Properties

Label 3600.3.e.bd.3151.4
Level $3600$
Weight $3$
Character 3600.3151
Analytic conductor $98.093$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3600,3,Mod(3151,3600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3600.3151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3600.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.0928951697\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3 \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3151.4
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 3600.3151
Dual form 3600.3.e.bd.3151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.48528i q^{7} +13.8564i q^{11} +9.79796 q^{13} -19.5959 q^{17} -13.8564i q^{19} -25.4558i q^{23} -22.0000 q^{29} -55.4256i q^{31} -48.9898 q^{37} -22.0000 q^{41} -59.3970i q^{43} -8.48528i q^{47} -23.0000 q^{49} -29.3939 q^{53} -13.8564i q^{59} +46.0000 q^{61} +59.3970i q^{67} -27.7128i q^{71} +78.3837 q^{73} -117.576 q^{77} -76.3675i q^{83} +146.000 q^{89} +83.1384i q^{91} +58.7878 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 88 q^{29} - 88 q^{41} - 92 q^{49} + 184 q^{61} + 584 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 8.48528i 1.21218i 0.795395 + 0.606092i \(0.207263\pi\)
−0.795395 + 0.606092i \(0.792737\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 13.8564i 1.25967i 0.776728 + 0.629837i \(0.216878\pi\)
−0.776728 + 0.629837i \(0.783122\pi\)
\(12\) 0 0
\(13\) 9.79796 0.753689 0.376845 0.926277i \(-0.377009\pi\)
0.376845 + 0.926277i \(0.377009\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −19.5959 −1.15270 −0.576351 0.817203i \(-0.695524\pi\)
−0.576351 + 0.817203i \(0.695524\pi\)
\(18\) 0 0
\(19\) − 13.8564i − 0.729285i −0.931148 0.364642i \(-0.881191\pi\)
0.931148 0.364642i \(-0.118809\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 25.4558i − 1.10678i −0.832924 0.553388i \(-0.813335\pi\)
0.832924 0.553388i \(-0.186665\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −22.0000 −0.758621 −0.379310 0.925270i \(-0.623839\pi\)
−0.379310 + 0.925270i \(0.623839\pi\)
\(30\) 0 0
\(31\) − 55.4256i − 1.78792i −0.448143 0.893962i \(-0.647915\pi\)
0.448143 0.893962i \(-0.352085\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −48.9898 −1.32405 −0.662024 0.749482i \(-0.730302\pi\)
−0.662024 + 0.749482i \(0.730302\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −22.0000 −0.536585 −0.268293 0.963337i \(-0.586459\pi\)
−0.268293 + 0.963337i \(0.586459\pi\)
\(42\) 0 0
\(43\) − 59.3970i − 1.38132i −0.723177 0.690662i \(-0.757319\pi\)
0.723177 0.690662i \(-0.242681\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 8.48528i − 0.180538i −0.995917 0.0902690i \(-0.971227\pi\)
0.995917 0.0902690i \(-0.0287727\pi\)
\(48\) 0 0
\(49\) −23.0000 −0.469388
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −29.3939 −0.554601 −0.277301 0.960783i \(-0.589440\pi\)
−0.277301 + 0.960783i \(0.589440\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 13.8564i − 0.234854i −0.993081 0.117427i \(-0.962535\pi\)
0.993081 0.117427i \(-0.0374647\pi\)
\(60\) 0 0
\(61\) 46.0000 0.754098 0.377049 0.926193i \(-0.376939\pi\)
0.377049 + 0.926193i \(0.376939\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 59.3970i 0.886522i 0.896393 + 0.443261i \(0.146178\pi\)
−0.896393 + 0.443261i \(0.853822\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 27.7128i − 0.390321i −0.980771 0.195161i \(-0.937477\pi\)
0.980771 0.195161i \(-0.0625228\pi\)
\(72\) 0 0
\(73\) 78.3837 1.07375 0.536874 0.843662i \(-0.319605\pi\)
0.536874 + 0.843662i \(0.319605\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −117.576 −1.52695
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 76.3675i − 0.920091i −0.887895 0.460045i \(-0.847833\pi\)
0.887895 0.460045i \(-0.152167\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 146.000 1.64045 0.820225 0.572041i \(-0.193848\pi\)
