | − | 0.840663i | 0.148282 | − | 0.988945i | \(-0.452626\pi\) |
−0.988945 | + | 0.148282i | \(0.952626\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | − | 15.0000i | − | 0.882353i | ||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −5.00000 | + | 5.00000i | −0.292103 | + | 0.292103i | −0.837911 | − | 0.545807i | \(-0.816223\pi\) |
0.545807 | + | 0.837911i | \(0.316223\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 16.9706 | 0.981433 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 16.0000 | 0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 2.82843 | − | 2.82843i | 0.161427 | − | 0.161427i | −0.621772 | − | 0.783199i | \(-0.713587\pi\) |
0.783199 | + | 0.621772i | \(0.213587\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | − | 5.65685i | − | 0.320771i | −0.987054 | − | 0.160385i | \(-0.948726\pi\) | ||
0.987054 | − | 0.160385i | \(-0.0512737\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 9.00000 | − | 9.00000i | 0.508710 | − | 0.508710i | −0.405420 | − | 0.914130i | \(-0.632875\pi\) |
0.914130 | + | 0.405420i | \(0.132875\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 11.0000 | + | 11.0000i | 0.617822 | + | 0.617822i | 0.944972 | − | 0.327151i | \(-0.106088\pi\) |
−0.327151 | + | 0.944972i | \(0.606088\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −22.6274 | −1.26689 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −5.65685 | − | 5.65685i | −0.314756 | − | 0.314756i | ||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 16.0000i | 0.882109i | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 22.6274i | 1.24372i | 0.783130 | + | 0.621858i | \(0.213622\pi\) | ||||
−0.783130 | + | 0.621858i | \(0.786378\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −1.00000 | − | 1.00000i | −0.0544735 | − | 0.0544735i | 0.679345 | − | 0.733819i | \(-0.262264\pi\) |
−0.733819 | + | 0.679345i | \(0.762264\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −5.65685 | − | 5.65685i | −0.305441 | − | 0.305441i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −2.82843 | + | 2.82843i | −0.151838 | + | 0.151838i | −0.778938 | − | 0.627100i | \(-0.784242\pi\) |
0.627100 | + | 0.778938i | \(0.284242\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − | 28.0000i | − | 1.49881i | −0.662114 | − | 0.749403i | \(-0.730341\pi\) | ||
0.662114 | − | 0.749403i | \(-0.269659\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −11.0000 | + | 11.0000i | −0.585471 | + | 0.585471i | −0.936401 | − | 0.350931i | \(-0.885865\pi\) |
0.350931 | + | 0.936401i | \(0.385865\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −11.3137 | −0.597115 | −0.298557 | − | 0.954392i | \(-0.596505\pi\) | ||||
−0.298557 | + | 0.954392i | \(0.596505\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 13.0000 | 0.684211 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.48528 | + | 8.48528i | −0.442928 | + | 0.442928i | −0.892995 | − | 0.450067i | \(-0.851400\pi\) |
0.450067 | + | 0.892995i | \(0.351400\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − | 5.65685i | − | 0.293689i | ||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −9.00000 | + | 9.00000i | −0.466002 | + | 0.466002i | −0.900617 | − | 0.434614i | \(-0.856885\pi\) |
0.434614 | + | 0.900617i | \(0.356885\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 12.0000 | + | 12.0000i | 0.618031 | + | 0.618031i | ||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 16.9706 | 0.871719 | 0.435860 | − | 0.900015i | \(-0.356444\pi\) | ||||
0.435860 | + | 0.900015i | \(0.356444\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 14.1421 | + | 14.1421i | 0.722629 | + | 0.722629i | 0.969140 | − | 0.246511i | \(-0.0792840\pi\) |
−0.246511 | + | 0.969140i | \(0.579284\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | − | 2.00000i | − | 0.101404i | −0.998714 | − | 0.0507020i | \(-0.983854\pi\) | ||
