Properties

Label 891.2.n.b.190.1
Level $891$
Weight $2$
Character 891.190
Analytic conductor $7.115$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 190.1
Root \(-0.104528 - 0.994522i\) of defining polynomial
Character \(\chi\) \(=\) 891.190
Dual form 891.2.n.b.136.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.348943 + 0.155360i) q^{2} +(-1.24064 - 1.37787i) q^{4} +(-1.47815 + 0.658114i) q^{5} +(0.978148 - 0.207912i) q^{7} +(-0.454915 - 1.40008i) q^{8} -0.618034 q^{10} +(1.06082 - 3.14240i) q^{11} +(0.442790 + 4.21286i) q^{13} +(0.373619 + 0.0794152i) q^{14} +(-0.328836 + 3.12866i) q^{16} +(-6.35410 - 4.61653i) q^{17} +(-0.263932 - 0.812299i) q^{19} +(2.74064 + 1.22021i) q^{20} +(0.858369 - 0.931709i) q^{22} +(-2.11803 + 3.66854i) q^{23} +(-1.59385 + 1.77015i) q^{25} +(-0.500000 + 1.53884i) q^{26} +(-1.50000 - 1.08981i) q^{28} +(-5.86889 + 1.24747i) q^{29} +(-0.532068 - 5.06229i) q^{31} +(-2.07295 + 3.59045i) q^{32} +(-1.50000 - 2.59808i) q^{34} +(-1.30902 + 0.951057i) q^{35} +(-0.545085 + 1.67760i) q^{37} +(0.0341011 - 0.324451i) q^{38} +(1.59385 + 1.77015i) q^{40} +(-4.14350 - 0.880728i) q^{41} +(-3.35410 - 5.80948i) q^{43} +(-5.64590 + 2.43690i) q^{44} +(-1.30902 + 0.951057i) q^{46} +(-0.729466 + 0.810154i) q^{47} +(-5.48127 + 2.44042i) q^{49} +(-0.831171 + 0.370061i) q^{50} +(5.25542 - 5.83674i) q^{52} +(-2.11803 + 1.53884i) q^{53} +(0.500000 + 5.34307i) q^{55} +(-0.736068 - 1.27491i) q^{56} +(-2.24171 - 0.476491i) q^{58} +(-6.43572 - 7.14759i) q^{59} +(-0.895005 + 8.51540i) q^{61} +(0.600813 - 1.84911i) q^{62} +(3.80902 - 2.76741i) q^{64} +(-3.42705 - 5.93583i) q^{65} +(2.42705 - 4.20378i) q^{67} +(1.52218 + 14.4825i) q^{68} +(-0.604528 + 0.128496i) q^{70} +(-4.30902 - 3.13068i) q^{71} +(2.38197 - 7.33094i) q^{73} +(-0.450835 + 0.500703i) q^{74} +(-0.791796 + 1.37143i) q^{76} +(0.384301 - 3.29428i) q^{77} +(10.0490 + 4.47410i) q^{79} +(-1.57295 - 4.84104i) q^{80} +(-1.30902 - 0.951057i) q^{82} +(-0.781051 + 7.43120i) q^{83} +(12.4305 + 2.64218i) q^{85} +(-0.267834 - 2.54827i) q^{86} +(-4.88220 - 0.0557196i) q^{88} +3.76393 q^{89} +(1.30902 + 4.02874i) q^{91} +(7.68247 - 1.63296i) q^{92} +(-0.380408 + 0.169368i) q^{94} +(0.924716 + 1.02700i) q^{95} +(1.04683 + 0.466079i) q^{97} -2.29180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 9 q^{4} - 3 q^{5} - q^{7} - 26 q^{8} + 4 q^{10} - 11 q^{11} - 7 q^{13} - 4 q^{14} - q^{16} - 24 q^{17} - 20 q^{19} + 3 q^{20} - 4 q^{22} - 8 q^{23} - 6 q^{25} - 4 q^{26} - 12 q^{28} + 6 q^{29}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.348943 + 0.155360i 0.246740 + 0.109856i 0.526381 0.850249i \(-0.323549\pi\)
−0.279641 + 0.960105i \(0.590215\pi\)
\(3\) 0 0
\(4\) −1.24064 1.37787i −0.620318 0.688933i
\(5\) −1.47815 + 0.658114i −0.661048 + 0.294317i −0.709706 0.704498i \(-0.751172\pi\)
0.0486582 + 0.998815i \(0.484506\pi\)
\(6\) 0 0
\(7\) 0.978148 0.207912i 0.369705 0.0785832i −0.0193127 0.999813i \(-0.506148\pi\)
0.389018 + 0.921230i \(0.372814\pi\)
\(8\) −0.454915 1.40008i −0.160837 0.495005i
\(9\) 0 0
\(10\) −0.618034 −0.195440
\(11\) 1.06082 3.14240i 0.319850 0.947468i
\(12\) 0 0
\(13\) 0.442790 + 4.21286i 0.122808 + 1.16844i 0.866241 + 0.499627i \(0.166530\pi\)
−0.743433 + 0.668811i \(0.766804\pi\)
\(14\) 0.373619 + 0.0794152i 0.0998539 + 0.0212246i
\(15\) 0 0
\(16\) −0.328836 + 3.12866i −0.0822090 + 0.782166i
\(17\) −6.35410 4.61653i −1.54110 1.11967i −0.949644 0.313332i \(-0.898555\pi\)
−0.591452 0.806340i \(-0.701445\pi\)
\(18\) 0 0
\(19\) −0.263932 0.812299i −0.0605502 0.186354i 0.916206 0.400707i \(-0.131236\pi\)
−0.976756 + 0.214353i \(0.931236\pi\)
\(20\) 2.74064 + 1.22021i 0.612825 + 0.272847i
\(21\) 0 0
\(22\) 0.858369 0.931709i 0.183005 0.198641i
\(23\) −2.11803 + 3.66854i −0.441641 + 0.764944i −0.997811 0.0661240i \(-0.978937\pi\)
0.556171 + 0.831068i \(0.312270\pi\)
\(24\) 0 0
\(25\) −1.59385 + 1.77015i −0.318769 + 0.354029i
\(26\) −0.500000 + 1.53884i −0.0980581 + 0.301792i
\(27\) 0 0
\(28\) −1.50000 1.08981i −0.283473 0.205955i
\(29\) −5.86889 + 1.24747i −1.08982 + 0.231649i −0.717574 0.696483i \(-0.754747\pi\)
−0.372251 + 0.928132i \(0.621414\pi\)
\(30\) 0 0
\(31\) −0.532068 5.06229i −0.0955622 0.909213i −0.932319 0.361638i \(-0.882218\pi\)
0.836756 0.547575i \(-0.184449\pi\)
\(32\) −2.07295 + 3.59045i −0.366449 + 0.634708i
\(33\) 0 0
\(34\) −1.50000 2.59808i −0.257248 0.445566i
\(35\) −1.30902 + 0.951057i −0.221264 + 0.160758i
\(36\) 0 0
\(37\) −0.545085 + 1.67760i −0.0896114 + 0.275796i −0.985812 0.167854i \(-0.946316\pi\)
0.896201 + 0.443649i \(0.146316\pi\)
\(38\) 0.0341011 0.324451i 0.00553194 0.0526329i
\(39\) 0 0
\(40\) 1.59385 + 1.77015i 0.252009 + 0.279885i
\(41\) −4.14350 0.880728i −0.647106 0.137547i −0.127345 0.991858i \(-0.540646\pi\)
−0.519761 + 0.854312i \(0.673979\pi\)
\(42\) 0 0
\(43\) −3.35410 5.80948i −0.511496 0.885937i −0.999911 0.0133254i \(-0.995758\pi\)
0.488415 0.872611i \(-0.337575\pi\)
\(44\) −5.64590 + 2.43690i −0.851151 + 0.367376i
\(45\) 0 0
\(46\) −1.30902 + 0.951057i −0.193004 + 0.140226i
\(47\) −0.729466 + 0.810154i −0.106404 + 0.118173i −0.793994 0.607926i \(-0.792002\pi\)
0.687590 + 0.726099i \(0.258669\pi\)
\(48\) 0 0
\(49\) −5.48127 + 2.44042i −0.783039 + 0.348631i
\(50\) −0.831171 + 0.370061i −0.117545 + 0.0523346i
\(51\) 0 0
\(52\) 5.25542 5.83674i 0.728796 0.809410i
\(53\) −2.11803 + 1.53884i −0.290934 + 0.211376i −0.723673 0.690143i \(-0.757547\pi\)
0.432738 + 0.901520i \(0.357547\pi\)
\(54\) 0 0
\(55\) 0.500000 + 5.34307i 0.0674200 + 0.720459i
\(56\) −0.736068 1.27491i −0.0983612 0.170367i
\(57\) 0 0
\(58\) −2.24171 0.476491i −0.294352 0.0625664i
\(59\) −6.43572 7.14759i −0.837859 0.930537i 0.160544 0.987029i \(-0.448675\pi\)
−0.998403 + 0.0564915i \(0.982009\pi\)
\(60\) 0 0
\(61\) −0.895005 + 8.51540i −0.114594 + 1.09029i 0.774504 + 0.632568i \(0.217999\pi\)
−0.889098 + 0.457717i \(0.848667\pi\)
\(62\) 0.600813 1.84911i 0.0763033 0.234838i
\(63\) 0 0
\(64\) 3.80902 2.76741i 0.476127 0.345927i
\(65\) −3.42705 5.93583i −0.425073 0.736249i
\(66\) 0 0
\(67\) 2.42705 4.20378i 0.296511 0.513573i −0.678824 0.734301i \(-0.737510\pi\)
0.975335 + 0.220728i \(0.0708434\pi\)
\(68\) 1.52218 + 14.4825i 0.184591 + 1.75626i
\(69\) 0 0
\(70\) −0.604528 + 0.128496i −0.0722550 + 0.0153583i
\(71\) −4.30902 3.13068i −0.511386 0.371544i 0.301963 0.953320i \(-0.402358\pi\)
−0.813349 + 0.581776i \(0.802358\pi\)
\(72\) 0 0
\(73\) 2.38197 7.33094i 0.278788 0.858021i −0.709404 0.704802i \(-0.751036\pi\)
0.988192 0.153219i \(-0.0489641\pi\)
