Properties

Label 366.2.e.d.13.2
Level $366$
Weight $2$
Character 366.13
Analytic conductor $2.923$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [366,2,Mod(13,366)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(366, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("366.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 366 = 2 \cdot 3 \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 366.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.92252471398\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.65370672.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 10x^{4} - 13x^{3} + 92x^{2} - 99x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 13.2
Root \(1.40489 + 2.43335i\) of defining polynomial
Character \(\chi\) \(=\) 366.13
Dual form 366.2.e.d.169.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.947448 + 1.64103i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-0.904893 + 1.56732i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +(0.947448 + 1.64103i) q^{10} -1.80979 q^{11} +(0.500000 + 0.866025i) q^{12} +(-2.80979 + 4.86669i) q^{13} +(0.904893 + 1.56732i) q^{14} +(0.947448 - 1.64103i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.25723 + 2.17759i) q^{17} +(0.500000 - 0.866025i) q^{18} +(1.00000 + 1.73205i) q^{19} +1.89490 q^{20} +(0.904893 - 1.56732i) q^{21} +(-0.904893 + 1.56732i) q^{22} -2.70468 q^{23} +1.00000 q^{24} +(0.704683 + 1.22055i) q^{25} +(2.80979 + 4.86669i) q^{26} -1.00000 q^{27} +1.80979 q^{28} +(-1.30979 - 2.26862i) q^{29} +(-0.947448 - 1.64103i) q^{30} +(1.00000 + 1.73205i) q^{31} +(0.500000 + 0.866025i) q^{32} +1.80979 q^{33} +2.51447 q^{34} +(-1.71468 - 2.96991i) q^{35} +(-0.500000 - 0.866025i) q^{36} +1.70468 q^{37} +2.00000 q^{38} +(2.80979 - 4.86669i) q^{39} +(0.947448 - 1.64103i) q^{40} +1.19021 q^{41} +(-0.904893 - 1.56732i) q^{42} +(2.45744 - 4.25642i) q^{43} +(0.904893 + 1.56732i) q^{44} +(-0.947448 + 1.64103i) q^{45} +(-1.35234 + 2.34232i) q^{46} +(-5.24724 - 9.08848i) q^{47} +(0.500000 - 0.866025i) q^{48} +(1.86234 + 3.22566i) q^{49} +1.40937 q^{50} +(-1.25723 - 2.17759i) q^{51} +5.61957 q^{52} -13.3043 q^{53} +(-0.500000 + 0.866025i) q^{54} +(1.71468 - 2.96991i) q^{55} +(0.904893 - 1.56732i) q^{56} +(-1.00000 - 1.73205i) q^{57} -2.61957 q^{58} +(0.894897 - 1.55001i) q^{59} -1.89490 q^{60} +(-4.55702 + 6.34299i) q^{61} +2.00000 q^{62} +(-0.904893 + 1.56732i) q^{63} +1.00000 q^{64} +(-5.32425 - 9.22188i) q^{65} +(0.904893 - 1.56732i) q^{66} +(-2.35234 + 4.07437i) q^{67} +(1.25723 - 2.17759i) q^{68} +2.70468 q^{69} -3.42936 q^{70} +(-0.809786 - 1.40259i) q^{71} -1.00000 q^{72} +(2.50000 + 4.33013i) q^{73} +(0.852341 - 1.47630i) q^{74} +(-0.704683 - 1.22055i) q^{75} +(1.00000 - 1.73205i) q^{76} +(1.63766 - 2.83651i) q^{77} +(-2.80979 - 4.86669i) q^{78} +(5.51447 - 9.55134i) q^{79} +(-0.947448 - 1.64103i) q^{80} +1.00000 q^{81} +(0.595107 - 1.03076i) q^{82} +(-1.09511 + 1.89678i) q^{83} -1.80979 q^{84} -4.76466 q^{85} +(-2.45744 - 4.25642i) q^{86} +(1.30979 + 2.26862i) q^{87} +1.80979 q^{88} +15.1540 q^{89} +(0.947448 + 1.64103i) q^{90} +(-5.08511 - 8.80767i) q^{91} +(1.35234 + 2.34232i) q^{92} +(-1.00000 - 1.73205i) q^{93} -10.4945 q^{94} -3.78979 q^{95} +(-0.500000 - 0.866025i) q^{96} +(7.75723 + 13.4359i) q^{97} +3.72467 q^{98} -1.80979 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 6 q^{3} - 3 q^{4} - q^{5} - 3 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9} + q^{10} + 4 q^{11} + 3 q^{12} - 2 q^{13} - 2 q^{14} + q^{15} - 3 q^{16} - 12 q^{17} + 3 q^{18} + 6 q^{19} + 2 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/366\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.00000 −0.577350
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.947448 + 1.64103i −0.423712 + 0.733890i −0.996299 0.0859533i \(-0.972606\pi\)
0.572587 + 0.819844i \(0.305940\pi\)
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) −0.904893 + 1.56732i −0.342017 + 0.592391i −0.984807 0.173651i \(-0.944444\pi\)
0.642790 + 0.766043i \(0.277777\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0.947448 + 1.64103i 0.299610 + 0.518939i
\(11\) −1.80979 −0.545671 −0.272835 0.962061i \(-0.587961\pi\)
−0.272835 + 0.962061i \(0.587961\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −2.80979 + 4.86669i −0.779294 + 1.34978i 0.153055 + 0.988218i \(0.451089\pi\)
−0.932349 + 0.361560i \(0.882244\pi\)
\(14\) 0.904893 + 1.56732i 0.241843 + 0.418884i
\(15\) 0.947448 1.64103i 0.244630 0.423712i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.25723 + 2.17759i 0.304924 + 0.528144i 0.977244 0.212116i \(-0.0680356\pi\)
−0.672320 + 0.740260i \(0.734702\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 1.00000 + 1.73205i 0.229416 + 0.397360i 0.957635 0.287984i \(-0.0929851\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) 1.89490 0.423712
\(21\) 0.904893 1.56732i 0.197464 0.342017i
\(22\) −0.904893 + 1.56732i −0.192924 + 0.334154i
\(23\) −2.70468 −0.563965 −0.281983 0.959419i \(-0.590992\pi\)
−0.281983 + 0.959419i \(0.590992\pi\)
\(24\) 1.00000 0.204124
\(25\) 0.704683 + 1.22055i 0.140937 + 0.244109i
\(26\) 2.80979 + 4.86669i 0.551044 + 0.954437i
\(27\) −1.00000 −0.192450
\(28\) 1.80979 0.342017
\(29\) −1.30979 2.26862i −0.243221 0.421271i 0.718409 0.695621i \(-0.244871\pi\)
−0.961630 + 0.274350i \(0.911537\pi\)
\(30\) −0.947448 1.64103i −0.172980 0.299610i
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 1.80979 0.315043
\(34\) 2.51447 0.431228
\(35\) −1.71468 2.96991i −0.289834 0.502007i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 1.70468 0.280248 0.140124 0.990134i \(-0.455250\pi\)
0.140124 + 0.990134i \(0.455250\pi\)
\(38\) 2.00000 0.324443
\(39\) 2.80979 4.86669i 0.449926 0.779294i
\(40\) 0.947448 1.64103i 0.149805 0.259469i
\(41\) 1.19021 0.185880 0.0929401 0.995672i \(-0.470373\pi\)
0.0929401 + 0.995672i \(0.470373\pi\)
\(42\) −0.904893 1.56732i −0.139628 0.241843i
\(43\) 2.45744 4.25642i 0.374757 0.649098i −0.615534 0.788110i \(-0.711060\pi\)
0.990291 + 0.139013i \(0.0443929\pi\)
\(44\) 0.904893 + 1.56732i 0.136418 + 0.236282i
\(45\) −0.947448 + 1.64103i −0.141237 + 0.244630i
\(46\) −1.35234 + 2.34232i −0.199392 + 0.345357i
\(47\) −5.24724 9.08848i −0.765388 1.32569i −0.940041 0.341061i \(-0.889214\pi\)
0.174653 0.984630i \(-0.444120\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) 1.86234 + 3.22566i 0.266048 + 0.460809i
\(50\) 1.40937 0.199314
\(51\) −1.25723 2.17759i −0.176048 0.304924i
\(52\) 5.61957 0.779294
\(53\) −13.3043 −1.82748 −0.913741 0.406298i \(-0.866819\pi\)
−0.913741 + 0.406298i \(0.866819\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 1.71468 2.96991i 0.231207 0.400463i
\(56\) 0.904893 1.56732i 0.120921 0.209442i
\(57\) −1.00000 1.73205i −0.132453 0.229416i
\(58\) −2.61957 −0.343967
\(59\) 0.894897 1.55001i 0.116506 0.201794i −0.801875 0.597492i \(-0.796164\pi\)
0.918381 + 0.395698i \(0.129497\pi\)
\(60\) −1.89490 −0.244630
\(61\) −4.55702 + 6.34299i −0.583467 + 0.812137i
\(62\) 2.00000 0.254000
\(63\) −0.904893 + 1.56732i −0.114006 + 0.197464i
\(64\) 1.00000 0.125000
\(65\) −5.32425 9.22188i −0.660393 1.14383i
