Properties

Label 363.2.e.k.130.1
Level $363$
Weight $2$
Character 363.130
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 130.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 363.130
Dual form 363.2.e.k.148.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.118034 + 0.363271i) q^{2} +(0.809017 - 0.587785i) q^{3} +(1.50000 + 1.08981i) q^{4} +(0.500000 + 1.53884i) q^{5} +(0.118034 + 0.363271i) q^{6} +(0.809017 + 0.587785i) q^{7} +(-1.19098 + 0.865300i) q^{8} +(0.309017 - 0.951057i) q^{9} -0.618034 q^{10} +1.85410 q^{12} +(-1.30902 + 4.02874i) q^{13} +(-0.309017 + 0.224514i) q^{14} +(1.30902 + 0.951057i) q^{15} +(0.972136 + 2.99193i) q^{16} +(-2.42705 - 7.46969i) q^{17} +(0.309017 + 0.224514i) q^{18} +(0.690983 - 0.502029i) q^{19} +(-0.927051 + 2.85317i) q^{20} +1.00000 q^{21} -4.23607 q^{23} +(-0.454915 + 1.40008i) q^{24} +(1.92705 - 1.40008i) q^{25} +(-1.30902 - 0.951057i) q^{26} +(-0.309017 - 0.951057i) q^{27} +(0.572949 + 1.76336i) q^{28} +(4.85410 + 3.52671i) q^{29} +(-0.500000 + 0.363271i) q^{30} +(1.57295 - 4.84104i) q^{31} -4.14590 q^{32} +3.00000 q^{34} +(-0.500000 + 1.53884i) q^{35} +(1.50000 - 1.08981i) q^{36} +(1.42705 + 1.03681i) q^{37} +(0.100813 + 0.310271i) q^{38} +(1.30902 + 4.02874i) q^{39} +(-1.92705 - 1.40008i) q^{40} +(3.42705 - 2.48990i) q^{41} +(-0.118034 + 0.363271i) q^{42} +6.70820 q^{43} +1.61803 q^{45} +(0.500000 - 1.53884i) q^{46} +(-0.881966 + 0.640786i) q^{47} +(2.54508 + 1.84911i) q^{48} +(-1.85410 - 5.70634i) q^{49} +(0.281153 + 0.865300i) q^{50} +(-6.35410 - 4.61653i) q^{51} +(-6.35410 + 4.61653i) q^{52} +(-0.809017 + 2.48990i) q^{53} +0.381966 q^{54} -1.47214 q^{56} +(0.263932 - 0.812299i) q^{57} +(-1.85410 + 1.34708i) q^{58} +(-7.78115 - 5.65334i) q^{59} +(0.927051 + 2.85317i) q^{60} +(2.64590 + 8.14324i) q^{61} +(1.57295 + 1.14281i) q^{62} +(0.809017 - 0.587785i) q^{63} +(-1.45492 + 4.47777i) q^{64} -6.85410 q^{65} -4.85410 q^{67} +(4.50000 - 13.8496i) q^{68} +(-3.42705 + 2.48990i) q^{69} +(-0.500000 - 0.363271i) q^{70} +(-1.64590 - 5.06555i) q^{71} +(0.454915 + 1.40008i) q^{72} +(-6.23607 - 4.53077i) q^{73} +(-0.545085 + 0.396027i) q^{74} +(0.736068 - 2.26538i) q^{75} +1.58359 q^{76} -1.61803 q^{78} +(3.39919 - 10.4616i) q^{79} +(-4.11803 + 2.99193i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(0.500000 + 1.53884i) q^{82} +(-2.30902 - 7.10642i) q^{83} +(1.50000 + 1.08981i) q^{84} +(10.2812 - 7.46969i) q^{85} +(-0.791796 + 2.43690i) q^{86} +6.00000 q^{87} -3.76393 q^{89} +(-0.190983 + 0.587785i) q^{90} +(-3.42705 + 2.48990i) q^{91} +(-6.35410 - 4.61653i) q^{92} +(-1.57295 - 4.84104i) q^{93} +(-0.128677 - 0.396027i) q^{94} +(1.11803 + 0.812299i) q^{95} +(-3.35410 + 2.43690i) q^{96} +(0.354102 - 1.08981i) q^{97} +2.29180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + q^{3} + 6 q^{4} + 2 q^{5} - 4 q^{6} + q^{7} - 7 q^{8} - q^{9} + 2 q^{10} - 6 q^{12} - 3 q^{13} + q^{14} + 3 q^{15} - 14 q^{16} - 3 q^{17} - q^{18} + 5 q^{19} + 3 q^{20} + 4 q^{21} - 8 q^{23}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.118034 + 0.363271i −0.0834626 + 0.256872i −0.984076 0.177750i \(-0.943118\pi\)
0.900613 + 0.434622i \(0.143118\pi\)
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) 1.50000 + 1.08981i 0.750000 + 0.544907i
\(5\) 0.500000 + 1.53884i 0.223607 + 0.688191i 0.998430 + 0.0560130i \(0.0178388\pi\)
−0.774823 + 0.632178i \(0.782161\pi\)
\(6\) 0.118034 + 0.363271i 0.0481872 + 0.148305i
\(7\) 0.809017 + 0.587785i 0.305780 + 0.222162i 0.730084 0.683358i \(-0.239481\pi\)
−0.424304 + 0.905520i \(0.639481\pi\)
\(8\) −1.19098 + 0.865300i −0.421076 + 0.305930i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −0.618034 −0.195440
\(11\) 0 0
\(12\) 1.85410 0.535233
\(13\) −1.30902 + 4.02874i −0.363056 + 1.11737i 0.588133 + 0.808764i \(0.299863\pi\)
−0.951189 + 0.308608i \(0.900137\pi\)
\(14\) −0.309017 + 0.224514i −0.0825883 + 0.0600039i
\(15\) 1.30902 + 0.951057i 0.337987 + 0.245562i
\(16\) 0.972136 + 2.99193i 0.243034 + 0.747982i
\(17\) −2.42705 7.46969i −0.588646 1.81167i −0.584106 0.811677i \(-0.698555\pi\)
−0.00454037 0.999990i \(-0.501445\pi\)
\(18\) 0.309017 + 0.224514i 0.0728360 + 0.0529185i
\(19\) 0.690983 0.502029i 0.158522 0.115173i −0.505696 0.862712i \(-0.668764\pi\)
0.664219 + 0.747538i \(0.268764\pi\)
\(20\) −0.927051 + 2.85317i −0.207295 + 0.637988i
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −4.23607 −0.883281 −0.441641 0.897192i \(-0.645603\pi\)
−0.441641 + 0.897192i \(0.645603\pi\)
\(24\) −0.454915 + 1.40008i −0.0928591 + 0.285791i
\(25\) 1.92705 1.40008i 0.385410 0.280017i
\(26\) −1.30902 0.951057i −0.256719 0.186518i
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) 0.572949 + 1.76336i 0.108277 + 0.333243i
\(29\) 4.85410 + 3.52671i 0.901384 + 0.654894i 0.938821 0.344405i \(-0.111919\pi\)
−0.0374370 + 0.999299i \(0.511919\pi\)
\(30\) −0.500000 + 0.363271i −0.0912871 + 0.0663240i
\(31\) 1.57295 4.84104i 0.282510 0.869476i −0.704624 0.709581i \(-0.748884\pi\)
0.987134 0.159895i \(-0.0511157\pi\)
\(32\) −4.14590 −0.732898
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −0.500000 + 1.53884i −0.0845154 + 0.260112i
\(36\) 1.50000 1.08981i 0.250000 0.181636i
\(37\) 1.42705 + 1.03681i 0.234606 + 0.170451i 0.698877 0.715242i \(-0.253684\pi\)
−0.464271 + 0.885693i \(0.653684\pi\)
\(38\) 0.100813 + 0.310271i 0.0163540 + 0.0503326i
\(39\) 1.30902 + 4.02874i 0.209610 + 0.645115i
\(40\) −1.92705 1.40008i −0.304694 0.221373i
\(41\) 3.42705 2.48990i 0.535215 0.388857i −0.287090 0.957904i \(-0.592688\pi\)
0.822305 + 0.569047i \(0.192688\pi\)
\(42\) −0.118034 + 0.363271i −0.0182130 + 0.0560540i
\(43\) 6.70820 1.02299 0.511496 0.859286i \(-0.329092\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(44\) 0 0
\(45\) 1.61803 0.241202
\(46\) 0.500000 1.53884i 0.0737210 0.226890i
\(47\) −0.881966 + 0.640786i −0.128648 + 0.0934682i −0.650248 0.759722i \(-0.725335\pi\)
0.521600 + 0.853190i \(0.325335\pi\)
\(48\) 2.54508 + 1.84911i 0.367351 + 0.266896i
\(49\) −1.85410 5.70634i −0.264872 0.815191i
\(50\) 0.281153 + 0.865300i 0.0397610 + 0.122372i
\(51\) −6.35410 4.61653i −0.889752 0.646443i
\(52\) −6.35410 + 4.61653i −0.881155 + 0.640197i
\(53\) −0.809017 + 2.48990i −0.111127 + 0.342014i −0.991120 0.132974i \(-0.957547\pi\)
0.879993 + 0.474988i \(0.157547\pi\)
\(54\) 0.381966 0.0519790
\(55\) 0 0
\(56\) −1.47214 −0.196722
\(57\) 0.263932 0.812299i 0.0349587 0.107592i
\(58\) −1.85410 + 1.34708i −0.243456 + 0.176881i
\(59\) −7.78115 5.65334i −1.01302 0.736002i −0.0481795 0.998839i \(-0.515342\pi\)
−0.964840 + 0.262837i \(0.915342\pi\)
\(60\) 0.927051 + 2.85317i 0.119682 + 0.368343i
\(61\) 2.64590 + 8.14324i 0.338773 + 1.04263i 0.964834 + 0.262861i \(0.0846660\pi\)
−0.626061 + 0.779774i \(0.715334\pi\)
\(62\) 1.57295 + 1.14281i 0.199765 + 0.145138i
\(63\) 0.809017 0.587785i 0.101927 0.0740540i
\(64\) −1.45492 + 4.47777i −0.181864 + 0.559721i
\(65\) −6.85410 −0.850147
\(66\) 0 0
\(67\) −4.85410 −0.593023 −0.296511 0.955029i \(-0.595823\pi\)
−0.296511 + 0.955029i \(0.595823\pi\)
\(68\) 4.50000 13.8496i 0.545705 1.67951i
\(69\) −3.42705 + 2.48990i −0.412568 + 0.299749i
\(70\) −0.500000 0.363271i −0.0597614 0.0434192i
\(71\) −1.64590 5.06555i −0.195332 0.601171i −0.999973 0.00740814i \(-0.997642\pi\)
0.804640 0.593762i \(-0.202358\pi\)
\(72\) 0.454915 + 1.40008i 0.0536123 + 0.165002i