\(74\) −0.450835 + 0.500703i −0.0524085 + 0.0582055i
\(75\) 0 0
\(76\) −0.791796 + 1.37143i −0.0908252 + 0.157314i
\(77\) 0.384301 3.29428i 0.0437952 0.375419i
\(78\) 0 0
\(79\) 10.0490 + 4.47410i 1.13060 + 0.503376i 0.884812 0.465948i \(-0.154286\pi\)
0.245788 + 0.969323i \(0.420953\pi\)
\(80\) −1.57295 4.84104i −0.175861 0.541245i
\(81\) 0 0
\(82\) −1.30902 0.951057i −0.144557 0.105027i
\(83\) −0.781051 + 7.43120i −0.0857315 + 0.815680i 0.864185 + 0.503175i \(0.167835\pi\)
−0.949916 + 0.312505i \(0.898832\pi\)
\(84\) 0 0
\(85\) 12.4305 + 2.64218i 1.34828 + 0.286585i
\(86\) −0.267834 2.54827i −0.0288813 0.274787i
\(87\) 0 0
\(88\) −4.88220 0.0557196i −0.520445 0.00593972i
\(89\) 3.76393 0.398976 0.199488 0.979900i \(-0.436072\pi\)
0.199488 + 0.979900i \(0.436072\pi\)
\(90\) 0 0
\(91\) 1.30902 + 4.02874i 0.137222 + 0.422327i
\(92\) 7.68247 1.63296i 0.800953 0.170248i
\(93\) 0 0
\(94\) −0.380408 + 0.169368i −0.0392360 + 0.0174690i
\(95\) 0.924716 + 1.02700i 0.0948738 + 0.105368i
\(96\) 0 0
\(97\) 1.04683 + 0.466079i 0.106289 + 0.0473231i 0.459193 0.888337i \(-0.348139\pi\)
−0.352903 + 0.935660i \(0.614805\pi\)
\(98\) −2.29180 −0.231506
\(99\) 0 0
\(100\) 4.41641 0.441641
\(101\) 5.26561 + 2.34440i 0.523948 + 0.233277i 0.651628 0.758539i \(-0.274086\pi\)
−0.127680 + 0.991815i \(0.540753\pi\)
\(102\) 0 0
\(103\) 4.64662 + 5.16060i 0.457846 + 0.508489i 0.927224 0.374508i \(-0.122188\pi\)
−0.469378 + 0.882997i \(0.655522\pi\)
\(104\) 5.69693 2.53644i 0.558630 0.248718i
\(105\) 0 0
\(106\) −0.978148 + 0.207912i −0.0950061 + 0.0201942i
\(107\) 0.781153 + 2.40414i 0.0755169 + 0.232417i 0.981689 0.190493i \(-0.0610086\pi\)
−0.906172 + 0.422910i \(0.861009\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) −0.655625 + 1.94211i −0.0625114 + 0.185173i
\(111\) 0 0
\(112\) 0.328836 + 3.12866i 0.0310721 + 0.295631i
\(113\) 4.42892 + 0.941396i 0.416638 + 0.0885591i 0.411461 0.911428i \(-0.365019\pi\)
0.00517704 + 0.999987i \(0.498352\pi\)
\(114\) 0 0
\(115\) 0.716449 6.81655i 0.0668092 0.635647i
\(116\) 9.00000 + 6.53888i 0.835629 + 0.607120i
\(117\) 0 0
\(118\) −1.13525 3.49396i −0.104509 0.321645i
\(119\) −7.17508 3.19455i −0.657738 0.292844i
\(120\) 0 0
\(121\) −8.74931 6.66706i −0.795391 0.606096i
\(122\) −1.63525 + 2.83234i −0.148049 + 0.256428i
\(123\) 0 0
\(124\) −6.31505 + 7.01357i −0.567108 + 0.629837i
\(125\) 3.69098 11.3597i 0.330132 1.01604i
\(126\) 0 0
\(127\) 4.61803 + 3.35520i 0.409784 + 0.297726i 0.773514 0.633779i \(-0.218497\pi\)
−0.363730 + 0.931504i \(0.618497\pi\)
\(128\) 9.86968 2.09786i 0.872364 0.185427i
\(129\) 0 0
\(130\) −0.273659 2.60369i −0.0240015 0.228359i
\(131\) 6.39919 11.0837i 0.559100 0.968389i −0.438472 0.898745i \(-0.644480\pi\)
0.997572 0.0696442i \(-0.0221864\pi\)
\(132\) 0 0
\(133\) −0.427051 0.739674i −0.0370300 0.0641379i
\(134\) 1.50000 1.08981i 0.129580 0.0941456i
\(135\) 0 0
\(136\) −3.57295 + 10.9964i −0.306378 + 0.942934i
\(137\) 1.48807 14.1581i 0.127135 1.20961i −0.725918 0.687781i \(-0.758585\pi\)
0.853053 0.521825i \(-0.174749\pi\)
\(138\) 0 0
\(139\) −3.72191 4.13360i −0.315688 0.350607i 0.564328 0.825551i \(-0.309135\pi\)
−0.880016 + 0.474943i \(0.842469\pi\)
\(140\) 2.93444 + 0.623735i 0.248006 + 0.0527152i
\(141\) 0 0
\(142\) −1.01722 1.76188i −0.0853633 0.147854i
\(143\) 13.7082 + 3.07768i 1.14634 + 0.257369i
\(144\) 0 0
\(145\) 7.85410 5.70634i 0.652248 0.473886i
\(146\) 1.97010 2.18802i 0.163047 0.181082i
\(147\) 0 0
\(148\) 2.98776 1.33024i 0.245592 0.109345i
\(149\) −0.215659 + 0.0960175i −0.0176675 + 0.00786606i −0.415551 0.909570i \(-0.636411\pi\)
0.397884 + 0.917436i \(0.369745\pi\)
\(150\) 0 0
\(151\) 12.6762 14.0783i 1.03157 1.14568i 0.0423746 0.999102i \(-0.486508\pi\)
0.989199 0.146577i \(-0.0468256\pi\)
\(152\) −1.01722 + 0.739054i −0.0825075 + 0.0599452i
\(153\) 0 0
\(154\) 0.645898 1.08981i 0.0520479 0.0878197i
\(155\) 4.11803 + 7.13264i 0.330768 + 0.572908i
\(156\) 0 0
\(157\) −2.24171 0.476491i −0.178908 0.0380281i 0.117586 0.993063i \(-0.462484\pi\)
−0.296495 + 0.955035i \(0.595818\pi\)
\(158\) 2.81144 + 3.12242i 0.223666 + 0.248406i
\(159\) 0 0
\(160\) 0.701198 6.67146i 0.0554346 0.527425i
\(161\) −1.30902 + 4.02874i −0.103165 + 0.317509i
\(162\) 0 0
\(163\) 9.59017 6.96767i 0.751160 0.545750i −0.145026 0.989428i \(-0.546327\pi\)
0.896186 + 0.443678i \(0.146327\pi\)
\(164\) 3.92705 + 6.80185i 0.306651 + 0.531135i
\(165\) 0 0
\(166\) −1.42705 + 2.47172i −0.110761 + 0.191843i
\(167\) −1.78058 16.9411i −0.137786 1.31094i −0.816844 0.576859i \(-0.804278\pi\)
0.679058 0.734085i \(-0.262388\pi\)
\(168\) 0 0
\(169\) −4.83623 + 1.02797i −0.372018 + 0.0790748i
\(170\) 3.92705 + 2.85317i 0.301191 + 0.218828i
\(171\) 0 0
\(172\) −3.84346 + 11.8290i −0.293061 + 0.901949i
\(173\) −7.38348 + 8.20019i −0.561356 + 0.623449i −0.955283 0.295693i \(-0.904450\pi\)
0.393927 + 0.919142i \(0.371116\pi\)
\(174\) 0 0
\(175\) −1.19098 + 2.06284i −0.0900299 + 0.155936i
\(176\) 9.48267 + 4.35229i 0.714783 + 0.328066i
\(177\) 0 0
\(178\) 1.31340 + 0.584763i 0.0984434 + 0.0438298i
\(179\) 5.39919 + 16.6170i 0.403554 + 1.24201i 0.922096 + 0.386960i \(0.126475\pi\)
−0.518542 + 0.855052i \(0.673525\pi\)
\(180\) 0 0
\(181\) −9.28115 6.74315i −0.689863 0.501215i 0.186752 0.982407i \(-0.440204\pi\)
−0.876615 + 0.481192i \(0.840204\pi\)
\(182\) −0.169131 + 1.60917i −0.0125368 + 0.119280i
\(183\) 0 0
\(184\) 6.09979 + 1.29655i 0.449683 + 0.0955830i
\(185\) −0.298335 2.83847i −0.0219340 0.208688i
\(186\) 0 0
\(187\) −21.2475 + 15.0698i −1.55377 + 1.10201i
\(188\) 2.02129 0.147417
\(189\) 0 0
\(190\) 0.163119 + 0.502029i 0.0118339 + 0.0364210i
\(191\) −22.6738 + 4.81946i −1.64062 + 0.348724i −0.933557 0.358428i \(-0.883313\pi\)
−0.707061 + 0.707153i \(0.749979\pi\)
\(192\) 0 0
\(193\) −9.00217 + 4.00802i −0.647990 + 0.288504i −0.704293 0.709910i \(-0.748736\pi\)
0.0563022 + 0.998414i \(0.482069\pi\)
\(194\) 0.292875 + 0.325270i 0.0210272 + 0.0233530i
\(195\) 0 0
\(196\) 10.1628 + 4.52479i 0.725917 + 0.323199i
\(197\) 16.0344 1.14241 0.571203 0.820809i \(-0.306477\pi\)
0.571203 + 0.820809i \(0.306477\pi\)
\(198\) 0 0
\(199\) −6.70820 −0.475532 −0.237766 0.971322i \(-0.576415\pi\)
−0.237766 + 0.971322i \(0.576415\pi\)
\(200\) 3.20342 + 1.42625i 0.226516 + 0.100851i
\(201\) 0 0
\(202\) 1.47318 + 1.63613i 0.103652 + 0.115117i
\(203\) −5.48127 + 2.44042i −0.384710 + 0.171284i
\(204\) 0 0
\(205\) 6.70432 1.42505i 0.468250 0.0995297i
\(206\) 0.819660 + 2.52265i 0.0571084 + 0.175762i
\(207\) 0 0
\(208\) −13.3262 −0.924008
\(209\) −2.83255 0.0323273i −0.195932 0.00223613i
