Properties

Label 366.3.s.a.37.8
Level $366$
Weight $3$
Character 366.37
Analytic conductor $9.973$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [366,3,Mod(37,366)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(366, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 13]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("366.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 366 = 2 \cdot 3 \cdot 61 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 366.s (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.97277767559\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 37.8
Character \(\chi\) \(=\) 366.37
Dual form 366.3.s.a.277.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.642040 + 1.26007i) q^{2} +(1.64728 - 0.535233i) q^{3} +(-1.17557 - 1.61803i) q^{4} +(-1.15144 - 1.58482i) q^{5} +(-0.383185 + 2.41933i) q^{6} +(-6.58739 + 3.35644i) q^{7} +(2.79360 - 0.442463i) q^{8} +(2.42705 - 1.76336i) q^{9} +(2.73627 - 0.433382i) q^{10} +(4.59003 - 4.59003i) q^{11} +(-2.80252 - 2.03615i) q^{12} +14.4301 q^{13} -10.4556i q^{14} +(-2.74500 - 1.99436i) q^{15} +(-1.23607 + 3.80423i) q^{16} +(-2.16400 + 13.6629i) q^{17} +(0.663695 + 4.19041i) q^{18} +(20.4774 - 6.65353i) q^{19} +(-1.21070 + 3.72615i) q^{20} +(-9.05478 + 9.05478i) q^{21} +(2.83680 + 8.73076i) q^{22} +(38.9787 + 6.17361i) q^{23} +(4.36502 - 2.22409i) q^{24} +(6.53958 - 20.1267i) q^{25} +(-9.26472 + 18.1830i) q^{26} +(3.05422 - 4.20378i) q^{27} +(13.1748 + 6.71288i) q^{28} +(23.9329 - 23.9329i) q^{29} +(4.27543 - 2.17844i) q^{30} +(-12.1460 - 23.8378i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(5.10432 - 10.0178i) q^{33} +(-15.8269 - 11.4989i) q^{34} +(12.9044 + 6.57510i) q^{35} +(-5.70634 - 1.85410i) q^{36} +(-8.49106 - 16.6646i) q^{37} +(-4.76340 + 30.0749i) q^{38} +(23.7704 - 7.72349i) q^{39} +(-3.91790 - 3.91790i) q^{40} +(3.25815 + 1.05864i) q^{41} +(-5.59616 - 17.2232i) q^{42} +(-34.3497 + 5.44045i) q^{43} +(-12.8227 - 2.03092i) q^{44} +(-5.58922 - 1.81605i) q^{45} +(-32.8050 + 45.1523i) q^{46} +81.9708 q^{47} +6.92820i q^{48} +(3.32649 - 4.57852i) q^{49} +(21.1625 + 21.1625i) q^{50} +(3.74815 + 23.6649i) q^{51} +(-16.9636 - 23.3484i) q^{52} +(4.55868 + 28.7823i) q^{53} +(3.33614 + 6.54753i) q^{54} +(-12.5596 - 1.98924i) q^{55} +(-16.9175 + 12.2912i) q^{56} +(30.1709 - 21.9204i) q^{57} +(14.7914 + 45.5231i) q^{58} +(60.8792 + 31.0195i) q^{59} +6.78600i q^{60} +(-59.2986 + 14.3066i) q^{61} +37.8356 q^{62} +(-10.0693 + 19.7622i) q^{63} +(7.60845 - 2.47214i) q^{64} +(-16.6155 - 22.8692i) q^{65} +(9.34599 + 12.8636i) q^{66} +(-10.8712 + 68.6381i) q^{67} +(24.6510 - 12.5603i) q^{68} +(67.5130 - 10.6930i) q^{69} +(-16.5702 + 12.0390i) q^{70} +(-83.2417 + 13.1842i) q^{71} +(6.00000 - 6.00000i) q^{72} +(-2.53143 - 1.83919i) q^{73} +26.4503 q^{74} -36.6545i q^{75} +(-34.8383 - 25.3115i) q^{76} +(-14.8301 + 45.6425i) q^{77} +(-5.52941 + 34.9113i) q^{78} +(-8.87355 - 56.0254i) q^{79} +(7.45229 - 2.42140i) q^{80} +(2.78115 - 8.55951i) q^{81} +(-3.42582 + 3.42582i) q^{82} +(22.8010 + 70.1743i) q^{83} +(25.2955 + 4.00641i) q^{84} +(24.1451 - 12.3025i) q^{85} +(15.1985 - 46.7761i) q^{86} +(26.6145 - 52.2339i) q^{87} +(10.7918 - 14.8537i) q^{88} +(-60.5462 - 30.8498i) q^{89} +(5.87685 - 5.87685i) q^{90} +(-95.0569 + 48.4339i) q^{91} +(-35.8330 - 70.3263i) q^{92} +(-32.7666 - 32.7666i) q^{93} +(-52.6285 + 103.289i) q^{94} +(-34.1233 - 24.7920i) q^{95} +(-8.73005 - 4.44818i) q^{96} +(99.5654 + 32.3508i) q^{97} +(3.63354 + 7.13122i) q^{98} +(3.04638 - 19.2341i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 20 q^{2} - 40 q^{5} + 20 q^{7} + 40 q^{8} + 60 q^{9} + 60 q^{10} + 20 q^{11} - 32 q^{13} + 80 q^{16} + 80 q^{17} + 60 q^{18} - 100 q^{19} - 40 q^{20} + 12 q^{21} - 60 q^{22} + 56 q^{23} + 144 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/366\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.642040 + 1.26007i −0.321020 + 0.630037i
\(3\) 1.64728 0.535233i 0.549093 0.178411i
\(4\) −1.17557 1.61803i −0.293893 0.404508i
\(5\) −1.15144 1.58482i −0.230288 0.316965i 0.678198 0.734879i \(-0.262761\pi\)
−0.908486 + 0.417914i \(0.862761\pi\)
\(6\) −0.383185 + 2.41933i −0.0638641 + 0.403222i
\(7\) −6.58739 + 3.35644i −0.941055 + 0.479492i −0.856052 0.516889i \(-0.827090\pi\)
−0.0850029 + 0.996381i \(0.527090\pi\)
\(8\) 2.79360 0.442463i 0.349201 0.0553079i
\(9\) 2.42705 1.76336i 0.269672 0.195928i
\(10\) 2.73627 0.433382i 0.273627 0.0433382i
\(11\) 4.59003 4.59003i 0.417276 0.417276i −0.466988 0.884264i \(-0.654661\pi\)
0.884264 + 0.466988i \(0.154661\pi\)
\(12\) −2.80252 2.03615i −0.233543 0.169679i
\(13\) 14.4301 1.11001 0.555005 0.831847i \(-0.312716\pi\)
0.555005 + 0.831847i \(0.312716\pi\)
\(14\) 10.4556i 0.746826i
\(15\) −2.74500 1.99436i −0.183000 0.132957i
\(16\) −1.23607 + 3.80423i −0.0772542 + 0.237764i
\(17\) −2.16400 + 13.6629i −0.127294 + 0.803703i 0.838597 + 0.544753i \(0.183376\pi\)
−0.965891 + 0.258950i \(0.916624\pi\)
\(18\) 0.663695 + 4.19041i 0.0368720 + 0.232800i
\(19\) 20.4774 6.65353i 1.07776 0.350186i 0.284255 0.958749i \(-0.408254\pi\)
0.793505 + 0.608563i \(0.208254\pi\)
\(20\) −1.21070 + 3.72615i −0.0605349 + 0.186307i
\(21\) −9.05478 + 9.05478i −0.431180 + 0.431180i
\(22\) 2.83680 + 8.73076i 0.128945 + 0.396853i