\(66\) 0.904893 1.56732i 0.111385 0.192924i
\(67\) −2.35234 + 4.07437i −0.287384 + 0.497764i −0.973185 0.230026i \(-0.926119\pi\)
0.685800 + 0.727790i \(0.259452\pi\)
\(68\) 1.25723 2.17759i 0.152462 0.264072i
\(69\) 2.70468 0.325606
\(70\) −3.42936 −0.409887
\(71\) −0.809786 1.40259i −0.0961039 0.166457i 0.813965 0.580914i \(-0.197305\pi\)
−0.910069 + 0.414457i \(0.863971\pi\)
\(72\) −1.00000 −0.117851
\(73\) 2.50000 + 4.33013i 0.292603 + 0.506803i 0.974424 0.224716i \(-0.0721453\pi\)
−0.681822 + 0.731519i \(0.738812\pi\)
\(74\) 0.852341 1.47630i 0.0990827 0.171616i
\(75\) −0.704683 1.22055i −0.0813698 0.140937i
\(76\) 1.00000 1.73205i 0.114708 0.198680i
\(77\) 1.63766 2.83651i 0.186629 0.323251i
\(78\) −2.80979 4.86669i −0.318146 0.551044i
\(79\) 5.51447 9.55134i 0.620426 1.07461i −0.368980 0.929437i \(-0.620293\pi\)
0.989406 0.145172i \(-0.0463737\pi\)
\(80\) −0.947448 1.64103i −0.105928 0.183473i
\(81\) 1.00000 0.111111
\(82\) 0.595107 1.03076i 0.0657186 0.113828i
\(83\) −1.09511 + 1.89678i −0.120204 + 0.208199i −0.919848 0.392275i \(-0.871688\pi\)
0.799644 + 0.600474i \(0.205021\pi\)
\(84\) −1.80979 −0.197464
\(85\) −4.76466 −0.516800
\(86\) −2.45744 4.25642i −0.264993 0.458981i
\(87\) 1.30979 + 2.26862i 0.140424 + 0.243221i
\(88\) 1.80979 0.192924
\(89\) 15.1540 1.60632 0.803162 0.595761i \(-0.203149\pi\)
0.803162 + 0.595761i \(0.203149\pi\)
\(90\) 0.947448 + 1.64103i 0.0998698 + 0.172980i
\(91\) −5.08511 8.80767i −0.533064 0.923295i
\(92\) 1.35234 + 2.34232i 0.140991 + 0.244204i
\(93\) −1.00000 1.73205i −0.103695 0.179605i
\(94\) −10.4945 −1.08242
\(95\) −3.78979 −0.388825
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 7.75723 + 13.4359i 0.787628 + 1.36421i 0.927417 + 0.374030i \(0.122024\pi\)
−0.139789 + 0.990181i \(0.544642\pi\)
\(98\) 3.72467 0.376249
\(99\) −1.80979 −0.181890
\(100\) 0.704683 1.22055i 0.0704683 0.122055i
\(101\) 3.05255 5.28717i 0.303740 0.526094i −0.673240 0.739424i \(-0.735098\pi\)
0.976980 + 0.213331i \(0.0684312\pi\)
\(102\) −2.51447 −0.248970
\(103\) −0.105103 0.182044i −0.0103561 0.0179373i 0.860801 0.508942i \(-0.169963\pi\)
−0.871157 + 0.491005i \(0.836630\pi\)
\(104\) 2.80979 4.86669i 0.275522 0.477218i
\(105\) 1.71468 + 2.96991i 0.167336 + 0.289834i
\(106\) −6.65213 + 11.5218i −0.646112 + 1.11910i
\(107\) −4.78979 + 8.29617i −0.463047 + 0.802021i −0.999111 0.0421566i \(-0.986577\pi\)
0.536064 + 0.844177i \(0.319911\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) 1.59511 2.76281i 0.152784 0.264629i −0.779466 0.626444i \(-0.784510\pi\)
0.932250 + 0.361815i \(0.117843\pi\)
\(110\) −1.71468 2.96991i −0.163488 0.283170i
\(111\) −1.70468 −0.161801
\(112\) −0.904893 1.56732i −0.0855043 0.148098i
\(113\) 13.6196 1.28122 0.640611 0.767866i \(-0.278681\pi\)
0.640611 + 0.767866i \(0.278681\pi\)
\(114\) −2.00000 −0.187317
\(115\) 2.56255 4.43846i 0.238959 0.413889i
\(116\) −1.30979 + 2.26862i −0.121611 + 0.210636i
\(117\) −2.80979 + 4.86669i −0.259765 + 0.449926i
\(118\) −0.894897 1.55001i −0.0823819 0.142690i
\(119\) −4.55065 −0.417157
\(120\) −0.947448 + 1.64103i −0.0864898 + 0.149805i
\(121\) −7.72467 −0.702243
\(122\) 3.21468 + 7.11799i 0.291043 + 0.644433i
\(123\) −1.19021 −0.107318
\(124\) 1.00000 1.73205i 0.0898027 0.155543i
\(125\) −12.1451 −1.08629
\(126\) 0.904893 + 1.56732i 0.0806143 + 0.139628i
\(127\) 0.904893 1.56732i 0.0802963 0.139077i −0.823081 0.567924i \(-0.807747\pi\)
0.903377 + 0.428847i \(0.141080\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −2.45744 + 4.25642i −0.216366 + 0.374757i
\(130\) −10.6485 −0.933936
\(131\) 16.8187 1.46946 0.734730 0.678360i \(-0.237309\pi\)
0.734730 + 0.678360i \(0.237309\pi\)
\(132\) −0.904893 1.56732i −0.0787608 0.136418i
\(133\) −3.61957 −0.313857
\(134\) 2.35234 + 4.07437i 0.203211 + 0.351972i
\(135\) 0.947448 1.64103i 0.0815434 0.141237i
\(136\) −1.25723 2.17759i −0.107807 0.186727i
\(137\) −0.147659 + 0.255752i −0.0126153 + 0.0218504i −0.872264 0.489035i \(-0.837349\pi\)
0.859649 + 0.510885i \(0.170682\pi\)
\(138\) 1.35234 2.34232i 0.115119 0.199392i
\(139\) 0.752762 + 1.30382i 0.0638484 + 0.110589i 0.896183 0.443685i \(-0.146329\pi\)
−0.832334 + 0.554274i \(0.812996\pi\)
\(140\) −1.71468 + 2.96991i −0.144917 + 0.251003i
\(141\) 5.24724 + 9.08848i 0.441897 + 0.765388i
\(142\) −1.61957 −0.135911
\(143\) 5.08511 8.80767i 0.425238 0.736534i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 4.96382 0.412223
\(146\) 5.00000 0.413803
\(147\) −1.86234 3.22566i −0.153603 0.266048i
\(148\) −0.852341 1.47630i −0.0700620 0.121351i
\(149\) 0.789794 0.0647024 0.0323512 0.999477i \(-0.489700\pi\)
0.0323512 + 0.999477i \(0.489700\pi\)
\(150\) −1.40937 −0.115074
\(151\) −0.714679 1.23786i −0.0581597 0.100736i 0.835480 0.549521i \(-0.185190\pi\)
−0.893639 + 0.448786i \(0.851857\pi\)
\(152\) −1.00000 1.73205i −0.0811107 0.140488i
\(153\) 1.25723 + 2.17759i 0.101641 + 0.176048i
\(154\) −1.63766 2.83651i −0.131967 0.228573i
\(155\) −3.78979 −0.304404
\(156\) −5.61957 −0.449926
\(157\) 10.5996 + 18.3590i 0.845939 + 1.46521i 0.884804 + 0.465964i \(0.154292\pi\)
−0.0388651 + 0.999244i \(0.512374\pi\)
\(158\) −5.51447 9.55134i −0.438708 0.759864i
\(159\) 13.3043 1.05510
\(160\) −1.89490 −0.149805
\(161\) 2.44745 4.23911i 0.192886 0.334088i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) 10.2843 0.805526 0.402763 0.915304i \(-0.368050\pi\)
0.402763 + 0.915304i \(0.368050\pi\)
\(164\) −0.595107 1.03076i −0.0464701 0.0804885i
\(165\) −1.71468 + 2.96991i −0.133488 + 0.231207i
\(166\) 1.09511 + 1.89678i 0.0849968 + 0.147219i
\(167\) −6.16213 + 10.6731i −0.476840 + 0.825911i −0.999648 0.0265398i \(-0.991551\pi\)
0.522808 + 0.852450i \(0.324884\pi\)
\(168\) −0.904893 + 1.56732i −0.0698140 + 0.120921i
\(169\) −9.28979 16.0904i −0.714600 1.23772i
\(170\) −2.38233 + 4.12632i −0.182716 + 0.316474i
\(171\) 1.00000 + 1.73205i 0.0764719 + 0.132453i
\(172\) −4.91489 −0.374757
\(173\) 1.41489 + 2.45066i 0.107572 + 0.186320i 0.914786 0.403939i \(-0.132359\pi\)
−0.807214 + 0.590259i \(0.799026\pi\)
\(174\) 2.61957 0.198589
\(175\) −2.55065 −0.192811
\(176\) 0.904893 1.56732i 0.0682089 0.118141i
\(177\) −0.894897 + 1.55001i −0.0672646 + 0.116506i
\(178\) 7.57702 13.1238i 0.567921 0.983669i
\(179\) 5.69469 + 9.86349i 0.425641 + 0.737232i 0.996480 0.0838303i \(-0.0267154\pi\)
−0.570839 + 0.821062i \(0.693382\pi\)
\(180\) 1.89490 0.141237
\(181\) −7.10958 + 12.3141i −0.528451 + 0.915303i 0.470999 + 0.882134i \(0.343893\pi\)
−0.999450 + 0.0331696i \(0.989440\pi\)
\(182\) −10.1702 −0.753867
\(183\) 4.55702 6.34299i 0.336865 0.468887i
\(184\) 2.70468 0.199392
\(185\) −1.61510 + 2.79743i −0.118744 + 0.205671i
\(186\) −2.00000 −0.146647
\(187\) −2.27533 3.94098i −0.166388 0.288193i
\(188\) −5.24724 + 9.08848i −0.382694 + 0.662846i
\(189\) 0.904893 1.56732i 0.0658213 0.114006i
\(190\) −1.89490 + 3.28206i −0.137470 + 0.238105i
\(191\) 7.29532 0.527871 0.263935 0.964540i \(-0.414979\pi\)
0.263935 + 0.964540i \(0.414979\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 13.1866 + 22.8398i 0.949192 + 1.64405i 0.747133 + 0.664675i \(0.231430\pi\)
0.202059 + 0.979373i \(0.435237\pi\)
