Properties

Label 720.3.j.e.559.4
Level $720$
Weight $3$
Character 720.559
Analytic conductor $19.619$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,3,Mod(559,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.559");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.j (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.4
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 720.559
Dual form 720.3.j.e.559.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 4.89898i) q^{5} +8.48528 q^{7} -13.8564i q^{11} -9.79796i q^{13} -19.5959i q^{17} -13.8564i q^{19} +25.4558 q^{23} +(-23.0000 + 9.79796i) q^{25} +22.0000 q^{29} +55.4256i q^{31} +(8.48528 + 41.5692i) q^{35} -48.9898i q^{37} -22.0000 q^{41} +59.3970 q^{43} -8.48528 q^{47} +23.0000 q^{49} +29.3939i q^{53} +(67.8823 - 13.8564i) q^{55} -13.8564i q^{59} +46.0000 q^{61} +(48.0000 - 9.79796i) q^{65} +59.3970 q^{67} +27.7128i q^{71} -78.3837i q^{73} -117.576i q^{77} +76.3675 q^{83} +(96.0000 - 19.5959i) q^{85} -146.000 q^{89} -83.1384i q^{91} +(67.8823 - 13.8564i) q^{95} +58.7878i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 92 q^{25} + 88 q^{29} - 88 q^{41} + 92 q^{49} + 184 q^{61} + 192 q^{65} + 384 q^{85} - 584 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 + 4.89898i 0.200000 + 0.979796i
\(6\) 0 0
\(7\) 8.48528 1.21218 0.606092 0.795395i \(-0.292737\pi\)
0.606092 + 0.795395i \(0.292737\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 13.8564i 1.25967i −0.776728 0.629837i \(-0.783122\pi\)
0.776728 0.629837i \(-0.216878\pi\)
\(12\) 0 0
\(13\) 9.79796i 0.753689i −0.926277 0.376845i \(-0.877009\pi\)
0.926277 0.376845i \(-0.122991\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 19.5959i 1.15270i −0.817203 0.576351i \(-0.804476\pi\)
0.817203 0.576351i \(-0.195524\pi\)
\(18\) 0 0
\(19\) 13.8564i 0.729285i −0.931148 0.364642i \(-0.881191\pi\)
0.931148 0.364642i \(-0.118809\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 25.4558 1.10678 0.553388 0.832924i \(-0.313335\pi\)
0.553388 + 0.832924i \(0.313335\pi\)
\(24\) 0 0
\(25\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 22.0000 0.758621 0.379310 0.925270i \(-0.376161\pi\)
0.379310 + 0.925270i \(0.376161\pi\)
\(30\) 0 0
\(31\) 55.4256i 1.78792i 0.448143 + 0.893962i \(0.352085\pi\)
−0.448143 + 0.893962i \(0.647915\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.48528 + 41.5692i 0.242437 + 1.18769i
\(36\) 0 0
\(37\) 48.9898i 1.32405i −0.749482 0.662024i \(-0.769698\pi\)
0.749482 0.662024i \(-0.230302\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −22.0000 −0.536585 −0.268293 0.963337i \(-0.586459\pi\)
−0.268293 + 0.963337i \(0.586459\pi\)
\(42\) 0 0
\(43\) 59.3970 1.38132 0.690662 0.723177i \(-0.257319\pi\)
0.690662 + 0.723177i \(0.257319\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.48528 −0.180538 −0.0902690 0.995917i \(-0.528773\pi\)
−0.0902690 + 0.995917i \(0.528773\pi\)
\(48\) 0 0
\(49\) 23.0000 0.469388
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 29.3939i 0.554601i 0.960783 + 0.277301i \(0.0894398\pi\)
−0.960783 + 0.277301i \(0.910560\pi\)
\(54\) 0 0
\(55\) 67.8823 13.8564i 1.23422 0.251935i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 13.8564i 0.234854i −0.993081 0.117427i \(-0.962535\pi\)
0.993081 0.117427i \(-0.0374647\pi\)
\(60\) 0 0
\(61\) 46.0000 0.754098 0.377049 0.926193i \(-0.376939\pi\)
0.377049 + 0.926193i \(0.376939\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 48.0000 9.79796i 0.738462 0.150738i
\(66\) 0 0
\(67\) 59.3970 0.886522 0.443261 0.896393i \(-0.353822\pi\)
0.443261 + 0.896393i \(0.353822\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 27.7128i 0.390321i 0.980771 + 0.195161i \(0.0625228\pi\)
−0.980771 + 0.195161i \(0.937477\pi\)
\(72\) 0 0
\(73\) 78.3837i 1.07375i −0.843662 0.536874i \(-0.819605\pi\)
0.843662 0.536874i \(-0.180395\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 117.576i 1.52695i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 76.3675 0.920091 0.460045 0.887895i \(-0.347833\pi\)
0.460045 + 0.887895i \(0.347833\pi\)
\(84\) 0 0
\(85\) 96.0000 19.5959i 1.12941 0.230540i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −146.000 −1.64045 −0.820225 0.572041i \(-0.806152\pi\)
−0.820225 + 0.572041i \(0.806152\pi\)
\(90\) 0 0