\(23\) 38.9787 + 6.17361i 1.69472 + 0.268418i 0.927734 0.373241i \(-0.121754\pi\)
0.766990 + 0.641659i \(0.221754\pi\)
\(24\) 4.36502 2.22409i 0.181876 0.0926704i
\(25\) 6.53958 20.1267i 0.261583 0.805070i
\(26\) −9.26472 + 18.1830i −0.356335 + 0.699347i
\(27\) 3.05422 4.20378i 0.113119 0.155695i
\(28\) 13.1748 + 6.71288i 0.470528 + 0.239746i
\(29\) 23.9329 23.9329i 0.825274 0.825274i −0.161585 0.986859i \(-0.551661\pi\)
0.986859 + 0.161585i \(0.0516606\pi\)
\(30\) 4.27543 2.17844i 0.142514 0.0726147i
\(31\) −12.1460 23.8378i −0.391805 0.768961i 0.607880 0.794029i \(-0.292020\pi\)
−0.999686 + 0.0250674i \(0.992020\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 5.10432 10.0178i 0.154676 0.303570i
\(34\) −15.8269 11.4989i −0.465498 0.338204i
\(35\) 12.9044 + 6.57510i 0.368696 + 0.187860i
\(36\) −5.70634 1.85410i −0.158509 0.0515028i
\(37\) −8.49106 16.6646i −0.229488 0.450396i 0.747334 0.664449i \(-0.231334\pi\)
−0.976822 + 0.214053i \(0.931334\pi\)
\(38\) −4.76340 + 30.0749i −0.125353 + 0.791445i
\(39\) 23.7704 7.72349i 0.609499 0.198038i
\(40\) −3.91790 3.91790i −0.0979475 0.0979475i
\(41\) 3.25815 + 1.05864i 0.0794670 + 0.0258204i 0.348481 0.937316i \(-0.386698\pi\)
−0.269014 + 0.963136i \(0.586698\pi\)
\(42\) −5.59616 17.2232i −0.133242 0.410077i
\(43\) −34.3497 + 5.44045i −0.798829 + 0.126522i −0.542487 0.840064i \(-0.682517\pi\)
−0.256342 + 0.966586i \(0.582517\pi\)
\(44\) −12.8227 2.03092i −0.291426 0.0461573i
\(45\) −5.58922 1.81605i −0.124205 0.0403566i
\(46\) −32.8050 + 45.1523i −0.713153 + 0.981571i
\(47\) 81.9708 1.74406 0.872030 0.489452i \(-0.162803\pi\)
0.872030 + 0.489452i \(0.162803\pi\)
\(48\) 6.92820i 0.144338i
\(49\) 3.32649 4.57852i 0.0678876 0.0934393i
\(50\) 21.1625 + 21.1625i 0.423250 + 0.423250i
\(51\) 3.74815 + 23.6649i 0.0734932 + 0.464018i
\(52\) −16.9636 23.3484i −0.326224 0.449009i
\(53\) 4.55868 + 28.7823i 0.0860127 + 0.543063i 0.992637 + 0.121125i \(0.0386501\pi\)
−0.906625 + 0.421938i \(0.861350\pi\)
\(54\) 3.33614 + 6.54753i 0.0617803 + 0.121251i
\(55\) −12.5596 1.98924i −0.228355 0.0361680i
\(56\) −16.9175 + 12.2912i −0.302097 + 0.219487i
\(57\) 30.1709 21.9204i 0.529313 0.384569i
\(58\) 14.7914 + 45.5231i 0.255024 + 0.784882i
\(59\) 60.8792 + 31.0195i 1.03185 + 0.525755i 0.886065 0.463561i \(-0.153429\pi\)
0.145787 + 0.989316i \(0.453429\pi\)
\(60\) 6.78600i 0.113100i
\(61\) −59.2986 + 14.3066i −0.972108 + 0.234535i
\(62\) 37.8356 0.610251
\(63\) −10.0693 + 19.7622i −0.159831 + 0.313685i
\(64\) 7.60845 2.47214i 0.118882 0.0386271i
\(65\) −16.6155 22.8692i −0.255623 0.351834i
\(66\) 9.34599 + 12.8636i 0.141606 + 0.194904i
\(67\) −10.8712 + 68.6381i −0.162257 + 1.02445i 0.763356 + 0.645978i \(0.223550\pi\)