0.820225 + 0.572041i \(0.193848\pi\)
\(90\) 0 0
\(91\) 83.1384i 0.913609i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 58.7878 0.606059 0.303030 0.952981i \(-0.402002\pi\)
0.303030 + 0.952981i \(0.402002\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 70.0000 0.693069 0.346535 0.938037i \(-0.387358\pi\)
0.346535 + 0.938037i \(0.387358\pi\)
\(102\) 0 0
\(103\) 25.4558i 0.247144i 0.992336 + 0.123572i \(0.0394350\pi\)
−0.992336 + 0.123572i \(0.960565\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 42.4264i 0.396508i 0.980151 + 0.198254i \(0.0635272\pi\)
−0.980151 + 0.198254i \(0.936473\pi\)
\(108\) 0 0
\(109\) 146.000 1.33945 0.669725 0.742609i \(-0.266412\pi\)
0.669725 + 0.742609i \(0.266412\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −39.1918 −0.346830 −0.173415 0.984849i \(-0.555480\pi\)
−0.173415 + 0.984849i \(0.555480\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 166.277i − 1.39728i
\(120\) 0 0
\(121\) −71.0000 −0.586777
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 110.309i 0.868572i 0.900775 + 0.434286i \(0.142999\pi\)
−0.900775 + 0.434286i \(0.857001\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 180.133i − 1.37506i −0.726154 0.687532i \(-0.758694\pi\)
0.726154 0.687532i \(-0.241306\pi\)
\(132\) 0 0
\(133\) 117.576 0.884026
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 215.555 1.57339 0.786697 0.617339i \(-0.211789\pi\)
0.786697 + 0.617339i \(0.211789\pi\)
\(138\) 0 0
\(139\) 13.8564i 0.0996864i 0.998757 + 0.0498432i \(0.0158722\pi\)
−0.998757 + 0.0498432i \(0.984128\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 135.765i 0.949402i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.00000 −0.0134228 −0.00671141 0.999977i \(-0.502136\pi\)
−0.00671141 + 0.999977i \(0.502136\pi\)
\(150\) 0 0
\(151\) 27.7128i 0.183529i 0.995781 + 0.0917643i \(0.0292506\pi\)
−0.995781 + 0.0917643i \(0.970749\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −68.5857 −0.436852 −0.218426 0.975854i \(-0.570092\pi\)
−0.218426 + 0.975854i \(0.570092\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 216.000 1.34161
\(162\) 0 0
\(163\) 110.309i 0.676740i 0.941013 + 0.338370i \(0.109876\pi\)
−0.941013 + 0.338370i \(0.890124\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 93.3381i 0.558911i 0.960159 + 0.279455i \(0.0901539\pi\)
−0.960159 + 0.279455i \(0.909846\pi\)
\(168\) 0 0
\(169\) −73.0000 −0.431953
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 48.9898 0.283178 0.141589 0.989926i \(-0.454779\pi\)
0.141589 + 0.989926i \(0.454779\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 263.272i − 1.47079i −0.677638 0.735396i \(-0.736996\pi\)
0.677638 0.735396i \(-0.263004\pi\)
\(180\) 0 0
\(181\) 26.0000 0.143646 0.0718232 0.997417i \(-0.477118\pi\)
0.0718232 + 0.997417i \(0.477118\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 271.529i − 1.45203i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 110.851i − 0.580373i −0.956970 0.290187i \(-0.906283\pi\)
0.956970 0.290187i \(-0.0937174\pi\)
\(192\) 0 0
\(193\) −333.131 −1.72607 −0.863033 0.505148i \(-0.831438\pi\)
−0.863033 + 0.505148i \(0.831438\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 107.778 0.547094 0.273547 0.961859i \(-0.411803\pi\)
0.273547 + 0.961859i \(0.411803\pi\)
\(198\) 0 0
\(199\) − 249.415i − 1.25334i −0.779283 0.626672i \(-0.784417\pi\)
0.779283 0.626672i \(-0.215583\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 186.676i − 0.919587i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 192.000 0.918660
\(210\) 0 0
\(211\) − 96.9948i − 0.459691i −0.973227 0.229846i \(-0.926178\pi\)
0.973227 0.229846i \(-0.0738221\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 470.302 2.16729
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −192.000 −0.868778
\(222\) 0 0