\(194\) 15.5145 1.11387
\(195\) 5.32425 + 9.22188i 0.381278 + 0.660393i
\(196\) 1.86234 3.22566i 0.133024 0.230405i
\(197\) 11.3568 + 19.6706i 0.809140 + 1.40147i 0.913461 + 0.406927i \(0.133400\pi\)
−0.104321 + 0.994544i \(0.533267\pi\)
\(198\) −0.904893 + 1.56732i −0.0643079 + 0.111385i
\(199\) 11.9238 20.6527i 0.845258 1.46403i −0.0401386 0.999194i \(-0.512780\pi\)
0.885397 0.464836i \(-0.153887\pi\)
\(200\) −0.704683 1.22055i −0.0498286 0.0863057i
\(201\) 2.35234 4.07437i 0.165921 0.287384i
\(202\) −3.05255 5.28717i −0.214777 0.372004i
\(203\) 4.74086 0.332743
\(204\) −1.25723 + 2.17759i −0.0880240 + 0.152462i
\(205\) −1.12767 + 1.95318i −0.0787596 + 0.136416i
\(206\) −0.210206 −0.0146458
\(207\) −2.70468 −0.187988
\(208\) −2.80979 4.86669i −0.194824 0.337444i
\(209\) −1.80979 3.13464i −0.125186 0.216828i
\(210\) 3.42936 0.236648
\(211\) −13.9038 −0.957180 −0.478590 0.878039i \(-0.658852\pi\)
−0.478590 + 0.878039i \(0.658852\pi\)
\(212\) 6.65213 + 11.5218i 0.456870 + 0.791322i
\(213\) 0.809786 + 1.40259i 0.0554856 + 0.0961039i
\(214\) 4.78979 + 8.29617i 0.327424 + 0.567114i
\(215\) 4.65660 + 8.06547i 0.317578 + 0.550061i
\(216\) 1.00000 0.0680414
\(217\) −3.61957 −0.245713
\(218\) −1.59511 2.76281i −0.108034 0.187121i
\(219\) −2.50000 4.33013i −0.168934 0.292603i
\(220\) −3.42936 −0.231207
\(221\) −14.1302 −0.950503
\(222\) −0.852341 + 1.47630i −0.0572054 + 0.0990827i
\(223\) 6.58958 11.4135i 0.441271 0.764304i −0.556513 0.830839i \(-0.687861\pi\)
0.997784 + 0.0665349i \(0.0211944\pi\)
\(224\) −1.80979 −0.120921
\(225\) 0.704683 + 1.22055i 0.0469789 + 0.0813698i
\(226\) 6.80979 11.7949i 0.452980 0.784585i
\(227\) −2.90489 5.03142i −0.192805 0.333947i 0.753374 0.657592i \(-0.228425\pi\)
−0.946179 + 0.323645i \(0.895092\pi\)
\(228\) −1.00000 + 1.73205i −0.0662266 + 0.114708i
\(229\) 14.8143 25.6590i 0.978954 1.69560i 0.312737 0.949840i \(-0.398754\pi\)
0.666217 0.745758i \(-0.267912\pi\)
\(230\) −2.56255 4.43846i −0.168969 0.292664i
\(231\) −1.63766 + 2.83651i −0.107750 + 0.186629i
\(232\) 1.30979 + 2.26862i 0.0859917 + 0.148942i
\(233\) −15.1902 −0.995144 −0.497572 0.867423i \(-0.665775\pi\)
−0.497572 + 0.867423i \(0.665775\pi\)
\(234\) 2.80979 + 4.86669i 0.183681 + 0.318146i
\(235\) 19.8860 1.29722
\(236\) −1.78979 −0.116506
\(237\) −5.51447 + 9.55134i −0.358203 + 0.620426i
\(238\) −2.27533 + 3.94098i −0.147487 + 0.255456i
\(239\) −12.7817 + 22.1386i −0.826779 + 1.43202i 0.0737724 + 0.997275i \(0.476496\pi\)
−0.900552 + 0.434749i \(0.856837\pi\)
\(240\) 0.947448 + 1.64103i 0.0611575 + 0.105928i
\(241\) −16.2391 −1.04606 −0.523028 0.852316i \(-0.675198\pi\)
−0.523028 + 0.852316i \(0.675198\pi\)
\(242\) −3.86234 + 6.68976i −0.248280 + 0.430034i
\(243\) −1.00000 −0.0641500
\(244\) 7.77170 + 0.775003i 0.497532 + 0.0496145i
\(245\) −7.05788 −0.450911
\(246\) −0.595107 + 1.03076i −0.0379426 + 0.0657186i
\(247\) −11.2391 −0.715130
\(248\) −1.00000 1.73205i −0.0635001 0.109985i
\(249\) 1.09511 1.89678i 0.0693996 0.120204i
\(250\) −6.07254 + 10.5180i −0.384061 + 0.665214i
\(251\) −4.73467 + 8.20069i −0.298850 + 0.517623i −0.975873 0.218339i \(-0.929936\pi\)
0.677023 + 0.735962i \(0.263270\pi\)
\(252\) 1.80979 0.114006
\(253\) 4.89490 0.307740
\(254\) −0.904893 1.56732i −0.0567780 0.0983424i
\(255\) 4.76466 0.298375
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.19469 + 3.80131i −0.136901 + 0.237119i −0.926322 0.376733i \(-0.877047\pi\)
0.789421 + 0.613852i \(0.210381\pi\)
\(258\) 2.45744 + 4.25642i 0.152994 + 0.264993i
\(259\) −1.54256 + 2.67178i −0.0958497 + 0.166017i
\(260\) −5.32425 + 9.22188i −0.330196 + 0.571917i
\(261\) −1.30979 2.26862i −0.0810737 0.140424i
\(262\) 8.40937 14.5654i 0.519532 0.899856i
\(263\) 3.33235 + 5.77180i 0.205481 + 0.355904i 0.950286 0.311378i \(-0.100791\pi\)
−0.744805 + 0.667283i \(0.767457\pi\)
\(264\) −1.80979 −0.111385
\(265\) 12.6051 21.8327i 0.774325 1.34117i
\(266\) −1.80979 + 3.13464i −0.110965 + 0.192197i
\(267\) −15.1540 −0.927412
\(268\) 4.70468 0.287384
\(269\) 2.50000 + 4.33013i 0.152428 + 0.264013i 0.932119 0.362151i \(-0.117958\pi\)
−0.779692 + 0.626164i \(0.784624\pi\)
\(270\) −0.947448 1.64103i −0.0576599 0.0998698i
\(271\) −9.63956 −0.585562 −0.292781 0.956180i \(-0.594581\pi\)
−0.292781 + 0.956180i \(0.594581\pi\)
\(272\) −2.51447 −0.152462
\(273\) 5.08511 + 8.80767i 0.307765 + 0.533064i
\(274\) 0.147659 + 0.255752i 0.00892038 + 0.0154506i
\(275\) −1.27533 2.20893i −0.0769050 0.133203i
\(276\) −1.35234 2.34232i −0.0814014 0.140991i
\(277\) −13.7536 −0.826374 −0.413187 0.910646i \(-0.635585\pi\)
−0.413187 + 0.910646i \(0.635585\pi\)
\(278\) 1.50552 0.0902953
\(279\) 1.00000 + 1.73205i 0.0598684 + 0.103695i
\(280\) 1.71468 + 2.96991i 0.102472 + 0.177486i
\(281\) −1.87490 −0.111847 −0.0559237 0.998435i \(-0.517810\pi\)
−0.0559237 + 0.998435i \(0.517810\pi\)
\(282\) 10.4945 0.624937
\(283\) −13.5145 + 23.4077i −0.803352 + 1.39145i 0.114046 + 0.993475i \(0.463619\pi\)
−0.917398 + 0.397971i \(0.869715\pi\)
\(284\) −0.809786 + 1.40259i −0.0480520 + 0.0832284i
\(285\) 3.78979 0.224488
\(286\) −5.08511 8.80767i −0.300689 0.520808i
\(287\) −1.07702 + 1.86545i −0.0635743 + 0.110114i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 5.33872 9.24694i 0.314043 0.543938i
\(290\) 2.48191 4.29879i 0.145743 0.252434i
\(291\) −7.75723 13.4359i −0.454737 0.787628i
\(292\) 2.50000 4.33013i 0.146301 0.253402i
\(293\) −4.46744 7.73783i −0.260991 0.452049i 0.705515 0.708695i \(-0.250716\pi\)
−0.966505 + 0.256646i \(0.917383\pi\)
\(294\) −3.72467 −0.217227
\(295\) 1.69574 + 2.93710i 0.0987296 + 0.171005i
\(296\) −1.70468 −0.0990827
\(297\) 1.80979 0.105014
\(298\) 0.394897 0.683982i 0.0228758 0.0396220i
\(299\) 7.59958 13.1629i 0.439495 0.761228i
\(300\) −0.704683 + 1.22055i −0.0406849 + 0.0704683i
\(301\) 4.44745 + 7.70321i 0.256347 + 0.444005i
\(302\) −1.42936 −0.0822503
\(303\) −3.05255 + 5.28717i −0.175365 + 0.303740i
\(304\) −2.00000 −0.114708
\(305\) −6.09149 13.4879i −0.348797 0.772313i
\(306\) 2.51447 0.143743
\(307\) 1.18212 2.04749i 0.0674671 0.116856i −0.830319 0.557289i \(-0.811842\pi\)
0.897786 + 0.440433i \(0.145175\pi\)
\(308\) −3.27533 −0.186629
\(309\) 0.105103 + 0.182044i 0.00597911 + 0.0103561i
\(310\) −1.89490 + 3.28206i −0.107623 + 0.186408i
\(311\) −9.08511 + 15.7359i −0.515169 + 0.892300i 0.484676 + 0.874694i \(0.338938\pi\)
−0.999845 + 0.0176056i \(0.994396\pi\)
\(312\) −2.80979 + 4.86669i −0.159073 + 0.275522i
\(313\) 11.3732 0.642850 0.321425 0.946935i \(-0.395838\pi\)
0.321425 + 0.946935i \(0.395838\pi\)
\(314\) 21.1992 1.19634
\(315\) −1.71468 2.96991i −0.0966112 0.167336i
\(316\) −11.0289 −0.620426
\(317\) −3.85681 6.68020i −0.216620 0.375197i 0.737152 0.675727i \(-0.236170\pi\)
−0.953773 + 0.300529i \(0.902837\pi\)
\(318\) 6.65213 11.5218i 0.373033 0.646112i
\(319\) 2.37043 + 4.10571i 0.132719 + 0.229876i
\(320\) −0.947448 + 1.64103i −0.0529640 + 0.0917363i
\(321\) 4.78979 8.29617i 0.267340 0.463047i
\(322\) −2.44745 4.23911i −0.136391 0.236236i
\(323\) −2.51447 + 4.35519i −0.139909 + 0.242329i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −7.92003 −0.439324