\(210\) 0 0
\(211\) −0.144455 1.37440i −0.00994468 0.0946173i 0.988424 0.151719i \(-0.0484808\pi\)
−0.998368 + 0.0571015i \(0.981814\pi\)
\(212\) 4.74803 + 1.00922i 0.326096 + 0.0693138i
\(213\) 0 0
\(214\) −0.100928 + 0.960269i −0.00689932 + 0.0656426i
\(215\) 8.78115 + 6.37988i 0.598870 + 0.435104i
\(216\) 0 0
\(217\) −1.57295 4.84104i −0.106779 0.328631i
\(218\) −4.18732 1.86431i −0.283601 0.126267i
\(219\) 0 0
\(220\) 6.74171 7.31774i 0.454526 0.493362i
\(221\) 16.6353 28.8131i 1.11901 1.93818i
\(222\) 0 0
\(223\) −10.1576 + 11.2812i −0.680205 + 0.755444i −0.980095 0.198529i \(-0.936383\pi\)
0.299890 + 0.953974i \(0.403050\pi\)
\(224\) −1.28115 + 3.94298i −0.0856006 + 0.263452i
\(225\) 0 0
\(226\) 1.39919 + 1.01657i 0.0930725 + 0.0676212i
\(227\) −8.97973 + 1.90870i −0.596005 + 0.126685i −0.496031 0.868305i \(-0.665210\pi\)
−0.0999749 + 0.994990i \(0.531876\pi\)
\(228\) 0 0
\(229\) 0.885579 + 8.42572i 0.0585207 + 0.556788i 0.984022 + 0.178044i \(0.0569770\pi\)
−0.925502 + 0.378743i \(0.876356\pi\)
\(230\) 1.30902 2.26728i 0.0863140 0.149500i
\(231\) 0 0
\(232\) 4.41641 + 7.64944i 0.289951 + 0.502211i
\(233\) −8.78115 + 6.37988i −0.575272 + 0.417960i −0.837017 0.547177i \(-0.815702\pi\)
0.261744 + 0.965137i \(0.415702\pi\)
\(234\) 0 0
\(235\) 0.545085 1.67760i 0.0355574 0.109434i
\(236\) −1.86404 + 17.7351i −0.121338 + 1.15446i
\(237\) 0 0
\(238\) −2.00739 2.22943i −0.130120 0.144513i
\(239\) 2.56082 + 0.544320i 0.165646 + 0.0352091i 0.289988 0.957030i \(-0.406349\pi\)
−0.124342 + 0.992239i \(0.539682\pi\)
\(240\) 0 0
\(241\) −10.8541 18.7999i −0.699174 1.21101i −0.968753 0.248027i \(-0.920218\pi\)
0.269579 0.962978i \(-0.413115\pi\)
\(242\) −2.01722 3.68571i −0.129672 0.236927i
\(243\) 0 0
\(244\) 12.8435 9.33132i 0.822218 0.597376i
\(245\) 6.49606 7.21460i 0.415018 0.460924i
\(246\) 0 0
\(247\) 3.30524 1.47159i 0.210307 0.0936348i
\(248\) −6.84558 + 3.04785i −0.434695 + 0.193539i
\(249\) 0 0
\(250\) 3.05278 3.39045i 0.193075 0.214431i
\(251\) 20.2082 14.6821i 1.27553 0.926727i 0.276122 0.961123i \(-0.410951\pi\)
0.999408 + 0.0343954i \(0.0109505\pi\)
\(252\) 0 0
\(253\) 9.28115 + 10.5474i 0.583501 + 0.663108i
\(254\) 1.09017 + 1.88823i 0.0684033 + 0.118478i
\(255\) 0 0
\(256\) −5.44076 1.15647i −0.340047 0.0722793i
\(257\) 8.52649 + 9.46963i 0.531868 + 0.590699i 0.947867 0.318666i \(-0.103235\pi\)
−0.415999 + 0.909365i \(0.636568\pi\)
\(258\) 0 0
\(259\) −0.184381 + 1.75427i −0.0114569 + 0.109005i
\(260\) −3.92705 + 12.0862i −0.243545 + 0.749556i
\(261\) 0 0
\(262\) 3.95492 2.87341i 0.244335 0.177520i
\(263\) 9.13525 + 15.8227i 0.563304 + 0.975671i 0.997205 + 0.0747107i \(0.0238033\pi\)
−0.433901 + 0.900960i \(0.642863\pi\)
\(264\) 0 0
\(265\) 2.11803 3.66854i 0.130110 0.225357i
\(266\) −0.0341011 0.324451i −0.00209088 0.0198934i
\(267\) 0 0
\(268\) −8.80333 + 1.87121i −0.537749 + 0.114302i
\(269\) 1.14590 + 0.832544i 0.0698666 + 0.0507611i 0.622170 0.782882i \(-0.286251\pi\)
−0.552304 + 0.833643i \(0.686251\pi\)
\(270\) 0 0
\(271\) 5.06231 15.5802i 0.307513 0.946428i −0.671214 0.741263i \(-0.734227\pi\)
0.978727 0.205165i \(-0.0657731\pi\)
\(272\) 16.5330 18.3618i 1.00246 1.11335i
\(273\) 0 0
\(274\) 2.71885 4.70918i 0.164252 0.284492i
\(275\) 3.87171 + 6.88631i 0.233473 + 0.415260i
\(276\) 0 0
\(277\) 20.2942 + 9.03557i 1.21936 + 0.542895i 0.912585 0.408887i \(-0.134083\pi\)
0.306776 + 0.951782i \(0.400750\pi\)
\(278\) −0.656541 2.02063i −0.0393767 0.121189i
\(279\) 0 0
\(280\) 1.92705 + 1.40008i 0.115163 + 0.0836711i
\(281\) 3.05600 29.0759i 0.182306 1.73452i −0.395603 0.918422i \(-0.629464\pi\)
0.577908 0.816102i \(-0.303869\pi\)
\(282\) 0 0
\(283\) −7.53976 1.60263i −0.448192 0.0952662i −0.0217144 0.999764i \(-0.506912\pi\)
−0.426478 + 0.904498i \(0.640246\pi\)
\(284\) 1.03226 + 9.82129i 0.0612533 + 0.582786i
\(285\) 0 0
\(286\) 4.30524 + 3.20364i 0.254574 + 0.189435i
\(287\) −4.23607 −0.250047
\(288\) 0 0
\(289\) 13.8090 + 42.4998i 0.812295 + 2.49999i
\(290\) 3.62717 0.770979i 0.212995 0.0452734i
\(291\) 0 0
\(292\) −13.0562 + 5.81300i −0.764057 + 0.340180i
\(293\) −6.45877 7.17319i −0.377325 0.419062i 0.524332 0.851514i \(-0.324315\pi\)
−0.901657 + 0.432452i \(0.857649\pi\)
\(294\) 0 0
\(295\) 14.2169 + 6.32976i 0.827738 + 0.368533i
\(296\) 2.59675 0.150933
\(297\) 0 0
\(298\) −0.0901699 −0.00522340
\(299\) −16.3929 7.29859i −0.948026 0.422089i
\(300\) 0 0
\(301\) −4.48866 4.98517i −0.258722 0.287340i
\(302\) 6.61048 2.94317i 0.380390 0.169361i
\(303\) 0 0
\(304\) 2.62820 0.558642i 0.150738 0.0320403i
\(305\) −4.28115 13.1760i −0.245138 0.754458i
\(306\) 0 0
\(307\) −18.9787 −1.08317 −0.541586 0.840645i \(-0.682176\pi\)
−0.541586 + 0.840645i \(0.682176\pi\)
\(308\) −5.01586 + 3.55749i −0.285805 + 0.202707i
\(309\) 0 0
\(310\) 0.328836 + 3.12866i 0.0186766 + 0.177696i
\(311\) −19.2230 4.08598i −1.09004 0.231695i −0.372373 0.928083i \(-0.621456\pi\)
−0.717665 + 0.696389i \(0.754789\pi\)
\(312\) 0 0
\(313\) 1.19916 11.4093i 0.0677808 0.644891i −0.906909 0.421328i \(-0.861564\pi\)
0.974689 0.223564i \(-0.0717691\pi\)
\(314\) −0.708204 0.514540i −0.0399663 0.0290372i
\(315\) 0 0
\(316\) −6.30244 19.3969i −0.354540 1.09116i
\(317\) 26.6576 + 11.8687i 1.49724 + 0.666613i 0.981731 0.190272i \(-0.0609370\pi\)
0.515507 + 0.856886i \(0.327604\pi\)
\(318\) 0 0
\(319\) −2.30581 + 19.7657i −0.129100 + 1.10667i
\(320\) −3.80902 + 6.59741i −0.212931 + 0.368806i
\(321\) 0 0
\(322\) −1.08268 + 1.20243i −0.0603352 + 0.0670090i
\(323\) −2.07295 + 6.37988i −0.115342 + 0.354986i
\(324\) 0 0
\(325\) −8.16312 5.93085i −0.452808 0.328985i
\(326\) 4.42892 0.941396i 0.245295 0.0521391i
\(327\) 0 0
\(328\) 0.651847 + 6.20191i 0.0359922 + 0.342443i
\(329\) −0.545085 + 0.944115i −0.0300515 + 0.0520507i
\(330\) 0 0
\(331\) −1.64590 2.85078i −0.0904667 0.156693i 0.817241 0.576296i \(-0.195503\pi\)
−0.907708 + 0.419603i \(0.862169\pi\)
\(332\) 11.2082 8.14324i 0.615130 0.446918i
\(333\) 0 0
\(334\) 2.01064 6.18812i 0.110017 0.338599i
\(335\) −0.820977 + 7.81108i −0.0448548 + 0.426765i
\(336\) 0 0
\(337\) 2.79719 + 3.10660i 0.152373 + 0.169227i 0.814499 0.580166i \(-0.197012\pi\)
−0.662126 + 0.749393i \(0.730346\pi\)
\(338\) −1.84727 0.392650i −0.100478 0.0213574i
\(339\) 0 0
\(340\) −11.7812 20.4056i −0.638923 1.10665i
\(341\) −16.4721 3.69822i −0.892016 0.200270i
\(342\) 0 0
\(343\) −10.5172 + 7.64121i −0.567877 + 0.412586i
\(344\) −6.60792 + 7.33884i −0.356275 + 0.395684i
\(345\) 0 0
\(346\) −3.85039 + 1.71431i −0.206999 + 0.0921617i
\(347\) 9.56677 4.25940i 0.513571 0.228657i −0.133552 0.991042i \(-0.542638\pi\)