\(223\) 229.103i 1.02737i 0.857980 + 0.513683i \(0.171719\pi\)
−0.857980 + 0.513683i \(0.828281\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 296.985i − 1.30830i −0.756363 0.654152i \(-0.773026\pi\)
0.756363 0.654152i \(-0.226974\pi\)
\(228\) 0 0
\(229\) 70.0000 0.305677 0.152838 0.988251i \(-0.451159\pi\)
0.152838 + 0.988251i \(0.451159\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −156.767 −0.672821 −0.336411 0.941715i \(-0.609213\pi\)
−0.336411 + 0.941715i \(0.609213\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 332.554i − 1.39144i −0.718314 0.695719i \(-0.755086\pi\)
0.718314 0.695719i \(-0.244914\pi\)
\(240\) 0 0
\(241\) −122.000 −0.506224 −0.253112 0.967437i \(-0.581454\pi\)
−0.253112 + 0.967437i \(0.581454\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 135.765i − 0.549654i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 290.985i 1.15930i 0.814865 + 0.579650i \(0.196811\pi\)
−0.814865 + 0.579650i \(0.803189\pi\)
\(252\) 0 0
\(253\) 352.727 1.39418
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −78.3837 −0.304995 −0.152497 0.988304i \(-0.548732\pi\)
−0.152497 + 0.988304i \(0.548732\pi\)
\(258\) 0 0
\(259\) − 415.692i − 1.60499i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 347.897i 1.32280i 0.750033 + 0.661400i \(0.230038\pi\)
−0.750033 + 0.661400i \(0.769962\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 142.000 0.527881 0.263941 0.964539i \(-0.414978\pi\)
0.263941 + 0.964539i \(0.414978\pi\)
\(270\) 0 0
\(271\) − 332.554i − 1.22714i −0.789642 0.613568i \(-0.789734\pi\)
0.789642 0.613568i \(-0.210266\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −88.1816 −0.318345 −0.159173 0.987251i \(-0.550883\pi\)
−0.159173 + 0.987251i \(0.550883\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −406.000 −1.44484 −0.722420 0.691455i \(-0.756970\pi\)
−0.722420 + 0.691455i \(0.756970\pi\)
\(282\) 0 0
\(283\) − 93.3381i − 0.329817i −0.986309 0.164908i \(-0.947267\pi\)
0.986309 0.164908i \(-0.0527328\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 186.676i − 0.650440i
\(288\) 0 0
\(289\) 95.0000 0.328720
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 303.737 1.03664 0.518322 0.855186i \(-0.326557\pi\)
0.518322 + 0.855186i \(0.326557\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 249.415i − 0.834165i
\(300\) 0 0
\(301\) 504.000 1.67442
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 280.014i − 0.912099i −0.889955 0.456049i \(-0.849264\pi\)
0.889955 0.456049i \(-0.150736\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 138.564i − 0.445544i −0.974871 0.222772i \(-0.928490\pi\)
0.974871 0.222772i \(-0.0715105\pi\)
\(312\) 0 0
\(313\) −607.473 −1.94081 −0.970405 0.241484i \(-0.922366\pi\)
−0.970405 + 0.241484i \(0.922366\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −68.5857 −0.216359 −0.108179 0.994131i \(-0.534502\pi\)
−0.108179 + 0.994131i \(0.534502\pi\)
\(318\) 0 0
\(319\) − 304.841i − 0.955614i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 271.529i 0.840647i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 72.0000 0.218845
\(330\) 0 0
\(331\) − 180.133i − 0.544209i −0.962268 0.272105i \(-0.912280\pi\)
0.962268 0.272105i \(-0.0877197\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −470.302 −1.39555 −0.697777 0.716315i \(-0.745828\pi\)
−0.697777 + 0.716315i \(0.745828\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 768.000 2.25220
\(342\) 0 0
\(343\) 220.617i 0.643199i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 619.426i 1.78509i 0.450960 + 0.892544i \(0.351082\pi\)
−0.450960 + 0.892544i \(0.648918\pi\)
\(348\) 0 0
\(349\) 214.000 0.613181 0.306590 0.951842i \(-0.400812\pi\)
0.306590 + 0.951842i \(0.400812\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −352.727 −0.999225 −0.499613 0.866249i \(-0.666524\pi\)