\(326\) 5.14214 8.90644i 0.284797 0.493282i
\(327\) −1.59511 + 2.76281i −0.0882096 + 0.152784i
\(328\) −1.19021 −0.0657186
\(329\) 18.9928 1.04710
\(330\) 1.71468 + 2.96991i 0.0943900 + 0.163488i
\(331\) −15.1911 26.3117i −0.834976 1.44622i −0.894050 0.447968i \(-0.852148\pi\)
0.0590732 0.998254i \(-0.481185\pi\)
\(332\) 2.19021 0.120204
\(333\) 1.70468 0.0934160
\(334\) 6.16213 + 10.6731i 0.337177 + 0.584007i
\(335\) −4.45744 7.72052i −0.243536 0.421817i
\(336\) 0.904893 + 1.56732i 0.0493660 + 0.0855043i
\(337\) −14.5996 25.2872i −0.795290 1.37748i −0.922655 0.385626i \(-0.873985\pi\)
0.127365 0.991856i \(-0.459348\pi\)
\(338\) −18.5796 −1.01060
\(339\) −13.6196 −0.739714
\(340\) 2.38233 + 4.12632i 0.129200 + 0.223781i
\(341\) −1.80979 3.13464i −0.0980054 0.169750i
\(342\) 2.00000 0.108148
\(343\) −19.4094 −1.04801
\(344\) −2.45744 + 4.25642i −0.132497 + 0.229491i
\(345\) −2.56255 + 4.43846i −0.137963 + 0.238959i
\(346\) 2.82978 0.152130
\(347\) −0.210206 0.364088i −0.0112845 0.0195453i 0.860328 0.509741i \(-0.170259\pi\)
−0.871612 + 0.490196i \(0.836925\pi\)
\(348\) 1.30979 2.26862i 0.0702119 0.121611i
\(349\) −0.147659 0.255752i −0.00790398 0.0136901i 0.862046 0.506829i \(-0.169183\pi\)
−0.869950 + 0.493139i \(0.835849\pi\)
\(350\) −1.27533 + 2.20893i −0.0681690 + 0.118072i
\(351\) 2.80979 4.86669i 0.149975 0.259765i
\(352\) −0.904893 1.56732i −0.0482310 0.0835385i
\(353\) 17.8387 30.8976i 0.949459 1.64451i 0.202893 0.979201i \(-0.434966\pi\)
0.746566 0.665311i \(-0.231701\pi\)
\(354\) 0.894897 + 1.55001i 0.0475632 + 0.0823819i
\(355\) 3.06892 0.162881
\(356\) −7.57702 13.1238i −0.401581 0.695559i
\(357\) 4.55065 0.240846
\(358\) 11.3894 0.601947
\(359\) 17.9719 31.1283i 0.948521 1.64289i 0.199979 0.979800i \(-0.435913\pi\)
0.748542 0.663087i \(-0.230754\pi\)
\(360\) 0.947448 1.64103i 0.0499349 0.0864898i
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 7.10958 + 12.3141i 0.373671 + 0.647217i
\(363\) 7.72467 0.405440
\(364\) −5.08511 + 8.80767i −0.266532 + 0.461647i
\(365\) −9.47448 −0.495917
\(366\) −3.21468 7.11799i −0.168034 0.372064i
\(367\) −6.85872 −0.358022 −0.179011 0.983847i \(-0.557290\pi\)
−0.179011 + 0.983847i \(0.557290\pi\)
\(368\) 1.35234 2.34232i 0.0704957 0.122102i
\(369\) 1.19021 0.0619601
\(370\) 1.61510 + 2.79743i 0.0839650 + 0.145432i
\(371\) 12.0389 20.8520i 0.625030 1.08258i
\(372\) −1.00000 + 1.73205i −0.0518476 + 0.0898027i
\(373\) 15.5389 26.9142i 0.804575 1.39357i −0.112002 0.993708i \(-0.535726\pi\)
0.916577 0.399858i \(-0.130940\pi\)
\(374\) −4.55065 −0.235309
\(375\) 12.1451 0.627170
\(376\) 5.24724 + 9.08848i 0.270606 + 0.468703i
\(377\) 14.7209 0.758163
\(378\) −0.904893 1.56732i −0.0465427 0.0806143i
\(379\) −5.56255 + 9.63462i −0.285729 + 0.494897i −0.972786 0.231707i \(-0.925569\pi\)
0.687057 + 0.726604i \(0.258902\pi\)
\(380\) 1.89490 + 3.28206i 0.0972062 + 0.168366i
\(381\) −0.904893 + 1.56732i −0.0463591 + 0.0802963i
\(382\) 3.64766 6.31793i 0.186630 0.323253i
\(383\) 9.53446 + 16.5142i 0.487188 + 0.843835i 0.999891 0.0147312i \(-0.00468924\pi\)
−0.512703 + 0.858566i \(0.671356\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) 3.10320 + 5.37490i 0.158154 + 0.273930i
\(386\) 26.3732 1.34236
\(387\) 2.45744 4.25642i 0.124919 0.216366i
\(388\) 7.75723 13.4359i 0.393814 0.682106i
\(389\) −10.7136 −0.543203 −0.271601 0.962410i \(-0.587553\pi\)
−0.271601 + 0.962410i \(0.587553\pi\)
\(390\) 10.6485 0.539208
\(391\) −3.40042 5.88970i −0.171967 0.297855i
\(392\) −1.86234 3.22566i −0.0940622 0.162921i
\(393\) −16.8187 −0.848393
\(394\) 22.7136 1.14430
\(395\) 10.4493 + 18.0988i 0.525764 + 0.910650i
\(396\) 0.904893 + 1.56732i 0.0454726 + 0.0787608i
\(397\) 2.68022 + 4.64227i 0.134516 + 0.232989i 0.925413 0.378961i \(-0.123719\pi\)
−0.790896 + 0.611950i \(0.790385\pi\)
\(398\) −11.9238 20.6527i −0.597688 1.03523i
\(399\) 3.61957 0.181205
\(400\) −1.40937 −0.0704683
\(401\) −2.64214 4.57631i −0.131942 0.228530i 0.792483 0.609894i \(-0.208788\pi\)
−0.924425 + 0.381364i \(0.875455\pi\)
\(402\) −2.35234 4.07437i −0.117324 0.203211i
\(403\) −11.2391 −0.559862
\(404\) −6.10510 −0.303740
\(405\) −0.947448 + 1.64103i −0.0470791 + 0.0815434i
\(406\) 2.37043 4.10571i 0.117643 0.203763i
\(407\) −3.08511 −0.152923
\(408\) 1.25723 + 2.17759i 0.0622424 + 0.107807i
\(409\) 15.3187 26.5328i 0.757463 1.31196i −0.186678 0.982421i \(-0.559772\pi\)
0.944141 0.329542i \(-0.106894\pi\)
\(410\) 1.12767 + 1.95318i 0.0556915 + 0.0964605i
\(411\) 0.147659 0.255752i 0.00728346 0.0126153i
\(412\) −0.105103 + 0.182044i −0.00517806 + 0.00896866i
\(413\) 1.61957 + 2.80518i 0.0796939 + 0.138034i
\(414\) −1.35234 + 2.34232i −0.0664640 + 0.115119i
\(415\) −2.07511 3.59420i −0.101863 0.176433i
\(416\) −5.61957 −0.275522
\(417\) −0.752762 1.30382i −0.0368629 0.0638484i
\(418\) −3.61957 −0.177039
\(419\) −33.4294 −1.63313 −0.816565 0.577253i \(-0.804125\pi\)
−0.816565 + 0.577253i \(0.804125\pi\)
\(420\) 1.71468 2.96991i 0.0836678 0.144917i
\(421\) −14.5434 + 25.1899i −0.708802 + 1.22768i 0.256499 + 0.966544i \(0.417431\pi\)
−0.965302 + 0.261137i \(0.915903\pi\)
\(422\) −6.95192 + 12.0411i −0.338414 + 0.586151i
\(423\) −5.24724 9.08848i −0.255129 0.441897i
\(424\) 13.3043 0.646112
\(425\) −1.77190 + 3.06903i −0.0859499 + 0.148870i
\(426\) 1.61957 0.0784685
\(427\) −5.81788 12.8820i −0.281547 0.623406i
\(428\) 9.57959 0.463047
\(429\) −5.08511 + 8.80767i −0.245511 + 0.425238i
\(430\) 9.31321 0.449123
\(431\) 19.5434 + 33.8502i 0.941373 + 1.63051i 0.762856 + 0.646569i \(0.223797\pi\)
0.178517 + 0.983937i \(0.442870\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −9.67212 + 16.7526i −0.464813 + 0.805079i −0.999193 0.0401650i \(-0.987212\pi\)
0.534380 + 0.845244i \(0.320545\pi\)
\(434\) −1.80979 + 3.13464i −0.0868725 + 0.150468i
\(435\) −4.96382 −0.237997
\(436\) −3.19021 −0.152784
\(437\) −2.70468 4.68465i −0.129383 0.224097i
\(438\) −5.00000 −0.238909
\(439\) −4.33425 7.50714i −0.206863 0.358296i 0.743862 0.668333i \(-0.232992\pi\)
−0.950725 + 0.310037i \(0.899659\pi\)
\(440\) −1.71468 + 2.96991i −0.0817441 + 0.141585i
\(441\) 1.86234 + 3.22566i 0.0886827 + 0.153603i
\(442\) −7.06512 + 12.2371i −0.336053 + 0.582062i
\(443\) 5.71468 9.89811i 0.271513 0.470274i −0.697737 0.716354i \(-0.745809\pi\)
0.969249 + 0.246081i \(0.0791428\pi\)
\(444\) 0.852341 + 1.47630i 0.0404503 + 0.0700620i
\(445\) −14.3577 + 24.8682i −0.680619 + 1.17887i
\(446\) −6.58958 11.4135i −0.312026 0.540445i
\(447\) −0.789794 −0.0373560
\(448\) −0.904893 + 1.56732i −0.0427522 + 0.0740489i
\(449\) −6.57254 + 11.3840i −0.310178 + 0.537243i −0.978401 0.206718i \(-0.933722\pi\)
0.668223 + 0.743961i \(0.267055\pi\)
\(450\) 1.40937 0.0664381
\(451\) −2.15403 −0.101429
\(452\) −6.80979 11.7949i −0.320305 0.554785i
\(453\) 0.714679 + 1.23786i 0.0335785 + 0.0581597i
\(454\) −5.80979 −0.272667
\(455\) 19.2715 0.903463
\(456\) 1.00000 + 1.73205i 0.0468293 + 0.0811107i
\(457\) 2.88043 + 4.98905i 0.134741 + 0.233378i 0.925498 0.378752i \(-0.123647\pi\)
−0.790758 + 0.612129i \(0.790313\pi\)
\(458\) −14.8143 25.6590i −0.692225 1.19897i
\(459\) −1.25723 2.17759i −0.0586827 0.101641i
