Properties

Label 3645.1.n.d.1619.1
Level 36453645
Weight 11
Character 3645.1619
Analytic conductor 1.8191.819
Analytic rank 00
Dimension 66
Projective image D3D_{3}
CM discriminant -15
Inner twists 1212

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3645,1,Mod(404,3645)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3645, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3645.404");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3645=365 3645 = 3^{6} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3645.n (of order 1818, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.819091971051.81909197105
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ18)\Q(\zeta_{18})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 135)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.135.1
Artin image: S3×C9S_3\times C_9
Artin field: Galois closure of Q[x]/(x18+)\mathbb{Q}[x]/(x^{18} + \cdots)

Embedding invariants

Embedding label 1619.1
Root 0.9396930.342020i0.939693 - 0.342020i of defining polynomial
Character χ\chi == 3645.1619
Dual form 3645.1.n.d.2024.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.939693+0.342020i)q2+(0.1736480.984808i)q5+(0.5000000.866025i)q8+(0.5000000.866025i)q10+(0.1736480.984808i)q16+(0.5000000.866025i)q17+(0.500000+0.866025i)q19+(0.7660440.642788i)q23+(0.9396930.342020i)q25+(0.7660440.642788i)q31+(0.7660440.642788i)q34+(0.173648+0.984808i)q38+(0.939693+0.342020i)q40+(0.5000000.866025i)q46+(1.532091.28558i)q47+(0.1736480.984808i)q49+(0.7660440.642788i)q501.00000q53+(0.766044+0.642788i)q61+(0.5000000.866025i)q62+(0.500000+0.866025i)q64+(0.939693+0.342020i)q791.00000q80+(0.939693+0.342020i)q83+(0.7660440.642788i)q85+(1.879390.684040i)q94+(0.9396930.342020i)q95+(0.5000000.866025i)q98+O(q100)q+(0.939693 + 0.342020i) q^{2} +(0.173648 - 0.984808i) q^{5} +(-0.500000 - 0.866025i) q^{8} +(0.500000 - 0.866025i) q^{10} +(-0.173648 - 0.984808i) q^{16} +(0.500000 - 0.866025i) q^{17} +(0.500000 + 0.866025i) q^{19} +(-0.766044 - 0.642788i) q^{23} +(-0.939693 - 0.342020i) q^{25} +(-0.766044 - 0.642788i) q^{31} +(0.766044 - 0.642788i) q^{34} +(0.173648 + 0.984808i) q^{38} +(-0.939693 + 0.342020i) q^{40} +(-0.500000 - 0.866025i) q^{46} +(1.53209 - 1.28558i) q^{47} +(0.173648 - 0.984808i) q^{49} +(-0.766044 - 0.642788i) q^{50} -1.00000 q^{53} +(-0.766044 + 0.642788i) q^{61} +(-0.500000 - 0.866025i) q^{62} +(-0.500000 + 0.866025i) q^{64} +(0.939693 + 0.342020i) q^{79} -1.00000 q^{80} +(0.939693 + 0.342020i) q^{83} +(-0.766044 - 0.642788i) q^{85} +(1.87939 - 0.684040i) q^{94} +(0.939693 - 0.342020i) q^{95} +(0.500000 - 0.866025i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q3q8+3q10+3q17+3q193q466q533q623q646q80+3q98+O(q100) 6 q - 3 q^{8} + 3 q^{10} + 3 q^{17} + 3 q^{19} - 3 q^{46} - 6 q^{53} - 3 q^{62} - 3 q^{64} - 6 q^{80} + 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3645Z)×\left(\mathbb{Z}/3645\mathbb{Z}\right)^\times.