0.998714 | − | 0.0507020i | \(-0.0161459\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 5.65685i | 0.286079i | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −9.00000 | − | 9.00000i | −0.451697 | − | 0.451697i | 0.444220 | − | 0.895918i | \(-0.353481\pi\) |
−0.895918 | + | 0.444220i | \(0.853481\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 30.0000 | 1.49813 | 0.749064 | − | 0.662497i | \(-0.230503\pi\) | ||||
0.749064 | + | 0.662497i | \(0.230503\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −28.2843 | + | 28.2843i | −1.40200 | + | 1.40200i | ||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10.0000i | 0.494468i | 0.968956 | + | 0.247234i | \(0.0795217\pi\) | ||||
−0.968956 | + | 0.247234i | \(0.920478\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −32.0000 | + | 32.0000i | −1.57462 | + | 1.57462i | ||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 11.3137 | 0.552711 | 0.276355 | − | 0.961056i | \(-0.410873\pi\) | ||||
0.276355 | + | 0.961056i | \(0.410873\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −4.00000 | −0.194948 | −0.0974740 | − | 0.995238i | \(-0.531076\pi\) | ||||
−0.0974740 | + | 0.995238i | \(0.531076\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 11.3137 | − | 11.3137i | 0.547509 | − | 0.547509i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 16.9706i | 0.817443i | 0.912659 | + | 0.408722i | \(0.134025\pi\) | ||||
−0.912659 | + | 0.408722i | \(0.865975\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −21.0000 | + | 21.0000i | −1.00920 | + | 1.00920i | −0.00923827 | + | 0.999957i | \(0.502941\pi\) |
−0.999957 | + | 0.00923827i | \(0.997059\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −16.0000 | − | 16.0000i | −0.765384 | − | 0.765384i | ||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 5.65685 | 0.269987 | 0.134993 | − | 0.990846i | \(-0.456899\pi\) | ||||
0.134993 | + | 0.990846i | \(0.456899\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 25.4558 | + | 25.4558i | 1.20944 | + | 1.20944i | 0.971207 | + | 0.238236i | \(0.0765693\pi\) |
0.238236 | + | 0.971207i | \(0.423431\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 2.00000i | 0.0943858i | 0.998886 | + | 0.0471929i | \(0.0150276\pi\) | ||||
−0.998886 | + | 0.0471929i | \(0.984972\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 17.0000 | + | 17.0000i | 0.795226 | + | 0.795226i | 0.982339 | − | 0.187112i | \(-0.0599128\pi\) |
−0.187112 | + | 0.982339i | \(0.559913\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −10.0000 | −0.465746 | −0.232873 | − | 0.972507i | \(-0.574813\pi\) | ||||
−0.232873 | + | 0.972507i | \(0.574813\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 25.4558 | + | 25.4558i | 1.18303 | + | 1.18303i | 0.978954 | + | 0.204079i | \(0.0654199\pi\) |
0.204079 | + | 0.978954i | \(0.434580\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 25.4558 | − | 25.4558i | 1.17796 | − | 1.17796i | 0.197692 | − | 0.980264i | \(-0.436655\pi\) |
0.980264 | − | 0.197692i | \(-0.0633445\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 16.0000i | 0.738811i | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 16.0000 | − | 16.0000i | 0.735681 | − | 0.735681i | ||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −22.6274 | −1.03387 | −0.516937 | − | 0.856024i | \(-0.672928\pi\) | ||||
−0.516937 | + | 0.856024i | \(0.672928\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 30.0000 | 1.36788 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 19.7990 | − | 19.7990i | 0.897178 | − | 0.897178i | −0.0980078 | − | 0.995186i | \(-0.531247\pi\) |
0.995186 | + | 0.0980078i | \(0.0312470\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 28.2843i | 1.27645i | 0.769849 | + | 0.638226i | \(0.220331\pi\) | ||||
−0.769849 | + | 0.638226i | \(0.779669\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −4.00000 | + | 4.00000i | −0.180151 | + | 0.180151i | ||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 16.0000 | + | 16.0000i | 0.717698 | + | 0.717698i | ||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 28.2843 | 1.26618 | 0.633089 | − | 0.774079i | \(-0.281787\pi\) | ||||