\(460\) −5.12510 −0.238959
\(461\) −9.07617 −0.422719 −0.211360 0.977408i \(-0.567789\pi\)
−0.211360 + 0.977408i \(0.567789\pi\)
\(462\) 1.63766 + 2.83651i 0.0761910 + 0.131967i
\(463\) 5.50447 + 9.53403i 0.255815 + 0.443084i 0.965116 0.261821i \(-0.0843230\pi\)
−0.709302 + 0.704905i \(0.750990\pi\)
\(464\) 2.61957 0.121611
\(465\) 3.78979 0.175747
\(466\) −7.59511 + 13.1551i −0.351837 + 0.609399i
\(467\) −5.00000 + 8.66025i −0.231372 + 0.400749i −0.958212 0.286058i \(-0.907655\pi\)
0.726840 + 0.686807i \(0.240988\pi\)
\(468\) 5.61957 0.259765
\(469\) −4.25723 7.37375i −0.196581 0.340488i
\(470\) 9.94298 17.2217i 0.458635 0.794380i
\(471\) −10.5996 18.3590i −0.488403 0.845939i
\(472\) −0.894897 + 1.55001i −0.0411910 + 0.0713449i
\(473\) −4.44745 + 7.70321i −0.204494 + 0.354194i
\(474\) 5.51447 + 9.55134i 0.253288 + 0.438708i
\(475\) −1.40937 + 2.44109i −0.0646661 + 0.112005i
\(476\) 2.27533 + 3.94098i 0.104289 + 0.180634i
\(477\) −13.3043 −0.609160
\(478\) 12.7817 + 22.1386i 0.584621 + 1.01259i
\(479\) 42.8587 1.95826 0.979132 0.203224i \(-0.0651418\pi\)
0.979132 + 0.203224i \(0.0651418\pi\)
\(480\) 1.89490 0.0864898
\(481\) −4.78979 + 8.29617i −0.218396 + 0.378273i
\(482\) −8.11957 + 14.0635i −0.369836 + 0.640575i
\(483\) −2.44745 + 4.23911i −0.111363 + 0.192886i
\(484\) 3.86234 + 6.68976i 0.175561 + 0.304080i
\(485\) −29.3983 −1.33491
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −13.2391 −0.599923 −0.299961 0.953951i \(-0.596974\pi\)
−0.299961 + 0.953951i \(0.596974\pi\)
\(488\) 4.55702 6.34299i 0.206287 0.287134i
\(489\) −10.2843 −0.465071
\(490\) −3.52894 + 6.11230i −0.159421 + 0.276126i
\(491\) −4.15023 −0.187297 −0.0936486 0.995605i \(-0.529853\pi\)
−0.0936486 + 0.995605i \(0.529853\pi\)
\(492\) 0.595107 + 1.03076i 0.0268295 + 0.0464701i
\(493\) 3.29342 5.70436i 0.148328 0.256912i
\(494\) −5.61957 + 9.73338i −0.252836 + 0.437926i
\(495\) 1.71468 2.96991i 0.0770691 0.133488i
\(496\) −2.00000 −0.0898027
\(497\) 2.93108 0.131477
\(498\) −1.09511 1.89678i −0.0490729 0.0849968i
\(499\) 39.1268 1.75156 0.875778 0.482714i \(-0.160349\pi\)
0.875778 + 0.482714i \(0.160349\pi\)
\(500\) 6.07254 + 10.5180i 0.271572 + 0.470377i
\(501\) 6.16213 10.6731i 0.275304 0.476840i
\(502\) 4.73467 + 8.20069i 0.211319 + 0.366015i
\(503\) −19.4664 + 33.7168i −0.867963 + 1.50336i −0.00388915 + 0.999992i \(0.501238\pi\)
−0.864074 + 0.503364i \(0.832095\pi\)
\(504\) 0.904893 1.56732i 0.0403071 0.0698140i
\(505\) 5.78427 + 10.0187i 0.257397 + 0.445824i
\(506\) 2.44745 4.23911i 0.108802 0.188451i
\(507\) 9.28979 + 16.0904i 0.412574 + 0.714600i
\(508\) −1.80979 −0.0802963
\(509\) 16.1196 27.9199i 0.714487 1.23753i −0.248669 0.968588i \(-0.579993\pi\)
0.963157 0.268940i \(-0.0866734\pi\)
\(510\) 2.38233 4.12632i 0.105491 0.182716i
\(511\) −9.04893 −0.400301
\(512\) −1.00000 −0.0441942
\(513\) −1.00000 1.73205i −0.0441511 0.0764719i
\(514\) 2.19469 + 3.80131i 0.0968035 + 0.167669i
\(515\) 0.398319 0.0175520
\(516\) 4.91489 0.216366
\(517\) 9.49638 + 16.4482i 0.417650 + 0.723391i
\(518\) 1.54256 + 2.67178i 0.0677760 + 0.117391i
\(519\) −1.41489 2.45066i −0.0621067 0.107572i
\(520\) 5.32425 + 9.22188i 0.233484 + 0.404406i
\(521\) 21.5524 0.944226 0.472113 0.881538i \(-0.343491\pi\)
0.472113 + 0.881538i \(0.343491\pi\)
\(522\) −2.61957 −0.114656
\(523\) 16.0089 + 27.7283i 0.700022 + 1.21247i 0.968458 + 0.249177i \(0.0801600\pi\)
−0.268436 + 0.963298i \(0.586507\pi\)
\(524\) −8.40937 14.5654i −0.367365 0.636295i
\(525\) 2.55065 0.111319
\(526\) 6.66470 0.290595
\(527\) −2.51447 + 4.35519i −0.109532 + 0.189715i
\(528\) −0.904893 + 1.56732i −0.0393804 + 0.0682089i
\(529\) −15.6847 −0.681943
\(530\) −12.6051 21.8327i −0.547531 0.948351i
\(531\) 0.894897 1.55001i 0.0388352 0.0672646i
\(532\) 1.80979 + 3.13464i 0.0784642 + 0.135904i
\(533\) −3.34425 + 5.79241i −0.144855 + 0.250897i
\(534\) −7.57702 + 13.1238i −0.327890 + 0.567921i
\(535\) −9.07617 15.7204i −0.392397 0.679651i
\(536\) 2.35234 4.07437i 0.101606 0.175986i
\(537\) −5.69469 9.86349i −0.245744 0.425641i
\(538\) 5.00000 0.215565
\(539\) −3.37043 5.83776i −0.145175 0.251450i
\(540\) −1.89490 −0.0815434
\(541\) −11.0289 −0.474171 −0.237086 0.971489i \(-0.576192\pi\)
−0.237086 + 0.971489i \(0.576192\pi\)
\(542\) −4.81978 + 8.34811i −0.207027 + 0.358582i
\(543\) 7.10958 12.3141i 0.305101 0.528451i
\(544\) −1.25723 + 2.17759i −0.0539035 + 0.0933636i
\(545\) 3.02256 + 5.23523i 0.129472 + 0.224253i
\(546\) 10.1702 0.435245
\(547\) −18.1340 + 31.4091i −0.775356 + 1.34296i 0.159239 + 0.987240i \(0.449096\pi\)
−0.934594 + 0.355715i \(0.884237\pi\)
\(548\) 0.295317 0.0126153
\(549\) −4.55702 + 6.34299i −0.194489 + 0.270712i
\(550\) −2.55065 −0.108760
\(551\) 2.61957 4.53723i 0.111598 0.193293i
\(552\) −2.70468 −0.115119
\(553\) 9.98001 + 17.2859i 0.424393 + 0.735070i
\(554\) −6.87681 + 11.9110i −0.292167 + 0.506049i
\(555\) 1.61510 2.79743i 0.0685571 0.118744i
\(556\) 0.752762 1.30382i 0.0319242 0.0552943i
\(557\) 13.5145 0.572626 0.286313 0.958136i \(-0.407570\pi\)
0.286313 + 0.958136i \(0.407570\pi\)
\(558\) 2.00000 0.0846668
\(559\) 13.8098 + 23.9193i 0.584092 + 1.01168i
\(560\) 3.42936 0.144917
\(561\) 2.27533 + 3.94098i 0.0960643 + 0.166388i
\(562\) −0.937452 + 1.62372i −0.0395440 + 0.0684923i
\(563\) 9.68469 + 16.7744i 0.408161 + 0.706956i 0.994684 0.102977i \(-0.0328368\pi\)
−0.586523 + 0.809933i \(0.699504\pi\)
\(564\) 5.24724 9.08848i 0.220949 0.382694i
\(565\) −12.9038 + 22.3501i −0.542869 + 0.940276i
\(566\) 13.5145 + 23.4077i 0.568055 + 0.983901i
\(567\) −0.904893 + 1.56732i −0.0380019 + 0.0658213i
\(568\) 0.809786 + 1.40259i 0.0339779 + 0.0588514i
\(569\) 13.2391 0.555014 0.277507 0.960724i \(-0.410492\pi\)
0.277507 + 0.960724i \(0.410492\pi\)
\(570\) 1.89490 3.28206i 0.0793685 0.137470i
\(571\) −18.5715 + 32.1668i −0.777193 + 1.34614i 0.156361 + 0.987700i \(0.450024\pi\)
−0.933554 + 0.358437i \(0.883310\pi\)
\(572\) −10.1702 −0.425238
\(573\) −7.29532 −0.304766
\(574\) 1.07702 + 1.86545i 0.0449538 + 0.0778623i
\(575\) −1.90594 3.30119i −0.0794833 0.137669i
\(576\) 1.00000 0.0416667
\(577\) −8.27533 −0.344506 −0.172253 0.985053i \(-0.555105\pi\)
−0.172253 + 0.985053i \(0.555105\pi\)
\(578\) −5.33872 9.24694i −0.222062 0.384622i
\(579\) −13.1866 22.8398i −0.548016 0.949192i
\(580\) −2.48191 4.29879i −0.103056 0.178498i
\(581\) −1.98191 3.43277i −0.0822235 0.142415i
\(582\) −15.5145 −0.643095
\(583\) 24.0779 0.997203
\(584\) −2.50000 4.33013i −0.103451 0.179182i
\(585\) −5.32425 9.22188i −0.220131 0.381278i
\(586\) −8.93488 −0.369097
\(587\) −14.6085 −0.602958 −0.301479 0.953473i \(-0.597480\pi\)
−0.301479 + 0.953473i \(0.597480\pi\)
\(588\) −1.86234 + 3.22566i −0.0768015 + 0.133024i
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) 3.39147 0.139625
\(591\) −11.3568 19.6706i −0.467157 0.809140i
\(592\) −0.852341 + 1.47630i −0.0350310 + 0.0606755i
\(593\) −3.91746 6.78524i −0.160871 0.278636i 0.774310 0.632806i \(-0.218097\pi\)
−0.935181 + 0.354170i \(0.884764\pi\)
\(594\) 0.904893 1.56732i 0.0371282 0.0643079i
\(595\) 4.31151 7.46775i 0.176755 0.306148i
\(596\) −0.394897 0.683982i −0.0161756 0.0280170i