\(91\) 83.1384i 0.913609i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 67.8823 13.8564i 0.714550 0.145857i
\(96\) 0 0
\(97\) 58.7878i 0.606059i 0.952981 + 0.303030i \(0.0979981\pi\)
−0.952981 + 0.303030i \(0.902002\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 70.0000 0.693069 0.346535 0.938037i \(-0.387358\pi\)
0.346535 + 0.938037i \(0.387358\pi\)
\(102\) 0 0
\(103\) −25.4558 −0.247144 −0.123572 0.992336i \(-0.539435\pi\)
−0.123572 + 0.992336i \(0.539435\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 42.4264 0.396508 0.198254 0.980151i \(-0.436473\pi\)
0.198254 + 0.980151i \(0.436473\pi\)
\(108\) 0 0
\(109\) −146.000 −1.33945 −0.669725 0.742609i \(-0.733588\pi\)
−0.669725 + 0.742609i \(0.733588\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 39.1918i 0.346830i 0.984849 + 0.173415i \(0.0554803\pi\)
−0.984849 + 0.173415i \(0.944520\pi\)
\(114\) 0 0
\(115\) 25.4558 + 124.708i 0.221355 + 1.08441i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 166.277i 1.39728i
\(120\) 0 0
\(121\) −71.0000 −0.586777
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −71.0000 102.879i −0.568000 0.823029i
\(126\) 0 0
\(127\) 110.309 0.868572 0.434286 0.900775i \(-0.357001\pi\)
0.434286 + 0.900775i \(0.357001\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 180.133i 1.37506i 0.726154 + 0.687532i \(0.241306\pi\)
−0.726154 + 0.687532i \(0.758694\pi\)
\(132\) 0 0
\(133\) 117.576i 0.884026i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 215.555i 1.57339i 0.617339 + 0.786697i \(0.288211\pi\)
−0.617339 + 0.786697i \(0.711789\pi\)
\(138\) 0 0
\(139\) 13.8564i 0.0996864i 0.998757 + 0.0498432i \(0.0158722\pi\)
−0.998757 + 0.0498432i \(0.984128\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −135.765 −0.949402
\(144\) 0 0
\(145\) 22.0000 + 107.778i 0.151724 + 0.743293i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.00000 0.0134228 0.00671141 0.999977i \(-0.497864\pi\)
0.00671141 + 0.999977i \(0.497864\pi\)
\(150\) 0 0
\(151\) 27.7128i 0.183529i −0.995781 0.0917643i \(-0.970749\pi\)
0.995781 0.0917643i \(-0.0292506\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −271.529 + 55.4256i −1.75180 + 0.357585i
\(156\) 0 0
\(157\) 68.5857i 0.436852i −0.975854 0.218426i \(-0.929908\pi\)
0.975854 0.218426i \(-0.0700922\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 216.000 1.34161
\(162\) 0 0
\(163\) −110.309 −0.676740 −0.338370 0.941013i \(-0.609876\pi\)
−0.338370 + 0.941013i \(0.609876\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 93.3381 0.558911 0.279455 0.960159i \(-0.409846\pi\)
0.279455 + 0.960159i \(0.409846\pi\)
\(168\) 0 0
\(169\) 73.0000 0.431953
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 48.9898i 0.283178i −0.989926 0.141589i \(-0.954779\pi\)
0.989926 0.141589i \(-0.0452211\pi\)
\(174\) 0 0
\(175\) −195.161 + 83.1384i −1.11521 + 0.475077i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 263.272i 1.47079i −0.677638 0.735396i \(-0.736996\pi\)
0.677638 0.735396i \(-0.263004\pi\)
\(180\) 0 0
\(181\) 26.0000 0.143646 0.0718232 0.997417i \(-0.477118\pi\)
0.0718232 + 0.997417i \(0.477118\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 240.000 48.9898i 1.29730 0.264810i
\(186\) 0 0
\(187\) −271.529 −1.45203
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 110.851i 0.580373i 0.956970 + 0.290187i \(0.0937174\pi\)
−0.956970 + 0.290187i \(0.906283\pi\)
\(192\) 0 0
\(193\) 333.131i 1.72607i 0.505148 + 0.863033i \(0.331438\pi\)
−0.505148 + 0.863033i \(0.668562\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 107.778i 0.547094i 0.961859 + 0.273547i \(0.0881969\pi\)
−0.961859 + 0.273547i \(0.911803\pi\)
\(198\) 0 0
\(199\) 249.415i 1.25334i −0.779283 0.626672i \(-0.784417\pi\)
0.779283 0.626672i \(-0.215583\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 186.676 0.919587
\(204\) 0 0
\(205\) −22.0000 107.778i −0.107317 0.525744i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −192.000 −0.918660
\(210\) 0 0
\(211\) 96.9948i 0.459691i 0.973227 + 0.229846i \(0.0738221\pi\)
−0.973227 + 0.229846i \(0.926178\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 59.3970 + 290.985i 0.276265 + 1.35342i
\(216\) 0 0
\(217\) 470.302i 2.16729i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −192.000 −0.868778
\(222\) 0 0
\(223\) −229.103 −1.02737 −0.513683 0.857980i \(-0.671719\pi\)