0.633089 | + | 0.774079i | \(0.281787\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −31.1127 | − | 31.1127i | −1.38725 | − | 1.38725i | −0.831052 | − | 0.556195i | \(-0.812261\pi\) |
−0.556195 | − | 0.831052i | \(-0.687739\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 20.0000i | 0.886484i | 0.896402 | + | 0.443242i | \(0.146172\pi\) | ||||
−0.896402 | + | 0.443242i | \(0.853828\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | − | 16.9706i | − | 0.750733i | ||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 16.0000 | + | 16.0000i | 0.703679 | + | 0.703679i | ||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 10.0000 | 0.438108 | 0.219054 | − | 0.975713i | \(-0.429703\pi\) | ||||
0.219054 | + | 0.975713i | \(0.429703\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 25.4558 | + | 25.4558i | 1.11311 | + | 1.11311i | 0.992728 | + | 0.120378i | \(0.0384107\pi\) |
0.120378 | + | 0.992728i | \(0.461589\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | − | 7.00000i | − | 0.304348i | ||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −50.9117 | −2.19292 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −22.0000 | −0.945854 | −0.472927 | − | 0.881102i | \(-0.656803\pi\) | ||||
−0.472927 | + | 0.881102i | \(0.656803\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −8.48528 | + | 8.48528i | −0.362804 | + | 0.362804i | −0.864844 | − | 0.502040i | \(-0.832583\pi\) |
0.502040 | + | 0.864844i | \(0.332583\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | − | 22.6274i | − | 0.963960i | ||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 16.0000 | − | 16.0000i | 0.680389 | − | 0.680389i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 17.0000 | + | 17.0000i | 0.720313 | + | 0.720313i | 0.968669 | − | 0.248356i | \(-0.0798902\pi\) |
−0.248356 | + | 0.968669i | \(0.579890\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −16.9706 | −0.717778 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 8.48528 | + | 8.48528i | 0.357612 | + | 0.357612i | 0.862932 | − | 0.505320i | \(-0.168626\pi\) |
−0.505320 | + | 0.862932i | \(0.668626\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | − | 22.0000i | − | 0.922288i | −0.887325 | − | 0.461144i | \(-0.847439\pi\) | ||
0.887325 | − | 0.461144i | \(-0.152561\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 11.3137i | 0.473464i | 0.971575 | + | 0.236732i | \(0.0760763\pi\) | ||||
−0.971575 | + | 0.236732i | \(0.923924\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −23.0000 | − | 23.0000i | −0.957503 | − | 0.957503i | 0.0416305 | − | 0.999133i | \(-0.486745\pi\) |
−0.999133 | + | 0.0416305i | \(0.986745\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −16.0000 | −0.663792 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −5.65685 | − | 5.65685i | −0.234283 | − | 0.234283i | ||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −14.1421 | + | 14.1421i | −0.583708 | + | 0.583708i | −0.935920 | − | 0.352212i | \(-0.885430\pi\) |
0.352212 | + | 0.935920i | \(0.385430\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 21.0000 | − | 21.0000i | 0.862367 | − | 0.862367i | −0.129246 | − | 0.991613i | \(-0.541256\pi\) |
0.991613 | + | 0.129246i | \(0.0412557\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −11.3137 | −0.462266 | −0.231133 | − | 0.972922i | \(-0.574243\pi\) | ||||
−0.231133 | + | 0.972922i | \(0.574243\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 8.48528 | − | 8.48528i | 0.344407 | − | 0.344407i | −0.513614 | − | 0.858021i | \(-0.671694\pi\) |
0.858021 | + | 0.513614i | \(0.171694\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | − | 16.9706i | − | 0.686555i | ||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −3.00000 | + | 3.00000i | −0.121169 | + | 0.121169i | −0.765091 | − | 0.643922i | \(-0.777306\pi\) |