\(597\) −11.9238 + 20.6527i −0.488010 + 0.845258i
\(598\) −7.59958 13.1629i −0.310770 0.538269i
\(599\) −16.5345 −0.675580 −0.337790 0.941222i \(-0.609679\pi\)
−0.337790 + 0.941222i \(0.609679\pi\)
\(600\) 0.704683 + 1.22055i 0.0287686 + 0.0498286i
\(601\) 33.4745 1.36545 0.682726 0.730674i \(-0.260794\pi\)
0.682726 + 0.730674i \(0.260794\pi\)
\(602\) 8.89490 0.362529
\(603\) −2.35234 + 4.07437i −0.0957947 + 0.165921i
\(604\) −0.714679 + 1.23786i −0.0290799 + 0.0503678i
\(605\) 7.31873 12.6764i 0.297549 0.515370i
\(606\) 3.05255 + 5.28717i 0.124001 + 0.214777i
\(607\) 30.0179 1.21839 0.609194 0.793021i \(-0.291493\pi\)
0.609194 + 0.793021i \(0.291493\pi\)
\(608\) −1.00000 + 1.73205i −0.0405554 + 0.0702439i
\(609\) −4.74086 −0.192110
\(610\) −14.7266 1.46855i −0.596262 0.0594599i
\(611\) 58.9745 2.38585
\(612\) 1.25723 2.17759i 0.0508207 0.0880240i
\(613\) −20.4655 −0.826595 −0.413298 0.910596i \(-0.635623\pi\)
−0.413298 + 0.910596i \(0.635623\pi\)
\(614\) −1.18212 2.04749i −0.0477065 0.0826300i
\(615\) 1.12767 1.95318i 0.0454719 0.0787596i
\(616\) −1.63766 + 2.83651i −0.0659833 + 0.114286i
\(617\) 15.0000 25.9808i 0.603877 1.04595i −0.388351 0.921512i \(-0.626955\pi\)
0.992228 0.124434i \(-0.0397116\pi\)
\(618\) 0.210206 0.00845573
\(619\) −28.3983 −1.14142 −0.570712 0.821150i \(-0.693333\pi\)
−0.570712 + 0.821150i \(0.693333\pi\)
\(620\) 1.89490 + 3.28206i 0.0761009 + 0.131811i
\(621\) 2.70468 0.108535
\(622\) 9.08511 + 15.7359i 0.364280 + 0.630951i
\(623\) −13.7128 + 23.7512i −0.549391 + 0.951573i
\(624\) 2.80979 + 4.86669i 0.112481 + 0.194824i
\(625\) 7.98343 13.8277i 0.319337 0.553108i
\(626\) 5.68659 9.84947i 0.227282 0.393664i
\(627\) 1.80979 + 3.13464i 0.0722759 + 0.125186i
\(628\) 10.5996 18.3590i 0.422969 0.732604i
\(629\) 2.14319 + 3.71211i 0.0854544 + 0.148011i
\(630\) −3.42936 −0.136629
\(631\) 10.9900 19.0352i 0.437505 0.757781i −0.559991 0.828499i \(-0.689196\pi\)
0.997496 + 0.0707174i \(0.0225288\pi\)
\(632\) −5.51447 + 9.55134i −0.219354 + 0.379932i
\(633\) 13.9038 0.552628
\(634\) −7.71363 −0.306347
\(635\) 1.71468 + 2.96991i 0.0680450 + 0.117857i
\(636\) −6.65213 11.5218i −0.263774 0.456870i
\(637\) −20.9311 −0.829320
\(638\) 4.74086 0.187693
\(639\) −0.809786 1.40259i −0.0320346 0.0554856i
\(640\) 0.947448 + 1.64103i 0.0374512 + 0.0648674i
\(641\) −18.7092 32.4052i −0.738967 1.27993i −0.952961 0.303094i \(-0.901980\pi\)
0.213994 0.976835i \(-0.431353\pi\)
\(642\) −4.78979 8.29617i −0.189038 0.327424i
\(643\) 23.7336 0.935963 0.467981 0.883738i \(-0.344981\pi\)
0.467981 + 0.883738i \(0.344981\pi\)
\(644\) −4.89490 −0.192886
\(645\) −4.65660 8.06547i −0.183354 0.317578i
\(646\) 2.51447 + 4.35519i 0.0989305 + 0.171353i
\(647\) −26.6485 −1.04766 −0.523831 0.851823i \(-0.675497\pi\)
−0.523831 + 0.851823i \(0.675497\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −1.61957 + 2.80518i −0.0635738 + 0.110113i
\(650\) −3.96002 + 6.85895i −0.155325 + 0.269030i
\(651\) 3.61957 0.141862
\(652\) −5.14214 8.90644i −0.201382 0.348803i
\(653\) 1.98553 3.43904i 0.0776998 0.134580i −0.824557 0.565778i \(-0.808576\pi\)
0.902257 + 0.431198i \(0.141909\pi\)
\(654\) 1.59511 + 2.76281i 0.0623736 + 0.108034i
\(655\) −15.9349 + 27.6000i −0.622627 + 1.07842i
\(656\) −0.595107 + 1.03076i −0.0232350 + 0.0402442i
\(657\) 2.50000 + 4.33013i 0.0975343 + 0.168934i
\(658\) 9.49638 16.4482i 0.370207 0.641218i
\(659\) −6.19021 10.7218i −0.241137 0.417661i 0.719902 0.694076i \(-0.244187\pi\)
−0.961038 + 0.276415i \(0.910853\pi\)
\(660\) 3.42936 0.133488
\(661\) 18.9375 + 32.8006i 0.736582 + 1.27580i 0.954026 + 0.299724i \(0.0968946\pi\)
−0.217444 + 0.976073i \(0.569772\pi\)
\(662\) −30.3821 −1.18084
\(663\) 14.1302 0.548773
\(664\) 1.09511 1.89678i 0.0424984 0.0736094i
\(665\) 3.42936 5.93982i 0.132985 0.230336i
\(666\) 0.852341 1.47630i 0.0330276 0.0572054i
\(667\) 3.54256 + 6.13589i 0.137168 + 0.237582i
\(668\) 12.3243 0.476840
\(669\) −6.58958 + 11.4135i −0.254768 + 0.441271i
\(670\) −8.91489 −0.344412
\(671\) 8.24724 11.4795i 0.318381 0.443159i
\(672\) 1.80979 0.0698140
\(673\) −2.56702 + 4.44621i −0.0989514 + 0.171389i −0.911251 0.411852i \(-0.864882\pi\)
0.812300 + 0.583241i \(0.198215\pi\)
\(674\) −29.1992 −1.12471
\(675\) −0.704683 1.22055i −0.0271233 0.0469789i
\(676\) −9.28979 + 16.0904i −0.357300 + 0.618861i
\(677\) 10.1196 17.5276i 0.388927 0.673641i −0.603379 0.797455i \(-0.706179\pi\)
0.992305 + 0.123814i \(0.0395126\pi\)
\(678\) −6.80979 + 11.7949i −0.261528 + 0.452980i
\(679\) −28.0779 −1.07753
\(680\) 4.76466 0.182716
\(681\) 2.90489 + 5.03142i 0.111316 + 0.192805i
\(682\) −3.61957 −0.138601
\(683\) −3.99000 6.91089i −0.152673 0.264438i 0.779536 0.626357i \(-0.215455\pi\)
−0.932209 + 0.361919i \(0.882122\pi\)
\(684\) 1.00000 1.73205i 0.0382360 0.0662266i
\(685\) −0.279798 0.484624i −0.0106905 0.0185165i
\(686\) −9.70468 + 16.8090i −0.370527 + 0.641771i
\(687\) −14.8143 + 25.6590i −0.565199 + 0.978954i
\(688\) 2.45744 + 4.25642i 0.0936892 + 0.162274i
\(689\) 37.3821 64.7477i 1.42415 2.46669i
\(690\) 2.56255 + 4.43846i 0.0975545 + 0.168969i
\(691\) 33.5234 1.27529 0.637645 0.770330i \(-0.279909\pi\)
0.637645 + 0.770330i \(0.279909\pi\)
\(692\) 1.41489 2.45066i 0.0537860 0.0931601i
\(693\) 1.63766 2.83651i 0.0622097 0.107750i
\(694\) −0.420412 −0.0159586
\(695\) −2.85281 −0.108213
\(696\) −1.30979 2.26862i −0.0496473 0.0859917i
\(697\) 1.49638 + 2.59180i 0.0566794 + 0.0981715i
\(698\) −0.295317 −0.0111779
\(699\) 15.1902 0.574547
\(700\) 1.27533 + 2.20893i 0.0482028 + 0.0834896i
\(701\) 21.8713 + 37.8822i 0.826067 + 1.43079i 0.901101 + 0.433609i \(0.142760\pi\)
−0.0750342 + 0.997181i \(0.523907\pi\)
\(702\) −2.80979 4.86669i −0.106049 0.183681i
\(703\) 1.70468 + 2.95260i 0.0642933 + 0.111359i
\(704\) −1.80979 −0.0682089
\(705\) −19.8860 −0.748948
\(706\) −17.8387 30.8976i −0.671369 1.16285i
\(707\) 5.52446 + 9.56865i 0.207769 + 0.359866i
\(708\) 1.78979 0.0672646
\(709\) −16.5055 −0.619878 −0.309939 0.950756i \(-0.600309\pi\)
−0.309939 + 0.950756i \(0.600309\pi\)
\(710\) 1.53446 2.65776i 0.0575873 0.0997441i
\(711\) 5.51447 9.55134i 0.206809 0.358203i
\(712\) −15.1540 −0.567921
\(713\) −2.70468 4.68465i −0.101291 0.175441i
\(714\) 2.27533 3.94098i 0.0851519 0.147487i
\(715\) 9.63576 + 16.6896i 0.360357 + 0.624157i
\(716\) 5.69469 9.86349i 0.212820 0.368616i
\(717\) 12.7817 22.1386i 0.477341 0.826779i
\(718\) −17.9719 31.1283i −0.670706 1.16170i
\(719\) −20.0208 + 34.6771i −0.746651 + 1.29324i 0.202768 + 0.979227i \(0.435006\pi\)
−0.949419 + 0.314011i \(0.898327\pi\)
\(720\) −0.947448 1.64103i −0.0353093 0.0611575i
\(721\) 0.380428 0.0141679
\(722\) −7.50000 12.9904i −0.279121 0.483452i
\(723\) 16.2391 0.603940
\(724\) 14.2192 0.528451
\(725\) 1.84597 3.19731i 0.0685575 0.118745i
\(726\) 3.86234 6.68976i 0.143345 0.248280i
\(727\) 12.4493 21.5629i 0.461721 0.799724i −0.537326 0.843375i \(-0.680566\pi\)
0.999047 + 0.0436507i \(0.0138989\pi\)
\(728\) 5.08511 + 8.80767i 0.188467 + 0.326434i
\(729\) 1.00000 0.0370370
\(730\) −4.73724 + 8.20514i −0.175333 + 0.303686i
\(731\) 12.3583 0.457090
\(732\) −7.77170 0.775003i −0.287250 0.0286450i