0.647124 + 0.762385i \(0.275972\pi\)
\(348\) 0 0
\(349\) −0.473881 + 0.526298i −0.0253663 + 0.0281721i −0.755694 0.654924i \(-0.772700\pi\)
0.730328 + 0.683096i \(0.239367\pi\)
\(350\) −0.736068 + 0.534785i −0.0393445 + 0.0285854i
\(351\) 0 0
\(352\) 9.08359 + 10.3229i 0.484157 + 0.550211i
\(353\) −6.00000 10.3923i −0.319348 0.553127i 0.661004 0.750382i \(-0.270130\pi\)
−0.980352 + 0.197256i \(0.936797\pi\)
\(354\) 0 0
\(355\) 8.42971 + 1.79179i 0.447403 + 0.0950983i
\(356\) −4.66967 5.18620i −0.247492 0.274868i
\(357\) 0 0
\(358\) −0.697598 + 6.63720i −0.0368692 + 0.350787i
\(359\) −1.14590 + 3.52671i −0.0604782 + 0.186133i −0.976731 0.214468i \(-0.931198\pi\)
0.916253 + 0.400600i \(0.131198\pi\)
\(360\) 0 0
\(361\) 14.7812 10.7391i 0.777955 0.565218i
\(362\) −2.19098 3.79489i −0.115156 0.199455i
\(363\) 0 0
\(364\) 3.92705 6.80185i 0.205833 0.356514i
\(365\) 1.30369 + 12.4038i 0.0682384 + 0.649245i
\(366\) 0 0
\(367\) −28.2236 + 5.99911i −1.47326 + 0.313151i −0.873419 0.486970i \(-0.838102\pi\)
−0.599839 + 0.800120i \(0.704769\pi\)
\(368\) −10.7812 7.83297i −0.562006 0.408322i
\(369\) 0 0
\(370\) 0.336881 1.03681i 0.0175136 0.0539014i
\(371\) −1.75181 + 1.94558i −0.0909493 + 0.101009i
\(372\) 0 0
\(373\) 17.4443 30.2144i 0.903230 1.56444i 0.0799547 0.996799i \(-0.474522\pi\)
0.823275 0.567642i \(-0.192144\pi\)
\(374\) −9.75542 + 1.95749i −0.504441 + 0.101220i
\(375\) 0 0
\(376\) 1.46613 + 0.652763i 0.0756098 + 0.0336637i
\(377\) −7.85410 24.1724i −0.404507 1.24494i
\(378\) 0 0
\(379\) −8.80902 6.40013i −0.452489 0.328752i 0.338089 0.941114i \(-0.390220\pi\)
−0.790578 + 0.612362i \(0.790220\pi\)
\(380\) 0.267834 2.54827i 0.0137396 0.130723i
\(381\) 0 0
\(382\) −8.66062 1.84087i −0.443116 0.0941872i
\(383\) 0.0740275 + 0.704324i 0.00378263 + 0.0359893i 0.996250 0.0865167i \(-0.0275736\pi\)
−0.992468 + 0.122506i \(0.960907\pi\)
\(384\) 0 0
\(385\) 1.59996 + 5.12235i 0.0815415 + 0.261059i
\(386\) −3.76393 −0.191579
\(387\) 0 0
\(388\) −0.656541 2.02063i −0.0333308 0.102582i
\(389\) 5.61716 1.19396i 0.284801 0.0605363i −0.0632961 0.997995i \(-0.520161\pi\)
0.348097 + 0.937458i \(0.386828\pi\)
\(390\) 0 0
\(391\) 30.3941 13.5323i 1.53710 0.684360i
\(392\) 5.91031 + 6.56406i 0.298516 + 0.331535i
\(393\) 0 0
\(394\) 5.59511 + 2.49110i 0.281878 + 0.125500i
\(395\) −17.7984 −0.895533
\(396\) 0 0
\(397\) −5.29180 −0.265588 −0.132794 0.991144i \(-0.542395\pi\)
−0.132794 + 0.991144i \(0.542395\pi\)
\(398\) −2.34078 1.04218i −0.117333 0.0522399i
\(399\) 0 0
\(400\) −5.01408 5.56870i −0.250704 0.278435i
\(401\) −26.2068 + 11.6680i −1.30871 + 0.582673i −0.938180 0.346149i \(-0.887489\pi\)
−0.370526 + 0.928822i \(0.620822\pi\)
\(402\) 0 0
\(403\) 21.0911 4.48306i 1.05062 0.223317i
\(404\) −3.30244 10.1639i −0.164302 0.505671i
\(405\) 0 0
\(406\) −2.29180 −0.113740
\(407\) 4.69344 + 3.49251i 0.232645 + 0.173117i
\(408\) 0 0
\(409\) −0.258409 2.45859i −0.0127775 0.121570i 0.986274 0.165118i \(-0.0528004\pi\)
−0.999051 + 0.0435482i \(0.986134\pi\)
\(410\) 2.56082 + 0.544320i 0.126470 + 0.0268820i
\(411\) 0 0
\(412\) 1.34584 12.8049i 0.0663050 0.630850i
\(413\) −7.78115 5.65334i −0.382886 0.278183i
\(414\) 0 0
\(415\) −3.73607 11.4984i −0.183396 0.564436i
\(416\) −16.0440 7.14323i −0.786620 0.350226i
\(417\) 0 0
\(418\) −0.983377 0.451344i −0.0480986 0.0220760i
\(419\) −12.2254 + 21.1751i −0.597251 + 1.03447i 0.395974 + 0.918262i \(0.370407\pi\)
−0.993225 + 0.116207i \(0.962926\pi\)
\(420\) 0 0
\(421\) −18.4055 + 20.4414i −0.897029 + 0.996251i 0.102970 + 0.994684i \(0.467165\pi\)
−0.999999 + 0.00156699i \(0.999501\pi\)
\(422\) 0.163119 0.502029i 0.00794051 0.0244384i
\(423\) 0 0
\(424\) 3.11803 + 2.26538i 0.151425 + 0.110017i
\(425\) 18.2994 3.88965i 0.887651 0.188676i
\(426\) 0 0
\(427\) 0.895005 + 8.51540i 0.0433123 + 0.412089i
\(428\) 2.34346 4.05899i 0.113275 0.196199i
\(429\) 0 0
\(430\) 2.07295 + 3.59045i 0.0999665 + 0.173147i
\(431\) −13.8262 + 10.0453i −0.665986 + 0.483867i −0.868679 0.495375i \(-0.835031\pi\)
0.202693 + 0.979242i \(0.435031\pi\)
\(432\) 0 0
\(433\) −8.43769 + 25.9686i −0.405490 + 1.24797i 0.514996 + 0.857193i \(0.327793\pi\)
−0.920486 + 0.390776i \(0.872207\pi\)
\(434\) 0.203232 1.93362i 0.00975544 0.0928168i
\(435\) 0 0
\(436\) 14.8876 + 16.5344i 0.712988 + 0.791854i
\(437\) 3.53897 + 0.752232i 0.169292 + 0.0359841i
\(438\) 0 0
\(439\) −18.3541 31.7902i −0.875993 1.51727i −0.855701 0.517471i \(-0.826873\pi\)
−0.0202928 0.999794i \(-0.506460\pi\)
\(440\) 7.25329 3.13068i 0.345787 0.149250i
\(441\) 0 0
\(442\) 10.2812 7.46969i 0.489025 0.355297i
\(443\) −11.7745 + 13.0769i −0.559424 + 0.621304i −0.954812 0.297211i \(-0.903944\pi\)
0.395387 + 0.918514i \(0.370610\pi\)
\(444\) 0 0
\(445\) −5.56365 + 2.47710i −0.263742 + 0.117426i
\(446\) −5.29708 + 2.35841i −0.250824 + 0.111674i
\(447\) 0 0
\(448\) 3.15040 3.49888i 0.148843 0.165306i
\(449\) −21.7984 + 15.8374i −1.02873 + 0.747415i −0.968054 0.250742i \(-0.919325\pi\)
−0.0606750 + 0.998158i \(0.519325\pi\)
\(450\) 0 0
\(451\) −7.16312 + 12.0862i −0.337298 + 0.569118i
\(452\) −4.19756 7.27039i −0.197437 0.341970i
\(453\) 0 0
\(454\) −3.42995 0.729059i −0.160976 0.0342164i
\(455\) −4.58629 5.09359i −0.215009 0.238791i
\(456\) 0 0
\(457\) 2.40193 22.8528i 0.112358 1.06901i −0.782498 0.622654i \(-0.786055\pi\)
0.894855 0.446357i \(-0.147279\pi\)
\(458\) −1.00000 + 3.07768i −0.0467269 + 0.143811i
\(459\) 0 0
\(460\) −10.2812 + 7.46969i −0.479361 + 0.348276i
\(461\) −12.1353 21.0189i −0.565195 0.978947i −0.997031 0.0769948i \(-0.975468\pi\)
0.431836 0.901952i \(-0.357866\pi\)
\(462\) 0 0
\(463\) −17.6353 + 30.5452i −0.819580 + 1.41955i 0.0864124 + 0.996259i \(0.472460\pi\)
−0.905992 + 0.423294i \(0.860874\pi\)
\(464\) −1.97302 18.7720i −0.0915949 0.871468i
\(465\) 0 0
\(466\) −4.05530 + 0.861981i −0.187858 + 0.0399305i
\(467\) −12.0451 8.75127i −0.557380 0.404960i 0.273119 0.961980i \(-0.411945\pi\)
−0.830499 + 0.557020i \(0.811945\pi\)
\(468\) 0 0
\(469\) 1.50000 4.61653i 0.0692636 0.213171i
\(470\) 0.450835 0.500703i 0.0207955 0.0230957i
\(471\) 0 0
\(472\) −7.07953 + 12.2621i −0.325862 + 0.564409i
\(473\) −21.8138 + 4.37709i −1.00300 + 0.201259i
\(474\) 0 0
\(475\) 1.85856 + 0.827482i 0.0852764 + 0.0379675i
\(476\) 4.50000 + 13.8496i 0.206257 + 0.634794i
\(477\) 0 0
\(478\) 0.809017 + 0.587785i 0.0370036 + 0.0268847i
\(479\) −3.20046 + 30.4503i −0.146233 + 1.39131i 0.637614 + 0.770356i \(0.279921\pi\)
−0.783847 + 0.620954i \(0.786745\pi\)
\(480\) 0 0
\(481\) −7.30885 1.55354i −0.333255 0.0708355i