0.643922 | + | 0.765091i | \(0.277306\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 23.0000 | + | 23.0000i | 0.925945 | + | 0.925945i | 0.997441 | − | 0.0714958i | \(-0.0227772\pi\) |
−0.0714958 | + | 0.997441i | \(0.522777\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 39.5980 | 1.59158 | 0.795789 | − | 0.605575i | \(-0.207057\pi\) | ||||
0.795789 | + | 0.605575i | \(0.207057\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −22.6274 | − | 22.6274i | −0.906548 | − | 0.906548i | ||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 10.0000i | 0.398726i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 22.6274i | 0.900783i | 0.892831 | + | 0.450392i | \(0.148716\pi\) | ||||
−0.892831 | + | 0.450392i | \(0.851284\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 27.0000 | + | 27.0000i | 1.06978 | + | 1.06978i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 48.0000 | 1.89589 | 0.947943 | − | 0.318440i | \(-0.103159\pi\) | ||||
0.947943 | + | 0.318440i | \(0.103159\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −19.7990 | − | 19.7990i | −0.780796 | − | 0.780796i | 0.199169 | − | 0.979965i | \(-0.436176\pi\) |
−0.979965 | + | 0.199169i | \(0.936176\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −8.48528 | + | 8.48528i | −0.333591 | + | 0.333591i | −0.853948 | − | 0.520358i | \(-0.825799\pi\) |
0.520358 | + | 0.853948i | \(0.325799\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 64.0000i | 2.51222i | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −23.0000 | + | 23.0000i | −0.900060 | + | 0.900060i | −0.995441 | − | 0.0953813i | \(-0.969593\pi\) |
0.0953813 | + | 0.995441i | \(0.469593\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 11.3137 | 0.440720 | 0.220360 | − | 0.975419i | \(-0.429277\pi\) | ||||
0.220360 | + | 0.975419i | \(0.429277\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −28.0000 | −1.08907 | −0.544537 | − | 0.838737i | \(-0.683295\pi\) | ||||
−0.544537 | + | 0.838737i | \(0.683295\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −11.3137 | + | 11.3137i | −0.438069 | + | 0.438069i | ||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | − | 22.6274i | − | 0.873522i | ||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 35.0000 | − | 35.0000i | 1.34915 | − | 1.34915i | 0.462566 | − | 0.886585i | \(-0.346929\pi\) |
0.886585 | − | 0.462566i | \(-0.153071\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 5.00000 | + | 5.00000i | 0.192166 | + | 0.192166i | 0.796631 | − | 0.604466i | \(-0.206613\pi\) |
−0.604466 | + | 0.796631i | \(0.706613\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 16.9706 | 0.651270 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −8.48528 | − | 8.48528i | −0.324680 | − | 0.324680i | 0.525879 | − | 0.850559i | \(-0.323736\pi\) |
−0.850559 | + | 0.525879i | \(0.823736\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 6.00000i | 0.228582i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 22.6274i | 0.860788i | 0.902641 | + | 0.430394i | \(0.141625\pi\) | ||||
−0.902641 | + | 0.430394i | \(0.858375\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 28.0000 | 1.05755 | 0.528773 | − | 0.848763i | \(-0.322652\pi\) | ||||
0.528773 | + | 0.848763i | \(0.322652\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −28.2843 | − | 28.2843i | −1.06676 | − | 1.06676i | ||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −50.9117 | + | 50.9117i | −1.91473 | + | 1.91473i | ||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − | 28.0000i | − | 1.05156i | −0.850620 | − | 0.525781i | \(-0.823773\pi\) | ||
0.850620 | − | 0.525781i | \(-0.176227\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 11.3137 | 0.421930 | 0.210965 | − | 0.977494i | \(-0.432339\pi\) | ||||
0.210965 | + | 0.977494i | \(0.432339\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −16.0000 | −0.595871 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 31.1127 | − | 31.1127i | 1.15391 | − | 1.15391i | 0.168144 | − | 0.985763i | \(-0.446223\pi\) |