−0.513683 + 0.857980i \(0.671719\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −296.985 −1.30830 −0.654152 0.756363i \(-0.726974\pi\)
−0.654152 + 0.756363i \(0.726974\pi\)
\(228\) 0 0
\(229\) −70.0000 −0.305677 −0.152838 0.988251i \(-0.548841\pi\)
−0.152838 + 0.988251i \(0.548841\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 156.767i 0.672821i 0.941715 + 0.336411i \(0.109213\pi\)
−0.941715 + 0.336411i \(0.890787\pi\)
\(234\) 0 0
\(235\) −8.48528 41.5692i −0.0361076 0.176890i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 332.554i 1.39144i −0.718314 0.695719i \(-0.755086\pi\)
0.718314 0.695719i \(-0.244914\pi\)
\(240\) 0 0
\(241\) −122.000 −0.506224 −0.253112 0.967437i \(-0.581454\pi\)
−0.253112 + 0.967437i \(0.581454\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 23.0000 + 112.677i 0.0938776 + 0.459904i
\(246\) 0 0
\(247\) −135.765 −0.549654
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 290.985i 1.15930i −0.814865 0.579650i \(-0.803189\pi\)
0.814865 0.579650i \(-0.196811\pi\)
\(252\) 0 0
\(253\) 352.727i 1.39418i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 78.3837i 0.304995i −0.988304 0.152497i \(-0.951268\pi\)
0.988304 0.152497i \(-0.0487316\pi\)
\(258\) 0 0
\(259\) 415.692i 1.60499i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −347.897 −1.32280 −0.661400 0.750033i \(-0.730038\pi\)
−0.661400 + 0.750033i \(0.730038\pi\)
\(264\) 0 0
\(265\) −144.000 + 29.3939i −0.543396 + 0.110920i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −142.000 −0.527881 −0.263941 0.964539i \(-0.585022\pi\)
−0.263941 + 0.964539i \(0.585022\pi\)
\(270\) 0 0
\(271\) 332.554i 1.22714i 0.789642 + 0.613568i \(0.210266\pi\)
−0.789642 + 0.613568i \(0.789734\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 135.765 + 318.697i 0.493689 + 1.15890i
\(276\) 0 0
\(277\) 88.1816i 0.318345i −0.987251 0.159173i \(-0.949117\pi\)
0.987251 0.159173i \(-0.0508826\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −406.000 −1.44484 −0.722420 0.691455i \(-0.756970\pi\)
−0.722420 + 0.691455i \(0.756970\pi\)
\(282\) 0 0
\(283\) 93.3381 0.329817 0.164908 0.986309i \(-0.447267\pi\)
0.164908 + 0.986309i \(0.447267\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −186.676 −0.650440
\(288\) 0 0
\(289\) −95.0000 −0.328720
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 303.737i 1.03664i −0.855186 0.518322i \(-0.826557\pi\)
0.855186 0.518322i \(-0.173443\pi\)
\(294\) 0 0
\(295\) 67.8823 13.8564i 0.230109 0.0469709i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 249.415i 0.834165i
\(300\) 0 0
\(301\) 504.000 1.67442
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 46.0000 + 225.353i 0.150820 + 0.738862i
\(306\) 0 0
\(307\) −280.014 −0.912099 −0.456049 0.889955i \(-0.650736\pi\)
−0.456049 + 0.889955i \(0.650736\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 138.564i 0.445544i 0.974871 + 0.222772i \(0.0715105\pi\)
−0.974871 + 0.222772i \(0.928490\pi\)
\(312\) 0 0
\(313\) 607.473i 1.94081i 0.241484 + 0.970405i \(0.422366\pi\)
−0.241484 + 0.970405i \(0.577634\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 68.5857i 0.216359i −0.994131 0.108179i \(-0.965498\pi\)
0.994131 0.108179i \(-0.0345021\pi\)
\(318\) 0 0
\(319\) 304.841i 0.955614i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −271.529 −0.840647
\(324\) 0 0
\(325\) 96.0000 + 225.353i 0.295385 + 0.693394i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −72.0000 −0.218845
\(330\) 0 0
\(331\) 180.133i 0.544209i 0.962268 + 0.272105i \(0.0877197\pi\)
−0.962268 + 0.272105i \(0.912280\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 59.3970 + 290.985i 0.177304 + 0.868611i
\(336\) 0 0
\(337\) 470.302i 1.39555i −0.716315 0.697777i \(-0.754172\pi\)
0.716315 0.697777i \(-0.245828\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 768.000 2.25220
\(342\) 0 0
\(343\) −220.617 −0.643199
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 619.426 1.78509 0.892544 0.450960i \(-0.148918\pi\)
0.892544 + 0.450960i \(0.148918\pi\)
\(348\) 0 0
\(349\) −214.000 −0.613181 −0.306590 0.951842i \(-0.599188\pi\)
−0.306590 + 0.951842i \(0.599188\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 352.727i 0.999225i 0.866249 + 0.499613i \(0.166524\pi\)
−0.866249 + 0.499613i \(0.833476\pi\)
\(354\) 0 0