\(73\) −6.23607 4.53077i −0.729877 0.530286i 0.159648 0.987174i \(-0.448964\pi\)
−0.889524 + 0.456888i \(0.848964\pi\)
\(74\) −0.545085 + 0.396027i −0.0633648 + 0.0460373i
\(75\) 0.736068 2.26538i 0.0849938 0.261584i
\(76\) 1.58359 0.181650
\(77\) 0 0
\(78\) −1.61803 −0.183206
\(79\) 3.39919 10.4616i 0.382438 1.17702i −0.555883 0.831260i \(-0.687620\pi\)
0.938322 0.345764i \(-0.112380\pi\)
\(80\) −4.11803 + 2.99193i −0.460410 + 0.334508i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0.500000 + 1.53884i 0.0552158 + 0.169937i
\(83\) −2.30902 7.10642i −0.253448 0.780031i −0.994132 0.108178i \(-0.965498\pi\)
0.740684 0.671854i \(-0.234502\pi\)
\(84\) 1.50000 + 1.08981i 0.163663 + 0.118908i
\(85\) 10.2812 7.46969i 1.11515 0.810202i
\(86\) −0.791796 + 2.43690i −0.0853816 + 0.262777i
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −3.76393 −0.398976 −0.199488 0.979900i \(-0.563928\pi\)
−0.199488 + 0.979900i \(0.563928\pi\)
\(90\) −0.190983 + 0.587785i −0.0201314 + 0.0619580i
\(91\) −3.42705 + 2.48990i −0.359253 + 0.261012i
\(92\) −6.35410 4.61653i −0.662461 0.481306i
\(93\) −1.57295 4.84104i −0.163107 0.501992i
\(94\) −0.128677 0.396027i −0.0132720 0.0408471i
\(95\) 1.11803 + 0.812299i 0.114708 + 0.0833401i
\(96\) −3.35410 + 2.43690i −0.342327 + 0.248715i
\(97\) 0.354102 1.08981i 0.0359536 0.110654i −0.931469 0.363821i \(-0.881472\pi\)
0.967423 + 0.253167i \(0.0814721\pi\)
\(98\) 2.29180 0.231506
\(99\) 0 0
\(100\) 4.41641 0.441641
\(101\) −1.78115 + 5.48183i −0.177231 + 0.545462i −0.999728 0.0233075i \(-0.992580\pi\)
0.822497 + 0.568769i \(0.192580\pi\)
\(102\) 2.42705 1.76336i 0.240314 0.174598i
\(103\) −5.61803 4.08174i −0.553561 0.402186i 0.275535 0.961291i \(-0.411145\pi\)
−0.829097 + 0.559105i \(0.811145\pi\)
\(104\) −1.92705 5.93085i −0.188963 0.581568i
\(105\) 0.500000 + 1.53884i 0.0487950 + 0.150176i
\(106\) −0.809017 0.587785i −0.0785787 0.0570908i
\(107\) 2.04508 1.48584i 0.197706 0.143642i −0.484528 0.874776i \(-0.661009\pi\)
0.682234 + 0.731134i \(0.261009\pi\)
\(108\) 0.572949 1.76336i 0.0551320 0.169679i
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 1.76393 0.167425
\(112\) −0.972136 + 2.99193i −0.0918582 + 0.282711i
\(113\) −3.66312 + 2.66141i −0.344597 + 0.250365i −0.746599 0.665274i \(-0.768315\pi\)
0.402002 + 0.915639i \(0.368315\pi\)
\(114\) 0.263932 + 0.191758i 0.0247195 + 0.0179598i
\(115\) −2.11803 6.51864i −0.197508 0.607866i
\(116\) 3.43769 + 10.5801i 0.319182 + 0.982341i
\(117\) 3.42705 + 2.48990i 0.316831 + 0.230191i
\(118\) 2.97214 2.15938i 0.273607 0.198787i
\(119\) 2.42705 7.46969i 0.222487 0.684746i
\(120\) −2.38197 −0.217443
\(121\) 0 0
\(122\) −3.27051 −0.296098
\(123\) 1.30902 4.02874i 0.118030 0.363259i
\(124\) 7.63525 5.54734i 0.685666 0.498166i
\(125\) 9.66312 + 7.02067i 0.864296 + 0.627948i
\(126\) 0.118034 + 0.363271i 0.0105153 + 0.0323628i
\(127\) −1.76393 5.42882i −0.156524 0.481730i 0.841788 0.539808i \(-0.181503\pi\)
−0.998312 + 0.0580773i \(0.981503\pi\)
\(128\) −8.16312 5.93085i −0.721525 0.524218i
\(129\) 5.42705 3.94298i 0.477825 0.347160i
\(130\) 0.809017 2.48990i 0.0709555 0.218379i
\(131\) 12.7984 1.11820 0.559100 0.829101i \(-0.311147\pi\)
0.559100 + 0.829101i \(0.311147\pi\)
\(132\) 0 0
\(133\) 0.854102 0.0740600
\(134\) 0.572949 1.76336i 0.0494953 0.152331i
\(135\) 1.30902 0.951057i 0.112662 0.0818539i
\(136\) 9.35410 + 6.79615i 0.802108 + 0.582765i
\(137\) 4.39919 + 13.5393i 0.375848 + 1.15674i 0.942905 + 0.333062i \(0.108082\pi\)
−0.567057 + 0.823679i \(0.691918\pi\)
\(138\) −0.500000 1.53884i −0.0425628 0.130995i
\(139\) 4.50000 + 3.26944i 0.381685 + 0.277310i 0.762040 0.647530i \(-0.224198\pi\)
−0.380355 + 0.924841i \(0.624198\pi\)
\(140\) −2.42705 + 1.76336i −0.205123 + 0.149031i
\(141\) −0.336881 + 1.03681i −0.0283705 + 0.0873154i
\(142\) 2.03444 0.170727
\(143\) 0 0
\(144\) 3.14590 0.262158
\(145\) −3.00000 + 9.23305i −0.249136 + 0.766763i
\(146\) 2.38197 1.73060i 0.197133 0.143225i
\(147\) −4.85410 3.52671i −0.400360 0.290878i
\(148\) 1.01064 + 3.11044i 0.0830744 + 0.255677i
\(149\) 0.0729490 + 0.224514i 0.00597622 + 0.0183929i 0.954000 0.299806i \(-0.0969220\pi\)
−0.948024 + 0.318199i \(0.896922\pi\)
\(150\) 0.736068 + 0.534785i 0.0600997 + 0.0436650i
\(151\) −15.3262 + 11.1352i −1.24723 + 0.906167i −0.998058 0.0622921i \(-0.980159\pi\)
−0.249174 + 0.968459i \(0.580159\pi\)
\(152\) −0.388544 + 1.19581i −0.0315151 + 0.0969934i
\(153\) −7.85410 −0.634967
\(154\) 0 0
\(155\) 8.23607 0.661537
\(156\) −2.42705 + 7.46969i −0.194320 + 0.598054i
\(157\) −1.85410 + 1.34708i −0.147973 + 0.107509i −0.659309 0.751872i \(-0.729151\pi\)
0.511335 + 0.859381i \(0.329151\pi\)
\(158\) 3.39919 + 2.46965i 0.270425 + 0.196475i
\(159\) 0.809017 + 2.48990i 0.0641592 + 0.197462i
\(160\) −2.07295 6.37988i −0.163881 0.504374i
\(161\) −3.42705 2.48990i −0.270089 0.196231i
\(162\) 0.309017 0.224514i 0.0242787 0.0176395i
\(163\) −3.66312 + 11.2739i −0.286918 + 0.883042i 0.698900 + 0.715220i \(0.253673\pi\)
−0.985817 + 0.167822i \(0.946327\pi\)
\(164\) 7.85410 0.613302
\(165\) 0 0
\(166\) 2.85410 0.221521
\(167\) −5.26393 + 16.2007i −0.407335 + 1.25365i 0.511594 + 0.859227i \(0.329055\pi\)
−0.918929 + 0.394422i \(0.870945\pi\)
\(168\) −1.19098 + 0.865300i −0.0918863 + 0.0667593i
\(169\) −4.00000 2.90617i −0.307692 0.223552i
\(170\) 1.50000 + 4.61653i 0.115045 + 0.354071i
\(171\) −0.263932 0.812299i −0.0201834 0.0621181i
\(172\) 10.0623 + 7.31069i 0.767244 + 0.557435i
\(173\) −8.92705 + 6.48588i −0.678711 + 0.493112i −0.872930 0.487846i \(-0.837783\pi\)
0.194219 + 0.980958i \(0.437783\pi\)
\(174\) −0.708204 + 2.17963i −0.0536888 + 0.165237i
\(175\) 2.38197 0.180060
\(176\) 0 0
\(177\) −9.61803 −0.722936
\(178\) 0.444272 1.36733i 0.0332996 0.102486i
\(179\) 14.1353 10.2699i 1.05652 0.767606i 0.0830774 0.996543i \(-0.473525\pi\)
0.973441 + 0.228937i \(0.0735251\pi\)
\(180\) 2.42705 + 1.76336i 0.180902 + 0.131433i
\(181\) 3.54508 + 10.9106i 0.263504 + 0.810982i 0.992034 + 0.125968i \(0.0402038\pi\)
−0.728530 + 0.685014i \(0.759796\pi\)
\(182\) −0.500000 1.53884i −0.0370625 0.114067i
\(183\) 6.92705 + 5.03280i 0.512062 + 0.372035i
\(184\) 5.04508 3.66547i 0.371929 0.270222i
\(185\) −0.881966 + 2.71441i −0.0648434 + 0.199568i
\(186\) 1.94427 0.142561
\(187\) 0 0
\(188\) −2.02129 −0.147417
\(189\) 0.309017 0.951057i 0.0224777 0.0691792i
\(190\) −0.427051 + 0.310271i −0.0309815 + 0.0225094i
\(191\) 18.7533 + 13.6251i 1.35694 + 0.985875i 0.998633 + 0.0522712i \(0.0166460\pi\)
0.358307 + 0.933604i \(0.383354\pi\)
\(192\) 1.45492 + 4.47777i 0.104999 + 0.323155i
\(193\) −3.04508 9.37181i −0.219190 0.674597i −0.998830 0.0483689i \(-0.984598\pi\)
0.779640 0.626229i \(-0.215402\pi\)
\(194\) 0.354102 + 0.257270i 0.0254230 + 0.0184709i
\(195\) −5.54508 + 4.02874i −0.397092 + 0.288504i
\(196\) 3.43769 10.5801i 0.245550 0.755724i
\(197\) −16.0344 −1.14241 −0.571203 0.820809i \(-0.693523\pi\)
−0.571203 + 0.820809i \(0.693523\pi\)
\(198\) 0 0
\(199\) −6.70820 −0.475532 −0.237766 0.971322i \(-0.576415\pi\)
−0.237766 + 0.971322i \(0.576415\pi\)
\(200\) −1.08359 + 3.33495i −0.0766215 + 0.235817i
\(201\) −3.92705 + 2.85317i −0.276993 + 0.201247i
\(202\) −1.78115 1.29408i −0.125321 0.0910514i
\(203\) 1.85410 + 5.70634i 0.130132 + 0.400506i
\(204\) −4.50000 13.8496i −0.315063 0.969664i