0.985763 | − | 0.168144i | \(-0.0537772\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − | 5.65685i | − | 0.209226i | ||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −17.0000 | + | 17.0000i | −0.627909 | + | 0.627909i | −0.947542 | − | 0.319632i | \(-0.896441\pi\) |
0.319632 | + | 0.947542i | \(0.396441\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 16.0000 | + | 16.0000i | 0.589368 | + | 0.589368i | ||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −28.2843 | −1.04045 | −0.520227 | − | 0.854028i | \(-0.674153\pi\) | ||||
−0.520227 | + | 0.854028i | \(0.674153\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 25.4558 | + | 25.4558i | 0.933884 | + | 0.933884i | 0.997946 | − | 0.0640616i | \(-0.0204054\pi\) |
−0.0640616 | + | 0.997946i | \(0.520405\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 48.0000i | 1.75388i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 33.9411i | 1.23853i | 0.785182 | + | 0.619265i | \(0.212569\pi\) | ||||
−0.785182 | + | 0.619265i | \(0.787431\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 5.00000 | + | 5.00000i | 0.181728 | + | 0.181728i | 0.792108 | − | 0.610380i | \(-0.208983\pi\) |
−0.610380 | + | 0.792108i | \(0.708983\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 6.00000 | 0.217500 | 0.108750 | − | 0.994069i | \(-0.465315\pi\) | ||||
0.108750 | + | 0.994069i | \(0.465315\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 28.2843 | + | 28.2843i | 1.02396 | + | 1.02396i | ||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 33.9411 | − | 33.9411i | 1.22554 | − | 1.22554i | ||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 8.00000i | 0.288487i | 0.989542 | + | 0.144244i | \(0.0460749\pi\) | ||||
−0.989542 | + | 0.144244i | \(0.953925\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −17.0000 | + | 17.0000i | −0.611448 | + | 0.611448i | −0.943323 | − | 0.331876i | \(-0.892319\pi\) |
0.331876 | + | 0.943323i | \(0.392319\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 32.0000 | 1.14505 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 14.1421 | − | 14.1421i | 0.504113 | − | 0.504113i | −0.408601 | − | 0.912713i | \(-0.633983\pi\) |
0.912713 | + | 0.408601i | \(0.133983\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | − | 62.2254i | − | 2.21248i | ||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −12.0000 | + | 12.0000i | −0.426132 | + | 0.426132i | ||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 27.0000 | + | 27.0000i | 0.956389 | + | 0.956389i | 0.999088 | − | 0.0426989i | \(-0.0135956\pi\) |
−0.0426989 | + | 0.999088i | \(0.513596\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 5.65685 | 0.200125 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −16.9706 | − | 16.9706i | −0.598878 | − | 0.598878i | ||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 32.0000i | 1.12506i | 0.826777 | + | 0.562530i | \(0.190172\pi\) | ||||
−0.826777 | + | 0.562530i | \(0.809828\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − | 33.9411i | − | 1.19183i | −0.803046 | − | 0.595917i | \(-0.796789\pi\) | ||
0.803046 | − | 0.595917i | \(-0.203211\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | + | 16.0000i | 0.559769 | + | 0.559769i | ||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −52.0000 | −1.81481 | −0.907406 | − | 0.420255i | \(-0.861941\pi\) | ||||
−0.907406 | + | 0.420255i | \(0.861941\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 19.7990 | + | 19.7990i | 0.690149 | + | 0.690149i | 0.962265 | − | 0.272115i | \(-0.0877232\pi\) |
−0.272115 | + | 0.962265i | \(0.587723\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 2.82843 | − | 2.82843i | 0.0983540 | − | 0.0983540i | −0.656218 | − | 0.754572i | \(-0.727845\pi\) |
0.754572 | + | 0.656218i | \(0.227845\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 38.0000i | 1.31979i | 0.751356 | + | 0.659897i | \(0.229400\pi\) | ||||