nn 731731 29172917
χ(n)\chi(n) e(1118)e\left(\frac{11}{18}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
33 0 0
44 0 0
55 0.173648 0.984808i 0.173648 0.984808i
66 0 0
77 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
88 −0.500000 0.866025i −0.500000 0.866025i
99 0 0
1010 0.500000 0.866025i 0.500000 0.866025i
1111 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
1212 0 0
1313 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
1414 0 0
1515 0 0
1616 −0.173648 0.984808i −0.173648 0.984808i
1717 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
1818 0 0
1919 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 0 0
2121 0 0
2222 0 0
2323 −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
2424 0 0
2525 −0.939693 0.342020i −0.939693 0.342020i
2626 0 0
2727 0 0
2828 0 0
2929 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
3030 0 0
3131 −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
3232 0 0
3333 0 0
3434 0.766044 0.642788i 0.766044 0.642788i
3535 0 0
3636 0 0
3737 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3838 0.173648 + 0.984808i 0.173648 + 0.984808i
3939 0 0
4040 −0.939693 + 0.342020i −0.939693 + 0.342020i
4141 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
4242 0 0
4343 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
4444 0 0
4545 0 0
4646 −0.500000 0.866025i −0.500000 0.866025i
4747 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
4848 0 0
4949 0.173648 0.984808i 0.173648 0.984808i
5050 −0.766044 0.642788i −0.766044 0.642788i
5151 0 0
5252 0 0
5353 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
6060 0 0
6161 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
6262 −0.500000 0.866025i −0.500000 0.866025i
6363 0 0
6464 −0.500000 + 0.866025i −0.500000 + 0.866025i
6565 0 0
6666 0 0
6767 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7272 0 0
7373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
8080 −1.00000 −1.00000
8181 0 0
8282 0 0
8383 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
8484 0 0
8585 −0.766044 0.642788i −0.766044 0.642788i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 1.87939 0.684040i 1.87939 0.684040i
9595 0.939693 0.342020i 0.939693 0.342020i
9696 0 0
9797 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
9898 0.500000 0.866025i 0.500000 0.866025i
9999 0 0
100100 0 0
101101 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
102102 0 0
103103 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
104104 0 0
105105 0 0
106106 −0.939693 0.342020i −0.939693 0.342020i
107107 2.00000 2.00000 1.00000 00
1.00000 00
108108 0 0
109109 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.347296 1.96962i 0.347296 1.96962i 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 0.984808i 0.444444π-0.444444\pi
114114 0 0
115115 −0.766044 + 0.642788i −0.766044 + 0.642788i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.939693 + 0.342020i −0.939693 + 0.342020i
122122 −0.939693 + 0.342020i −0.939693 + 0.342020i
123123 0 0
124124 0 0
125125 −0.500000 + 0.866025i −0.500000 + 0.866025i
126126 0 0
127127 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
128128 −0.766044 + 0.642788i −0.766044 + 0.642788i
129129 0 0
130130 0 0
131131 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −1.00000 −1.00000
137137 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
138138 0 0
139139 1.53209 + 1.28558i 1.53209 + 1.28558i 0.766044 + 0.642788i 0.222222π0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
150150 0 0
151151 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i 0.444444π0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
152152 0.500000 0.866025i 0.500000 0.866025i
153153 0 0
154154 0 0
155155 −0.766044 + 0.642788i −0.766044 + 0.642788i
156156 0 0
157157 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
158158 0.766044 + 0.642788i 0.766044 + 0.642788i
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0.766044 + 0.642788i 0.766044 + 0.642788i
167167 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
168168 0 0
169169 0.766044 0.642788i 0.766044 0.642788i
170170 −0.500000 0.866025i −0.500000 0.866025i
171171 0 0
172172 0 0
173173 −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 0.642788i 0.222222π-0.222222\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0 0
181181 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
182182 0 0
183183 0 0
184184 −0.173648 + 0.984808i −0.173648 + 0.984808i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 1.00000 1.00000