\(205\) 5.54508 + 4.02874i 0.387286 + 0.281379i
\(206\) 2.14590 1.55909i 0.149512 0.108627i
\(207\) −1.30902 + 4.02874i −0.0909830 + 0.280017i
\(208\) −13.3262 −0.924008
\(209\) 0 0
\(210\) −0.618034 −0.0426484
\(211\) 0.427051 1.31433i 0.0293994 0.0904821i −0.935280 0.353908i \(-0.884853\pi\)
0.964680 + 0.263426i \(0.0848525\pi\)
\(212\) −3.92705 + 2.85317i −0.269711 + 0.195956i
\(213\) −4.30902 3.13068i −0.295249 0.214511i
\(214\) 0.298374 + 0.918300i 0.0203964 + 0.0627737i
\(215\) 3.35410 + 10.3229i 0.228748 + 0.704014i
\(216\) 1.19098 + 0.865300i 0.0810361 + 0.0588762i
\(217\) 4.11803 2.99193i 0.279550 0.203105i
\(218\) 1.41641 4.35926i 0.0959312 0.295246i
\(219\) −7.70820 −0.520872
\(220\) 0 0
\(221\) 33.2705 2.23802
\(222\) −0.208204 + 0.640786i −0.0139737 + 0.0430067i
\(223\) 12.2812 8.92278i 0.822407 0.597514i −0.0949941 0.995478i \(-0.530283\pi\)
0.917401 + 0.397964i \(0.130283\pi\)
\(224\) −3.35410 2.43690i −0.224105 0.162822i
\(225\) −0.736068 2.26538i −0.0490712 0.151026i
\(226\) −0.534442 1.64484i −0.0355505 0.109413i
\(227\) 7.42705 + 5.39607i 0.492951 + 0.358150i 0.806318 0.591482i \(-0.201457\pi\)
−0.313367 + 0.949632i \(0.601457\pi\)
\(228\) 1.28115 0.930812i 0.0848464 0.0616445i
\(229\) −2.61803 + 8.05748i −0.173005 + 0.532453i −0.999537 0.0304362i \(-0.990310\pi\)
0.826532 + 0.562890i \(0.190310\pi\)
\(230\) 2.61803 0.172628
\(231\) 0 0
\(232\) −8.83282 −0.579903
\(233\) −3.35410 + 10.3229i −0.219735 + 0.676273i 0.779049 + 0.626963i \(0.215702\pi\)
−0.998784 + 0.0493103i \(0.984298\pi\)
\(234\) −1.30902 + 0.951057i −0.0855731 + 0.0621725i
\(235\) −1.42705 1.03681i −0.0930905 0.0676342i
\(236\) −5.51064 16.9600i −0.358712 1.10400i
\(237\) −3.39919 10.4616i −0.220801 0.679555i
\(238\) 2.42705 + 1.76336i 0.157322 + 0.114301i
\(239\) −2.11803 + 1.53884i −0.137004 + 0.0995394i −0.654176 0.756342i \(-0.726985\pi\)
0.517172 + 0.855881i \(0.326985\pi\)
\(240\) −1.57295 + 4.84104i −0.101533 + 0.312488i
\(241\) 21.7082 1.39835 0.699174 0.714951i \(-0.253551\pi\)
0.699174 + 0.714951i \(0.253551\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −4.90576 + 15.0984i −0.314059 + 0.966575i
\(245\) 7.85410 5.70634i 0.501780 0.364565i
\(246\) 1.30902 + 0.951057i 0.0834599 + 0.0606371i
\(247\) 1.11803 + 3.44095i 0.0711388 + 0.218943i
\(248\) 2.31559 + 7.12667i 0.147040 + 0.452544i
\(249\) −6.04508 4.39201i −0.383092 0.278332i
\(250\) −3.69098 + 2.68166i −0.233438 + 0.169603i
\(251\) 7.71885 23.7562i 0.487209 1.49948i −0.341546 0.939865i \(-0.610951\pi\)
0.828755 0.559611i \(-0.189049\pi\)
\(252\) 1.85410 0.116797
\(253\) 0 0
\(254\) 2.18034 0.136807
\(255\) 3.92705 12.0862i 0.245921 0.756868i
\(256\) −4.50000 + 3.26944i −0.281250 + 0.204340i
\(257\) 10.3090 + 7.48994i 0.643059 + 0.467210i 0.860900 0.508775i \(-0.169901\pi\)
−0.217841 + 0.975984i \(0.569901\pi\)
\(258\) 0.791796 + 2.43690i 0.0492951 + 0.151715i
\(259\) 0.545085 + 1.67760i 0.0338699 + 0.104241i
\(260\) −10.2812 7.46969i −0.637610 0.463251i
\(261\) 4.85410 3.52671i 0.300461 0.218298i
\(262\) −1.51064 + 4.64928i −0.0933278 + 0.287234i
\(263\) 18.2705 1.12661 0.563304 0.826250i \(-0.309530\pi\)
0.563304 + 0.826250i \(0.309530\pi\)
\(264\) 0 0
\(265\) −4.23607 −0.260220
\(266\) −0.100813 + 0.310271i −0.00618125 + 0.0190239i
\(267\) −3.04508 + 2.21238i −0.186356 + 0.135396i
\(268\) −7.28115 5.29007i −0.444767 0.323142i
\(269\) 0.437694 + 1.34708i 0.0266867 + 0.0821332i 0.963513 0.267662i \(-0.0862511\pi\)
−0.936826 + 0.349795i \(0.886251\pi\)
\(270\) 0.190983 + 0.587785i 0.0116229 + 0.0357715i
\(271\) −13.2533 9.62908i −0.805080 0.584925i 0.107320 0.994225i \(-0.465773\pi\)
−0.912400 + 0.409300i \(0.865773\pi\)
\(272\) 19.9894 14.5231i 1.21203 0.880593i
\(273\) −1.30902 + 4.02874i −0.0792253 + 0.243830i
\(274\) −5.43769 −0.328503
\(275\) 0 0
\(276\) −7.85410 −0.472761
\(277\) 6.86475 21.1275i 0.412463 1.26943i −0.502038 0.864845i \(-0.667416\pi\)
0.914501 0.404584i \(-0.132584\pi\)
\(278\) −1.71885 + 1.24882i −0.103090 + 0.0748990i
\(279\) −4.11803 2.99193i −0.246540 0.179122i
\(280\) −0.736068 2.26538i −0.0439885 0.135383i
\(281\) 9.03444 + 27.8052i 0.538950 + 1.65872i 0.734957 + 0.678114i \(0.237202\pi\)
−0.196007 + 0.980602i \(0.562798\pi\)
\(282\) −0.336881 0.244758i −0.0200610 0.0145752i
\(283\) −6.23607 + 4.53077i −0.370696 + 0.269326i −0.757499 0.652836i \(-0.773579\pi\)
0.386804 + 0.922162i \(0.373579\pi\)
\(284\) 3.05166 9.39205i 0.181083 0.557316i
\(285\) 1.38197 0.0818606
\(286\) 0 0
\(287\) 4.23607 0.250047
\(288\) −1.28115 + 3.94298i −0.0754927 + 0.232343i
\(289\) −36.1525 + 26.2663i −2.12662 + 1.54508i
\(290\) −3.00000 2.17963i −0.176166 0.127992i
\(291\) −0.354102 1.08981i −0.0207578 0.0638860i
\(292\) −4.41641 13.5923i −0.258451 0.795430i
\(293\) −7.80902 5.67358i −0.456208 0.331454i 0.335834 0.941921i \(-0.390982\pi\)
−0.792042 + 0.610467i \(0.790982\pi\)
\(294\) 1.85410 1.34708i 0.108133 0.0785635i
\(295\) 4.80902 14.8006i 0.279992 0.861726i
\(296\) −2.59675 −0.150933
\(297\) 0 0
\(298\) −0.0901699 −0.00522340
\(299\) 5.54508 17.0660i 0.320681 0.986953i
\(300\) 3.57295 2.59590i 0.206284 0.149874i
\(301\) 5.42705 + 3.94298i 0.312810 + 0.227270i
\(302\) −2.23607 6.88191i −0.128671 0.396009i
\(303\) 1.78115 + 5.48183i 0.102325 + 0.314923i
\(304\) 2.17376 + 1.57933i 0.124674 + 0.0905808i
\(305\) −11.2082 + 8.14324i −0.641780 + 0.466280i
\(306\) 0.927051 2.85317i 0.0529960 0.163105i
\(307\) −18.9787 −1.08317 −0.541586 0.840645i \(-0.682176\pi\)
−0.541586 + 0.840645i \(0.682176\pi\)
\(308\) 0 0
\(309\) −6.94427 −0.395046
\(310\) −0.972136 + 2.99193i −0.0552136 + 0.169930i
\(311\) 15.8992 11.5514i 0.901560 0.655022i −0.0373061 0.999304i \(-0.511878\pi\)
0.938866 + 0.344282i \(0.111878\pi\)
\(312\) −5.04508 3.66547i −0.285622 0.207516i
\(313\) −3.54508 10.9106i −0.200380 0.616706i −0.999872 0.0160289i \(-0.994898\pi\)
0.799491 0.600677i \(-0.205102\pi\)
\(314\) −0.270510 0.832544i −0.0152658 0.0469832i
\(315\) 1.30902 + 0.951057i 0.0737548 + 0.0535860i
\(316\) 16.5000 11.9880i 0.928198 0.674375i
\(317\) −9.01722 + 27.7522i −0.506458 + 1.55872i 0.291849 + 0.956464i \(0.405730\pi\)
−0.798306 + 0.602252i \(0.794270\pi\)
\(318\) −1.00000 −0.0560772
\(319\) 0 0
\(320\) −7.61803 −0.425861
\(321\) 0.781153 2.40414i 0.0435997 0.134186i
\(322\) 1.30902 0.951057i 0.0729487 0.0530003i
\(323\) −5.42705 3.94298i −0.301969 0.219393i
\(324\) −0.572949 1.76336i −0.0318305 0.0979642i
\(325\) 3.11803 + 9.59632i 0.172957 + 0.532308i
\(326\) −3.66312 2.66141i −0.202881 0.147402i
\(327\) −9.70820 + 7.05342i −0.536865 + 0.390055i
\(328\) −1.92705 + 5.93085i −0.106404 + 0.327477i
\(329\) −1.09017 −0.0601030
\(330\) 0 0
\(331\) 3.29180 0.180933 0.0904667 0.995899i \(-0.471164\pi\)
0.0904667 + 0.995899i \(0.471164\pi\)
\(332\) 4.28115 13.1760i 0.234959 0.723129i
\(333\) 1.42705 1.03681i 0.0782019 0.0568170i
\(334\) −5.26393 3.82447i −0.288030 0.209266i
\(335\) −2.42705 7.46969i −0.132604 0.408113i
\(336\) 0.972136 + 2.99193i 0.0530344 + 0.163223i
\(337\) −3.38197 2.45714i −0.184227 0.133849i 0.491849 0.870680i \(-0.336321\pi\)
−0.676077 + 0.736831i \(0.736321\pi\)
\(338\) 1.52786 1.11006i 0.0831048 0.0603792i
\(339\) −1.39919 + 4.30625i −0.0759934 + 0.233884i
\(340\) 23.5623 1.27785
\(341\) 0 0
\(342\) 0.326238 0.0176409
\(343\) 4.01722 12.3637i 0.216910 0.667579i