−0.751356 | + | 0.659897i | \(0.770600\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −9.00000 | + | 9.00000i | −0.311832 | + | 0.311832i | ||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 11.3137 | 0.390593 | 0.195296 | − | 0.980744i | \(-0.437433\pi\) | ||||
0.195296 | + | 0.980744i | \(0.437433\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 13.0000 | 0.448276 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −59.3970 | + | 59.3970i | −2.04090 | + | 2.04090i | ||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 28.2843i | 0.969572i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 21.0000 | − | 21.0000i | 0.719026 | − | 0.719026i | −0.249380 | − | 0.968406i | \(-0.580227\pi\) |
0.968406 | + | 0.249380i | \(0.0802267\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 5.00000 | + | 5.00000i | 0.170797 | + | 0.170797i | 0.787329 | − | 0.616533i | \(-0.211463\pi\) |
−0.616533 | + | 0.787329i | \(0.711463\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 39.5980 | 1.35107 | 0.675533 | − | 0.737330i | \(-0.263914\pi\) | ||||
0.675533 | + | 0.737330i | \(0.263914\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −19.7990 | − | 19.7990i | −0.673965 | − | 0.673965i | 0.284662 | − | 0.958628i | \(-0.408119\pi\) |
−0.958628 | + | 0.284662i | \(0.908119\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − | 32.0000i | − | 1.08553i | ||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | − | 16.9706i | − | 0.575026i | ||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 29.0000 | + | 29.0000i | 0.979260 | + | 0.979260i | 0.999789 | − | 0.0205288i | \(-0.00653499\pi\) |
−0.0205288 | + | 0.999789i | \(0.506535\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −24.0000 | −0.808581 | −0.404290 | − | 0.914631i | \(-0.632481\pi\) | ||||
−0.404290 | + | 0.914631i | \(0.632481\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −36.7696 | − | 36.7696i | −1.23739 | − | 1.23739i | −0.961062 | − | 0.276332i | \(-0.910881\pi\) |
−0.276332 | − | 0.961062i | \(-0.589119\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 25.4558 | − | 25.4558i | 0.854724 | − | 0.854724i | −0.135987 | − | 0.990711i | \(-0.543421\pi\) |
0.990711 | + | 0.135987i | \(0.0434205\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | − | 48.0000i | − | 1.60987i | ||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −16.0000 | + | 16.0000i | −0.535420 | + | 0.535420i | ||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −2.00000 | −0.0666297 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 31.1127 | − | 31.1127i | 1.03308 | − | 1.03308i | 0.0336464 | − | 0.999434i | \(-0.489288\pi\) |
0.999434 | − | 0.0336464i | \(-0.0107120\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 39.5980i | 1.31194i | 0.754787 | + | 0.655970i | \(0.227740\pi\) | ||||
−0.754787 | + | 0.655970i | \(0.772260\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −16.0000 | + | 16.0000i | −0.529523 | + | 0.529523i | ||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −16.0000 | − | 16.0000i | −0.528367 | − | 0.528367i | ||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −16.9706 | −0.559807 | −0.279904 | − | 0.960028i | \(-0.590303\pi\) | ||||
−0.279904 | + | 0.960028i | \(0.590303\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −16.9706 | − | 16.9706i | −0.558593 | − | 0.558593i | ||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 30.0000i | 0.984268i | 0.870519 | + | 0.492134i | \(0.163783\pi\) | ||||
−0.870519 | + | 0.492134i | \(0.836217\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | − | 50.9117i | − | 1.66856i | ||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 5.00000 | + | 5.00000i | 0.163343 | + | 0.163343i | 0.784046 | − | 0.620703i | \(-0.213153\pi\) |
−0.620703 | + | 0.784046i | \(0.713153\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 42.0000 | 1.36916 | 0.684580 | − | 0.728937i | \(-0.259985\pi\) | ||||