−0.499613 + 0.866249i \(0.666524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 27.7128i − 0.0771945i −0.999255 0.0385972i \(-0.987711\pi\)
0.999255 0.0385972i \(-0.0122889\pi\)
\(360\) 0 0
\(361\) 169.000 0.468144
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 246.073i 0.670499i 0.942129 + 0.335250i \(0.108821\pi\)
−0.942129 + 0.335250i \(0.891179\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 249.415i − 0.672278i
\(372\) 0 0
\(373\) −382.120 −1.02445 −0.512226 0.858851i \(-0.671179\pi\)
−0.512226 + 0.858851i \(0.671179\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −215.555 −0.571764
\(378\) 0 0
\(379\) 290.985i 0.767769i 0.923381 + 0.383885i \(0.125414\pi\)
−0.923381 + 0.383885i \(0.874586\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 568.514i − 1.48437i −0.670195 0.742185i \(-0.733789\pi\)
0.670195 0.742185i \(-0.266211\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 670.000 1.72237 0.861183 0.508296i \(-0.169724\pi\)
0.861183 + 0.508296i \(0.169724\pi\)
\(390\) 0 0
\(391\) 498.831i 1.27578i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −362.524 −0.913160 −0.456580 0.889682i \(-0.650926\pi\)
−0.456580 + 0.889682i \(0.650926\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.00000 −0.00498753 −0.00249377 0.999997i \(-0.500794\pi\)
−0.00249377 + 0.999997i \(0.500794\pi\)
\(402\) 0 0
\(403\) − 543.058i − 1.34754i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 678.823i − 1.66787i
\(408\) 0 0
\(409\) 650.000 1.58924 0.794621 0.607106i \(-0.207670\pi\)
0.794621 + 0.607106i \(0.207670\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 117.576 0.284686
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 540.400i − 1.28974i −0.764293 0.644869i \(-0.776912\pi\)
0.764293 0.644869i \(-0.223088\pi\)
\(420\) 0 0
\(421\) −482.000 −1.14489 −0.572447 0.819942i \(-0.694006\pi\)
−0.572447 + 0.819942i \(0.694006\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 390.323i 0.914105i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 221.703i − 0.514391i −0.966359 0.257195i \(-0.917202\pi\)
0.966359 0.257195i \(-0.0827984\pi\)
\(432\) 0 0
\(433\) 568.282 1.31243 0.656214 0.754575i \(-0.272157\pi\)
0.656214 + 0.754575i \(0.272157\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −352.727 −0.807155
\(438\) 0 0
\(439\) 526.543i 1.19942i 0.800219 + 0.599708i \(0.204717\pi\)
−0.800219 + 0.599708i \(0.795283\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 432.749i 0.976861i 0.872603 + 0.488430i \(0.162430\pi\)
−0.872603 + 0.488430i \(0.837570\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.0000 −0.0579065 −0.0289532 0.999581i \(-0.509217\pi\)
−0.0289532 + 0.999581i \(0.509217\pi\)
\(450\) 0 0
\(451\) − 304.841i − 0.675922i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 137.171 0.300156 0.150078 0.988674i \(-0.452047\pi\)
0.150078 + 0.988674i \(0.452047\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 502.000 1.08894 0.544469 0.838781i \(-0.316731\pi\)
0.544469 + 0.838781i \(0.316731\pi\)
\(462\) 0 0
\(463\) − 823.072i − 1.77769i −0.458204 0.888847i \(-0.651507\pi\)
0.458204 0.888847i \(-0.348493\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 178.191i 0.381565i 0.981632 + 0.190783i \(0.0611025\pi\)
−0.981632 + 0.190783i \(0.938897\pi\)
\(468\) 0 0
\(469\) −504.000 −1.07463
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 823.029 1.74002
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 775.959i − 1.61996i −0.586460 0.809978i \(-0.699479\pi\)
0.586460 0.809978i \(-0.300521\pi\)
\(480\) 0 0
\(481\) −480.000 −0.997921
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 347.897i 0.714367i 0.934034 + 0.357183i \(0.116263\pi\)
−0.934034 + 0.357183i \(0.883737\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 928.379i − 1.89079i −0.325923 0.945396i \(-0.605675\pi\)
0.325923 0.945396i \(-0.394325\pi\)