\(482\) −0.866729 8.24637i −0.0394784 0.375612i
\(483\) 0 0
\(484\) 1.66840 + 20.3268i 0.0758362 + 0.923944i
\(485\) −1.85410 −0.0841904
\(486\) 0 0
\(487\) 0.218847 + 0.673542i 0.00991691 + 0.0305211i 0.955893 0.293717i \(-0.0948922\pi\)
−0.945976 + 0.324238i \(0.894892\pi\)
\(488\) 12.3294 2.62070i 0.558127 0.118634i
\(489\) 0 0
\(490\) 3.38761 1.50826i 0.153037 0.0681364i
\(491\) 19.4651 + 21.6182i 0.878449 + 0.975616i 0.999856 0.0169867i \(-0.00540729\pi\)
−0.121407 + 0.992603i \(0.538741\pi\)
\(492\) 0 0
\(493\) 43.0505 + 19.1673i 1.93890 + 0.863252i
\(494\) 1.38197 0.0621776
\(495\) 0 0
\(496\) 16.0132 0.719012
\(497\) −4.86576 2.16638i −0.218259 0.0971753i
\(498\) 0 0
\(499\) −16.6306 18.4702i −0.744490 0.826840i 0.245289 0.969450i \(-0.421117\pi\)
−0.989779 + 0.142610i \(0.954450\pi\)
\(500\) −20.2313 + 9.00755i −0.904771 + 0.402830i
\(501\) 0 0
\(502\) 9.33253 1.98369i 0.416531 0.0885364i
\(503\) 7.00000 + 21.5438i 0.312115 + 0.960590i 0.976926 + 0.213579i \(0.0685119\pi\)
−0.664811 + 0.747011i \(0.731488\pi\)
\(504\) 0 0
\(505\) −9.32624 −0.415012
\(506\) 1.59996 + 5.12235i 0.0711269 + 0.227716i
\(507\) 0 0
\(508\) −1.10629 10.5256i −0.0490835 0.466999i
\(509\) −3.66086 0.778140i −0.162265 0.0344904i 0.126063 0.992022i \(-0.459766\pi\)
−0.288328 + 0.957532i \(0.593099\pi\)
\(510\) 0 0
\(511\) 0.805727 7.66598i 0.0356433 0.339123i
\(512\) −18.0451 13.1105i −0.797488 0.579409i
\(513\) 0 0
\(514\) 1.50407 + 4.62904i 0.0663415 + 0.204178i
\(515\) −10.2647 4.57012i −0.452315 0.201384i
\(516\) 0 0
\(517\) 1.77199 + 3.15170i 0.0779320 + 0.138612i
\(518\) −0.336881 + 0.583495i −0.0148017 + 0.0256373i
\(519\) 0 0
\(520\) −6.75164 + 7.49846i −0.296079 + 0.328829i
\(521\) 2.76393 8.50651i 0.121090 0.372677i −0.872078 0.489366i \(-0.837228\pi\)
0.993168 + 0.116689i \(0.0372282\pi\)
\(522\) 0 0
\(523\) 12.3541 + 8.97578i 0.540207 + 0.392483i 0.824162 0.566354i \(-0.191647\pi\)
−0.283955 + 0.958838i \(0.591647\pi\)
\(524\) −23.2109 + 4.93364i −1.01397 + 0.215527i
\(525\) 0 0
\(526\) 0.729474 + 6.94048i 0.0318066 + 0.302619i
\(527\) −19.9894 + 34.6226i −0.870750 + 1.50818i
\(528\) 0 0
\(529\) 2.52786 + 4.37839i 0.109907 + 0.190365i
\(530\) 1.30902 0.951057i 0.0568601 0.0413113i
\(531\) 0 0
\(532\) −0.489357 + 1.50609i −0.0212163 + 0.0652971i
\(533\) 1.87569 17.8460i 0.0812450 0.772995i
\(534\) 0 0
\(535\) −2.73686 3.03959i −0.118325 0.131413i
\(536\) −6.98974 1.48572i −0.301911 0.0641731i
\(537\) 0 0
\(538\) 0.270510 + 0.468537i 0.0116625 + 0.0202001i
\(539\) 1.85410 + 19.8132i 0.0798618 + 0.853414i
\(540\) 0 0
\(541\) 36.8156 26.7481i 1.58283 1.14999i 0.669462 0.742846i \(-0.266525\pi\)
0.913364 0.407144i \(-0.133475\pi\)
\(542\) 4.18699 4.65012i 0.179847 0.199740i
\(543\) 0 0
\(544\) 29.7471 13.2443i 1.27540 0.567844i
\(545\) 17.7378 7.89736i 0.759803 0.338286i
\(546\) 0 0
\(547\) 7.85736 8.72649i 0.335957 0.373118i −0.551369 0.834262i \(-0.685894\pi\)
0.887325 + 0.461144i \(0.152561\pi\)
\(548\) −21.3541 + 15.5147i −0.912202 + 0.662754i
\(549\) 0 0
\(550\) 0.281153 + 3.00444i 0.0119884 + 0.128110i
\(551\) 2.56231 + 4.43804i 0.109158 + 0.189067i
\(552\) 0 0
\(553\) 10.7596 + 2.28703i 0.457546 + 0.0972543i
\(554\) 5.67777 + 6.30580i 0.241225 + 0.267908i
\(555\) 0 0
\(556\) −1.07801 + 10.2566i −0.0457178 + 0.434976i
\(557\) 12.5557 38.6426i 0.532003 1.63734i −0.218033 0.975941i \(-0.569964\pi\)
0.750037 0.661396i \(-0.230036\pi\)
\(558\) 0 0
\(559\) 22.9894 16.7027i 0.972346 0.706451i
\(560\) −2.54508 4.40822i −0.107549 0.186281i
\(561\) 0 0
\(562\) 5.58359 9.67107i 0.235530 0.407949i
\(563\) −0.898605 8.54965i −0.0378717 0.360325i −0.997003 0.0773635i \(-0.975350\pi\)
0.959131 0.282961i \(-0.0913169\pi\)
\(564\) 0 0
\(565\) −7.16614 + 1.52321i −0.301482 + 0.0640819i
\(566\) −2.38197 1.73060i −0.100121 0.0727425i
\(567\) 0 0
\(568\) −2.42299 + 7.45718i −0.101666 + 0.312896i
\(569\) −7.90890 + 8.78372i −0.331558 + 0.368233i −0.885755 0.464153i \(-0.846359\pi\)
0.554197 + 0.832386i \(0.313025\pi\)
\(570\) 0 0
\(571\) −1.04508 + 1.81014i −0.0437354 + 0.0757520i −0.887064 0.461646i \(-0.847259\pi\)
0.843329 + 0.537398i \(0.180593\pi\)
\(572\) −12.7663 22.7064i −0.533784 0.949401i
\(573\) 0 0
\(574\) −1.47815 0.658114i −0.0616967 0.0274691i
\(575\) −3.11803 9.59632i −0.130031 0.400194i
\(576\) 0 0
\(577\) −14.7984 10.7516i −0.616064 0.447597i 0.235480 0.971879i \(-0.424334\pi\)
−0.851545 + 0.524282i \(0.824334\pi\)
\(578\) −1.78418 + 16.9754i −0.0742123 + 0.706083i
\(579\) 0 0
\(580\) −17.6067 3.74241i −0.731077 0.155395i
\(581\) 0.781051 + 7.43120i 0.0324035 + 0.308298i
\(582\) 0 0
\(583\) 2.58879 + 8.28814i 0.107217 + 0.343260i
\(584\) −11.3475 −0.469564
\(585\) 0 0
\(586\) −1.13932 3.50647i −0.0470649 0.144851i
\(587\) 37.2915 7.92655i 1.53918 0.327164i 0.641264 0.767320i \(-0.278410\pi\)
0.897921 + 0.440157i \(0.145077\pi\)
\(588\) 0 0
\(589\) −3.97166 + 1.76830i −0.163649 + 0.0728614i
\(590\) 3.97749 + 4.41745i 0.163751 + 0.181864i
\(591\) 0 0
\(592\) −5.06940 2.25704i −0.208351 0.0927639i
\(593\) −15.0344 −0.617391 −0.308695 0.951161i \(-0.599892\pi\)
−0.308695 + 0.951161i \(0.599892\pi\)
\(594\) 0 0
\(595\) 12.7082 0.520986
\(596\) 0.399853 + 0.178026i 0.0163786 + 0.00729224i
\(597\) 0 0
\(598\) −4.58629 5.09359i −0.187547 0.208292i
\(599\) 17.0399 7.58665i 0.696231 0.309982i −0.0279331 0.999610i \(-0.508893\pi\)
0.724164 + 0.689628i \(0.242226\pi\)
\(600\) 0 0
\(601\) −28.2573 + 6.00627i −1.15264 + 0.245001i −0.744310 0.667835i \(-0.767221\pi\)
−0.408328 + 0.912835i \(0.633888\pi\)
\(602\) −0.791796 2.43690i −0.0322712 0.0993205i
\(603\) 0 0
\(604\) −35.1246 −1.42920
\(605\) 17.3204 + 4.09685i 0.704176 + 0.166561i
\(606\) 0 0
\(607\) −0.372362 3.54279i −0.0151137 0.143797i 0.984363 0.176154i \(-0.0563656\pi\)
−0.999476 + 0.0323562i \(0.989699\pi\)
\(608\) 3.46364 + 0.736219i 0.140469 + 0.0298576i
\(609\) 0 0
\(610\) 0.553143 5.26281i 0.0223961 0.213085i
\(611\) −3.73607 2.71441i −0.151145 0.109813i
\(612\) 0 0
\(613\) −8.56231 26.3521i −0.345828 1.06435i −0.961139 0.276065i \(-0.910969\pi\)
0.615311 0.788285i \(-0.289031\pi\)
\(614\) −6.62250 2.94852i −0.267262 0.118993i
\(615\) 0 0
\(616\) −4.78710 + 0.960565i −0.192878 + 0.0387023i
\(617\) −5.59017 + 9.68246i −0.225052 + 0.389801i −0.956335 0.292273i \(-0.905588\pi\)
0.731283 + 0.682074i \(0.238922\pi\)
\(618\) 0 0
\(619\) −10.7895 + 11.9829i −0.433665 + 0.481634i −0.919877 0.392207i \(-0.871712\pi\)
0.486212 + 0.873841i \(0.338378\pi\)
\(620\) 4.71885 14.5231i 0.189513 0.583262i
\(621\) 0 0