0.684580 | + | 0.728937i | \(0.259985\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 19.7990 | − | 19.7990i | 0.643381 | − | 0.643381i | −0.308004 | − | 0.951385i | \(-0.599661\pi\) |
0.951385 | + | 0.308004i | \(0.0996611\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 18.0000i | 0.584305i | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −5.00000 | + | 5.00000i | −0.161966 | + | 0.161966i | −0.783437 | − | 0.621471i | \(-0.786535\pi\) |
0.621471 | + | 0.783437i | \(0.286535\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 28.2843 | 0.913347 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 31.0000 | 1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 2.82843 | − | 2.82843i | 0.0909561 | − | 0.0909561i | −0.660165 | − | 0.751121i | \(-0.729514\pi\) |
0.751121 | + | 0.660165i | \(0.229514\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 16.9706i | 0.544611i | 0.962211 | + | 0.272306i | \(0.0877862\pi\) | ||||
−0.962211 | + | 0.272306i | \(0.912214\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −48.0000 | + | 48.0000i | −1.53881 | + | 1.53881i | ||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 25.0000 | + | 25.0000i | 0.799821 | + | 0.799821i | 0.983067 | − | 0.183246i | \(-0.0586605\pi\) |
−0.183246 | + | 0.983067i | \(0.558661\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −45.2548 | −1.44635 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 25.4558 | + | 25.4558i | 0.811915 | + | 0.811915i | 0.984921 | − | 0.173006i | \(-0.0553478\pi\) |
−0.173006 | + | 0.984921i | \(0.555348\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | − | 16.0000i | − | 0.508770i | ||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | − | 33.9411i | − | 1.07818i | −0.842250 | − | 0.539088i | \(-0.818769\pi\) | ||
0.842250 | − | 0.539088i | \(-0.181231\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −7.00000 | − | 7.00000i | −0.221692 | − | 0.221692i | 0.587519 | − | 0.809211i | \(-0.300105\pi\) |
−0.809211 | + | 0.587519i | \(0.800105\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3600.2.x.d.3007.2 | 4 | ||
3.2 | odd | 2 | 1200.2.w.a.607.1 | 4 | |||
4.3 | odd | 2 | inner | 3600.2.x.d.3007.1 | 4 | ||
5.2 | odd | 4 | 720.2.x.e.703.2 | 4 | |||
5.3 | odd | 4 | inner | 3600.2.x.d.2143.1 | 4 | ||
5.4 | even | 2 | 720.2.x.e.127.1 | 4 | |||
12.11 | even | 2 | 1200.2.w.a.607.2 | 4 | |||
15.2 | even | 4 | 240.2.w.a.223.1 | yes | 4 | ||
15.8 | even | 4 | 1200.2.w.a.943.2 | 4 | |||
15.14 | odd | 2 | 240.2.w.a.127.2 | yes | 4 | ||
20.3 | even | 4 | inner | 3600.2.x.d.2143.2 | 4 | ||
20.7 | even | 4 | 720.2.x.e.703.1 | 4 | |||
20.19 | odd | 2 | 720.2.x.e.127.2 | 4 | |||
60.23 | odd | 4 | 1200.2.w.a.943.1 | 4 | |||
60.47 | odd | 4 | 240.2.w.a.223.2 | yes | 4 | ||
60.59 | even | 2 | 240.2.w.a.127.1 | ✓ | 4 | ||
120.29 | odd | 2 | 960.2.w.c.127.1 | 4 | |||
120.59 | even | 2 | 960.2.w.c.127.2 | 4 | |||
120.77 | even | 4 | 960.2.w.c.703.2 | 4 | |||
120.107 | odd | 4 | 960.2.w.c.703.1 | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
240.2.w.a.127.1 | ✓ | 4 | 60.59 | even | 2 | ||
240.2.w.a.127.2 | yes | 4 | 15.14 | odd | 2 | ||
240.2.w.a.223.1 | yes | 4 | 15.2 | even | 4 | ||
240.2.w.a.223.2 | yes | 4 | 60.47 | odd | 4 | ||
720.2.x.e.127.1 | 4 | 5.4 | even | 2 | |||
720.2.x.e.127.2 | 4 | 20.19 | odd | 2 | |||
720.2.x.e.703.1 | 4 | 20.7 | even | 4 | |||
720.2.x.e.703.2 | 4 | 5.2 | odd | 4 | |||
960.2.w.c.127.1 | 4 | 120.29 | odd | 2 | |||
960.2.w.c.127.2 | 4 | 120.59 | even | 2 | |||
960.2.w.c.703.1 | 4 | 120.107 | odd | 4 | |||
960.2.w.c.703.2 | 4 | 120.77 | even | 4 | |||
1200.2.w.a.607.1 | 4 | 3.2 | odd | 2 | |||
1200.2.w.a.607.2 | 4 | 12.11 | even | 2 | |||
1200.2.w.a.943.1 | 4 | 60.23 | odd | 4 | |||
1200.2.w.a.943.2 | 4 | 15.8 | even | 4 | |||
3600.2.x.d.2143.1 | 4 | 5.3 | odd | 4 | inner | ||
3600.2.x.d.2143.2 | 4 | 20.3 | even | 4 | inner | ||
3600.2.x.d.3007.1 | 4 | 4.3 | odd | 2 | inner | ||
3600.2.x.d.3007.2 | 4 | 1.1 | even | 1 | trivial |