\(492\) 0 0
\(493\) 431.110 0.874463
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 235.151 0.473141
\(498\) 0 0
\(499\) − 512.687i − 1.02743i −0.857961 0.513714i \(-0.828269\pi\)
0.857961 0.513714i \(-0.171731\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 704.278i − 1.40016i −0.714066 0.700078i \(-0.753149\pi\)
0.714066 0.700078i \(-0.246851\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 170.000 0.333988 0.166994 0.985958i \(-0.446594\pi\)
0.166994 + 0.985958i \(0.446594\pi\)
\(510\) 0 0
\(511\) 665.108i 1.30158i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 117.576 0.227419
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −722.000 −1.38580 −0.692898 0.721035i \(-0.743667\pi\)
−0.692898 + 0.721035i \(0.743667\pi\)
\(522\) 0 0
\(523\) 246.073i 0.470503i 0.971935 + 0.235252i \(0.0755914\pi\)
−0.971935 + 0.235252i \(0.924409\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1086.12i 2.06094i
\(528\) 0 0
\(529\) −119.000 −0.224953
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −215.555 −0.404419
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 318.697i − 0.591275i
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 42.4264i − 0.0775620i −0.999248 0.0387810i \(-0.987653\pi\)
0.999248 0.0387810i \(-0.0123475\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 304.841i 0.553250i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 656.463 1.17857 0.589285 0.807925i \(-0.299410\pi\)
0.589285 + 0.807925i \(0.299410\pi\)
\(558\) 0 0
\(559\) − 581.969i − 1.04109i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 517.602i − 0.919364i −0.888083 0.459682i \(-0.847963\pi\)
0.888083 0.459682i \(-0.152037\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −842.000 −1.47979 −0.739895 0.672723i \(-0.765125\pi\)
−0.739895 + 0.672723i \(0.765125\pi\)
\(570\) 0 0
\(571\) − 401.836i − 0.703740i −0.936049 0.351870i \(-0.885546\pi\)
0.936049 0.351870i \(-0.114454\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −39.1918 −0.0679235 −0.0339617 0.999423i \(-0.510812\pi\)
−0.0339617 + 0.999423i \(0.510812\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 648.000 1.11532
\(582\) 0 0
\(583\) − 407.294i − 0.698617i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 59.3970i − 0.101187i −0.998719 0.0505937i \(-0.983889\pi\)
0.998719 0.0505937i \(-0.0161113\pi\)
\(588\) 0 0
\(589\) −768.000 −1.30390
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 509.494 0.859180 0.429590 0.903024i \(-0.358658\pi\)
0.429590 + 0.903024i \(0.358658\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 859.097i 1.43422i 0.696961 + 0.717110i \(0.254535\pi\)
−0.696961 + 0.717110i \(0.745465\pi\)
\(600\) 0 0
\(601\) 598.000 0.995008 0.497504 0.867462i \(-0.334250\pi\)
0.497504 + 0.867462i \(0.334250\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 127.279i − 0.209686i −0.994489 0.104843i \(-0.966566\pi\)
0.994489 0.104843i \(-0.0334340\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 83.1384i − 0.136069i
\(612\) 0 0
\(613\) −205.757 −0.335656 −0.167828 0.985816i \(-0.553675\pi\)
−0.167828 + 0.985816i \(0.553675\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 431.110 0.698720 0.349360 0.936989i \(-0.386399\pi\)
0.349360 + 0.936989i \(0.386399\pi\)
\(618\) 0 0
\(619\) − 41.5692i − 0.0671554i −0.999436 0.0335777i \(-0.989310\pi\)
0.999436 0.0335777i \(-0.0106901\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1238.85i 1.98853i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 960.000 1.52623
\(630\) 0 0
\(631\) − 969.948i − 1.53716i −0.639753 0.768580i \(-0.720963\pi\)
0.639753 0.768580i \(-0.279037\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −225.353 −0.353772
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −166.000 −0.258970 −0.129485 0.991581i \(-0.541332\pi\)
−0.129485 + 0.991581i \(0.541332\pi\)