\(733\) 12.9438 0.478091 0.239046 0.971008i \(-0.423165\pi\)
0.239046 + 0.971008i \(0.423165\pi\)
\(734\) −3.42936 + 5.93982i −0.126580 + 0.219243i
\(735\) 7.05788 0.260334
\(736\) −1.35234 2.34232i −0.0498480 0.0863392i
\(737\) 4.25723 7.37375i 0.156817 0.271615i
\(738\) 0.595107 1.03076i 0.0219062 0.0379426i
\(739\) 13.8298 23.9539i 0.508737 0.881158i −0.491212 0.871040i \(-0.663446\pi\)
0.999949 0.0101177i \(-0.00322062\pi\)
\(740\) 3.23020 0.118744
\(741\) 11.2391 0.412880
\(742\) −12.0389 20.8520i −0.441963 0.765503i
\(743\) 23.3694 0.857339 0.428670 0.903461i \(-0.358982\pi\)
0.428670 + 0.903461i \(0.358982\pi\)
\(744\) 1.00000 + 1.73205i 0.0366618 + 0.0635001i
\(745\) −0.748289 + 1.29607i −0.0274152 + 0.0474845i
\(746\) −15.5389 26.9142i −0.568921 0.985400i
\(747\) −1.09511 + 1.89678i −0.0400679 + 0.0693996i
\(748\) −2.27533 + 3.94098i −0.0831941 + 0.144096i
\(749\) −8.66850 15.0143i −0.316740 0.548610i
\(750\) 6.07254 10.5180i 0.221738 0.384061i
\(751\) 20.8787 + 36.1630i 0.761875 + 1.31961i 0.941883 + 0.335941i \(0.109054\pi\)
−0.180008 + 0.983665i \(0.557612\pi\)
\(752\) 10.4945 0.382694
\(753\) 4.73467 8.20069i 0.172541 0.298850i
\(754\) 7.36044 12.7486i 0.268051 0.464278i
\(755\) 2.70849 0.0985719
\(756\) −1.80979 −0.0658213
\(757\) −22.1185 38.3104i −0.803911 1.39242i −0.917024 0.398833i \(-0.869415\pi\)
0.113112 0.993582i \(-0.463918\pi\)
\(758\) 5.56255 + 9.63462i 0.202041 + 0.349945i
\(759\) −4.89490 −0.177674
\(760\) 3.78979 0.137470
\(761\) −0.789794 1.36796i −0.0286300 0.0495886i 0.851355 0.524589i \(-0.175781\pi\)
−0.879985 + 0.475001i \(0.842448\pi\)
\(762\) 0.904893 + 1.56732i 0.0327808 + 0.0567780i
\(763\) 2.88680 + 5.00009i 0.104509 + 0.181015i
\(764\) −3.64766 6.31793i −0.131968 0.228575i
\(765\) −4.76466 −0.172267
\(766\) 19.0689 0.688988
\(767\) 5.02894 + 8.71038i 0.181584 + 0.314513i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 19.0038 0.685295 0.342647 0.939464i \(-0.388676\pi\)
0.342647 + 0.939464i \(0.388676\pi\)
\(770\) 6.20640 0.223663
\(771\) 2.19469 3.80131i 0.0790397 0.136901i
\(772\) 13.1866 22.8398i 0.474596 0.822024i
\(773\) 2.27913 0.0819745 0.0409873 0.999160i \(-0.486950\pi\)
0.0409873 + 0.999160i \(0.486950\pi\)
\(774\) −2.45744 4.25642i −0.0883310 0.152994i
\(775\) −1.40937 + 2.44109i −0.0506259 + 0.0876866i
\(776\) −7.75723 13.4359i −0.278468 0.482322i
\(777\) 1.54256 2.67178i 0.0553389 0.0958497i
\(778\) −5.35681 + 9.27827i −0.192051 + 0.332642i
\(779\) 1.19021 + 2.06151i 0.0426438 + 0.0738613i
\(780\) 5.32425 9.22188i 0.190639 0.330196i
\(781\) 1.46554 + 2.53839i 0.0524411 + 0.0908307i
\(782\) −6.80084 −0.243198
\(783\) 1.30979 + 2.26862i 0.0468079 + 0.0810737i
\(784\) −3.72467 −0.133024
\(785\) −40.1702 −1.43374
\(786\) −8.40937 + 14.5654i −0.299952 + 0.519532i
\(787\) 10.0941 17.4834i 0.359814 0.623217i −0.628115 0.778120i \(-0.716173\pi\)
0.987930 + 0.154904i \(0.0495067\pi\)
\(788\) 11.3568 19.6706i 0.404570 0.700735i
\(789\) −3.33235 5.77180i −0.118635 0.205481i
\(790\) 20.8987 0.743542
\(791\) −12.3243 + 21.3462i −0.438200 + 0.758985i
\(792\) 1.80979 0.0643079
\(793\) −18.0651 40.0001i −0.641511 1.42044i
\(794\) 5.36044 0.190235
\(795\) −12.6051 + 21.8327i −0.447057 + 0.774325i
\(796\) −23.8477 −0.845258
\(797\) 1.90746 + 3.30383i 0.0675659 + 0.117027i 0.897829 0.440344i \(-0.145143\pi\)
−0.830263 + 0.557371i \(0.811810\pi\)
\(798\) 1.80979 3.13464i 0.0640657 0.110965i
\(799\) 13.1940 22.8527i 0.466771 0.808471i
\(800\) −0.704683 + 1.22055i −0.0249143 + 0.0431528i
\(801\) 15.1540 0.535441
\(802\) −5.28427 −0.186594
\(803\) −4.52446 7.83660i −0.159665 0.276548i
\(804\) −4.70468 −0.165921
\(805\) 4.63766 + 8.03267i 0.163456 + 0.283114i
\(806\) −5.61957 + 9.73338i −0.197941 + 0.342844i
\(807\) −2.50000 4.33013i −0.0880042 0.152428i
\(808\) −3.05255 + 5.28717i −0.107388 + 0.186002i
\(809\) −16.2817 + 28.2007i −0.572434 + 0.991485i 0.423881 + 0.905718i \(0.360667\pi\)
−0.996315 + 0.0857671i \(0.972666\pi\)
\(810\) 0.947448 + 1.64103i 0.0332899 + 0.0576599i
\(811\) −11.9519 + 20.7013i −0.419689 + 0.726922i −0.995908 0.0903730i \(-0.971194\pi\)
0.576219 + 0.817295i \(0.304527\pi\)
\(812\) −2.37043 4.10571i −0.0831859 0.144082i
\(813\) 9.63956 0.338074
\(814\) −1.54256 + 2.67178i −0.0540665 + 0.0936460i
\(815\) −9.74382 + 16.8768i −0.341311 + 0.591168i
\(816\) 2.51447 0.0880240
\(817\) 9.82978 0.343900
\(818\) −15.3187 26.5328i −0.535607 0.927698i
\(819\) −5.08511 8.80767i −0.177688 0.307765i
\(820\) 2.25533 0.0787596
\(821\) 34.2391 1.19495 0.597477 0.801886i \(-0.296170\pi\)
0.597477 + 0.801886i \(0.296170\pi\)
\(822\) −0.147659 0.255752i −0.00515018 0.00892038i
\(823\) −7.98001 13.8218i −0.278166 0.481797i 0.692763 0.721165i \(-0.256393\pi\)
−0.970929 + 0.239368i \(0.923060\pi\)
\(824\) 0.105103 + 0.182044i 0.00366144 + 0.00634180i
\(825\) 1.27533 + 2.20893i 0.0444011 + 0.0769050i
\(826\) 3.23914 0.112704
\(827\) −8.26808 −0.287509 −0.143755 0.989613i \(-0.545918\pi\)
−0.143755 + 0.989613i \(0.545918\pi\)
\(828\) 1.35234 + 2.34232i 0.0469971 + 0.0814014i
\(829\) −4.61957 8.00133i −0.160444 0.277898i 0.774584 0.632471i \(-0.217959\pi\)
−0.935028 + 0.354574i \(0.884626\pi\)
\(830\) −4.15023 −0.144057
\(831\) 13.7536 0.477108
\(832\) −2.80979 + 4.86669i −0.0974118 + 0.168722i
\(833\) −4.68279 + 8.11083i −0.162249 + 0.281024i
\(834\) −1.50552 −0.0521320
\(835\) −11.6766 20.2245i −0.404085 0.699896i
\(836\) −1.80979 + 3.13464i −0.0625928 + 0.108414i
\(837\) −1.00000 1.73205i −0.0345651 0.0598684i
\(838\) −16.7147 + 28.9507i −0.577399 + 1.00008i
\(839\) −21.4583 + 37.1669i −0.740823 + 1.28314i 0.211299 + 0.977422i \(0.432231\pi\)
−0.952121 + 0.305721i \(0.901103\pi\)
\(840\) −1.71468 2.96991i −0.0591620 0.102472i
\(841\) 11.0689 19.1719i 0.381687 0.661101i
\(842\) 14.5434 + 25.1899i 0.501199 + 0.868102i
\(843\) 1.87490 0.0645752
\(844\) 6.95192 + 12.0411i 0.239295 + 0.414471i
\(845\) 35.2064 1.21114
\(846\) −10.4945 −0.360808
\(847\) 6.99000 12.1070i 0.240179 0.416003i
\(848\) 6.65213 11.5218i 0.228435 0.395661i
\(849\) 13.5145 23.4077i 0.463815 0.803352i
\(850\) 1.77190 + 3.06903i 0.0607758 + 0.105267i
\(851\) −4.61063 −0.158050
\(852\) 0.809786 1.40259i 0.0277428 0.0480520i
\(853\) 9.19916 0.314973 0.157487 0.987521i \(-0.449661\pi\)
0.157487 + 0.987521i \(0.449661\pi\)
\(854\) −14.0651 1.40259i −0.481298 0.0479957i
\(855\) −3.78979 −0.129608
\(856\) 4.78979 8.29617i 0.163712 0.283557i
\(857\) −23.3783 −0.798588 −0.399294 0.916823i \(-0.630745\pi\)
−0.399294 + 0.916823i \(0.630745\pi\)
\(858\) 5.08511 + 8.80767i 0.173603 + 0.300689i
\(859\) 21.6085 37.4271i 0.737273 1.27699i −0.216445 0.976295i \(-0.569446\pi\)
0.953719 0.300700i \(-0.0972204\pi\)
\(860\) 4.65660 8.06547i 0.158789 0.275030i
\(861\) 1.07702 1.86545i 0.0367046 0.0635743i
\(862\) 39.0868 1.33130
\(863\) −51.7174 −1.76048 −0.880241 0.474527i \(-0.842619\pi\)
−0.880241 + 0.474527i \(0.842619\pi\)
\(864\) −0.500000 0.866025i −0.0170103 0.0294628i
\(865\) −5.36214 −0.182318
\(866\) 9.67212 + 16.7526i 0.328672 + 0.569277i
\(867\) −5.33872 + 9.24694i −0.181313 + 0.314043i
\(868\) 1.80979 + 3.13464i 0.0614281 + 0.106397i