−0.925613 + 0.378471i \(0.876450\pi\)
\(68\) 24.6510 12.5603i 0.362515 0.184711i
\(69\) 67.5130 10.6930i 0.978449 0.154971i
\(70\) −16.5702 + 12.0390i −0.236717 + 0.171985i
\(71\) −83.2417 + 13.1842i −1.17242 + 0.185693i −0.712111 0.702067i \(-0.752261\pi\)
−0.460308 + 0.887759i \(0.652261\pi\)
\(72\) 6.00000 6.00000i 0.0833333 0.0833333i
\(73\) −2.53143 1.83919i −0.0346771 0.0251944i 0.570312 0.821428i \(-0.306822\pi\)
−0.604989 + 0.796234i \(0.706822\pi\)
\(74\) 26.4503 0.357436
\(75\) 36.6545i 0.488727i
\(76\) −34.8383 25.3115i −0.458399 0.333046i
\(77\) −14.8301 + 45.6425i −0.192599 + 0.592760i
\(78\) −5.52941 + 34.9113i −0.0708898 + 0.447581i
\(79\) −8.87355 56.0254i −0.112323 0.709182i −0.978004 0.208586i \(-0.933114\pi\)
0.865681 0.500597i \(-0.166886\pi\)
\(80\) 7.45229 2.42140i 0.0931536 0.0302674i
\(81\) 2.78115 8.55951i 0.0343352 0.105673i
\(82\) −3.42582 + 3.42582i −0.0417783 + 0.0417783i
\(83\) 22.8010 + 70.1743i 0.274711 + 0.845474i 0.989296 + 0.145925i \(0.0466158\pi\)
−0.714585 + 0.699549i \(0.753384\pi\)
\(84\) 25.2955 + 4.00641i 0.301137 + 0.0476954i
\(85\) 24.1451 12.3025i 0.284060 0.144736i
\(86\) 15.1985 46.7761i 0.176726 0.543908i
\(87\) 26.6145 52.2339i 0.305914 0.600390i
\(88\) 10.7918 14.8537i 0.122634 0.168792i
\(89\) −60.5462 30.8498i −0.680294 0.346627i 0.0794597 0.996838i \(-0.474680\pi\)
−0.759754 + 0.650211i \(0.774680\pi\)
\(90\) 5.87685 5.87685i 0.0652983 0.0652983i
\(91\) −95.0569 + 48.4339i −1.04458 + 0.532241i
\(92\) −35.8330 70.3263i −0.389490 0.764416i
\(93\) −32.7666 32.7666i −0.352329 0.352329i
\(94\) −52.6285 + 103.289i −0.559878 + 1.09882i
\(95\) −34.1233 24.7920i −0.359192 0.260968i
\(96\) −8.73005 4.44818i −0.0909380 0.0463352i
\(97\) 99.5654 + 32.3508i 1.02645 + 0.333513i 0.773385 0.633937i \(-0.218562\pi\)
0.253063 + 0.967450i \(0.418562\pi\)
\(98\) 3.63354 + 7.13122i 0.0370769 + 0.0727675i
\(99\) 3.04638 19.2341i 0.0307715 0.194284i
\(100\) −40.2535 + 13.0792i −0.402535 + 0.130792i
\(101\) 47.5552 + 47.5552i 0.470844 + 0.470844i 0.902188 0.431344i \(-0.141960\pi\)
−0.431344 + 0.902188i \(0.641960\pi\)
\(102\) −32.2260 10.4709i −0.315941 0.102655i
\(103\) −55.1027 169.589i −0.534978 1.64649i −0.743696 0.668518i \(-0.766929\pi\)
0.208718 0.977976i \(-0.433071\pi\)
\(104\) 40.3121 6.38481i 0.387616 0.0613924i
\(105\) 24.7763 + 3.92418i 0.235965 + 0.0373731i
\(106\) −39.1947 12.7351i −0.369761 0.120143i
\(107\) −15.5805 + 21.4447i −0.145612 + 0.200418i −0.875593 0.483050i \(-0.839529\pi\)
0.729981 + 0.683468i \(0.239529\pi\)
\(108\) −10.3923 −0.0962250
\(109\) 116.798i 1.07154i −0.844363 0.535771i \(-0.820021\pi\)