\(355\) −135.765 + 27.7128i −0.382435 + 0.0780643i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.7128i 0.0771945i −0.999255 0.0385972i \(-0.987711\pi\)
0.999255 0.0385972i \(-0.0122889\pi\)
\(360\) 0 0
\(361\) 169.000 0.468144
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 384.000 78.3837i 1.05205 0.214750i
\(366\) 0 0
\(367\) 246.073 0.670499 0.335250 0.942129i \(-0.391179\pi\)
0.335250 + 0.942129i \(0.391179\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 249.415i 0.672278i
\(372\) 0 0
\(373\) 382.120i 1.02445i 0.858851 + 0.512226i \(0.171179\pi\)
−0.858851 + 0.512226i \(0.828821\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 215.555i 0.571764i
\(378\) 0 0
\(379\) 290.985i 0.767769i 0.923381 + 0.383885i \(0.125414\pi\)
−0.923381 + 0.383885i \(0.874586\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 568.514 1.48437 0.742185 0.670195i \(-0.233789\pi\)
0.742185 + 0.670195i \(0.233789\pi\)
\(384\) 0 0
\(385\) 576.000 117.576i 1.49610 0.305391i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −670.000 −1.72237 −0.861183 0.508296i \(-0.830276\pi\)
−0.861183 + 0.508296i \(0.830276\pi\)
\(390\) 0 0
\(391\) 498.831i 1.27578i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 362.524i 0.913160i −0.889682 0.456580i \(-0.849074\pi\)
0.889682 0.456580i \(-0.150926\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.00000 −0.00498753 −0.00249377 0.999997i \(-0.500794\pi\)
−0.00249377 + 0.999997i \(0.500794\pi\)
\(402\) 0 0
\(403\) 543.058 1.34754
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −678.823 −1.66787
\(408\) 0 0
\(409\) −650.000 −1.58924 −0.794621 0.607106i \(-0.792330\pi\)
−0.794621 + 0.607106i \(0.792330\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 117.576i 0.284686i
\(414\) 0 0
\(415\) 76.3675 + 374.123i 0.184018 + 0.901501i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 540.400i 1.28974i −0.764293 0.644869i \(-0.776912\pi\)
0.764293 0.644869i \(-0.223088\pi\)
\(420\) 0 0
\(421\) −482.000 −1.14489 −0.572447 0.819942i \(-0.694006\pi\)
−0.572447 + 0.819942i \(0.694006\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 192.000 + 450.706i 0.451765 + 1.06048i
\(426\) 0 0
\(427\) 390.323 0.914105
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 221.703i 0.514391i 0.966359 + 0.257195i \(0.0827984\pi\)
−0.966359 + 0.257195i \(0.917202\pi\)
\(432\) 0 0
\(433\) 568.282i 1.31243i −0.754575 0.656214i \(-0.772157\pi\)
0.754575 0.656214i \(-0.227843\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 352.727i 0.807155i
\(438\) 0 0
\(439\) 526.543i 1.19942i 0.800219 + 0.599708i \(0.204717\pi\)
−0.800219 + 0.599708i \(0.795283\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −432.749 −0.976861 −0.488430 0.872603i \(-0.662430\pi\)
−0.488430 + 0.872603i \(0.662430\pi\)
\(444\) 0 0
\(445\) −146.000 715.251i −0.328090 1.60731i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0000 0.0579065 0.0289532 0.999581i \(-0.490783\pi\)
0.0289532 + 0.999581i \(0.490783\pi\)
\(450\) 0 0
\(451\) 304.841i 0.675922i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 407.294 83.1384i 0.895151 0.182722i
\(456\) 0 0
\(457\) 137.171i 0.300156i 0.988674 + 0.150078i \(0.0479525\pi\)
−0.988674 + 0.150078i \(0.952047\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 502.000 1.08894 0.544469 0.838781i \(-0.316731\pi\)
0.544469 + 0.838781i \(0.316731\pi\)
\(462\) 0 0
\(463\) 823.072 1.77769 0.888847 0.458204i \(-0.151507\pi\)
0.888847 + 0.458204i \(0.151507\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 178.191 0.381565 0.190783 0.981632i \(-0.438897\pi\)
0.190783 + 0.981632i \(0.438897\pi\)
\(468\) 0 0
\(469\) 504.000 1.07463
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 823.029i 1.74002i
\(474\) 0 0
\(475\) 135.765 + 318.697i 0.285820 + 0.670942i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 775.959i 1.61996i −0.586460 0.809978i \(-0.699479\pi\)
0.586460 0.809978i \(-0.300521\pi\)
\(480\) 0 0
\(481\) −480.000 −0.997921
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −288.000 + 58.7878i −0.593814 + 0.121212i
\(486\) 0 0
\(487\) 347.897 0.714367 0.357183 0.934034i \(-0.383737\pi\)
0.357183 + 0.934034i \(0.383737\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 928.379i 1.89079i 0.325923 + 0.945396i \(0.394325\pi\)
−0.325923 + 0.945396i \(0.605675\pi\)
\(492\) 0 0