\(344\) −7.98936 + 5.80461i −0.430757 + 0.312963i
\(345\) −5.54508 4.02874i −0.298537 0.216900i
\(346\) −1.30244 4.00850i −0.0700196 0.215498i
\(347\) −3.23607 9.95959i −0.173721 0.534659i 0.825852 0.563888i \(-0.190695\pi\)
−0.999573 + 0.0292287i \(0.990695\pi\)
\(348\) 9.00000 + 6.53888i 0.482451 + 0.350521i
\(349\) 0.572949 0.416272i 0.0306693 0.0222825i −0.572345 0.820013i \(-0.693966\pi\)
0.603014 + 0.797730i \(0.293966\pi\)
\(350\) −0.281153 + 0.865300i −0.0150283 + 0.0462522i
\(351\) 4.23607 0.226105
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) 1.13525 3.49396i 0.0603381 0.185702i
\(355\) 6.97214 5.06555i 0.370043 0.268852i
\(356\) −5.64590 4.10199i −0.299232 0.217405i
\(357\) −2.42705 7.46969i −0.128453 0.395338i
\(358\) 2.06231 + 6.34712i 0.108996 + 0.335456i
\(359\) −3.00000 2.17963i −0.158334 0.115036i 0.505797 0.862652i \(-0.331198\pi\)
−0.664131 + 0.747616i \(0.731198\pi\)
\(360\) −1.92705 + 1.40008i −0.101565 + 0.0737909i
\(361\) −5.64590 + 17.3763i −0.297153 + 0.914541i
\(362\) −4.38197 −0.230311
\(363\) 0 0
\(364\) −7.85410 −0.411667
\(365\) 3.85410 11.8617i 0.201733 0.620870i
\(366\) −2.64590 + 1.92236i −0.138303 + 0.100483i
\(367\) −23.3435 16.9600i −1.21852 0.885306i −0.222542 0.974923i \(-0.571436\pi\)
−0.995976 + 0.0896174i \(0.971436\pi\)
\(368\) −4.11803 12.6740i −0.214667 0.660678i
\(369\) −1.30902 4.02874i −0.0681447 0.209728i
\(370\) −0.881966 0.640786i −0.0458512 0.0333129i
\(371\) −2.11803 + 1.53884i −0.109963 + 0.0798927i
\(372\) 2.91641 8.97578i 0.151209 0.465373i
\(373\) −34.8885 −1.80646 −0.903230 0.429156i \(-0.858811\pi\)
−0.903230 + 0.429156i \(0.858811\pi\)
\(374\) 0 0
\(375\) 11.9443 0.616800
\(376\) 0.495935 1.52633i 0.0255759 0.0787145i
\(377\) −20.5623 + 14.9394i −1.05901 + 0.769418i
\(378\) 0.309017 + 0.224514i 0.0158941 + 0.0115478i
\(379\) 3.36475 + 10.3556i 0.172835 + 0.531932i 0.999528 0.0307213i \(-0.00978043\pi\)
−0.826693 + 0.562654i \(0.809780\pi\)
\(380\) 0.791796 + 2.43690i 0.0406183 + 0.125010i
\(381\) −4.61803 3.35520i −0.236589 0.171892i
\(382\) −7.16312 + 5.20431i −0.366497 + 0.266276i
\(383\) 0.218847 0.673542i 0.0111826 0.0344164i −0.945310 0.326175i \(-0.894240\pi\)
0.956492 + 0.291758i \(0.0942403\pi\)
\(384\) −10.0902 −0.514912
\(385\) 0 0
\(386\) 3.76393 0.191579
\(387\) 2.07295 6.37988i 0.105374 0.324308i
\(388\) 1.71885 1.24882i 0.0872612 0.0633990i
\(389\) −4.64590 3.37544i −0.235556 0.171142i 0.463745 0.885969i \(-0.346505\pi\)
−0.699301 + 0.714827i \(0.746505\pi\)
\(390\) −0.809017 2.48990i −0.0409662 0.126081i
\(391\) 10.2812 + 31.6421i 0.519940 + 1.60021i
\(392\) 7.14590 + 5.19180i 0.360922 + 0.262225i
\(393\) 10.3541 7.52270i 0.522295 0.379470i
\(394\) 1.89261 5.82485i 0.0953483 0.293452i
\(395\) 17.7984 0.895533
\(396\) 0 0
\(397\) −5.29180 −0.265588 −0.132794 0.991144i \(-0.542395\pi\)
−0.132794 + 0.991144i \(0.542395\pi\)
\(398\) 0.791796 2.43690i 0.0396892 0.122151i
\(399\) 0.690983 0.502029i 0.0345924 0.0251329i
\(400\) 6.06231 + 4.40452i 0.303115 + 0.220226i
\(401\) 8.86475 + 27.2829i 0.442684 + 1.36244i 0.885004 + 0.465584i \(0.154156\pi\)
−0.442319 + 0.896858i \(0.645844\pi\)
\(402\) −0.572949 1.76336i −0.0285761 0.0879482i
\(403\) 17.4443 + 12.6740i 0.868961 + 0.631337i
\(404\) −8.64590 + 6.28161i −0.430150 + 0.312522i
\(405\) 0.500000 1.53884i 0.0248452 0.0764657i
\(406\) −2.29180 −0.113740
\(407\) 0 0
\(408\) 11.5623 0.572419
\(409\) 0.763932 2.35114i 0.0377740 0.116256i −0.930391 0.366567i \(-0.880533\pi\)
0.968165 + 0.250311i \(0.0805329\pi\)
\(410\) −2.11803 + 1.53884i −0.104602 + 0.0759980i
\(411\) 11.5172 + 8.36775i 0.568103 + 0.412751i
\(412\) −3.97871 12.2452i −0.196017 0.603279i
\(413\) −2.97214 9.14729i −0.146249 0.450109i
\(414\) −1.30902 0.951057i −0.0643347 0.0467419i
\(415\) 9.78115 7.10642i 0.480138 0.348841i
\(416\) 5.42705 16.7027i 0.266083 0.818919i
\(417\) 5.56231 0.272387
\(418\) 0 0
\(419\) −24.4508 −1.19450 −0.597251 0.802054i \(-0.703740\pi\)
−0.597251 + 0.802054i \(0.703740\pi\)
\(420\) −0.927051 + 2.85317i −0.0452355 + 0.139220i
\(421\) 22.2533 16.1680i 1.08456 0.787978i 0.106087 0.994357i \(-0.466168\pi\)
0.978472 + 0.206379i \(0.0661679\pi\)
\(422\) 0.427051 + 0.310271i 0.0207885 + 0.0151037i
\(423\) 0.336881 + 1.03681i 0.0163797 + 0.0504116i
\(424\) −1.19098 3.66547i −0.0578392 0.178011i
\(425\) −15.1353 10.9964i −0.734168 0.533404i
\(426\) 1.64590 1.19581i 0.0797440 0.0579374i
\(427\) −2.64590 + 8.14324i −0.128044 + 0.394079i
\(428\) 4.68692 0.226551
\(429\) 0 0
\(430\) −4.14590 −0.199933
\(431\) −5.28115 + 16.2537i −0.254384 + 0.782914i 0.739566 + 0.673084i \(0.235031\pi\)
−0.993950 + 0.109830i \(0.964969\pi\)
\(432\) 2.54508 1.84911i 0.122450 0.0889655i
\(433\) 22.0902 + 16.0494i 1.06159 + 0.771287i 0.974381 0.224903i \(-0.0722066\pi\)
0.0872047 + 0.996190i \(0.472207\pi\)
\(434\) 0.600813 + 1.84911i 0.0288399 + 0.0887602i
\(435\) 3.00000 + 9.23305i 0.143839 + 0.442691i
\(436\) −18.0000 13.0778i −0.862044 0.626311i
\(437\) −2.92705 + 2.12663i −0.140020 + 0.101730i
\(438\) 0.909830 2.80017i 0.0434734 0.133797i
\(439\) 36.7082 1.75199 0.875993 0.482323i \(-0.160207\pi\)
0.875993 + 0.482323i \(0.160207\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −3.92705 + 12.0862i −0.186791 + 0.574883i
\(443\) −14.2361 + 10.3431i −0.676376 + 0.491416i −0.872153 0.489232i \(-0.837277\pi\)
0.195777 + 0.980648i \(0.437277\pi\)
\(444\) 2.64590 + 1.92236i 0.125569 + 0.0912310i
\(445\) −1.88197 5.79210i −0.0892137 0.274572i
\(446\) 1.79180 + 5.51458i 0.0848440 + 0.261123i
\(447\) 0.190983 + 0.138757i 0.00903319 + 0.00656299i
\(448\) −3.80902 + 2.76741i −0.179959 + 0.130748i
\(449\) −8.32624 + 25.6255i −0.392939 + 1.20934i 0.537615 + 0.843190i \(0.319325\pi\)
−0.930555 + 0.366153i \(0.880675\pi\)
\(450\) 0.909830 0.0428898
\(451\) 0 0
\(452\) −8.39512 −0.394873
\(453\) −5.85410 + 18.0171i −0.275050 + 0.846516i
\(454\) −2.83688 + 2.06111i −0.133141 + 0.0967329i
\(455\) −5.54508 4.02874i −0.259958 0.188870i
\(456\) 0.388544 + 1.19581i 0.0181952 + 0.0559992i
\(457\) −7.10081 21.8541i −0.332162 1.02229i −0.968103 0.250552i \(-0.919388\pi\)
0.635941 0.771738i \(-0.280612\pi\)
\(458\) −2.61803 1.90211i −0.122333 0.0888799i
\(459\) −6.35410 + 4.61653i −0.296584 + 0.215481i
\(460\) 3.92705 12.0862i 0.183100 0.563523i
\(461\) −24.2705 −1.13039 −0.565195 0.824957i \(-0.691199\pi\)
−0.565195 + 0.824957i \(0.691199\pi\)
\(462\) 0 0
\(463\) 35.2705 1.63916 0.819580 0.572965i \(-0.194207\pi\)
0.819580 + 0.572965i \(0.194207\pi\)
\(464\) −5.83282 + 17.9516i −0.270782 + 0.833380i
\(465\) 6.66312 4.84104i 0.308995 0.224498i
\(466\) −3.35410 2.43690i −0.155376 0.112887i
\(467\) −4.60081 14.1598i −0.212900 0.655240i −0.999296 0.0375166i \(-0.988055\pi\)
0.786396 0.617723i \(-0.211945\pi\)
\(468\) 2.42705 + 7.46969i 0.112190 + 0.345287i
\(469\) −3.92705 2.85317i −0.181334 0.131747i
\(470\) 0.545085 0.396027i 0.0251429 0.0182674i
\(471\) −0.708204 + 2.17963i −0.0326323 + 0.100432i
\(472\) 14.1591 0.651723
\(473\) 0 0
\(474\) 4.20163 0.192987
\(475\) 0.628677 1.93487i 0.0288457 0.0887779i
\(476\) 11.7812 8.55951i 0.539988 0.392324i
\(477\) 2.11803 + 1.53884i 0.0969781 + 0.0704587i
\(478\) −0.309017 0.951057i −0.0141341 0.0435003i
\(479\) −9.46149 29.1195i −0.432307 1.33050i −0.895822 0.444414i \(-0.853412\pi\)
0.463515 0.886089i \(-0.346588\pi\)