0.844363 0.535771i \(-0.179979\pi\)
\(110\) 10.5703 14.5488i 0.0960938 0.132262i
\(111\) −22.9066 22.9066i −0.206366 0.206366i
\(112\) −4.62620 29.2087i −0.0413054 0.260792i
\(113\) −9.03896 12.4411i −0.0799908 0.110098i 0.767147 0.641472i \(-0.221676\pi\)
−0.847137 + 0.531374i \(0.821676\pi\)
\(114\) 8.25045 + 52.0913i 0.0723724 + 0.456941i
\(115\) −35.0976 68.8829i −0.305196 0.598981i
\(116\) −66.8592 10.5894i −0.576372 0.0912884i
\(117\) 35.0227 25.4455i 0.299339 0.217483i
\(118\) −78.1738 + 56.7966i −0.662489 + 0.481327i
\(119\) −31.6038 97.2664i −0.265578 0.817365i
\(120\) −8.55086 4.35688i −0.0712572 0.0363074i
\(121\) 78.8632i 0.651762i
\(122\) 20.0446 83.9060i 0.164300 0.687754i
\(123\) 5.93369 0.0482414
\(124\) −24.2919 + 47.6756i −0.195903 + 0.384481i
\(125\) −86.0041 + 27.9444i −0.688033 + 0.223555i
\(126\) −18.4369 25.3762i −0.146324 0.201398i
\(127\) −53.1403 73.1414i −0.418428 0.575917i 0.546821 0.837250i \(-0.315838\pi\)
−0.965249 + 0.261333i \(0.915838\pi\)
\(128\) −1.76985 + 11.1744i −0.0138270 + 0.0873001i
\(129\) −53.6715 + 27.3470i −0.416058 + 0.211992i
\(130\) 39.4847 6.25376i 0.303728 0.0481058i
\(131\) 131.963 95.8770i 1.00735 0.731885i 0.0437015 0.999045i \(-0.486085\pi\)
0.963652 + 0.267159i \(0.0860850\pi\)
\(132\) −22.2096 + 3.51766i −0.168255 + 0.0266489i
\(133\) −112.561 + 112.561i −0.846321 + 0.846321i
\(134\) −79.5093 57.7669i −0.593353 0.431096i
\(135\) −10.1790 −0.0754000
\(136\) 39.1264i 0.287694i
\(137\) −85.8307 62.3597i −0.626502 0.455180i 0.228685 0.973501i \(-0.426557\pi\)
−0.855186 + 0.518320i \(0.826557\pi\)
\(138\) −29.8720 + 91.9367i −0.216464 + 0.666208i
\(139\) −39.4302 + 248.953i −0.283671 + 1.79103i 0.274800 + 0.961501i \(0.411388\pi\)
−0.558471 + 0.829524i \(0.688612\pi\)
\(140\) −4.53125 28.6092i −0.0323661 0.204351i
\(141\) 135.029 43.8735i 0.957651 0.311160i
\(142\) 36.8314 113.355i 0.259376 0.798278i
\(143\) 66.2348 66.2348i 0.463180 0.463180i
\(144\) 3.70820 + 11.4127i 0.0257514 + 0.0792547i
\(145\) −65.4869 10.3721i −0.451634 0.0715318i
\(146\) 3.94279 2.00895i 0.0270054 0.0137599i
\(147\) 3.02908 9.32255i 0.0206060 0.0634187i
\(148\) −16.9821 + 33.3293i −0.114744 + 0.225198i
\(149\) −75.1163 + 103.389i −0.504136 + 0.693884i −0.982917 0.184050i \(-0.941079\pi\)
0.478780 + 0.877935i \(0.341079\pi\)
\(150\) 46.1874 + 23.5337i 0.307916 + 0.156891i
\(151\) 97.5440 97.5440i 0.645987 0.645987i −0.306034 0.952021i \(-0.599002\pi\)
0.952021 + 0.306034i \(0.0990021\pi\)
\(152\) 54.2619 27.6478i 0.356987 0.181894i
\(153\) 18.8405 + 36.9766i 0.123141 + 0.241677i
\(154\) −47.9914 47.9914i −0.311632 0.311632i