\(869\) −9.98001 + 17.2859i −0.338549 + 0.586383i
\(870\) −2.48191 + 4.29879i −0.0841446 + 0.145743i
\(871\) −13.2192 22.8962i −0.447914 0.775810i
\(872\) −1.59511 + 2.76281i −0.0540171 + 0.0935604i
\(873\) 7.75723 + 13.4359i 0.262543 + 0.454737i
\(874\) −5.40937 −0.182975
\(875\) 10.9900 19.0352i 0.371530 0.643509i
\(876\) −2.50000 + 4.33013i −0.0844672 + 0.146301i
\(877\) 9.06512 0.306107 0.153054 0.988218i \(-0.451089\pi\)
0.153054 + 0.988218i \(0.451089\pi\)
\(878\) −8.66850 −0.292548
\(879\) 4.46744 + 7.73783i 0.150683 + 0.260991i
\(880\) 1.71468 + 2.96991i 0.0578018 + 0.100116i
\(881\) −28.0668 −0.945595 −0.472798 0.881171i \(-0.656756\pi\)
−0.472798 + 0.881171i \(0.656756\pi\)
\(882\) 3.72467 0.125416
\(883\) −13.1340 22.7488i −0.441996 0.765559i 0.555842 0.831288i \(-0.312396\pi\)
−0.997838 + 0.0657291i \(0.979063\pi\)
\(884\) 7.06512 + 12.2371i 0.237626 + 0.411580i
\(885\) −1.69574 2.93710i −0.0570016 0.0987296i
\(886\) −5.71468 9.89811i −0.191988 0.332534i
\(887\) −50.2119 −1.68595 −0.842975 0.537952i \(-0.819198\pi\)
−0.842975 + 0.537952i \(0.819198\pi\)
\(888\) 1.70468 0.0572054
\(889\) 1.63766 + 2.83651i 0.0549254 + 0.0951337i
\(890\) 14.3577 + 24.8682i 0.481270 + 0.833584i
\(891\) −1.80979 −0.0606301
\(892\) −13.1792 −0.441271
\(893\) 10.4945 18.1770i 0.351184 0.608269i
\(894\) −0.394897 + 0.683982i −0.0132073 + 0.0228758i
\(895\) −21.5817 −0.721396
\(896\) 0.904893 + 1.56732i 0.0302304 + 0.0523605i
\(897\) −7.59958 + 13.1629i −0.253743 + 0.439495i
\(898\) 6.57254 + 11.3840i 0.219329 + 0.379888i
\(899\) 2.61957 4.53723i 0.0873676 0.151325i
\(900\) 0.704683 1.22055i 0.0234894 0.0406849i
\(901\) −16.7266 28.9713i −0.557243 0.965173i
\(902\) −1.07702 + 1.86545i −0.0358607 + 0.0621126i
\(903\) −4.44745 7.70321i −0.148002 0.256347i
\(904\) −13.6196 −0.452980
\(905\) −13.4719 23.3340i −0.447822 0.775650i
\(906\) 1.42936 0.0474872
\(907\) −4.03998 −0.134145 −0.0670727 0.997748i \(-0.521366\pi\)
−0.0670727 + 0.997748i \(0.521366\pi\)
\(908\) −2.90489 + 5.03142i −0.0964023 + 0.166974i
\(909\) 3.05255 5.28717i 0.101247 0.175365i
\(910\) 9.63576 16.6896i 0.319422 0.553256i
\(911\) 3.42936 + 5.93982i 0.113620 + 0.196795i 0.917227 0.398365i \(-0.130422\pi\)
−0.803607 + 0.595160i \(0.797089\pi\)
\(912\) 2.00000 0.0662266
\(913\) 1.98191 3.43277i 0.0655916 0.113608i
\(914\) 5.76086 0.190552
\(915\) 6.09149 + 13.4879i 0.201378 + 0.445895i
\(916\) −29.6285 −0.978954
\(917\) −15.2192 + 26.3603i −0.502581 + 0.870495i
\(918\) −2.51447 −0.0829898
\(919\) −15.3994 26.6725i −0.507978 0.879844i −0.999957 0.00923722i \(-0.997060\pi\)
0.491979 0.870607i \(-0.336274\pi\)
\(920\) −2.56255 + 4.43846i −0.0844847 + 0.146332i
\(921\) −1.18212 + 2.04749i −0.0389522 + 0.0674671i
\(922\) −4.53808 + 7.86019i −0.149454 + 0.258862i
\(923\) 9.10130 0.299573
\(924\) 3.27533 0.107750
\(925\) 1.20126 + 2.08064i 0.0394972 + 0.0684112i
\(926\) 11.0089 0.361776
\(927\) −0.105103 0.182044i −0.00345204 0.00597911i
\(928\) 1.30979 2.26862i 0.0429958 0.0744710i
\(929\) −2.07149 3.58793i −0.0679635 0.117716i 0.830041 0.557702i \(-0.188317\pi\)
−0.898005 + 0.439986i \(0.854983\pi\)
\(930\) 1.89490 3.28206i 0.0621361 0.107623i
\(931\) −3.72467 + 6.45133i −0.122071 + 0.211434i
\(932\) 7.59511 + 13.1551i 0.248786 + 0.430910i
\(933\) 9.08511 15.7359i 0.297433 0.515169i
\(934\) 5.00000 + 8.66025i 0.163605 + 0.283372i
\(935\) 8.62301 0.282003
\(936\) 2.80979 4.86669i 0.0918407 0.159073i
\(937\) 3.35681 5.81417i 0.109662 0.189941i −0.805971 0.591955i \(-0.798356\pi\)
0.915633 + 0.402014i \(0.131690\pi\)
\(938\) −8.51447 −0.278007
\(939\) −11.3732 −0.371150
\(940\) −9.94298 17.2217i −0.324304 0.561711i
\(941\) −5.02361 8.70115i −0.163765 0.283650i 0.772451 0.635074i \(-0.219031\pi\)
−0.936216 + 0.351425i \(0.885697\pi\)
\(942\) −21.1992 −0.690706
\(943\) −3.21915 −0.104830
\(944\) 0.894897 + 1.55001i 0.0291264 + 0.0504484i
\(945\) 1.71468 + 2.96991i 0.0557785 + 0.0966112i
\(946\) 4.44745 + 7.70321i 0.144599 + 0.250453i
\(947\) 18.6947 + 32.3801i 0.607496 + 1.05221i 0.991652 + 0.128945i \(0.0411591\pi\)
−0.384156 + 0.923268i \(0.625508\pi\)
\(948\) 11.0289 0.358203
\(949\) −28.0979 −0.912095
\(950\) 1.40937 + 2.44109i 0.0457259 + 0.0791995i
\(951\) 3.85681 + 6.68020i 0.125066 + 0.216620i
\(952\) 4.55065 0.147487
\(953\) 28.0489 0.908594 0.454297 0.890850i \(-0.349891\pi\)
0.454297 + 0.890850i \(0.349891\pi\)
\(954\) −6.65213 + 11.5218i −0.215371 + 0.373033i
\(955\) −6.91194 + 11.9718i −0.223665 + 0.387399i
\(956\) 25.5634 0.826779
\(957\) −2.37043 4.10571i −0.0766252 0.132719i
\(958\) 21.4294 37.1167i 0.692351 1.19919i
\(959\) −0.267230 0.462857i −0.00862932 0.0149464i
\(960\) 0.947448 1.64103i 0.0305788 0.0529640i
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 4.78979 + 8.29617i 0.154429 + 0.267479i
\(963\) −4.78979 + 8.29617i −0.154349 + 0.267340i
\(964\) 8.11957 + 14.0635i 0.261514 + 0.452955i
\(965\) −49.9745 −1.60873
\(966\) 2.44745 + 4.23911i 0.0787454 + 0.136391i
\(967\) 25.8298 0.830630 0.415315 0.909678i \(-0.363671\pi\)
0.415315 + 0.909678i \(0.363671\pi\)
\(968\) 7.72467 0.248280
\(969\) 2.51447 4.35519i 0.0807764 0.139909i
\(970\) −14.6992 + 25.4597i −0.471962 + 0.817461i
\(971\) 12.8387 22.2373i 0.412014 0.713630i −0.583096 0.812404i \(-0.698159\pi\)
0.995110 + 0.0987739i \(0.0314921\pi\)
\(972\) 0.500000 + 0.866025i 0.0160375 + 0.0277778i
\(973\) −2.72467 −0.0873491
\(974\) −6.61957 + 11.4654i −0.212105 + 0.367376i
\(975\) 7.92003 0.253644
\(976\) −3.21468 7.11799i −0.102899 0.227841i
\(977\) −2.25533 −0.0721545 −0.0360772 0.999349i \(-0.511486\pi\)
−0.0360772 + 0.999349i \(0.511486\pi\)
\(978\) −5.14214 + 8.90644i −0.164427 + 0.284797i
\(979\) −27.4256 −0.876525
\(980\) 3.52894 + 6.11230i 0.112728 + 0.195250i
\(981\) 1.59511 2.76281i 0.0509278 0.0882096i
\(982\) −2.07511 + 3.59420i −0.0662196 + 0.114696i
\(983\) −4.76980 + 8.26154i −0.152133 + 0.263502i −0.932011 0.362429i \(-0.881948\pi\)
0.779878 + 0.625931i \(0.215281\pi\)
\(984\) 1.19021 0.0379426
\(985\) −43.0400 −1.37137
\(986\) −3.29342 5.70436i −0.104884 0.181664i
\(987\) −18.9928 −0.604546
\(988\) 5.61957 + 9.73338i 0.178782 + 0.309660i
\(989\) −6.64661 + 11.5123i −0.211350 + 0.366069i
\(990\) −1.71468 2.96991i −0.0544961 0.0943900i
\(991\) −27.4283 + 47.5072i −0.871289 + 1.50912i −0.0106247 + 0.999944i \(0.503382\pi\)
−0.860664 + 0.509173i \(0.829951\pi\)
\(992\) −1.00000 + 1.73205i −0.0317500 + 0.0549927i
\(993\) 15.1911 + 26.3117i 0.482074 + 0.834976i
\(994\) 1.46554 2.53839i 0.0464841 0.0805128i
\(995\) 22.5944 + 39.1347i 0.716292 + 1.24065i
\(996\) −2.19021 −0.0693996
\(997\) 16.0689 27.8322i 0.508908 0.881454i −0.491039 0.871138i \(-0.663383\pi\)
0.999947 0.0103166i \(-0.00328394\pi\)
\(998\) 19.5634 33.8848i 0.619269 1.07260i
\(999\) −1.70468 −0.0539338
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 366.2.e.d.13.2 6
3.2 odd 2 1098.2.f.f.379.2 6
61.47 even 3 inner 366.2.e.d.169.2 yes 6
183.47 odd 6 1098.2.f.f.901.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
366.2.e.d.13.2 6 1.1 even 1 trivial
366.2.e.d.169.2 yes 6 61.47 even 3 inner
1098.2.f.f.379.2 6 3.2 odd 2
1098.2.f.f.901.2 6 183.47 odd 6