\(642\) 0 0
\(643\) 144.250i 0.224339i 0.993689 + 0.112169i \(0.0357799\pi\)
−0.993689 + 0.112169i \(0.964220\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 687.308i − 1.06230i −0.847278 0.531150i \(-0.821760\pi\)
0.847278 0.531150i \(-0.178240\pi\)
\(648\) 0 0
\(649\) 192.000 0.295840
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.3939 0.0450136 0.0225068 0.999747i \(-0.492835\pi\)
0.0225068 + 0.999747i \(0.492835\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 623.538i 0.946189i 0.881012 + 0.473094i \(0.156863\pi\)
−0.881012 + 0.473094i \(0.843137\pi\)
\(660\) 0 0
\(661\) −98.0000 −0.148260 −0.0741301 0.997249i \(-0.523618\pi\)
−0.0741301 + 0.997249i \(0.523618\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 560.029i 0.839623i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 637.395i 0.949918i
\(672\) 0 0
\(673\) 489.898 0.727932 0.363966 0.931412i \(-0.381423\pi\)
0.363966 + 0.931412i \(0.381423\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 146.969 0.217089 0.108545 0.994092i \(-0.465381\pi\)
0.108545 + 0.994092i \(0.465381\pi\)
\(678\) 0 0
\(679\) 498.831i 0.734655i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 398.808i 0.583907i 0.956433 + 0.291953i \(0.0943052\pi\)
−0.956433 + 0.291953i \(0.905695\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −288.000 −0.417997
\(690\) 0 0
\(691\) 789.815i 1.14300i 0.820601 + 0.571502i \(0.193639\pi\)
−0.820601 + 0.571502i \(0.806361\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 431.110 0.618523
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −718.000 −1.02425 −0.512126 0.858911i \(-0.671142\pi\)
−0.512126 + 0.858911i \(0.671142\pi\)
\(702\) 0 0
\(703\) 678.823i 0.965608i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 593.970i 0.840127i
\(708\) 0 0
\(709\) 838.000 1.18195 0.590973 0.806691i \(-0.298744\pi\)
0.590973 + 0.806691i \(0.298744\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1410.91 −1.97883
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 221.703i − 0.308348i −0.988044 0.154174i \(-0.950728\pi\)
0.988044 0.154174i \(-0.0492717\pi\)
\(720\) 0 0
\(721\) −216.000 −0.299584
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 347.897i 0.478537i 0.970953 + 0.239269i \(0.0769076\pi\)
−0.970953 + 0.239269i \(0.923092\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1163.94i 1.59225i
\(732\) 0 0
\(733\) −676.059 −0.922318 −0.461159 0.887317i \(-0.652566\pi\)
−0.461159 + 0.887317i \(0.652566\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −823.029 −1.11673
\(738\) 0 0
\(739\) − 235.559i − 0.318754i −0.987218 0.159377i \(-0.949052\pi\)
0.987218 0.159377i \(-0.0509485\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1349.16i − 1.81583i −0.419157 0.907914i \(-0.637674\pi\)
0.419157 0.907914i \(-0.362326\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −360.000 −0.480641
\(750\) 0 0
\(751\) − 1163.94i − 1.54985i −0.632053 0.774926i \(-0.717787\pi\)
0.632053 0.774926i \(-0.282213\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1205.15 1.59201 0.796003 0.605292i \(-0.206944\pi\)
0.796003 + 0.605292i \(0.206944\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −530.000 −0.696452 −0.348226 0.937411i \(-0.613216\pi\)
−0.348226 + 0.937411i \(0.613216\pi\)
\(762\) 0 0
\(763\) 1238.85i 1.62366i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 135.765i − 0.177007i
\(768\) 0 0
\(769\) −386.000 −0.501951 −0.250975 0.967993i \(-0.580751\pi\)
−0.250975 + 0.967993i \(0.580751\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −695.655 −0.899942 −0.449971 0.893043i \(-0.648566\pi\)
−0.449971 + 0.893043i \(0.648566\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 304.841i 0.391323i
\(780\) 0 0
\(781\) 384.000 0.491677
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1298.25i − 1.64962i −0.565413 0.824808i \(-0.691283\pi\)