\(480\) −5.42705 3.94298i −0.247710 0.179972i
\(481\) −6.04508 + 4.39201i −0.275632 + 0.200258i
\(482\) −2.56231 + 7.88597i −0.116710 + 0.359196i
\(483\) −4.23607 −0.192748
\(484\) 0 0
\(485\) 1.85410 0.0841904
\(486\) 0.118034 0.363271i 0.00535413 0.0164783i
\(487\) −0.572949 + 0.416272i −0.0259628 + 0.0188631i −0.600691 0.799481i \(-0.705108\pi\)
0.574728 + 0.818344i \(0.305108\pi\)
\(488\) −10.1976 7.40896i −0.461622 0.335388i
\(489\) 3.66312 + 11.2739i 0.165652 + 0.509824i
\(490\) 1.14590 + 3.52671i 0.0517664 + 0.159321i
\(491\) 23.5344 + 17.0988i 1.06209 + 0.771657i 0.974475 0.224497i \(-0.0720740\pi\)
0.0876198 + 0.996154i \(0.472074\pi\)
\(492\) 6.35410 4.61653i 0.286465 0.208129i
\(493\) 14.5623 44.8182i 0.655853 2.01851i
\(494\) −1.38197 −0.0621776
\(495\) 0 0
\(496\) 16.0132 0.719012
\(497\) 1.64590 5.06555i 0.0738286 0.227221i
\(498\) 2.30902 1.67760i 0.103470 0.0751750i
\(499\) 20.1074 + 14.6089i 0.900130 + 0.653983i 0.938500 0.345281i \(-0.112216\pi\)
−0.0383691 + 0.999264i \(0.512216\pi\)
\(500\) 6.84346 + 21.0620i 0.306049 + 0.941921i
\(501\) 5.26393 + 16.2007i 0.235175 + 0.723795i
\(502\) 7.71885 + 5.60807i 0.344509 + 0.250300i
\(503\) 18.3262 13.3148i 0.817127 0.593677i −0.0987614 0.995111i \(-0.531488\pi\)
0.915888 + 0.401434i \(0.131488\pi\)
\(504\) −0.454915 + 1.40008i −0.0202635 + 0.0623647i
\(505\) −9.32624 −0.415012
\(506\) 0 0
\(507\) −4.94427 −0.219583
\(508\) 3.27051 10.0656i 0.145105 0.446589i
\(509\) 3.02786 2.19987i 0.134208 0.0975076i −0.518656 0.854983i \(-0.673567\pi\)
0.652864 + 0.757475i \(0.273567\pi\)
\(510\) 3.92705 + 2.85317i 0.173893 + 0.126340i
\(511\) −2.38197 7.33094i −0.105372 0.324302i
\(512\) −6.89261 21.2133i −0.304613 0.937503i
\(513\) −0.690983 0.502029i −0.0305076 0.0221651i
\(514\) −3.93769 + 2.86090i −0.173684 + 0.126189i
\(515\) 3.47214 10.6861i 0.153001 0.470887i
\(516\) 12.4377 0.547539
\(517\) 0 0
\(518\) −0.673762 −0.0296034
\(519\) −3.40983 + 10.4944i −0.149675 + 0.460652i
\(520\) 8.16312 5.93085i 0.357976 0.260085i
\(521\) 7.23607 + 5.25731i 0.317018 + 0.230327i 0.734902 0.678173i \(-0.237228\pi\)
−0.417884 + 0.908500i \(0.637228\pi\)
\(522\) 0.708204 + 2.17963i 0.0309972 + 0.0953997i
\(523\) −4.71885 14.5231i −0.206341 0.635052i −0.999656 0.0262401i \(-0.991647\pi\)
0.793315 0.608812i \(-0.208353\pi\)
\(524\) 19.1976 + 13.9478i 0.838649 + 0.609314i
\(525\) 1.92705 1.40008i 0.0841034 0.0611047i
\(526\) −2.15654 + 6.63715i −0.0940297 + 0.289394i
\(527\) −39.9787 −1.74150
\(528\) 0 0
\(529\) −5.05573 −0.219814
\(530\) 0.500000 1.53884i 0.0217186 0.0668430i
\(531\) −7.78115 + 5.65334i −0.337673 + 0.245334i
\(532\) 1.28115 + 0.930812i 0.0555450 + 0.0403558i
\(533\) 5.54508 + 17.0660i 0.240184 + 0.739211i
\(534\) −0.444272 1.36733i −0.0192255 0.0591701i
\(535\) 3.30902 + 2.40414i 0.143061 + 0.103940i
\(536\) 5.78115 4.20025i 0.249708 0.181423i
\(537\) 5.39919 16.6170i 0.232992 0.717076i
\(538\) −0.541020 −0.0233250
\(539\) 0 0
\(540\) 3.00000 0.129099
\(541\) −14.0623 + 43.2793i −0.604586 + 1.86072i −0.104972 + 0.994475i \(0.533475\pi\)
−0.499613 + 0.866248i \(0.666525\pi\)
\(542\) 5.06231 3.67798i 0.217445 0.157983i
\(543\) 9.28115 + 6.74315i 0.398292 + 0.289376i
\(544\) 10.0623 + 30.9686i 0.431418 + 1.32777i
\(545\) −6.00000 18.4661i −0.257012 0.791001i
\(546\) −1.30902 0.951057i −0.0560208 0.0407015i
\(547\) −9.50000 + 6.90215i −0.406191 + 0.295115i −0.772058 0.635552i \(-0.780772\pi\)
0.365867 + 0.930667i \(0.380772\pi\)
\(548\) −8.15654 + 25.1033i −0.348430 + 1.07236i
\(549\) 8.56231 0.365430
\(550\) 0 0
\(551\) 5.12461 0.218316
\(552\) 1.92705 5.93085i 0.0820207 0.252434i
\(553\) 8.89919 6.46564i 0.378432 0.274947i
\(554\) 6.86475 + 4.98753i 0.291655 + 0.211900i
\(555\) 0.881966 + 2.71441i 0.0374374 + 0.115220i
\(556\) 3.18692 + 9.80832i 0.135155 + 0.415966i
\(557\) 32.8713 + 23.8824i 1.39280 + 1.01193i 0.995551 + 0.0942205i \(0.0300359\pi\)
0.397251 + 0.917710i \(0.369964\pi\)
\(558\) 1.57295 1.14281i 0.0665882 0.0483792i
\(559\) −8.78115 + 27.0256i −0.371403 + 1.14306i
\(560\) −5.09017 −0.215099
\(561\) 0 0
\(562\) −11.1672 −0.471059
\(563\) −2.65654 + 8.17599i −0.111960 + 0.344577i −0.991301 0.131616i \(-0.957984\pi\)
0.879341 + 0.476193i \(0.157984\pi\)
\(564\) −1.63525 + 1.18808i −0.0688567 + 0.0500273i
\(565\) −5.92705 4.30625i −0.249353 0.181165i
\(566\) −0.909830 2.80017i −0.0382430 0.117700i
\(567\) −0.309017 0.951057i −0.0129775 0.0399406i
\(568\) 6.34346 + 4.60879i 0.266166 + 0.193381i
\(569\) −9.56231 + 6.94742i −0.400873 + 0.291251i −0.769896 0.638169i \(-0.779692\pi\)
0.369024 + 0.929420i \(0.379692\pi\)
\(570\) −0.163119 + 0.502029i −0.00683230 + 0.0210277i
\(571\) 2.09017 0.0874709 0.0437354 0.999043i \(-0.486074\pi\)
0.0437354 + 0.999043i \(0.486074\pi\)
\(572\) 0 0
\(573\) 23.1803 0.968373
\(574\) −0.500000 + 1.53884i −0.0208696 + 0.0642300i
\(575\) −8.16312 + 5.93085i −0.340426 + 0.247334i
\(576\) 3.80902 + 2.76741i 0.158709 + 0.115309i
\(577\) 5.65248 + 17.3965i 0.235316 + 0.724227i 0.997079 + 0.0763722i \(0.0243337\pi\)
−0.761764 + 0.647855i \(0.775666\pi\)
\(578\) −5.27458 16.2335i −0.219393 0.675223i
\(579\) −7.97214 5.79210i −0.331311 0.240711i
\(580\) −14.5623 + 10.5801i −0.604667 + 0.439316i
\(581\) 2.30902 7.10642i 0.0957942 0.294824i
\(582\) 0.437694 0.0181430
\(583\) 0 0
\(584\) 11.3475 0.469564
\(585\) −2.11803 + 6.51864i −0.0875699 + 0.269513i
\(586\) 2.98278 2.16712i 0.123217 0.0895227i
\(587\) −30.8435 22.4091i −1.27305 0.924922i −0.273726 0.961808i \(-0.588256\pi\)
−0.999319 + 0.0368857i \(0.988256\pi\)
\(588\) −3.43769 10.5801i −0.141768 0.436317i
\(589\) −1.34346 4.13474i −0.0553563 0.170369i
\(590\) 4.80902 + 3.49396i 0.197984 + 0.143844i
\(591\) −12.9721 + 9.42481i −0.533602 + 0.387685i
\(592\) −1.71478 + 5.27756i −0.0704771 + 0.216906i
\(593\) 15.0344 0.617391 0.308695 0.951161i \(-0.400108\pi\)
0.308695 + 0.951161i \(0.400108\pi\)
\(594\) 0 0
\(595\) 12.7082 0.520986
\(596\) −0.135255 + 0.416272i −0.00554026 + 0.0170512i
\(597\) −5.42705 + 3.94298i −0.222114 + 0.161376i
\(598\) 5.54508 + 4.02874i 0.226755 + 0.164747i
\(599\) −5.76393 17.7396i −0.235508 0.724819i −0.997054 0.0767076i \(-0.975559\pi\)
0.761546 0.648111i \(-0.224441\pi\)
\(600\) 1.08359 + 3.33495i 0.0442375 + 0.136149i
\(601\) −23.3713 16.9803i −0.953336 0.692639i −0.00174258 0.999998i \(-0.500555\pi\)
−0.951594 + 0.307359i \(0.900555\pi\)
\(602\) −2.07295 + 1.50609i −0.0844871 + 0.0613835i
\(603\) −1.50000 + 4.61653i −0.0610847 + 0.187999i
\(604\) −35.1246 −1.42920
\(605\) 0 0
\(606\) −2.20163 −0.0894349
\(607\) 1.10081 3.38795i 0.0446806 0.137513i −0.926228 0.376965i \(-0.876968\pi\)
0.970908 + 0.239452i \(0.0769678\pi\)
\(608\) −2.86475 + 2.08136i −0.116181 + 0.0844103i
\(609\) 4.85410 + 3.52671i 0.196698 + 0.142910i
\(610\) −1.63525 5.03280i −0.0662095 0.203772i
\(611\) −1.42705 4.39201i −0.0577323 0.177682i
\(612\) −11.7812 8.55951i −0.476225 0.345998i
\(613\) 22.4164 16.2865i 0.905390 0.657804i −0.0344546 0.999406i \(-0.510969\pi\)
0.939845 + 0.341602i \(0.110969\pi\)
\(614\) 2.24013 6.89442i 0.0904044 0.278236i
\(615\) 6.85410 0.276384
\(616\) 0 0
\(617\) −11.1803 −0.450104 −0.225052 0.974347i \(-0.572255\pi\)
−0.225052 + 0.974347i \(0.572255\pi\)
\(618\) 0.819660 2.52265i 0.0329716 0.101476i
\(619\) 13.0451 9.47781i 0.524326 0.380945i −0.293905 0.955835i \(-0.594955\pi\)