\(622\) −6.07295 4.41226i −0.243503 0.176915i
\(623\) 3.68168 0.782565i 0.147503 0.0313528i
\(624\) 0 0
\(625\) 0.775226 + 7.37578i 0.0310090 + 0.295031i
\(626\) 2.19098 3.79489i 0.0875693 0.151674i
\(627\) 0 0
\(628\) 2.12461 + 3.67994i 0.0847812 + 0.146845i
\(629\) 11.2082 8.14324i 0.446900 0.324692i
\(630\) 0 0
\(631\) −9.95492 + 30.6381i −0.396299 + 1.21968i 0.531646 + 0.846966i \(0.321574\pi\)
−0.927945 + 0.372716i \(0.878426\pi\)
\(632\) 1.69268 16.1048i 0.0673312 0.640614i
\(633\) 0 0
\(634\) 7.45806 + 8.28302i 0.296197 + 0.328961i
\(635\) −9.03424 1.92029i −0.358513 0.0762042i
\(636\) 0 0
\(637\) −12.7082 22.0113i −0.503517 0.872118i
\(638\) −3.87539 + 6.53888i −0.153428 + 0.258877i
\(639\) 0 0
\(640\) −13.2082 + 9.59632i −0.522100 + 0.379328i
\(641\) 9.30749 10.3370i 0.367624 0.408288i −0.530744 0.847532i \(-0.678087\pi\)
0.898367 + 0.439245i \(0.144754\pi\)
\(642\) 0 0
\(643\) 12.9229 5.75366i 0.509630 0.226902i −0.135779 0.990739i \(-0.543354\pi\)
0.645409 + 0.763837i \(0.276687\pi\)
\(644\) 7.17508 3.19455i 0.282738 0.125883i
\(645\) 0 0
\(646\) −1.71452 + 1.90416i −0.0674568 + 0.0749183i
\(647\) 12.9164 9.38432i 0.507796 0.368936i −0.304191 0.952611i \(-0.598386\pi\)
0.811987 + 0.583676i \(0.198386\pi\)
\(648\) 0 0
\(649\) −29.2877 + 12.6412i −1.14964 + 0.496212i
\(650\) −1.92705 3.33775i −0.0755852 0.130917i
\(651\) 0 0
\(652\) −21.4984 4.56963i −0.841943 0.178961i
\(653\) 2.26298 + 2.51329i 0.0885571 + 0.0983527i 0.785795 0.618488i \(-0.212254\pi\)
−0.697237 + 0.716840i \(0.745588\pi\)
\(654\) 0 0
\(655\) −2.16460 + 20.5948i −0.0845778 + 0.804704i
\(656\) 4.11803 12.6740i 0.160782 0.494837i
\(657\) 0 0
\(658\) −0.336881 + 0.244758i −0.0131330 + 0.00954168i
\(659\) −0.437694 0.758108i −0.0170501 0.0295317i 0.857374 0.514693i \(-0.172094\pi\)
−0.874425 + 0.485161i \(0.838761\pi\)
\(660\) 0 0
\(661\) −8.21885 + 14.2355i −0.319676 + 0.553695i −0.980420 0.196916i \(-0.936907\pi\)
0.660744 + 0.750611i \(0.270241\pi\)
\(662\) −0.131429 1.25047i −0.00510814 0.0486008i
\(663\) 0 0
\(664\) 10.7596 2.28703i 0.417554 0.0887539i
\(665\) 1.11803 + 0.812299i 0.0433555 + 0.0314996i
\(666\) 0 0
\(667\) 7.85410 24.1724i 0.304112 0.935961i
\(668\) −21.1335 + 23.4712i −0.817682 + 0.908127i
\(669\) 0 0
\(670\) −1.50000 + 2.59808i −0.0579501 + 0.100372i
\(671\) 25.8093 + 11.8458i 0.996358 + 0.457302i
\(672\) 0 0
\(673\) −16.2911 7.25326i −0.627975 0.279593i 0.0679701 0.997687i \(-0.478348\pi\)
−0.695945 + 0.718095i \(0.745014\pi\)
\(674\) 0.493422 + 1.51860i 0.0190059 + 0.0584942i
\(675\) 0 0
\(676\) 7.41641 + 5.38834i 0.285246 + 0.207244i
\(677\) 2.34898 22.3490i 0.0902786 0.858943i −0.851871 0.523751i \(-0.824532\pi\)
0.942150 0.335192i \(-0.108801\pi\)
\(678\) 0 0
\(679\) 1.12086 + 0.238246i 0.0430146 + 0.00914303i
\(680\) −1.95554 18.6057i −0.0749915 0.713497i
\(681\) 0 0
\(682\) −5.17329 3.84957i −0.198095 0.147408i
\(683\) 49.0689 1.87757 0.938784 0.344505i \(-0.111953\pi\)
0.938784 + 0.344505i \(0.111953\pi\)
\(684\) 0 0
\(685\) 7.11803 + 21.9071i 0.271966 + 0.837026i
\(686\) −4.85705 + 1.03240i −0.185443 + 0.0394171i
\(687\) 0 0
\(688\) 19.2788 8.58350i 0.734999 0.327243i
\(689\) −7.42077 8.24160i −0.282709 0.313980i
\(690\) 0 0
\(691\) 29.8295 + 13.2810i 1.13477 + 0.505231i 0.886163 0.463373i \(-0.153361\pi\)
0.248605 + 0.968605i \(0.420028\pi\)
\(692\) 20.4590 0.777734
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 8.22191 + 3.66063i 0.311875 + 0.138856i
\(696\) 0 0
\(697\) 22.2623 + 24.7248i 0.843245 + 0.936519i
\(698\) −0.247123 + 0.110026i −0.00935374 + 0.00416456i
\(699\) 0 0
\(700\) 4.31990 0.918223i 0.163277 0.0347056i
\(701\) 3.15248 + 9.70232i 0.119067 + 0.366452i 0.992774 0.120002i \(-0.0382902\pi\)
−0.873706 + 0.486454i \(0.838290\pi\)
\(702\) 0 0
\(703\) 1.50658 0.0568217
\(704\) −4.65561 14.9052i −0.175465 0.561760i
\(705\) 0 0
\(706\) −0.479116 4.55848i −0.0180318 0.171561i
\(707\) 5.63798 + 1.19839i 0.212038 + 0.0450701i
\(708\) 0 0
\(709\) 4.20359 39.9945i 0.157869 1.50202i −0.573028 0.819536i \(-0.694231\pi\)
0.730897 0.682488i \(-0.239102\pi\)
\(710\) 2.66312 + 1.93487i 0.0999451 + 0.0726143i
\(711\) 0 0
\(712\) −1.71227 5.26982i −0.0641700 0.197495i
\(713\) 19.6981 + 8.77018i 0.737701 + 0.328446i
\(714\) 0 0
\(715\) −22.2882 + 4.47229i −0.833532 + 0.167254i
\(716\) 16.1976 28.0550i 0.605331 1.04846i
\(717\) 0 0
\(718\) −0.947762 + 1.05260i −0.0353702 + 0.0392825i
\(719\) −14.3647 + 44.2101i −0.535715 + 1.64876i 0.206385 + 0.978471i \(0.433830\pi\)
−0.742100 + 0.670289i \(0.766170\pi\)
\(720\) 0 0
\(721\) 5.61803 + 4.08174i 0.209227 + 0.152012i
\(722\) 6.82621 1.45096i 0.254045 0.0539990i
\(723\) 0 0
\(724\) 2.22337 + 21.1540i 0.0826310 + 0.786182i
\(725\) 7.14590 12.3771i 0.265392 0.459672i
\(726\) 0 0
\(727\) 7.92705 + 13.7301i 0.293998 + 0.509220i 0.974751 0.223293i \(-0.0716807\pi\)
−0.680753 + 0.732513i \(0.738347\pi\)
\(728\) 5.04508 3.66547i 0.186983 0.135851i
\(729\) 0 0
\(730\) −1.47214 + 4.53077i −0.0544862 + 0.167691i
\(731\) −5.50728 + 52.3983i −0.203694 + 1.93802i
\(732\) 0 0
\(733\) −33.1867 36.8576i −1.22578 1.36137i −0.911110 0.412164i \(-0.864773\pi\)
−0.314669 0.949201i \(-0.601894\pi\)
\(734\) −10.7804 2.29145i −0.397913 0.0845791i
\(735\) 0 0
\(736\) −8.78115 15.2094i −0.323678 0.560626i
\(737\) −10.6353 12.0862i −0.391755 0.445202i
\(738\) 0 0
\(739\) −2.42705 + 1.76336i −0.0892805 + 0.0648661i −0.631530 0.775351i \(-0.717573\pi\)
0.542250 + 0.840218i \(0.317573\pi\)
\(740\) −3.54090 + 3.93257i −0.130166 + 0.144564i
\(741\) 0 0
\(742\) −0.913545 + 0.406737i −0.0335373 + 0.0149318i
\(743\) 6.49664 2.89249i 0.238339 0.106115i −0.284092 0.958797i \(-0.591692\pi\)
0.522430 + 0.852682i \(0.325025\pi\)
\(744\) 0 0
\(745\) 0.255585 0.283856i 0.00936392 0.0103997i
\(746\) 10.7812 7.83297i 0.394726 0.286785i
\(747\) 0 0
\(748\) 47.1246 + 10.5801i 1.72305 + 0.386848i
\(749\) 1.26393 + 2.18919i 0.0461831 + 0.0799914i
\(750\) 0 0
\(751\) −22.3547 4.75163i −0.815734 0.173390i −0.218893 0.975749i \(-0.570244\pi\)
−0.596841 + 0.802359i \(0.703578\pi\)
\(752\) −2.29483 2.54866i −0.0836837 0.0929402i
\(753\) 0 0
\(754\) 1.01478 9.65502i 0.0369562 0.351615i
\(755\) −9.47214 + 29.1522i −0.344726 + 1.06096i
\(756\) 0 0
\(757\) −4.04508 + 2.93893i −0.147021 + 0.106817i −0.658864 0.752262i \(-0.728963\pi\)
0.511843 + 0.859079i \(0.328963\pi\)
\(758\) −2.07953 3.60185i −0.0755318 0.130825i
\(759\) 0 0
\(760\) 1.01722 1.76188i 0.0368985 0.0639100i
\(761\) 4.46422 + 42.4742i 0.161828 + 1.53969i 0.710527 + 0.703670i \(0.248457\pi\)