\(493\) 431.110i 0.874463i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 235.151i 0.473141i
\(498\) 0 0
\(499\) 512.687i 1.02743i −0.857961 0.513714i \(-0.828269\pi\)
0.857961 0.513714i \(-0.171731\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 704.278 1.40016 0.700078 0.714066i \(-0.253149\pi\)
0.700078 + 0.714066i \(0.253149\pi\)
\(504\) 0 0
\(505\) 70.0000 + 342.929i 0.138614 + 0.679066i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −170.000 −0.333988 −0.166994 0.985958i \(-0.553406\pi\)
−0.166994 + 0.985958i \(0.553406\pi\)
\(510\) 0 0
\(511\) 665.108i 1.30158i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −25.4558 124.708i −0.0494288 0.242151i
\(516\) 0 0
\(517\) 117.576i 0.227419i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −722.000 −1.38580 −0.692898 0.721035i \(-0.743667\pi\)
−0.692898 + 0.721035i \(0.743667\pi\)
\(522\) 0 0
\(523\) −246.073 −0.470503 −0.235252 0.971935i \(-0.575591\pi\)
−0.235252 + 0.971935i \(0.575591\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1086.12 2.06094
\(528\) 0 0
\(529\) 119.000 0.224953
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 215.555i 0.404419i
\(534\) 0 0
\(535\) 42.4264 + 207.846i 0.0793017 + 0.388497i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 318.697i 0.591275i
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −146.000 715.251i −0.267890 1.31239i
\(546\) 0 0
\(547\) −42.4264 −0.0775620 −0.0387810 0.999248i \(-0.512347\pi\)
−0.0387810 + 0.999248i \(0.512347\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 304.841i 0.553250i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 656.463i 1.17857i 0.807925 + 0.589285i \(0.200590\pi\)
−0.807925 + 0.589285i \(0.799410\pi\)
\(558\) 0 0
\(559\) 581.969i 1.04109i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 517.602 0.919364 0.459682 0.888083i \(-0.347963\pi\)
0.459682 + 0.888083i \(0.347963\pi\)
\(564\) 0 0
\(565\) −192.000 + 39.1918i −0.339823 + 0.0693661i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 842.000 1.47979 0.739895 0.672723i \(-0.234875\pi\)
0.739895 + 0.672723i \(0.234875\pi\)
\(570\) 0 0
\(571\) 401.836i 0.703740i 0.936049 + 0.351870i \(0.114454\pi\)
−0.936049 + 0.351870i \(0.885546\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −585.484 + 249.415i −1.01823 + 0.433766i
\(576\) 0 0
\(577\) 39.1918i 0.0679235i −0.999423 0.0339617i \(-0.989188\pi\)
0.999423 0.0339617i \(-0.0108124\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 648.000 1.11532
\(582\) 0 0
\(583\) 407.294 0.698617
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −59.3970 −0.101187 −0.0505937 0.998719i \(-0.516111\pi\)
−0.0505937 + 0.998719i \(0.516111\pi\)
\(588\) 0 0
\(589\) 768.000 1.30390
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 509.494i 0.859180i −0.903024 0.429590i \(-0.858658\pi\)
0.903024 0.429590i \(-0.141342\pi\)
\(594\) 0 0
\(595\) 814.587 166.277i 1.36905 0.279457i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 859.097i 1.43422i 0.696961 + 0.717110i \(0.254535\pi\)
−0.696961 + 0.717110i \(0.745465\pi\)
\(600\) 0 0
\(601\) 598.000 0.995008 0.497504 0.867462i \(-0.334250\pi\)
0.497504 + 0.867462i \(0.334250\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −71.0000 347.828i −0.117355 0.574922i
\(606\) 0 0
\(607\) −127.279 −0.209686 −0.104843 0.994489i \(-0.533434\pi\)
−0.104843 + 0.994489i \(0.533434\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 83.1384i 0.136069i
\(612\) 0 0
\(613\) 205.757i 0.335656i 0.985816 + 0.167828i \(0.0536753\pi\)
−0.985816 + 0.167828i \(0.946325\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 431.110i 0.698720i 0.936989 + 0.349360i \(0.113601\pi\)
−0.936989 + 0.349360i \(0.886399\pi\)
\(618\) 0 0
\(619\) 41.5692i 0.0671554i −0.999436 0.0335777i \(-0.989310\pi\)
0.999436 0.0335777i \(-0.0106901\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1238.85 −1.98853
\(624\) 0 0
\(625\) 433.000 450.706i 0.692800 0.721130i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −960.000 −1.52623
\(630\) 0 0
\(631\) 969.948i 1.53716i 0.639753 + 0.768580i \(0.279037\pi\)
−0.639753 + 0.768580i \(0.720963\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 110.309 + 540.400i 0.173714 + 0.851023i
\(636\) 0 0
\(637\) 225.353i 0.353772i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −166.000 −0.258970 −0.129485 0.991581i \(-0.541332\pi\)