0.818231 + 0.574889i \(0.194955\pi\)
\(620\) 12.3541 + 8.97578i 0.496153 + 0.360476i
\(621\) 1.30902 + 4.02874i 0.0525290 + 0.161668i
\(622\) 2.31966 + 7.13918i 0.0930099 + 0.286255i
\(623\) −3.04508 2.21238i −0.121999 0.0886373i
\(624\) −10.7812 + 7.83297i −0.431592 + 0.313570i
\(625\) −2.29180 + 7.05342i −0.0916718 + 0.282137i
\(626\) 4.38197 0.175139
\(627\) 0 0
\(628\) −4.24922 −0.169562
\(629\) 4.28115 13.1760i 0.170701 0.525363i
\(630\) −0.500000 + 0.363271i −0.0199205 + 0.0144731i
\(631\) 26.0623 + 18.9354i 1.03752 + 0.753805i 0.969801 0.243899i \(-0.0784265\pi\)
0.0677233 + 0.997704i \(0.478426\pi\)
\(632\) 5.00407 + 15.4009i 0.199051 + 0.612616i
\(633\) −0.427051 1.31433i −0.0169738 0.0522398i
\(634\) −9.01722 6.55139i −0.358120 0.260189i
\(635\) 7.47214 5.42882i 0.296523 0.215436i
\(636\) −1.50000 + 4.61653i −0.0594789 + 0.183057i
\(637\) 25.4164 1.00703
\(638\) 0 0
\(639\) −5.32624 −0.210703
\(640\) 5.04508 15.5272i 0.199424 0.613765i
\(641\) 11.2533 8.17599i 0.444478 0.322932i −0.342934 0.939360i \(-0.611421\pi\)
0.787412 + 0.616427i \(0.211421\pi\)
\(642\) 0.781153 + 0.567541i 0.0308296 + 0.0223991i
\(643\) 4.37132 + 13.4535i 0.172388 + 0.530556i 0.999505 0.0314745i \(-0.0100203\pi\)
−0.827116 + 0.562031i \(0.810020\pi\)
\(644\) −2.42705 7.46969i −0.0956392 0.294347i
\(645\) 8.78115 + 6.37988i 0.345758 + 0.251208i
\(646\) 2.07295 1.50609i 0.0815591 0.0592561i
\(647\) 4.93363 15.1841i 0.193961 0.596950i −0.806026 0.591880i \(-0.798386\pi\)
0.999987 0.00507058i \(-0.00161402\pi\)
\(648\) 1.47214 0.0578310
\(649\) 0 0
\(650\) −3.85410 −0.151170
\(651\) 1.57295 4.84104i 0.0616487 0.189735i
\(652\) −17.7812 + 12.9188i −0.696364 + 0.505938i
\(653\) 2.73607 + 1.98787i 0.107071 + 0.0777914i 0.640032 0.768348i \(-0.278921\pi\)
−0.532962 + 0.846139i \(0.678921\pi\)
\(654\) −1.41641 4.35926i −0.0553859 0.170460i
\(655\) 6.39919 + 19.6947i 0.250037 + 0.769535i
\(656\) 10.7812 + 7.83297i 0.420933 + 0.305826i
\(657\) −6.23607 + 4.53077i −0.243292 + 0.176762i
\(658\) 0.128677 0.396027i 0.00501636 0.0154388i
\(659\) −0.875388 −0.0341003 −0.0170501 0.999855i \(-0.505427\pi\)
−0.0170501 + 0.999855i \(0.505427\pi\)
\(660\) 0 0
\(661\) 16.4377 0.639352 0.319676 0.947527i \(-0.396426\pi\)
0.319676 + 0.947527i \(0.396426\pi\)
\(662\) −0.388544 + 1.19581i −0.0151012 + 0.0464767i
\(663\) 26.9164 19.5559i 1.04535 0.759489i
\(664\) 8.89919 + 6.46564i 0.345355 + 0.250915i
\(665\) 0.427051 + 1.31433i 0.0165603 + 0.0509674i
\(666\) 0.208204 + 0.640786i 0.00806774 + 0.0248299i
\(667\) −20.5623 14.9394i −0.796176 0.578455i
\(668\) −25.5517 + 18.5644i −0.988624 + 0.718277i
\(669\) 4.69098 14.4374i 0.181364 0.558181i
\(670\) 3.00000 0.115900
\(671\) 0 0
\(672\) −4.14590 −0.159931
\(673\) −5.51064 + 16.9600i −0.212420 + 0.653761i 0.786907 + 0.617072i \(0.211681\pi\)
−0.999327 + 0.0366890i \(0.988319\pi\)
\(674\) 1.29180 0.938545i 0.0497581 0.0361514i
\(675\) −1.92705 1.40008i −0.0741722 0.0538893i
\(676\) −2.83282 8.71851i −0.108954 0.335327i
\(677\) 6.94427 + 21.3723i 0.266890 + 0.821403i 0.991252 + 0.131983i \(0.0421345\pi\)
−0.724362 + 0.689420i \(0.757866\pi\)
\(678\) −1.39919 1.01657i −0.0537355 0.0390411i
\(679\) 0.927051 0.673542i 0.0355770 0.0258482i
\(680\) −5.78115 + 17.7926i −0.221697 + 0.682314i
\(681\) 9.18034 0.351791
\(682\) 0 0
\(683\) −49.0689 −1.87757 −0.938784 0.344505i \(-0.888047\pi\)
−0.938784 + 0.344505i \(0.888047\pi\)
\(684\) 0.489357 1.50609i 0.0187110 0.0575866i
\(685\) −18.6353 + 13.5393i −0.712016 + 0.517310i
\(686\) 4.01722 + 2.91868i 0.153378 + 0.111436i
\(687\) 2.61803 + 8.05748i 0.0998842 + 0.307412i
\(688\) 6.52129 + 20.0705i 0.248622 + 0.765179i
\(689\) −8.97214 6.51864i −0.341811 0.248340i
\(690\) 2.11803 1.53884i 0.0806322 0.0585827i
\(691\) 10.0902 31.0543i 0.383848 1.18136i −0.553464 0.832873i \(-0.686694\pi\)
0.937312 0.348490i \(-0.113306\pi\)
\(692\) −20.4590 −0.777734
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −2.78115 + 8.55951i −0.105495 + 0.324681i
\(696\) −7.14590 + 5.19180i −0.270865 + 0.196795i
\(697\) −26.9164 19.5559i −1.01953 0.740733i
\(698\) 0.0835921 + 0.257270i 0.00316401 + 0.00973782i
\(699\) 3.35410 + 10.3229i 0.126864 + 0.390447i
\(700\) 3.57295 + 2.59590i 0.135045 + 0.0981158i
\(701\) 8.25329 5.99637i 0.311722 0.226480i −0.420913 0.907101i \(-0.638290\pi\)
0.732635 + 0.680622i \(0.238290\pi\)
\(702\) −0.500000 + 1.53884i −0.0188713 + 0.0580798i
\(703\) 1.50658 0.0568217
\(704\) 0 0
\(705\) −1.76393 −0.0664335
\(706\) 1.41641 4.35926i 0.0533072 0.164063i
\(707\) −4.66312 + 3.38795i −0.175375 + 0.127417i
\(708\) −14.4271 10.4819i −0.542202 0.393933i
\(709\) −12.4271 38.2465i −0.466708 1.43638i −0.856822 0.515612i \(-0.827565\pi\)
0.390114 0.920766i \(-0.372435\pi\)
\(710\) 1.01722 + 3.13068i 0.0381756 + 0.117492i
\(711\) −8.89919 6.46564i −0.333746 0.242480i
\(712\) 4.48278 3.25693i 0.167999 0.122059i
\(713\) −6.66312 + 20.5070i −0.249536 + 0.767992i
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) 32.3951 1.21066
\(717\) −0.809017 + 2.48990i −0.0302133 + 0.0929870i
\(718\) 1.14590 0.832544i 0.0427645 0.0310703i
\(719\) −37.6074 27.3234i −1.40252 1.01899i −0.994358 0.106080i \(-0.966170\pi\)
−0.408161 0.912910i \(-0.633830\pi\)
\(720\) 1.57295 + 4.84104i 0.0586203 + 0.180415i
\(721\) −2.14590 6.60440i −0.0799174 0.245961i
\(722\) −5.64590 4.10199i −0.210119 0.152660i
\(723\) 17.5623 12.7598i 0.653149 0.474541i
\(724\) −6.57295 + 20.2295i −0.244282 + 0.751822i
\(725\) 14.2918 0.530784
\(726\) 0 0
\(727\) −15.8541 −0.587996 −0.293998 0.955806i \(-0.594986\pi\)
−0.293998 + 0.955806i \(0.594986\pi\)
\(728\) 1.92705 5.93085i 0.0714213 0.219812i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 3.85410 + 2.80017i 0.142647 + 0.103639i
\(731\) −16.2812 50.1082i −0.602180 1.85332i
\(732\) 4.90576 + 15.0984i 0.181322 + 0.558053i
\(733\) 40.1246 + 29.1522i 1.48204 + 1.07676i 0.976893 + 0.213727i \(0.0685602\pi\)
0.505143 + 0.863036i \(0.331440\pi\)
\(734\) 8.91641 6.47815i 0.329111 0.239113i
\(735\) 3.00000 9.23305i 0.110657 0.340566i
\(736\) 17.5623 0.647355
\(737\) 0 0
\(738\) 1.61803 0.0595607
\(739\) 0.927051 2.85317i 0.0341021 0.104956i −0.932557 0.361024i \(-0.882427\pi\)
0.966659 + 0.256068i \(0.0824272\pi\)
\(740\) −4.28115 + 3.11044i −0.157378 + 0.114342i
\(741\) 2.92705 + 2.12663i 0.107528 + 0.0781236i
\(742\) −0.309017 0.951057i −0.0113444 0.0349144i
\(743\) −2.19756 6.76340i −0.0806207 0.248125i 0.902620 0.430439i \(-0.141641\pi\)
−0.983240 + 0.182314i \(0.941641\pi\)
\(744\) 6.06231 + 4.40452i 0.222255 + 0.161478i
\(745\) −0.309017 + 0.224514i −0.0113215 + 0.00822556i
\(746\) 4.11803 12.6740i 0.150772 0.464028i
\(747\) −7.47214 −0.273391
\(748\) 0 0
\(749\) 2.52786 0.0923661
\(750\) −1.40983 + 4.33901i −0.0514797 + 0.158438i
\(751\) −18.4894 + 13.4333i −0.674686 + 0.490188i −0.871591 0.490234i \(-0.836911\pi\)
0.196904 + 0.980423i \(0.436911\pi\)
\(752\) −2.77458 2.01585i −0.101178 0.0735104i
\(753\) −7.71885 23.7562i −0.281290 0.865723i
\(754\) −3.00000 9.23305i −0.109254 0.336248i
\(755\) −24.7984 18.0171i −0.902505 0.655708i
\(756\) 1.50000 1.08981i 0.0545545 0.0396361i
\(757\) 1.54508 4.75528i 0.0561571 0.172834i −0.919044 0.394156i \(-0.871037\pi\)
0.975201 + 0.221322i \(0.0710371\pi\)
\(758\) −4.15905 −0.151064
\(759\) 0 0