191191 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
192192 0 0
193193 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
194194 0 0
195195 0 0
196196 0 0
197197 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
198198 0 0
199199 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0.173648 + 0.984808i 0.173648 + 0.984808i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
212212 0 0
213213 0 0
214214 1.87939 + 0.684040i 1.87939 + 0.684040i
215215 0 0
216216 0 0
217217 0 0
218218 −0.939693 0.342020i −0.939693 0.342020i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
224224 0 0
225225 0 0
226226 1.00000 1.73205i 1.00000 1.73205i
227227 −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 0.642788i 0.222222π-0.222222\pi
228228 0 0
229229 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
230230 −0.939693 + 0.342020i −0.939693 + 0.342020i
231231 0 0
232232 0 0
233233 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 −1.00000 1.73205i −1.00000 1.73205i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
240240 0 0
241241 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
242242 −1.00000 −1.00000
243243 0 0
244244 0 0
245245 −0.939693 0.342020i −0.939693 0.342020i
246246 0 0
247247 0 0
248248 −0.173648 + 0.984808i −0.173648 + 0.984808i
249249 0 0
250250 −0.766044 + 0.642788i −0.766044 + 0.642788i
251251 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
264264 0 0
265265 −0.173648 + 0.984808i −0.173648 + 0.984808i
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
272272 −0.939693 0.342020i −0.939693 0.342020i
273273 0 0
274274 0.766044 + 0.642788i 0.766044 + 0.642788i
275275 0 0
276276 0 0
277277 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
278278 1.00000 + 1.73205i 1.00000 + 1.73205i
279279 0 0
280280 0 0
281281 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
282282 0 0
283283 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0 0
290290 0 0
291291 0 0
292292 0 0
293293 −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −0.347296 + 1.96962i −0.347296 + 1.96962i
303303 0 0
304304 0.766044 0.642788i 0.766044 0.642788i
305305 0.500000 + 0.866025i 0.500000 + 0.866025i
306306 0 0
307307 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
308308 0 0
309309 0 0
310310 −0.939693 + 0.342020i −0.939693 + 0.342020i
311311 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
312312 0 0
313313 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
314314 0 0
315315 0 0
316316 0 0
317317 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
318318 0 0
319319 0 0
320320 0.766044 + 0.642788i 0.766044 + 0.642788i
321321 0 0
322322 0 0
323323 1.00000 1.00000
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
332332 0 0
333333 0 0
334334 −0.500000 + 0.866025i −0.500000 + 0.866025i
335335 0 0
336336 0 0
337337 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
338338 0.939693 0.342020i 0.939693 0.342020i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0.173648 0.984808i 0.173648 0.984808i
347347 1.53209 + 1.28558i 1.53209 + 1.28558i 0.766044 + 0.642788i 0.222222π0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
348348 0 0
349349 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 0.342020i 0.888889π-0.888889\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 0 0
362362 0.173648 + 0.984808i 0.173648 + 0.984808i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
368368 −0.500000 + 0.866025i −0.500000 + 0.866025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
374374 0 0
375375 0 0
376376 −1.87939 0.684040i −1.87939 0.684040i
377377 0 0
378378 0 0
379379 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
380380 0 0
381381 0 0
382382 0 0
383383 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
390390 0 0
391391 −0.939693 + 0.342020i −0.939693 + 0.342020i
392392 −0.939693 + 0.342020i −0.939693 + 0.342020i
393393 0 0
394394 0.173648 + 0.984808i 0.173648 + 0.984808i
395395 0.500000 0.866025i 0.500000 0.866025i
396396 0 0
397397 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
398398 −1.53209 + 1.28558i −1.53209 + 1.28558i
399399 0 0
400400 −0.173648 + 0.984808i −0.173648 + 0.984808i
401401 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0.500000 0.866025i 0.500000 0.866025i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
420420 0 0
421421 −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 0.642788i 0.222222π-0.222222\pi
422422 −0.500000 + 0.866025i −0.500000 + 0.866025i
423423 0 0