−0.129485 + 0.991581i \(0.541332\pi\)
\(642\) 0 0
\(643\) −144.250 −0.224339 −0.112169 0.993689i \(-0.535780\pi\)
−0.112169 + 0.993689i \(0.535780\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −687.308 −1.06230 −0.531150 0.847278i \(-0.678240\pi\)
−0.531150 + 0.847278i \(0.678240\pi\)
\(648\) 0 0
\(649\) −192.000 −0.295840
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.3939i 0.0450136i −0.999747 0.0225068i \(-0.992835\pi\)
0.999747 0.0225068i \(-0.00716474\pi\)
\(654\) 0 0
\(655\) −882.469 + 180.133i −1.34728 + 0.275013i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 623.538i 0.946189i 0.881012 + 0.473094i \(0.156863\pi\)
−0.881012 + 0.473094i \(0.843137\pi\)
\(660\) 0 0
\(661\) −98.0000 −0.148260 −0.0741301 0.997249i \(-0.523618\pi\)
−0.0741301 + 0.997249i \(0.523618\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 576.000 117.576i 0.866165 0.176805i
\(666\) 0 0
\(667\) 560.029 0.839623
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 637.395i 0.949918i
\(672\) 0 0
\(673\) 489.898i 0.727932i −0.931412 0.363966i \(-0.881423\pi\)
0.931412 0.363966i \(-0.118577\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 146.969i 0.217089i 0.994092 + 0.108545i \(0.0346190\pi\)
−0.994092 + 0.108545i \(0.965381\pi\)
\(678\) 0 0
\(679\) 498.831i 0.734655i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −398.808 −0.583907 −0.291953 0.956433i \(-0.594305\pi\)
−0.291953 + 0.956433i \(0.594305\pi\)
\(684\) 0 0
\(685\) −1056.00 + 215.555i −1.54161 + 0.314679i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 288.000 0.417997
\(690\) 0 0
\(691\) 789.815i 1.14300i −0.820601 0.571502i \(-0.806361\pi\)
0.820601 0.571502i \(-0.193639\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −67.8823 + 13.8564i −0.0976723 + 0.0199373i
\(696\) 0 0
\(697\) 431.110i 0.618523i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −718.000 −1.02425 −0.512126 0.858911i \(-0.671142\pi\)
−0.512126 + 0.858911i \(0.671142\pi\)
\(702\) 0 0
\(703\) −678.823 −0.965608
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 593.970 0.840127
\(708\) 0 0
\(709\) −838.000 −1.18195 −0.590973 0.806691i \(-0.701256\pi\)
−0.590973 + 0.806691i \(0.701256\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1410.91i 1.97883i
\(714\) 0 0
\(715\) −135.765 665.108i −0.189880 0.930220i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 221.703i 0.308348i −0.988044 0.154174i \(-0.950728\pi\)
0.988044 0.154174i \(-0.0492717\pi\)
\(720\) 0 0
\(721\) −216.000 −0.299584
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −506.000 + 215.555i −0.697931 + 0.297317i
\(726\) 0 0
\(727\) 347.897 0.478537 0.239269 0.970953i \(-0.423092\pi\)
0.239269 + 0.970953i \(0.423092\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1163.94i 1.59225i
\(732\) 0 0
\(733\) 676.059i 0.922318i 0.887317 + 0.461159i \(0.152566\pi\)
−0.887317 + 0.461159i \(0.847434\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 823.029i 1.11673i
\(738\) 0 0
\(739\) 235.559i 0.318754i −0.987218 0.159377i \(-0.949052\pi\)
0.987218 0.159377i \(-0.0509485\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1349.16 1.81583 0.907914 0.419157i \(-0.137674\pi\)
0.907914 + 0.419157i \(0.137674\pi\)
\(744\) 0 0
\(745\) 2.00000 + 9.79796i 0.00268456 + 0.0131516i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 360.000 0.480641
\(750\) 0 0
\(751\) 1163.94i 1.54985i 0.632053 + 0.774926i \(0.282213\pi\)
−0.632053 + 0.774926i \(0.717787\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 135.765 27.7128i 0.179821 0.0367057i
\(756\) 0 0
\(757\) 1205.15i 1.59201i 0.605292 + 0.796003i \(0.293056\pi\)
−0.605292 + 0.796003i \(0.706944\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −530.000 −0.696452 −0.348226 0.937411i \(-0.613216\pi\)
−0.348226 + 0.937411i \(0.613216\pi\)
\(762\) 0 0
\(763\) −1238.85 −1.62366
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −135.765 −0.177007
\(768\) 0 0
\(769\) 386.000 0.501951 0.250975 0.967993i \(-0.419249\pi\)
0.250975 + 0.967993i \(0.419249\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 695.655i 0.899942i 0.893043 + 0.449971i \(0.148566\pi\)
−0.893043 + 0.449971i \(0.851434\pi\)
\(774\) 0 0
\(775\) −543.058 1274.79i −0.700720 1.64489i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 304.841i 0.391323i
\(780\) 0 0