−0.548699 + 0.836020i \(0.684877\pi\)
\(762\) 0 0
\(763\) −11.7378 + 2.49494i −0.424936 + 0.0903229i
\(764\) 34.7705 + 25.2623i 1.25795 + 0.913956i
\(765\) 0 0
\(766\) −0.0835921 + 0.257270i −0.00302031 + 0.00929555i
\(767\) 27.2622 30.2777i 0.984379 1.09326i
\(768\) 0 0
\(769\) −1.75329 + 3.03679i −0.0632252 + 0.109509i −0.895905 0.444245i \(-0.853472\pi\)
0.832680 + 0.553754i \(0.186805\pi\)
\(770\) −0.237511 + 2.03598i −0.00855931 + 0.0733716i
\(771\) 0 0
\(772\) 16.6909 + 7.43129i 0.600720 + 0.267458i
\(773\) −1.48936 4.58377i −0.0535684 0.164867i 0.920693 0.390287i \(-0.127624\pi\)
−0.974262 + 0.225421i \(0.927624\pi\)
\(774\) 0 0
\(775\) 9.80902 + 7.12667i 0.352350 + 0.255997i
\(776\) 0.176331 1.67768i 0.00632991 0.0602251i
\(777\) 0 0
\(778\) 2.14556 + 0.456053i 0.0769221 + 0.0163503i
\(779\) 0.378188 + 3.59821i 0.0135500 + 0.128919i
\(780\) 0 0
\(781\) −14.4090 + 10.2195i −0.515593 + 0.365684i
\(782\) 12.7082 0.454444
\(783\) 0 0
\(784\) −5.83282 17.9516i −0.208315 0.641127i
\(785\) 3.62717 0.770979i 0.129459 0.0275174i
\(786\) 0 0
\(787\) 3.38761 1.50826i 0.120755 0.0537637i −0.345470 0.938430i \(-0.612280\pi\)
0.466225 + 0.884666i \(0.345614\pi\)
\(788\) −19.8929 22.0933i −0.708656 0.787042i
\(789\) 0 0
\(790\) −6.21062 2.76515i −0.220964 0.0983795i
\(791\) 4.52786 0.160992
\(792\) 0 0
\(793\) −36.2705 −1.28800
\(794\) −1.84654 0.822131i −0.0655311 0.0291763i
\(795\) 0 0
\(796\) 8.32244 + 9.24301i 0.294981 + 0.327610i
\(797\) 44.3444 19.7434i 1.57076 0.699348i 0.577623 0.816304i \(-0.303980\pi\)
0.993137 + 0.116956i \(0.0373137\pi\)
\(798\) 0 0
\(799\) 8.37520 1.78020i 0.296293 0.0629791i
\(800\) −3.05166 9.39205i −0.107893 0.332059i
\(801\) 0 0
\(802\) −10.9574 −0.386920
\(803\) −20.5099 15.2619i −0.723777 0.538581i
\(804\) 0 0
\(805\) −0.716449 6.81655i −0.0252515 0.240252i
\(806\) 8.05609 + 1.71237i 0.283764 + 0.0603158i
\(807\) 0 0
\(808\) 0.886954 8.43881i 0.0312030 0.296876i
\(809\) 12.8713 + 9.35156i 0.452532 + 0.328783i 0.790594 0.612340i \(-0.209772\pi\)
−0.338063 + 0.941124i \(0.609772\pi\)
\(810\) 0 0
\(811\) 5.07953 + 15.6332i 0.178366 + 0.548955i 0.999771 0.0213905i \(-0.00680931\pi\)
−0.821405 + 0.570346i \(0.806809\pi\)
\(812\) 10.1628 + 4.52479i 0.356646 + 0.158789i
\(813\) 0 0
\(814\) 1.09515 + 1.94786i 0.0383850 + 0.0682724i
\(815\) −9.59017 + 16.6107i −0.335929 + 0.581846i
\(816\) 0 0
\(817\) −3.83378 + 4.25784i −0.134127 + 0.148963i
\(818\) 0.291796 0.898056i 0.0102024 0.0313998i
\(819\) 0 0
\(820\) −10.2812 7.46969i −0.359033 0.260853i
\(821\) −8.40889 + 1.78736i −0.293472 + 0.0623794i −0.352295 0.935889i \(-0.614599\pi\)
0.0588228 + 0.998268i \(0.481265\pi\)
\(822\) 0 0
\(823\) −2.70026 25.6913i −0.0941253 0.895542i −0.935080 0.354437i \(-0.884673\pi\)
0.840955 0.541106i \(-0.181994\pi\)
\(824\) 5.11146 8.85330i 0.178066 0.308419i
\(825\) 0 0
\(826\) −1.83688 3.18157i −0.0639133 0.110701i
\(827\) 16.7082 12.1392i 0.581001 0.422122i −0.258084 0.966123i \(-0.583091\pi\)
0.839085 + 0.544000i \(0.183091\pi\)
\(828\) 0 0
\(829\) 13.1008 40.3202i 0.455010 1.40038i −0.416113 0.909313i \(-0.636608\pi\)
0.871123 0.491064i \(-0.163392\pi\)
\(830\) 0.482716 4.59274i 0.0167553 0.159416i
\(831\) 0 0
\(832\) 13.3453 + 14.8215i 0.462666 + 0.513842i
\(833\) 46.0948 + 9.79776i 1.59709 + 0.339472i
\(834\) 0 0
\(835\) 13.7812 + 23.8697i 0.476916 + 0.826044i
\(836\) 3.46962 + 3.94298i 0.119999 + 0.136371i
\(837\) 0 0
\(838\) −7.55573 + 5.48956i −0.261008 + 0.189634i
\(839\) −23.9768 + 26.6290i −0.827772 + 0.919334i −0.997813 0.0661029i \(-0.978943\pi\)
0.170041 + 0.985437i \(0.445610\pi\)
\(840\) 0 0
\(841\) 6.39482 2.84716i 0.220511 0.0981778i
\(842\) −9.59824 + 4.27341i −0.330777 + 0.147271i
\(843\) 0 0
\(844\) −1.71452 + 1.90416i −0.0590161 + 0.0655440i
\(845\) 6.47214 4.70228i 0.222648 0.161763i
\(846\) 0 0
\(847\) −9.94427 4.70228i −0.341689 0.161572i
\(848\) −4.11803 7.13264i −0.141414 0.244936i
\(849\) 0 0
\(850\) 6.98974 + 1.48572i 0.239746 + 0.0509596i
\(851\) −4.99983 5.55288i −0.171392 0.190350i
\(852\) 0 0
\(853\) 0.226532 2.15531i 0.00775632 0.0737965i −0.989959 0.141355i \(-0.954854\pi\)
0.997715 + 0.0675583i \(0.0215209\pi\)
\(854\) −1.01064 + 3.11044i −0.0345835 + 0.106437i
\(855\) 0 0
\(856\) 3.01064 2.18736i 0.102902 0.0747624i
\(857\) 16.1180 + 27.9173i 0.550582 + 0.953635i 0.998233 + 0.0594269i \(0.0189273\pi\)
−0.447651 + 0.894208i \(0.647739\pi\)
\(858\) 0 0
\(859\) 3.79180 6.56758i 0.129374 0.224083i −0.794060 0.607839i \(-0.792036\pi\)
0.923434 + 0.383756i \(0.125370\pi\)
\(860\) −2.10359 20.0144i −0.0717320 0.682484i
\(861\) 0 0
\(862\) −6.38521 + 1.35722i −0.217481 + 0.0462271i
\(863\) 29.0344 + 21.0948i 0.988344 + 0.718074i 0.959558 0.281512i \(-0.0908358\pi\)
0.0287861 + 0.999586i \(0.490836\pi\)
\(864\) 0 0
\(865\) 5.51722 16.9803i 0.187591 0.577346i
\(866\) −6.97874 + 7.75068i −0.237147 + 0.263379i
\(867\) 0 0
\(868\) −4.71885 + 8.17328i −0.160168 + 0.277419i
\(869\) 24.7196 26.8317i 0.838556 0.910203i
\(870\) 0 0
\(871\) 18.7846 + 8.36344i 0.636492 + 0.283384i
\(872\) 5.45898 + 16.8010i 0.184864 + 0.568954i
\(873\) 0 0
\(874\) 1.11803 + 0.812299i 0.0378181 + 0.0274764i
\(875\) 1.24852 11.8788i 0.0422076 0.401578i
\(876\) 0 0
\(877\) 39.1804 + 8.32805i 1.32303 + 0.281218i 0.814669 0.579926i \(-0.196919\pi\)
0.508360 + 0.861145i \(0.330252\pi\)
\(878\) −1.46562 13.9445i −0.0494624 0.470603i
\(879\) 0 0
\(880\) −16.8811 0.192660i −0.569061 0.00649457i
\(881\) −30.7984 −1.03762 −0.518812 0.854888i \(-0.673625\pi\)
−0.518812 + 0.854888i \(0.673625\pi\)
\(882\) 0 0
\(883\) 5.85410 + 18.0171i 0.197006 + 0.606323i 0.999947 + 0.0102644i \(0.00326732\pi\)
−0.802941 + 0.596058i \(0.796733\pi\)
\(884\) −60.3389 + 12.8254i −2.02942 + 0.431366i
\(885\) 0 0
\(886\) −6.14027 + 2.73382i −0.206286 + 0.0918446i
\(887\) −20.3986 22.6550i −0.684919 0.760680i 0.295980 0.955194i \(-0.404354\pi\)
−0.980900 + 0.194514i \(0.937687\pi\)
\(888\) 0 0
\(889\) 5.21470 + 2.32174i 0.174896 + 0.0778685i
\(890\) −2.32624 −0.0779757
\(891\) 0 0
\(892\) 28.1459 0.942394
\(893\) 0.850617 + 0.378719i 0.0284648 + 0.0126734i
\(894\) 0 0
\(895\) −18.9167 21.0091i −0.632314 0.702256i
\(896\) 9.21783 4.10404i 0.307946 0.137106i
\(897\) 0 0
\(898\) −10.0669 + 2.13978i −0.335937 + 0.0714055i
\(899\) 9.43769 + 29.0462i 0.314765 + 0.968746i
\(900\) 0 0
\(901\) 20.5623 0.685030
\(902\) −4.37723 + 3.10455i −0.145746 + 0.103370i
\(903\) 0 0
\(904\) −0.696748 6.62912i −0.0231735 0.220481i
\(905\) 18.1567 + 3.85932i 0.603548 + 0.128288i
\(906\) 0 0