0.565413 0.824808i \(-0.308717\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 332.554i − 0.420422i
\(792\) 0 0
\(793\) 450.706 0.568356
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1361.92 −1.70880 −0.854402 0.519613i \(-0.826076\pi\)
−0.854402 + 0.519613i \(0.826076\pi\)
\(798\) 0 0
\(799\) 166.277i 0.208106i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1086.12i 1.35257i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1006.00 −1.24351 −0.621755 0.783212i \(-0.713580\pi\)
−0.621755 + 0.783212i \(0.713580\pi\)
\(810\) 0 0
\(811\) 651.251i 0.803022i 0.915854 + 0.401511i \(0.131515\pi\)
−0.915854 + 0.401511i \(0.868485\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −823.029 −1.00738
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 482.000 0.587089 0.293544 0.955945i \(-0.405165\pi\)
0.293544 + 0.955945i \(0.405165\pi\)
\(822\) 0 0
\(823\) 636.396i 0.773264i 0.922234 + 0.386632i \(0.126362\pi\)
−0.922234 + 0.386632i \(0.873638\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 398.808i − 0.482235i −0.970496 0.241117i \(-0.922486\pi\)
0.970496 0.241117i \(-0.0775139\pi\)
\(828\) 0 0
\(829\) 1106.00 1.33414 0.667069 0.744996i \(-0.267549\pi\)
0.667069 + 0.744996i \(0.267549\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 450.706 0.541064
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 360.267i − 0.429400i −0.976680 0.214700i \(-0.931123\pi\)
0.976680 0.214700i \(-0.0688774\pi\)
\(840\) 0 0
\(841\) −357.000 −0.424495
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 602.455i − 0.711281i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1247.08i 1.46542i
\(852\) 0 0
\(853\) −676.059 −0.792566 −0.396283 0.918128i \(-0.629700\pi\)
−0.396283 + 0.918128i \(0.629700\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1077.78 1.25761 0.628807 0.777561i \(-0.283543\pi\)
0.628807 + 0.777561i \(0.283543\pi\)
\(858\) 0 0
\(859\) 568.113i 0.661365i 0.943742 + 0.330683i \(0.107279\pi\)
−0.943742 + 0.330683i \(0.892721\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 195.161i − 0.226143i −0.993587 0.113072i \(-0.963931\pi\)
0.993587 0.113072i \(-0.0360689\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 581.969i 0.668162i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 244.949 0.279303 0.139652 0.990201i \(-0.455402\pi\)
0.139652 + 0.990201i \(0.455402\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −550.000 −0.624291 −0.312145 0.950034i \(-0.601048\pi\)
−0.312145 + 0.950034i \(0.601048\pi\)
\(882\) 0 0
\(883\) − 636.396i − 0.720720i −0.932813 0.360360i \(-0.882654\pi\)
0.932813 0.360360i \(-0.117346\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1230.37i − 1.38711i −0.720404 0.693555i \(-0.756044\pi\)
0.720404 0.693555i \(-0.243956\pi\)
\(888\) 0 0
\(889\) −936.000 −1.05287
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −117.576 −0.131664
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1219.36i 1.35636i
\(900\) 0 0
\(901\) 576.000 0.639290
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 585.484i − 0.645518i −0.946481 0.322759i \(-0.895390\pi\)
0.946481 0.322759i \(-0.104610\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 886.810i − 0.973447i −0.873556 0.486723i \(-0.838192\pi\)
0.873556 0.486723i \(-0.161808\pi\)
\(912\) 0 0
\(913\) 1058.18 1.15901
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1528.48 1.66683
\(918\) 0 0
\(919\) − 193.990i − 0.211088i −0.994415 0.105544i \(-0.966342\pi\)
0.994415 0.105544i \(-0.0336584\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 271.529i − 0.294181i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1318.00 1.41873 0.709365 0.704841i \(-0.248982\pi\)
0.709365 + 0.704841i \(0.248982\pi\)
\(930\) 0 0
\(931\) 318.697i 0.342317i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −548.686 −0.585577 −0.292789 0.956177i \(-0.594583\pi\)