\(781\) 384.000 0.491677
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 336.000 68.5857i 0.428025 0.0873703i
\(786\) 0 0
\(787\) −1298.25 −1.64962 −0.824808 0.565413i \(-0.808717\pi\)
−0.824808 + 0.565413i \(0.808717\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 332.554i 0.420422i
\(792\) 0 0
\(793\) 450.706i 0.568356i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1361.92i 1.70880i −0.519613 0.854402i \(-0.673924\pi\)
0.519613 0.854402i \(-0.326076\pi\)
\(798\) 0 0
\(799\) 166.277i 0.208106i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1086.12 −1.35257
\(804\) 0 0
\(805\) 216.000 + 1058.18i 0.268323 + 1.31451i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1006.00 1.24351 0.621755 0.783212i \(-0.286420\pi\)
0.621755 + 0.783212i \(0.286420\pi\)
\(810\) 0 0
\(811\) 651.251i 0.803022i −0.915854 0.401511i \(-0.868485\pi\)
0.915854 0.401511i \(-0.131515\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −110.309 540.400i −0.135348 0.663067i
\(816\) 0 0
\(817\) 823.029i 1.00738i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 482.000 0.587089 0.293544 0.955945i \(-0.405165\pi\)
0.293544 + 0.955945i \(0.405165\pi\)
\(822\) 0 0
\(823\) −636.396 −0.773264 −0.386632 0.922234i \(-0.626362\pi\)
−0.386632 + 0.922234i \(0.626362\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −398.808 −0.482235 −0.241117 0.970496i \(-0.577514\pi\)
−0.241117 + 0.970496i \(0.577514\pi\)
\(828\) 0 0
\(829\) −1106.00 −1.33414 −0.667069 0.744996i \(-0.732451\pi\)
−0.667069 + 0.744996i \(0.732451\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 450.706i 0.541064i
\(834\) 0 0
\(835\) 93.3381 + 457.261i 0.111782 + 0.547618i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 360.267i 0.429400i −0.976680 0.214700i \(-0.931123\pi\)
0.976680 0.214700i \(-0.0688774\pi\)
\(840\) 0 0
\(841\) −357.000 −0.424495
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 73.0000 + 357.626i 0.0863905 + 0.423225i
\(846\) 0 0
\(847\) −602.455 −0.711281
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1247.08i 1.46542i
\(852\) 0 0
\(853\) 676.059i 0.792566i 0.918128 + 0.396283i \(0.129700\pi\)
−0.918128 + 0.396283i \(0.870300\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1077.78i 1.25761i 0.777561 + 0.628807i \(0.216457\pi\)
−0.777561 + 0.628807i \(0.783543\pi\)
\(858\) 0 0
\(859\) 568.113i 0.661365i 0.943742 + 0.330683i \(0.107279\pi\)
−0.943742 + 0.330683i \(0.892721\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 195.161 0.226143 0.113072 0.993587i \(-0.463931\pi\)
0.113072 + 0.993587i \(0.463931\pi\)
\(864\) 0 0
\(865\) 240.000 48.9898i 0.277457 0.0566356i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 581.969i 0.668162i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −602.455 872.954i −0.688520 0.997661i
\(876\) 0 0
\(877\) 244.949i 0.279303i 0.990201 + 0.139652i \(0.0445983\pi\)
−0.990201 + 0.139652i \(0.955402\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −550.000 −0.624291 −0.312145 0.950034i \(-0.601048\pi\)
−0.312145 + 0.950034i \(0.601048\pi\)
\(882\) 0 0
\(883\) 636.396 0.720720 0.360360 0.932813i \(-0.382654\pi\)
0.360360 + 0.932813i \(0.382654\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1230.37 −1.38711 −0.693555 0.720404i \(-0.743956\pi\)
−0.693555 + 0.720404i \(0.743956\pi\)
\(888\) 0 0
\(889\) 936.000 1.05287
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 117.576i 0.131664i
\(894\) 0 0
\(895\) 1289.76 263.272i 1.44108 0.294158i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1219.36i 1.35636i
\(900\) 0 0
\(901\) 576.000 0.639290
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 26.0000 + 127.373i 0.0287293 + 0.140744i
\(906\) 0 0
\(907\) −585.484 −0.645518 −0.322759 0.946481i \(-0.604610\pi\)
−0.322759 + 0.946481i \(0.604610\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 886.810i 0.973447i 0.873556 + 0.486723i \(0.161808\pi\)
−0.873556 + 0.486723i \(0.838192\pi\)
\(912\) 0 0
\(913\) 1058.18i 1.15901i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1528.48i 1.66683i
\(918\) 0 0
\(919\) 193.990i 0.211088i −0.994415 0.105544i \(-0.966342\pi\)
0.994415 0.105544i \(-0.0336584\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 271.529 0.294181
\(924\) 0 0
\(925\) 480.000 + 1126.77i 0.518919 + 1.21812i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1318.00 −1.41873 −0.709365 0.704841i \(-0.751018\pi\)