\(760\) −2.03444 −0.0737970
\(761\) 13.1976 40.6179i 0.478411 1.47240i −0.362890 0.931832i \(-0.618210\pi\)
0.841301 0.540566i \(-0.181790\pi\)
\(762\) 1.76393 1.28157i 0.0639005 0.0464264i
\(763\) −9.70820 7.05342i −0.351461 0.255351i
\(764\) 13.2812 + 40.8752i 0.480495 + 1.47881i
\(765\) −3.92705 12.0862i −0.141983 0.436978i
\(766\) 0.218847 + 0.159002i 0.00790727 + 0.00574496i
\(767\) 32.9615 23.9479i 1.19017 0.864710i
\(768\) −1.71885 + 5.29007i −0.0620236 + 0.190889i
\(769\) 3.50658 0.126450 0.0632252 0.997999i \(-0.479861\pi\)
0.0632252 + 0.997999i \(0.479861\pi\)
\(770\) 0 0
\(771\) 12.7426 0.458915
\(772\) 5.64590 17.3763i 0.203200 0.625386i
\(773\) −3.89919 + 2.83293i −0.140244 + 0.101893i −0.655695 0.755026i \(-0.727624\pi\)
0.515451 + 0.856919i \(0.327624\pi\)
\(774\) 2.07295 + 1.50609i 0.0745106 + 0.0541351i
\(775\) −3.74671 11.5312i −0.134586 0.414213i
\(776\) 0.521286 + 1.60435i 0.0187131 + 0.0575930i
\(777\) 1.42705 + 1.03681i 0.0511952 + 0.0371955i
\(778\) 1.77458 1.28930i 0.0636216 0.0462238i
\(779\) 1.11803 3.44095i 0.0400577 0.123285i
\(780\) −12.7082 −0.455027
\(781\) 0 0
\(782\) −12.7082 −0.454444
\(783\) 1.85410 5.70634i 0.0662602 0.203928i
\(784\) 15.2705 11.0947i 0.545375 0.396238i
\(785\) −3.00000 2.17963i −0.107075 0.0777942i
\(786\) 1.51064 + 4.64928i 0.0538829 + 0.165834i
\(787\) 1.14590 + 3.52671i 0.0408469 + 0.125714i 0.969401 0.245485i \(-0.0789470\pi\)
−0.928554 + 0.371198i \(0.878947\pi\)
\(788\) −24.0517 17.4746i −0.856805 0.622505i
\(789\) 14.7812 10.7391i 0.526223 0.382323i
\(790\) −2.10081 + 6.46564i −0.0747436 + 0.230037i
\(791\) −4.52786 −0.160992
\(792\) 0 0
\(793\) −36.2705 −1.28800
\(794\) 0.624612 1.92236i 0.0221666 0.0682219i
\(795\) −3.42705 + 2.48990i −0.121545 + 0.0883076i
\(796\) −10.0623 7.31069i −0.356649 0.259121i
\(797\) −15.0000 46.1653i −0.531327 1.63526i −0.751454 0.659786i \(-0.770647\pi\)
0.220126 0.975471i \(-0.429353\pi\)
\(798\) 0.100813 + 0.310271i 0.00356874 + 0.0109835i
\(799\) 6.92705 + 5.03280i 0.245061 + 0.178048i
\(800\) −7.98936 + 5.80461i −0.282466 + 0.205224i
\(801\) −1.16312 + 3.57971i −0.0410968 + 0.126483i
\(802\) −10.9574 −0.386920
\(803\) 0 0
\(804\) −9.00000 −0.317406
\(805\) 2.11803 6.51864i 0.0746509 0.229752i
\(806\) −6.66312 + 4.84104i −0.234698 + 0.170518i
\(807\) 1.14590 + 0.832544i 0.0403375 + 0.0293069i
\(808\) −2.62210 8.06999i −0.0922451 0.283901i
\(809\) 4.91641 + 15.1311i 0.172852 + 0.531983i 0.999529 0.0306937i \(-0.00977165\pi\)
−0.826677 + 0.562677i \(0.809772\pi\)
\(810\) 0.500000 + 0.363271i 0.0175682 + 0.0127641i
\(811\) −13.2984 + 9.66183i −0.466969 + 0.339273i −0.796259 0.604956i \(-0.793191\pi\)
0.329290 + 0.944229i \(0.393191\pi\)
\(812\) −3.43769 + 10.5801i −0.120639 + 0.371290i
\(813\) −16.3820 −0.574541
\(814\) 0 0
\(815\) −19.1803 −0.671858
\(816\) 7.63525 23.4989i 0.267287 0.822626i
\(817\) 4.63525 3.36771i 0.162167 0.117821i
\(818\) 0.763932 + 0.555029i 0.0267103 + 0.0194061i
\(819\) 1.30902 + 4.02874i 0.0457408 + 0.140776i
\(820\) 3.92705 + 12.0862i 0.137139 + 0.422069i
\(821\) 6.95492 + 5.05304i 0.242728 + 0.176352i 0.702498 0.711686i \(-0.252068\pi\)
−0.459770 + 0.888038i \(0.652068\pi\)
\(822\) −4.39919 + 3.19620i −0.153439 + 0.111480i
\(823\) 7.98278 24.5685i 0.278262 0.856403i −0.710076 0.704125i \(-0.751339\pi\)
0.988338 0.152277i \(-0.0486607\pi\)
\(824\) 10.2229 0.356132
\(825\) 0 0
\(826\) 3.67376 0.127827
\(827\) 6.38197 19.6417i 0.221923 0.683008i −0.776667 0.629912i \(-0.783091\pi\)
0.998589 0.0530961i \(-0.0169090\pi\)
\(828\) −6.35410 + 4.61653i −0.220820 + 0.160435i
\(829\) −34.2984 24.9192i −1.19123 0.865481i −0.197838 0.980235i \(-0.563392\pi\)
−0.993394 + 0.114754i \(0.963392\pi\)
\(830\) 1.42705 + 4.39201i 0.0495337 + 0.152449i
\(831\) −6.86475 21.1275i −0.238135 0.732905i
\(832\) −16.1353 11.7229i −0.559389 0.406420i
\(833\) −38.1246 + 27.6992i −1.32094 + 0.959719i
\(834\) −0.656541 + 2.02063i −0.0227342 + 0.0699686i
\(835\) −27.5623 −0.953833
\(836\) 0 0
\(837\) −5.09017 −0.175942
\(838\) 2.88603 8.88229i 0.0996963 0.306834i
\(839\) −28.9894 + 21.0620i −1.00082 + 0.727141i −0.962265 0.272115i \(-0.912277\pi\)
−0.0385591 + 0.999256i \(0.512277\pi\)
\(840\) −1.92705 1.40008i −0.0664896 0.0483075i
\(841\) 2.16312 + 6.65740i 0.0745903 + 0.229565i
\(842\) 3.24671 + 9.99235i 0.111889 + 0.344359i
\(843\) 23.6525 + 17.1845i 0.814635 + 0.591867i
\(844\) 2.07295 1.50609i 0.0713538 0.0518416i
\(845\) 2.47214 7.60845i 0.0850441 0.261739i
\(846\) −0.416408 −0.0143164
\(847\) 0 0
\(848\) −8.23607 −0.282828
\(849\) −2.38197 + 7.33094i −0.0817489 + 0.251597i
\(850\) 5.78115 4.20025i 0.198292 0.144068i
\(851\) −6.04508 4.39201i −0.207223 0.150556i
\(852\) −3.05166 9.39205i −0.104548 0.321766i
\(853\) −0.669697 2.06111i −0.0229300 0.0705712i 0.938937 0.344090i \(-0.111812\pi\)
−0.961867 + 0.273519i \(0.911812\pi\)
\(854\) −2.64590 1.92236i −0.0905408 0.0657817i
\(855\) 1.11803 0.812299i 0.0382360 0.0277800i
\(856\) −1.14996 + 3.53922i −0.0393049 + 0.120968i
\(857\) 32.2361 1.10116 0.550582 0.834781i \(-0.314406\pi\)
0.550582 + 0.834781i \(0.314406\pi\)
\(858\) 0 0
\(859\) −7.58359 −0.258749 −0.129374 0.991596i \(-0.541297\pi\)
−0.129374 + 0.991596i \(0.541297\pi\)
\(860\) −6.21885 + 19.1396i −0.212061 + 0.652656i
\(861\) 3.42705 2.48990i 0.116794 0.0848555i
\(862\) −5.28115 3.83698i −0.179877 0.130688i
\(863\) 11.0902 + 34.1320i 0.377514 + 1.16187i 0.941767 + 0.336266i \(0.109164\pi\)
−0.564253 + 0.825602i \(0.690836\pi\)
\(864\) 1.28115 + 3.94298i 0.0435857 + 0.134143i
\(865\) −14.4443 10.4944i −0.491120 0.356820i
\(866\) −8.43769 + 6.13034i −0.286725 + 0.208318i
\(867\) −13.8090 + 42.4998i −0.468979 + 1.44337i
\(868\) 9.43769 0.320336
\(869\) 0 0
\(870\) −3.70820 −0.125720
\(871\) 6.35410 19.5559i 0.215301 0.662627i
\(872\) 14.2918 10.3836i 0.483981 0.351633i
\(873\) −0.927051 0.673542i −0.0313759 0.0227959i
\(874\) −0.427051 1.31433i −0.0144452 0.0444578i
\(875\) 3.69098 + 11.3597i 0.124778 + 0.384027i
\(876\) −11.5623 8.40051i −0.390654 0.283827i
\(877\) 32.4058 23.5442i 1.09426 0.795030i 0.114151 0.993463i \(-0.463585\pi\)
0.980114 + 0.198433i \(0.0635854\pi\)
\(878\) −4.33282 + 13.3350i −0.146225 + 0.450036i
\(879\) −9.65248 −0.325570
\(880\) 0 0
\(881\) 30.7984 1.03762 0.518812 0.854888i \(-0.326375\pi\)
0.518812 + 0.854888i \(0.326375\pi\)
\(882\) 0.708204 2.17963i 0.0238465 0.0733919i
\(883\) −15.3262 + 11.1352i −0.515769 + 0.374728i −0.815008 0.579450i \(-0.803267\pi\)
0.299239 + 0.954178i \(0.403267\pi\)
\(884\) 49.9058 + 36.2587i 1.67851 + 1.21951i
\(885\) −4.80902 14.8006i −0.161653 0.497518i
\(886\) −2.07701 6.39239i −0.0697787 0.214757i
\(887\) −24.6631 17.9188i −0.828106 0.601655i 0.0909165 0.995859i \(-0.471020\pi\)
−0.919023 + 0.394204i \(0.871020\pi\)
\(888\) −2.10081 + 1.52633i −0.0704987 + 0.0512203i
\(889\) 1.76393 5.42882i 0.0591604 0.182077i
\(890\) 2.32624 0.0779757
\(891\) 0 0
\(892\) 28.1459 0.942394
\(893\) −0.287731 + 0.885544i −0.00962854 + 0.0296336i
\(894\) −0.0729490 + 0.0530006i −0.00243978 + 0.00177260i
\(895\) 22.8713 + 16.6170i 0.764504 + 0.555445i
\(896\) −3.11803 9.59632i −0.104166 0.320591i
\(897\) −5.54508 17.0660i −0.185145 0.569818i
\(898\) −8.32624 6.04937i −0.277850 0.201870i
\(899\) 24.7082 17.9516i 0.824065 0.598718i
\(900\) 1.36475 4.20025i 0.0454915 0.140008i