\(155\) −23.7933 + 46.6971i −0.153505 + 0.301271i
\(156\) −40.4407 29.3819i −0.259235 0.188345i
\(157\) −223.990 114.129i −1.42669 0.726934i −0.441316 0.897352i \(-0.645488\pi\)
−0.985372 + 0.170417i \(0.945488\pi\)
\(158\) 76.2933 + 24.7892i 0.482869 + 0.156894i
\(159\) 22.9147 + 44.9726i 0.144117 + 0.282846i
\(160\) −1.73353 + 10.9451i −0.0108346 + 0.0684067i
\(161\) −277.489 + 90.1616i −1.72353 + 0.560010i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −65.0527 21.1369i −0.399096 0.129674i 0.102590 0.994724i \(-0.467287\pi\)
−0.501687 + 0.865050i \(0.667287\pi\)
\(164\) −2.11727 6.51630i −0.0129102 0.0397335i
\(165\) −21.7538 + 3.44546i −0.131841 + 0.0208816i
\(166\) −103.064 16.3237i −0.620867 0.0983357i
\(167\) 124.612 + 40.4890i 0.746182 + 0.242449i 0.657338 0.753596i \(-0.271683\pi\)
0.0888445 + 0.996046i \(0.471683\pi\)
\(168\) −21.2891 + 29.3019i −0.126721 + 0.174416i
\(169\) 39.2287 0.232123
\(170\) 38.3233i 0.225431i
\(171\) 37.9673 52.2575i 0.222031 0.305599i
\(172\) 49.1833 + 49.1833i 0.285949 + 0.285949i
\(173\) −28.7178 181.317i −0.165999 1.04808i −0.920205 0.391438i \(-0.871978\pi\)
0.754206 0.656638i \(-0.228022\pi\)
\(174\) 48.7310 + 67.0725i 0.280063 + 0.385474i
\(175\) 24.4755 + 154.532i 0.139860 + 0.883042i
\(176\) 11.7879 + 23.1351i 0.0669769 + 0.131450i
\(177\) 116.888 + 18.5132i 0.660383 + 0.104594i
\(178\) 77.7461 56.4858i 0.436776 0.317336i
\(179\) 211.268 153.495i 1.18027 0.857516i 0.188068 0.982156i \(-0.439778\pi\)
0.992202 + 0.124640i \(0.0397775\pi\)
\(180\) 3.63209 + 11.1784i 0.0201783 + 0.0621024i
\(181\) −194.005 98.8506i −1.07185 0.546136i −0.173240 0.984880i \(-0.555424\pi\)
−0.898612 + 0.438744i \(0.855424\pi\)
\(182\) 150.875i 0.828984i
\(183\) −90.0239 + 55.3055i −0.491934 + 0.302216i
\(184\) 111.623 0.606644
\(185\) −16.6336 + 32.6452i −0.0899111 + 0.176461i
\(186\) 62.3257 20.2508i 0.335084 0.108876i
\(187\) 52.7805 + 72.6462i 0.282249 + 0.388482i
\(188\) −96.3625 132.632i −0.512566 0.705487i
\(189\) −6.00961 + 37.9432i −0.0317969 + 0.200758i
\(190\) 53.1482 27.0804i 0.279728 0.142528i
\(191\) −140.098 + 22.1893i −0.733497 + 0.116175i −0.511999 0.858986i \(-0.671095\pi\)
−0.221498 + 0.975161i \(0.571095\pi\)
\(192\) 11.2101 8.14459i 0.0583858 0.0424197i
\(193\) 17.4860 2.76951i 0.0906009 0.0143498i −0.110969 0.993824i \(-0.535396\pi\)
0.201570 + 0.979474i \(0.435396\pi\)
\(194\) −104.689 + 104.689i −0.539635 + 0.539635i
\(195\) −39.6107 28.7788i −0.203132 0.147584i
\(196\) −11.3187 −0.0577487
\(197\) 125.585i 0.637486i 0.947841 + 0.318743i \(0.103261\pi\)
−0.947841 + 0.318743i \(0.896739\pi\)
\(198\) 22.2805 + 16.1877i 0.112528 + 0.0817562i