−0.709365 + 0.704841i \(0.751018\pi\)
\(930\) 0 0
\(931\) 318.697i 0.342317i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −271.529 1330.22i −0.290405 1.42269i
\(936\) 0 0
\(937\) 548.686i 0.585577i −0.956177 0.292789i \(-0.905417\pi\)
0.956177 0.292789i \(-0.0945832\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1654.00 1.75770 0.878852 0.477094i \(-0.158310\pi\)
0.878852 + 0.477094i \(0.158310\pi\)
\(942\) 0 0
\(943\) −560.029 −0.593880
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1417.04 −1.49635 −0.748174 0.663502i \(-0.769069\pi\)
−0.748174 + 0.663502i \(0.769069\pi\)
\(948\) 0 0
\(949\) −768.000 −0.809273
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 137.171i 0.143936i 0.997407 + 0.0719682i \(0.0229280\pi\)
−0.997407 + 0.0719682i \(0.977072\pi\)
\(954\) 0 0
\(955\) −543.058 + 110.851i −0.568647 + 0.116075i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1829.05i 1.90724i
\(960\) 0 0
\(961\) −2111.00 −2.19667
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1632.00 + 333.131i −1.69119 + 0.345213i
\(966\) 0 0
\(967\) −1450.98 −1.50050 −0.750250 0.661154i \(-0.770067\pi\)
−0.750250 + 0.661154i \(0.770067\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 817.528i 0.841944i 0.907074 + 0.420972i \(0.138311\pi\)
−0.907074 + 0.420972i \(0.861689\pi\)
\(972\) 0 0
\(973\) 117.576i 0.120838i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1704.84i 1.74498i −0.488633 0.872490i \(-0.662504\pi\)
0.488633 0.872490i \(-0.337496\pi\)
\(978\) 0 0
\(979\) 2023.04i 2.06643i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 738.219 0.750986 0.375493 0.926825i \(-0.377473\pi\)
0.375493 + 0.926825i \(0.377473\pi\)
\(984\) 0 0
\(985\) −528.000 + 107.778i −0.536041 + 0.109419i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1512.00 1.52882
\(990\) 0 0
\(991\) 775.959i 0.783006i −0.920177 0.391503i \(-0.871955\pi\)
0.920177 0.391503i \(-0.128045\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1221.88 249.415i 1.22802 0.250669i
\(996\) 0 0
\(997\) 1420.70i 1.42498i 0.701683 + 0.712489i \(0.252432\pi\)
−0.701683 + 0.712489i \(0.747568\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.j.e.559.4 4
3.2 odd 2 80.3.h.b.79.3 yes 4
4.3 odd 2 inner 720.3.j.e.559.3 4
5.2 odd 4 3600.3.e.bd.3151.3 4
5.3 odd 4 3600.3.e.bd.3151.1 4
5.4 even 2 inner 720.3.j.e.559.1 4
12.11 even 2 80.3.h.b.79.1 4
15.2 even 4 400.3.b.h.351.2 4
15.8 even 4 400.3.b.h.351.4 4
15.14 odd 2 80.3.h.b.79.2 yes 4
20.3 even 4 3600.3.e.bd.3151.4 4
20.7 even 4 3600.3.e.bd.3151.2 4
20.19 odd 2 inner 720.3.j.e.559.2 4
24.5 odd 2 320.3.h.e.319.2 4
24.11 even 2 320.3.h.e.319.4 4
48.5 odd 4 1280.3.e.j.639.3 8
48.11 even 4 1280.3.e.j.639.7 8
48.29 odd 4 1280.3.e.j.639.6 8
48.35 even 4 1280.3.e.j.639.2 8
60.23 odd 4 400.3.b.h.351.1 4
60.47 odd 4 400.3.b.h.351.3 4
60.59 even 2 80.3.h.b.79.4 yes 4
120.29 odd 2 320.3.h.e.319.3 4
120.53 even 4 1600.3.b.t.1151.1 4
120.59 even 2 320.3.h.e.319.1 4
120.77 even 4 1600.3.b.t.1151.3 4
120.83 odd 4 1600.3.b.t.1151.4 4
120.107 odd 4 1600.3.b.t.1151.2 4
240.29 odd 4 1280.3.e.j.639.4 8
240.59 even 4 1280.3.e.j.639.1 8
240.149 odd 4 1280.3.e.j.639.5 8
240.179 even 4 1280.3.e.j.639.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.h.b.79.1 4 12.11 even 2
80.3.h.b.79.2 yes 4 15.14 odd 2
80.3.h.b.79.3 yes 4 3.2 odd 2
80.3.h.b.79.4 yes 4 60.59 even 2
320.3.h.e.319.1 4 120.59 even 2
320.3.h.e.319.2 4 24.5 odd 2
320.3.h.e.319.3 4 120.29 odd 2
320.3.h.e.319.4 4 24.11 even 2
400.3.b.h.351.1 4 60.23 odd 4
400.3.b.h.351.2 4 15.2 even 4
400.3.b.h.351.3 4 60.47 odd 4
400.3.b.h.351.4 4 15.8 even 4
720.3.j.e.559.1 4 5.4 even 2 inner
720.3.j.e.559.2 4 20.19 odd 2 inner
720.3.j.e.559.3 4 4.3 odd 2 inner
720.3.j.e.559.4 4 1.1 even 1 trivial
1280.3.e.j.639.1 8 240.59 even 4
1280.3.e.j.639.2 8 48.35 even 4
1280.3.e.j.639.3 8 48.5 odd 4
1280.3.e.j.639.4 8 240.29 odd 4
1280.3.e.j.639.5 8 240.149 odd 4
1280.3.e.j.639.6 8 48.29 odd 4
1280.3.e.j.639.7 8 48.11 even 4
1280.3.e.j.639.8 8 240.179 even 4
1600.3.b.t.1151.1 4 120.53 even 4
1600.3.b.t.1151.2 4 120.107 odd 4
1600.3.b.t.1151.3 4 120.77 even 4
1600.3.b.t.1151.4 4 120.83 odd 4
3600.3.e.bd.3151.1 4 5.3 odd 4
3600.3.e.bd.3151.2 4 20.7 even 4
3600.3.e.bd.3151.3 4 5.2 odd 4
3600.3.e.bd.3151.4 4 20.3 even 4