\(907\) −3.28168 + 31.2231i −0.108967 + 1.03675i 0.794259 + 0.607580i \(0.207860\pi\)
−0.903225 + 0.429167i \(0.858807\pi\)
\(908\) 13.7705 + 10.0049i 0.456990 + 0.332023i
\(909\) 0 0
\(910\) −0.809017 2.48990i −0.0268187 0.0825393i
\(911\) 9.68061 + 4.31009i 0.320733 + 0.142800i 0.560787 0.827960i \(-0.310499\pi\)
−0.240054 + 0.970759i \(0.577165\pi\)
\(912\) 0 0
\(913\) 22.5232 + 10.3376i 0.745410 + 0.342124i
\(914\) 4.38854 7.60118i 0.145160 0.251425i
\(915\) 0 0
\(916\) 10.5108 11.6735i 0.347288 0.385702i
\(917\) 3.95492 12.1720i 0.130603 0.401954i
\(918\) 0 0
\(919\) 4.57295 + 3.32244i 0.150848 + 0.109597i 0.660649 0.750695i \(-0.270281\pi\)
−0.509801 + 0.860292i \(0.670281\pi\)
\(920\) −9.86968 + 2.09786i −0.325394 + 0.0691645i
\(921\) 0 0
\(922\) −0.969032 9.21973i −0.0319134 0.303635i
\(923\) 11.2812 19.5395i 0.371324 0.643151i
\(924\) 0 0
\(925\) −2.10081 3.63871i −0.0690743 0.119640i
\(926\) −10.8992 + 7.91872i −0.358170 + 0.260225i
\(927\) 0 0
\(928\) 7.68692 23.6579i 0.252335 0.776609i
\(929\) 0.0740275 0.704324i 0.00242876 0.0231081i −0.993240 0.116075i \(-0.962969\pi\)
0.995669 + 0.0929673i \(0.0296352\pi\)
\(930\) 0 0
\(931\) 3.42903 + 3.80833i 0.112382 + 0.124813i
\(932\) 19.6848 + 4.18414i 0.644798 + 0.137056i
\(933\) 0 0
\(934\) −2.84346 4.92502i −0.0930408 0.161151i
\(935\) 21.4894 36.2587i 0.702777 1.18578i
\(936\) 0 0
\(937\) −8.37132 + 6.08212i −0.273479 + 0.198694i −0.716068 0.698030i \(-0.754060\pi\)
0.442589 + 0.896725i \(0.354060\pi\)
\(938\) 1.24064 1.37787i 0.0405082 0.0449889i
\(939\) 0 0
\(940\) −2.98776 + 1.33024i −0.0974500 + 0.0433875i
\(941\) −37.8672 + 16.8596i −1.23444 + 0.549607i −0.917081 0.398700i \(-0.869461\pi\)
−0.317355 + 0.948307i \(0.602795\pi\)
\(942\) 0 0
\(943\) 12.0071 13.3352i 0.391004 0.434254i
\(944\) 24.4787 17.7848i 0.796714 0.578847i
\(945\) 0 0
\(946\) −8.29180 1.86162i −0.269590 0.0605266i
\(947\) 20.6976 + 35.8492i 0.672580 + 1.16494i 0.977170 + 0.212460i \(0.0681474\pi\)
−0.304589 + 0.952484i \(0.598519\pi\)
\(948\) 0 0
\(949\) 31.9389 + 6.78883i 1.03678 + 0.220375i
\(950\) 0.519973 + 0.577489i 0.0168702 + 0.0187362i
\(951\) 0 0
\(952\) −1.20859 + 11.4990i −0.0391706 + 0.372684i
\(953\) −13.1803 + 40.5649i −0.426953 + 1.31403i 0.474159 + 0.880439i \(0.342752\pi\)
−0.901112 + 0.433587i \(0.857248\pi\)
\(954\) 0 0
\(955\) 30.3435 22.0458i 0.981891 0.713386i
\(956\) −2.42705 4.20378i −0.0784964 0.135960i
\(957\) 0 0
\(958\) −5.84752 + 10.1282i −0.188925 + 0.327228i
\(959\) −1.48807 14.1581i −0.0480524 0.457188i
\(960\) 0 0
\(961\) 4.97894 1.05831i 0.160611 0.0341389i
\(962\) −2.30902 1.67760i −0.0744457 0.0540880i
\(963\) 0 0
\(964\) −12.4377 + 38.2793i −0.400591 + 1.23289i
\(965\) 10.6688 11.8489i 0.343441 0.381430i
\(966\) 0 0
\(967\) 10.4615 18.1198i 0.336419 0.582695i −0.647337 0.762204i \(-0.724118\pi\)
0.983756 + 0.179509i \(0.0574509\pi\)
\(968\) −5.35425 + 15.2827i −0.172092 + 0.491205i
\(969\) 0 0
\(970\) −0.646976 0.288052i −0.0207732 0.00924881i
\(971\) 12.9787 + 39.9444i 0.416507 + 1.28188i 0.910896 + 0.412635i \(0.135392\pi\)
−0.494389 + 0.869240i \(0.664608\pi\)
\(972\) 0 0
\(973\) −4.50000 3.26944i −0.144263 0.104813i
\(974\) −0.0282760 + 0.269028i −0.000906021 + 0.00862021i
\(975\) 0 0
\(976\) −26.3475 5.60034i −0.843364 0.179262i
\(977\) 5.07974 + 48.3305i 0.162515 + 1.54623i 0.706851 + 0.707363i \(0.250115\pi\)
−0.544335 + 0.838868i \(0.683218\pi\)
\(978\) 0 0
\(979\) 3.99287 11.8278i 0.127613 0.378017i
\(980\) −18.0000 −0.574989
\(981\) 0 0
\(982\) 3.43363 + 10.5676i 0.109571 + 0.337226i
\(983\) −42.9295 + 9.12494i −1.36924 + 0.291040i −0.833115 0.553100i \(-0.813445\pi\)
−0.536123 + 0.844140i \(0.680112\pi\)
\(984\) 0 0
\(985\) −23.7013 + 10.5525i −0.755185 + 0.336230i
\(986\) 12.0444 + 13.3766i 0.383570 + 0.425998i
\(987\) 0 0
\(988\) −6.12825 2.72847i −0.194966 0.0868043i
\(989\) 28.4164 0.903589
\(990\) 0 0
\(991\) −38.7426 −1.23070 −0.615350 0.788254i \(-0.710985\pi\)
−0.615350 + 0.788254i \(0.710985\pi\)
\(992\) 19.2788 + 8.58350i 0.612104 + 0.272526i
\(993\) 0 0
\(994\) −1.36131 1.51188i −0.0431780 0.0479541i
\(995\) 9.91572 4.41476i 0.314349 0.139957i
\(996\) 0 0
\(997\) 44.7976 9.52202i 1.41875 0.301565i 0.566227 0.824249i \(-0.308403\pi\)
0.852526 + 0.522684i \(0.175069\pi\)
\(998\) −2.93363 9.02878i −0.0928624 0.285801i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.b.190.1 8
3.2 odd 2 891.2.n.c.190.1 8
9.2 odd 6 891.2.n.c.784.1 8
9.4 even 3 99.2.f.a.91.1 4
9.5 odd 6 33.2.e.b.25.1 yes 4
9.7 even 3 inner 891.2.n.b.784.1 8
11.4 even 5 inner 891.2.n.b.433.1 8
33.26 odd 10 891.2.n.c.433.1 8
36.23 even 6 528.2.y.b.289.1 4
45.14 odd 6 825.2.n.c.751.1 4
45.23 even 12 825.2.bx.d.124.1 8
45.32 even 12 825.2.bx.d.124.2 8
99.4 even 15 99.2.f.a.37.1 4
99.5 odd 30 363.2.e.k.130.1 4
99.13 odd 30 1089.2.a.l.1.2 2
99.14 odd 30 363.2.e.k.148.1 4
99.31 even 15 1089.2.a.t.1.1 2
99.32 even 6 363.2.e.f.124.1 4
99.41 even 30 363.2.e.b.148.1 4
99.50 even 30 363.2.e.b.130.1 4
99.59 odd 30 33.2.e.b.4.1 4
99.68 even 30 363.2.a.i.1.1 2
99.70 even 15 inner 891.2.n.b.136.1 8
99.86 odd 30 363.2.a.d.1.2 2
99.92 odd 30 891.2.n.c.136.1 8
99.95 even 30 363.2.e.f.202.1 4
396.59 even 30 528.2.y.b.433.1 4
396.167 odd 30 5808.2.a.ci.1.2 2
396.383 even 30 5808.2.a.cj.1.2 2
495.59 odd 30 825.2.n.c.301.1 4
495.158 even 60 825.2.bx.d.499.2 8
495.257 even 60 825.2.bx.d.499.1 8
495.284 odd 30 9075.2.a.cb.1.1 2
495.464 even 30 9075.2.a.u.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.4.1 4 99.59 odd 30
33.2.e.b.25.1 yes 4 9.5 odd 6
99.2.f.a.37.1 4 99.4 even 15
99.2.f.a.91.1 4 9.4 even 3
363.2.a.d.1.2 2 99.86 odd 30
363.2.a.i.1.1 2 99.68 even 30
363.2.e.b.130.1 4 99.50 even 30
363.2.e.b.148.1 4 99.41 even 30
363.2.e.f.124.1 4 99.32 even 6
363.2.e.f.202.1 4 99.95 even 30
363.2.e.k.130.1 4 99.5 odd 30
363.2.e.k.148.1 4 99.14 odd 30
528.2.y.b.289.1 4 36.23 even 6
528.2.y.b.433.1 4 396.59 even 30
825.2.n.c.301.1 4 495.59 odd 30
825.2.n.c.751.1 4 45.14 odd 6
825.2.bx.d.124.1 8 45.23 even 12
825.2.bx.d.124.2 8 45.32 even 12
825.2.bx.d.499.1 8 495.257 even 60
825.2.bx.d.499.2 8 495.158 even 60
891.2.n.b.136.1 8 99.70 even 15 inner
891.2.n.b.190.1 8 1.1 even 1 trivial
891.2.n.b.433.1 8 11.4 even 5 inner
891.2.n.b.784.1 8 9.7 even 3 inner
891.2.n.c.136.1 8 99.92 odd 30
891.2.n.c.190.1 8 3.2 odd 2
891.2.n.c.433.1 8 33.26 odd 10
891.2.n.c.784.1 8 9.2 odd 6
1089.2.a.l.1.2 2 99.13 odd 30
1089.2.a.t.1.1 2 99.31 even 15
5808.2.a.ci.1.2 2 396.167 odd 30
5808.2.a.cj.1.2 2 396.383 even 30
9075.2.a.u.1.2 2 495.464 even 30
9075.2.a.cb.1.1 2 495.284 odd 30