\(901\) 20.5623 0.685030
\(902\) 0 0
\(903\) 6.70820 0.223235
\(904\) 2.05979 6.33939i 0.0685077 0.210845i
\(905\) −15.0172 + 10.9106i −0.499189 + 0.362682i
\(906\) −5.85410 4.25325i −0.194490 0.141305i
\(907\) 9.70163 + 29.8585i 0.322137 + 0.991436i 0.972716 + 0.231998i \(0.0745262\pi\)
−0.650579 + 0.759439i \(0.725474\pi\)
\(908\) 5.25987 + 16.1882i 0.174555 + 0.537224i
\(909\) 4.66312 + 3.38795i 0.154666 + 0.112371i
\(910\) 2.11803 1.53884i 0.0702121 0.0510121i
\(911\) −3.27458 + 10.0781i −0.108492 + 0.333903i −0.990534 0.137267i \(-0.956168\pi\)
0.882043 + 0.471170i \(0.156168\pi\)
\(912\) 2.68692 0.0889727
\(913\) 0 0
\(914\) 8.77709 0.290320
\(915\) −4.28115 + 13.1760i −0.141531 + 0.435586i
\(916\) −12.7082 + 9.23305i −0.419891 + 0.305069i
\(917\) 10.3541 + 7.52270i 0.341923 + 0.248421i
\(918\) −0.927051 2.85317i −0.0305972 0.0941686i
\(919\) −1.74671 5.37582i −0.0576187 0.177332i 0.918105 0.396337i \(-0.129719\pi\)
−0.975724 + 0.219005i \(0.929719\pi\)
\(920\) 8.16312 + 5.93085i 0.269130 + 0.195534i
\(921\) −15.3541 + 11.1554i −0.505935 + 0.367583i
\(922\) 2.86475 8.81678i 0.0943454 0.290365i
\(923\) 22.5623 0.742647
\(924\) 0 0
\(925\) 4.20163 0.138149
\(926\) −4.16312 + 12.8128i −0.136809 + 0.421054i
\(927\) −5.61803 + 4.08174i −0.184520 + 0.134062i
\(928\) −20.1246 14.6214i −0.660623 0.479971i
\(929\) 0.218847 + 0.673542i 0.00718014 + 0.0220982i 0.954582 0.297947i \(-0.0963019\pi\)
−0.947402 + 0.320045i \(0.896302\pi\)
\(930\) 0.972136 + 2.99193i 0.0318776 + 0.0981091i
\(931\) −4.14590 3.01217i −0.135876 0.0987199i
\(932\) −16.2812 + 11.8290i −0.533307 + 0.387470i
\(933\) 6.07295 18.6906i 0.198819 0.611903i
\(934\) 5.68692 0.186082
\(935\) 0 0
\(936\) −6.23607 −0.203832
\(937\) 3.19756 9.84108i 0.104460 0.321494i −0.885144 0.465318i \(-0.845940\pi\)
0.989603 + 0.143824i \(0.0459399\pi\)
\(938\) 1.50000 1.08981i 0.0489767 0.0355837i
\(939\) −9.28115 6.74315i −0.302879 0.220054i
\(940\) −1.01064 3.11044i −0.0329635 0.101451i
\(941\) 12.8090 + 39.4221i 0.417562 + 1.28512i 0.909939 + 0.414742i \(0.136128\pi\)
−0.492377 + 0.870382i \(0.663872\pi\)
\(942\) −0.708204 0.514540i −0.0230745 0.0167646i
\(943\) −14.5172 + 10.5474i −0.472746 + 0.343470i
\(944\) 9.35004 28.7765i 0.304318 0.936594i
\(945\) 1.61803 0.0526346
\(946\) 0 0
\(947\) 41.3951 1.34516 0.672580 0.740024i \(-0.265186\pi\)
0.672580 + 0.740024i \(0.265186\pi\)
\(948\) 6.30244 19.3969i 0.204694 0.629982i
\(949\) 26.4164 19.1926i 0.857513 0.623020i
\(950\) 0.628677 + 0.456761i 0.0203970 + 0.0148193i
\(951\) 9.01722 + 27.7522i 0.292403 + 0.899925i
\(952\) 3.57295 + 10.9964i 0.115800 + 0.356396i
\(953\) −34.5066 25.0705i −1.11778 0.812113i −0.133907 0.990994i \(-0.542752\pi\)
−0.983871 + 0.178881i \(0.942752\pi\)
\(954\) −0.809017 + 0.587785i −0.0261929 + 0.0190303i
\(955\) −11.5902 + 35.6709i −0.375049 + 1.15428i
\(956\) −4.85410 −0.156993
\(957\) 0 0
\(958\) 11.6950 0.377850
\(959\) −4.39919 + 13.5393i −0.142057 + 0.437207i
\(960\) −6.16312 + 4.47777i −0.198914 + 0.144519i
\(961\) 4.11803 + 2.99193i 0.132840 + 0.0965138i
\(962\) −0.881966 2.71441i −0.0284357 0.0875162i
\(963\) −0.781153 2.40414i −0.0251723 0.0774724i
\(964\) 32.5623 + 23.6579i 1.04876 + 0.761970i
\(965\) 12.8992 9.37181i 0.415240 0.301689i
\(966\) 0.500000 1.53884i 0.0160872 0.0495114i
\(967\) −20.9230 −0.672838 −0.336419 0.941712i \(-0.609216\pi\)
−0.336419 + 0.941712i \(0.609216\pi\)
\(968\) 0 0
\(969\) −6.70820 −0.215499
\(970\) −0.218847 + 0.673542i −0.00702676 + 0.0216261i
\(971\) 33.9787 24.6870i 1.09043 0.792243i 0.110957 0.993825i \(-0.464608\pi\)
0.979472 + 0.201582i \(0.0646083\pi\)
\(972\) −1.50000 1.08981i −0.0481125 0.0349558i
\(973\) 1.71885 + 5.29007i 0.0551037 + 0.169592i
\(974\) −0.0835921 0.257270i −0.00267846 0.00824347i
\(975\) 8.16312 + 5.93085i 0.261429 + 0.189939i
\(976\) −21.7918 + 15.8327i −0.697538 + 0.506791i
\(977\) 15.0172 46.2183i 0.480443 1.47865i −0.358030 0.933710i \(-0.616551\pi\)
0.838473 0.544943i \(-0.183449\pi\)
\(978\) −4.52786 −0.144785
\(979\) 0 0
\(980\) 18.0000 0.574989
\(981\) −3.70820 + 11.4127i −0.118394 + 0.364379i
\(982\) −8.98936 + 6.53115i −0.286862 + 0.208417i
\(983\) 35.5066 + 25.7970i 1.13248 + 0.822798i 0.986054 0.166423i \(-0.0532218\pi\)
0.146430 + 0.989221i \(0.453222\pi\)
\(984\) 1.92705 + 5.93085i 0.0614321 + 0.189069i
\(985\) −8.01722 24.6745i −0.255450 0.786194i
\(986\) 14.5623 + 10.5801i 0.463758 + 0.336940i
\(987\) −0.881966 + 0.640786i −0.0280733 + 0.0203964i
\(988\) −2.07295 + 6.37988i −0.0659493 + 0.202971i
\(989\) −28.4164 −0.903589
\(990\) 0 0
\(991\) −38.7426 −1.23070 −0.615350 0.788254i \(-0.710985\pi\)
−0.615350 + 0.788254i \(0.710985\pi\)
\(992\) −6.52129 + 20.0705i −0.207051 + 0.637238i
\(993\) 2.66312 1.93487i 0.0845115 0.0614012i
\(994\) 1.64590 + 1.19581i 0.0522047 + 0.0379289i
\(995\) −3.35410 10.3229i −0.106332 0.327257i
\(996\) −4.28115 13.1760i −0.135654 0.417499i
\(997\) 37.0517 + 26.9196i 1.17344 + 0.852553i 0.991416 0.130742i \(-0.0417359\pi\)
0.182022 + 0.983295i \(0.441736\pi\)
\(998\) −7.68034 + 5.58009i −0.243117 + 0.176635i
\(999\) 0.545085 1.67760i 0.0172457 0.0530769i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.e.k.130.1 4
11.2 odd 10 363.2.e.f.124.1 4
11.3 even 5 33.2.e.b.4.1 4
11.4 even 5 363.2.a.d.1.2 2
11.5 even 5 inner 363.2.e.k.148.1 4
11.6 odd 10 363.2.e.b.148.1 4
11.7 odd 10 363.2.a.i.1.1 2
11.8 odd 10 363.2.e.f.202.1 4
11.9 even 5 33.2.e.b.25.1 yes 4
11.10 odd 2 363.2.e.b.130.1 4
33.14 odd 10 99.2.f.a.37.1 4
33.20 odd 10 99.2.f.a.91.1 4
33.26 odd 10 1089.2.a.t.1.1 2
33.29 even 10 1089.2.a.l.1.2 2
44.3 odd 10 528.2.y.b.433.1 4
44.7 even 10 5808.2.a.ci.1.2 2
44.15 odd 10 5808.2.a.cj.1.2 2
44.31 odd 10 528.2.y.b.289.1 4
55.3 odd 20 825.2.bx.d.499.2 8
55.4 even 10 9075.2.a.cb.1.1 2
55.9 even 10 825.2.n.c.751.1 4
55.14 even 10 825.2.n.c.301.1 4
55.29 odd 10 9075.2.a.u.1.2 2
55.42 odd 20 825.2.bx.d.124.2 8
55.47 odd 20 825.2.bx.d.499.1 8
55.53 odd 20 825.2.bx.d.124.1 8
99.14 odd 30 891.2.n.b.136.1 8
99.20 odd 30 891.2.n.b.190.1 8
99.25 even 15 891.2.n.c.433.1 8
99.31 even 15 891.2.n.c.784.1 8
99.47 odd 30 891.2.n.b.433.1 8
99.58 even 15 891.2.n.c.136.1 8
99.86 odd 30 891.2.n.b.784.1 8
99.97 even 15 891.2.n.c.190.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.4.1 4 11.3 even 5
33.2.e.b.25.1 yes 4 11.9 even 5
99.2.f.a.37.1 4 33.14 odd 10
99.2.f.a.91.1 4 33.20 odd 10
363.2.a.d.1.2 2 11.4 even 5
363.2.a.i.1.1 2 11.7 odd 10
363.2.e.b.130.1 4 11.10 odd 2
363.2.e.b.148.1 4 11.6 odd 10
363.2.e.f.124.1 4 11.2 odd 10
363.2.e.f.202.1 4 11.8 odd 10
363.2.e.k.130.1 4 1.1 even 1 trivial
363.2.e.k.148.1 4 11.5 even 5 inner
528.2.y.b.289.1 4 44.31 odd 10
528.2.y.b.433.1 4 44.3 odd 10
825.2.n.c.301.1 4 55.14 even 10
825.2.n.c.751.1 4 55.9 even 10
825.2.bx.d.124.1 8 55.53 odd 20
825.2.bx.d.124.2 8 55.42 odd 20
825.2.bx.d.499.1 8 55.47 odd 20
825.2.bx.d.499.2 8 55.3 odd 20
891.2.n.b.136.1 8 99.14 odd 30
891.2.n.b.190.1 8 99.20 odd 30
891.2.n.b.433.1 8 99.47 odd 30
891.2.n.b.784.1 8 99.86 odd 30
891.2.n.c.136.1 8 99.58 even 15
891.2.n.c.190.1 8 99.97 even 15
891.2.n.c.433.1 8 99.25 even 15
891.2.n.c.784.1 8 99.31 even 15
1089.2.a.l.1.2 2 33.29 even 10
1089.2.a.t.1.1 2 33.26 odd 10
5808.2.a.ci.1.2 2 44.7 even 10
5808.2.a.cj.1.2 2 44.15 odd 10
9075.2.a.u.1.2 2 55.29 odd 10
9075.2.a.cb.1.1 2 55.4 even 10