424424 0.500000 + 0.866025i 0.500000 + 0.866025i
425425 −0.766044 + 0.642788i −0.766044 + 0.642788i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0.173648 0.984808i 0.173648 0.984808i
438438 0 0
439439 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
440440 0 0
441441 0 0
442442 0 0
443443 −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 0.642788i 0.222222π-0.222222\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0.173648 0.984808i 0.173648 0.984808i
455455 0 0
456456 0 0
457457 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
458458 1.00000 1.00000
459459 0 0
460460 0 0
461461 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
462462 0 0
463463 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
464464 0 0
465465 0 0
466466 −1.53209 + 1.28558i −1.53209 + 1.28558i
467467 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
468468 0 0
469469 0 0
470470 −0.347296 1.96962i −0.347296 1.96962i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −0.173648 0.984808i −0.173648 0.984808i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
480480 0 0
481481 0 0
482482 0.766044 + 0.642788i 0.766044 + 0.642788i
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0.939693 + 0.342020i 0.939693 + 0.342020i
489489 0 0
490490 −0.766044 0.642788i −0.766044 0.642788i
491491 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −0.500000 + 0.866025i −0.500000 + 0.866025i
497497 0 0
498498 0 0
499499 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
500500 0 0
501501 0 0
502502 0 0
503503 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
510510 0 0
511511 0 0
512512 1.00000 1.00000
513513 0 0
514514 1.00000 1.00000
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
522522 0 0
523523 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 0 0
525525 0 0
526526 1.87939 0.684040i 1.87939 0.684040i
527527 −0.939693 + 0.342020i −0.939693 + 0.342020i
528528 0 0
529529 0 0
530530 −0.500000 + 0.866025i −0.500000 + 0.866025i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0.347296 1.96962i 0.347296 1.96962i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 2.00000 2.00000 1.00000 00
1.00000 00
542542 −0.939693 0.342020i −0.939693 0.342020i
543543 0 0
544544 0 0
545545 −0.173648 + 0.984808i −0.173648 + 0.984808i
546546 0 0
547547 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 1.53209 + 1.28558i 1.53209 + 1.28558i 0.766044 + 0.642788i 0.222222π0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
564564 0 0
565565 −1.87939 0.684040i −1.87939 0.684040i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
570570 0 0
571571 −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
572572 0 0
573573 0 0
574574 0 0
575575 0.500000 + 0.866025i 0.500000 + 0.866025i
576576 0 0
577577 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −0.500000 0.866025i −0.500000 0.866025i
587587 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
588588 0 0
589589 0.173648 0.984808i 0.173648 0.984808i
590590 0 0
591591 0 0
592592 0 0
593593 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
600600 0 0
601601 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.173648 + 0.984808i 0.173648 + 0.984808i
606606 0 0
607607 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
608608 0 0
609609 0 0
610610 0.173648 + 0.984808i 0.173648 + 0.984808i
611611 0 0
612612 0 0
613613 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 0 0
615615 0 0
616616 0 0
617617 −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
618618 0 0
619619 −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 0.342020i 0.888889π-0.888889\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.766044 + 0.642788i 0.766044 + 0.642788i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
632632 −0.173648 0.984808i −0.173648 0.984808i
633633 0 0
634634 −0.939693 + 0.342020i −0.939693 + 0.342020i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0.500000 + 0.866025i 0.500000 + 0.866025i
641641 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
642642 0 0
643643 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
644644 0 0
645645 0 0
646646 0.939693 + 0.342020i 0.939693 + 0.342020i
647647 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
660660 0 0
661661 −1.87939 + 0.684040i −1.87939 + 0.684040i −0.939693 + 0.342020i 0.888889π0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
662662 1.87939 0.684040i 1.87939 0.684040i
663663 0 0
664664 −0.173648 0.984808i −0.173648 0.984808i