−0.292789 + 0.956177i \(0.594583\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1654.00 1.75770 0.878852 0.477094i \(-0.158310\pi\)
0.878852 + 0.477094i \(0.158310\pi\)
\(942\) 0 0
\(943\) 560.029i 0.593880i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1417.04i − 1.49635i −0.663502 0.748174i \(-0.730931\pi\)
0.663502 0.748174i \(-0.269069\pi\)
\(948\) 0 0
\(949\) 768.000 0.809273
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −137.171 −0.143936 −0.0719682 0.997407i \(-0.522928\pi\)
−0.0719682 + 0.997407i \(0.522928\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1829.05i 1.90724i
\(960\) 0 0
\(961\) −2111.00 −2.19667
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1450.98i − 1.50050i −0.661154 0.750250i \(-0.729933\pi\)
0.661154 0.750250i \(-0.270067\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 817.528i − 0.841944i −0.907074 0.420972i \(-0.861689\pi\)
0.907074 0.420972i \(-0.138311\pi\)
\(972\) 0 0
\(973\) −117.576 −0.120838
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1704.84 −1.74498 −0.872490 0.488633i \(-0.837496\pi\)
−0.872490 + 0.488633i \(0.837496\pi\)
\(978\) 0 0
\(979\) 2023.04i 2.06643i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 738.219i − 0.750986i −0.926825 0.375493i \(-0.877473\pi\)
0.926825 0.375493i \(-0.122527\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1512.00 −1.52882
\(990\) 0 0
\(991\) 775.959i 0.783006i 0.920177 + 0.391503i \(0.128045\pi\)
−0.920177 + 0.391503i \(0.871955\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1420.70 1.42498 0.712489 0.701683i \(-0.247568\pi\)
0.712489 + 0.701683i \(0.247568\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.3.e.bd.3151.4 4
3.2 odd 2 400.3.b.h.351.1 4
4.3 odd 2 inner 3600.3.e.bd.3151.1 4
5.2 odd 4 720.3.j.e.559.3 4
5.3 odd 4 720.3.j.e.559.2 4
5.4 even 2 inner 3600.3.e.bd.3151.2 4
12.11 even 2 400.3.b.h.351.4 4
15.2 even 4 80.3.h.b.79.1 4
15.8 even 4 80.3.h.b.79.4 yes 4
15.14 odd 2 400.3.b.h.351.3 4
20.3 even 4 720.3.j.e.559.1 4
20.7 even 4 720.3.j.e.559.4 4
20.19 odd 2 inner 3600.3.e.bd.3151.3 4
24.5 odd 2 1600.3.b.t.1151.4 4
24.11 even 2 1600.3.b.t.1151.1 4
60.23 odd 4 80.3.h.b.79.2 yes 4
60.47 odd 4 80.3.h.b.79.3 yes 4
60.59 even 2 400.3.b.h.351.2 4
120.29 odd 2 1600.3.b.t.1151.2 4
120.53 even 4 320.3.h.e.319.1 4
120.59 even 2 1600.3.b.t.1151.3 4
120.77 even 4 320.3.h.e.319.4 4
120.83 odd 4 320.3.h.e.319.3 4
120.107 odd 4 320.3.h.e.319.2 4
240.53 even 4 1280.3.e.j.639.1 8
240.77 even 4 1280.3.e.j.639.2 8
240.83 odd 4 1280.3.e.j.639.4 8
240.107 odd 4 1280.3.e.j.639.3 8
240.173 even 4 1280.3.e.j.639.8 8
240.197 even 4 1280.3.e.j.639.7 8
240.203 odd 4 1280.3.e.j.639.5 8
240.227 odd 4 1280.3.e.j.639.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.h.b.79.1 4 15.2 even 4
80.3.h.b.79.2 yes 4 60.23 odd 4
80.3.h.b.79.3 yes 4 60.47 odd 4
80.3.h.b.79.4 yes 4 15.8 even 4
320.3.h.e.319.1 4 120.53 even 4
320.3.h.e.319.2 4 120.107 odd 4
320.3.h.e.319.3 4 120.83 odd 4
320.3.h.e.319.4 4 120.77 even 4
400.3.b.h.351.1 4 3.2 odd 2
400.3.b.h.351.2 4 60.59 even 2
400.3.b.h.351.3 4 15.14 odd 2
400.3.b.h.351.4 4 12.11 even 2
720.3.j.e.559.1 4 20.3 even 4
720.3.j.e.559.2 4 5.3 odd 4
720.3.j.e.559.3 4 5.2 odd 4
720.3.j.e.559.4 4 20.7 even 4
1280.3.e.j.639.1 8 240.53 even 4
1280.3.e.j.639.2 8 240.77 even 4
1280.3.e.j.639.3 8 240.107 odd 4
1280.3.e.j.639.4 8 240.83 odd 4
1280.3.e.j.639.5 8 240.203 odd 4
1280.3.e.j.639.6 8 240.227 odd 4
1280.3.e.j.639.7 8 240.197 even 4
1280.3.e.j.639.8 8 240.173 even 4
1600.3.b.t.1151.1 4 24.11 even 2
1600.3.b.t.1151.2 4 120.29 odd 2
1600.3.b.t.1151.3 4 120.59 even 2
1600.3.b.t.1151.4 4 24.5 odd 2
3600.3.e.bd.3151.1 4 4.3 odd 2 inner
3600.3.e.bd.3151.2 4 5.4 even 2 inner
3600.3.e.bd.3151.3 4 20.19 odd 2 inner
3600.3.e.bd.3151.4 4 1.1 even 1 trivial