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
674674 0 0
675675 0 0
676676 0 0
677677 −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 0.342020i 0.888889π-0.888889\pi
678678 0 0
679679 0 0
680680 −0.173648 + 0.984808i −0.173648 + 0.984808i
681681 0 0
682682 0 0
683683 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 0 0
685685 0.500000 0.866025i 0.500000 0.866025i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 0.642788i 0.222222π-0.222222\pi
692692 0 0
693693 0 0
694694 1.00000 + 1.73205i 1.00000 + 1.73205i
695695 1.53209 1.28558i 1.53209 1.28558i
696696 0 0
697697 0 0
698698 0.766044 + 0.642788i 0.766044 + 0.642788i
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −1.53209 1.28558i −1.53209 1.28558i
707707 0 0
708708 0 0
709709 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
710710 0 0
711711 0 0
712712 0 0
713713 0.173648 + 0.984808i 0.173648 + 0.984808i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
740740 0 0
741741 0 0
742742 0 0
743743 −1.87939 + 0.684040i −1.87939 + 0.684040i −0.939693 + 0.342020i 0.888889π0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
752752 −1.53209 1.28558i −1.53209 1.28558i
753753 0 0
754754 0 0
755755 2.00000 2.00000
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −0.939693 0.342020i −0.939693 0.342020i
759759 0 0
760760 −0.766044 0.642788i −0.766044 0.642788i
761761 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −0.500000 + 0.866025i −0.500000 + 0.866025i
767767 0 0
768768 0 0
769769 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
774774 0 0
775775 0.500000 + 0.866025i 0.500000 + 0.866025i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 −1.00000 −1.00000
783783 0 0
784784 −1.00000 −1.00000
785785 0 0
786786 0 0
787787 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
788788 0 0
789789 0 0
790790 0.766044 0.642788i 0.766044 0.642788i
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
798798 0 0
799799 −0.347296 1.96962i −0.347296 1.96962i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 2.00000 2.00000 1.00000 00
1.00000 00
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −0.500000 0.866025i −0.500000 0.866025i
819819 0 0
820820 0 0
821821 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
822822 0 0
823823 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
828828 0 0
829829 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
830830 0.766044 0.642788i 0.766044 0.642788i
831831 0 0
832832 0 0
833833 −0.766044 0.642788i −0.766044 0.642788i
834834 0 0
835835 0.939693 + 0.342020i 0.939693 + 0.342020i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
840840 0 0
841841 0.766044 + 0.642788i 0.766044 + 0.642788i
842842 0.173648 0.984808i 0.173648 0.984808i
843843 0 0
844844 0 0
845845 −0.500000 0.866025i −0.500000 0.866025i
846846 0 0
847847 0 0
848848 0.173648 + 0.984808i 0.173648 + 0.984808i
849849 0 0
850850 −0.939693 + 0.342020i −0.939693 + 0.342020i
851851 0 0
852852 0 0
853853 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
854854 0 0
855855 0 0
856856 −1.00000 1.73205i −1.00000 1.73205i
857857 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
858858 0 0
859859 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
860860 0 0
861861 0 0
862862 0 0
863863 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
864864 0 0
865865 −1.00000 −1.00000
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0.500000 + 0.866025i 0.500000 + 0.866025i
873873 0 0
874874 0.500000 0.866025i 0.500000 0.866025i
875875 0 0
876876 0 0
877877 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
878878 −0.939693 + 0.342020i −0.939693 + 0.342020i
879879 0 0
880880 0 0
881881 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
882882 0 0
883883 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
884884 0 0
885885 0 0
886886 0.173648 0.984808i 0.173648 0.984808i
887887 −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 1.87939 + 0.684040i 1.87939 + 0.684040i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 −0.500000 + 0.866025i −0.500000 + 0.866025i
902902 0 0
903903 0 0
904904 −1.87939 + 0.684040i −1.87939 + 0.684040i
905905 0.939693 0.342020i 0.939693 0.342020i
906906 0 0
907907 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 2.00000 2.00000 1.00000 00
1.00000 00
920920 0.939693 + 0.342020i 0.939693 + 0.342020i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
930930 0 0
931931 0.939693 0.342020i 0.939693 0.342020i
932932 0 0
933933 0 0
934934 0.173648 + 0.984808i 0.173648 + 0.984808i
935935 0 0
936936 0 0
937937 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
948948 0 0
949949 0 0
950950 0.173648 0.984808i 0.173648 0.984808i
951951 0 0
952952 0 0
953953 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
968968 0.766044 + 0.642788i 0.766044 + 0.642788i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0.766044 + 0.642788i 0.766044 + 0.642788i
977977 0.347296 1.96962i 0.347296 1.96962i 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 0.984808i 0.444444π-0.444444\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 0.642788i 0.222222π-0.222222\pi
984984 0 0
985985 0.939693 0.342020i 0.939693 0.342020i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0 0
995995 1.53209 + 1.28558i 1.53209 + 1.28558i
996996 0 0
997997 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
998998 1.00000 1.00000
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3645.1.n.d.1619.1 6
3.2 odd 2 3645.1.n.e.1619.1 6
5.4 even 2 3645.1.n.e.1619.1 6
9.2 odd 6 3645.1.n.e.2834.1 6
9.4 even 3 inner 3645.1.n.d.404.1 6
9.5 odd 6 3645.1.n.e.404.1 6
9.7 even 3 inner 3645.1.n.d.2834.1 6
15.14 odd 2 CM 3645.1.n.d.1619.1 6
27.2 odd 18 3645.1.n.e.3239.1 6
27.4 even 9 405.1.h.b.134.1 2
27.5 odd 18 405.1.h.a.269.1 2
27.7 even 9 inner 3645.1.n.d.2024.1 6
27.11 odd 18 3645.1.n.e.809.1 6
27.13 even 9 135.1.d.a.134.1 1
27.14 odd 18 135.1.d.b.134.1 yes 1
27.16 even 9 inner 3645.1.n.d.809.1 6
27.20 odd 18 3645.1.n.e.2024.1 6
27.22 even 9 405.1.h.b.269.1 2
27.23 odd 18 405.1.h.a.134.1 2
27.25 even 9 inner 3645.1.n.d.3239.1 6
45.4 even 6 3645.1.n.e.404.1 6
45.14 odd 6 inner 3645.1.n.d.404.1 6
45.29 odd 6 inner 3645.1.n.d.2834.1 6
45.34 even 6 3645.1.n.e.2834.1 6
108.67 odd 18 2160.1.c.b.1889.1 1
108.95 even 18 2160.1.c.a.1889.1 1
135.4 even 18 405.1.h.a.134.1 2
135.13 odd 36 675.1.c.c.26.2 2
135.14 odd 18 135.1.d.a.134.1 1
135.22 odd 36 2025.1.j.c.26.2 4
135.23 even 36 2025.1.j.c.701.1 4
135.29 odd 18 inner 3645.1.n.d.3239.1 6
135.32 even 36 2025.1.j.c.26.1 4
135.34 even 18 3645.1.n.e.2024.1 6
135.49 even 18 405.1.h.a.269.1 2
135.58 odd 36 2025.1.j.c.701.2 4
135.59 odd 18 405.1.h.b.269.1 2
135.67 odd 36 675.1.c.c.26.1 2
135.68 even 36 675.1.c.c.26.1 2
135.74 odd 18 inner 3645.1.n.d.2024.1 6
135.77 even 36 2025.1.j.c.701.2 4
135.79 even 18 3645.1.n.e.3239.1 6
135.94 even 18 135.1.d.b.134.1 yes 1
135.103 odd 36 2025.1.j.c.26.1 4
135.104 odd 18 405.1.h.b.134.1 2
135.112 odd 36 2025.1.j.c.701.1 4
135.113 even 36 2025.1.j.c.26.2 4
135.119 odd 18 inner 3645.1.n.d.809.1 6
135.122 even 36 675.1.c.c.26.2 2
135.124 even 18 3645.1.n.e.809.1 6
540.419 even 18 2160.1.c.b.1889.1 1
540.499 odd 18 2160.1.c.a.1889.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.1.d.a.134.1 1 27.13 even 9
135.1.d.a.134.1 1 135.14 odd 18
135.1.d.b.134.1 yes 1 27.14 odd 18
135.1.d.b.134.1 yes 1 135.94 even 18
405.1.h.a.134.1 2 27.23 odd 18
405.1.h.a.134.1 2 135.4 even 18
405.1.h.a.269.1 2 27.5 odd 18
405.1.h.a.269.1 2 135.49 even 18
405.1.h.b.134.1 2 27.4 even 9
405.1.h.b.134.1 2 135.104 odd 18
405.1.h.b.269.1 2 27.22 even 9
405.1.h.b.269.1 2 135.59 odd 18
675.1.c.c.26.1 2 135.67 odd 36
675.1.c.c.26.1 2 135.68 even 36
675.1.c.c.26.2 2 135.13 odd 36
675.1.c.c.26.2 2 135.122 even 36
2025.1.j.c.26.1 4 135.32 even 36
2025.1.j.c.26.1 4 135.103 odd 36
2025.1.j.c.26.2 4 135.22 odd 36
2025.1.j.c.26.2 4 135.113 even 36
2025.1.j.c.701.1 4 135.23 even 36
2025.1.j.c.701.1 4 135.112 odd 36
2025.1.j.c.701.2 4 135.58 odd 36
2025.1.j.c.701.2 4 135.77 even 36
2160.1.c.a.1889.1 1 108.95 even 18
2160.1.c.a.1889.1 1 540.499 odd 18
2160.1.c.b.1889.1 1 108.67 odd 18
2160.1.c.b.1889.1 1 540.419 even 18
3645.1.n.d.404.1 6 9.4 even 3 inner
3645.1.n.d.404.1 6 45.14 odd 6 inner
3645.1.n.d.809.1 6 27.16 even 9 inner
3645.1.n.d.809.1 6 135.119 odd 18 inner
3645.1.n.d.1619.1 6 1.1 even 1 trivial
3645.1.n.d.1619.1 6 15.14 odd 2 CM
3645.1.n.d.2024.1 6 27.7 even 9 inner
3645.1.n.d.2024.1 6 135.74 odd 18 inner
3645.1.n.d.2834.1 6 9.7 even 3 inner
3645.1.n.d.2834.1 6 45.29 odd 6 inner
3645.1.n.d.3239.1 6 27.25 even 9 inner
3645.1.n.d.3239.1 6 135.29 odd 18 inner
3645.1.n.e.404.1 6 9.5 odd 6
3645.1.n.e.404.1 6 45.4 even 6
3645.1.n.e.809.1 6 27.11 odd 18
3645.1.n.e.809.1 6 135.124 even 18
3645.1.n.e.1619.1 6 3.2 odd 2
3645.1.n.e.1619.1 6 5.4 even 2
3645.1.n.e.2024.1 6 27.20 odd 18
3645.1.n.e.2024.1 6 135.34 even 18
3645.1.n.e.2834.1 6 9.2 odd 6
3645.1.n.e.2834.1 6 45.34 even 6
3645.1.n.e.3239.1 6 27.2 odd 18
3645.1.n.e.3239.1 6 135.79 even 18