\(199\) 48.2530 148.507i 0.242477 0.746268i −0.753564 0.657375i \(-0.771667\pi\)
0.996041 0.0888934i \(-0.0283330\pi\)
\(200\) 9.36364 59.1197i 0.0468182 0.295598i
\(201\) 18.8295 + 118.885i 0.0936790 + 0.591466i
\(202\) −90.4554 + 29.3907i −0.447799 + 0.145499i
\(203\) −77.3260 + 237.985i −0.380916 + 1.17234i
\(204\) 33.8844 33.8844i 0.166100 0.166100i
\(205\) −2.07382 6.38255i −0.0101162 0.0311344i
\(206\) 249.073 + 39.4492i 1.20909 + 0.191501i
\(207\) 105.489 53.7496i 0.509611 0.259660i
\(208\) −17.8366 + 54.8955i −0.0857530 + 0.263921i
\(209\) 63.4523 124.532i 0.303599 0.595847i
\(210\) −20.8521 + 28.7005i −0.0992958 + 0.136669i
\(211\) 256.914 + 130.904i 1.21760 + 0.620399i 0.940288 0.340380i \(-0.110556\pi\)
0.277314 + 0.960779i \(0.410556\pi\)
\(212\) 41.2118 41.2118i 0.194395 0.194395i
\(213\) −130.066 + 66.2718i −0.610637 + 0.311135i
\(214\) −17.0186 33.4009i −0.0795261 0.156079i
\(215\) 48.1738 + 48.1738i 0.224064 + 0.224064i
\(216\) 6.67227 13.0951i 0.0308901 0.0606253i
\(217\) 160.020 + 116.262i 0.737421 + 0.535768i
\(218\) 147.174 + 74.9890i 0.675111 + 0.343986i
\(219\) −5.15436 1.67475i −0.0235359 0.00764727i
\(220\) 11.5460 + 22.6603i 0.0524818 + 0.103001i
\(221\) −31.2268 + 197.158i −0.141298 + 0.892118i
\(222\) 43.5709 14.1571i 0.196265 0.0637705i
\(223\) 302.807 + 302.807i 1.35788 + 1.35788i 0.876525 + 0.481356i \(0.159856\pi\)
0.481356 + 0.876525i \(0.340144\pi\)
\(224\) 39.7753 + 12.9238i 0.177568 + 0.0576955i
\(225\) −19.6187 60.3802i −0.0871943 0.268357i
\(226\) 21.4800 3.40210i 0.0950443 0.0150535i
\(227\) 419.863 + 66.4998i 1.84962 + 0.292951i 0.979733 0.200306i \(-0.0641936\pi\)
0.869884 + 0.493257i \(0.164194\pi\)
\(228\) −70.9360 23.0485i −0.311123 0.101090i
\(229\) 67.3842 92.7465i 0.294254 0.405006i −0.636136 0.771577i \(-0.719468\pi\)
0.930390 + 0.366571i \(0.119468\pi\)
\(230\) 109.332 0.475354
\(231\) 83.1235i 0.359842i
\(232\) 56.2697 77.4486i 0.242542 0.333830i
\(233\) 220.818 + 220.818i 0.947718 + 0.947718i 0.998700 0.0509814i \(-0.0162349\pi\)
−0.0509814 + 0.998700i \(0.516235\pi\)
\(234\) 9.57721 + 60.4681i 0.0409282 + 0.258411i
\(235\) −94.3847 129.909i −0.401637 0.552806i
\(236\) −21.3772 134.970i −0.0905814 0.571908i
\(237\) −44.6039 87.5400i −0.188202 0.369367i
\(238\) 142.854 + 22.6258i 0.600226 + 0.0950664i
\(239\) −100.845 + 73.2681i −0.421945 + 0.306561i −0.778420 0.627744i \(-0.783979\pi\)
0.356475 + 0.934305i \(0.383979\pi\)
\(240\) 10.9800 7.97743i 0.0457499 0.0332393i
\(241\) −13.5226 41.6184i −0.0561105 0.172690i 0.919074 0.394086i \(-0.128939\pi\)
−0.975184 + 0.221396i \(0.928939\pi\)
\(242\) −99.3734 50.6333i −0.410634 0.209228i
\(243\) 15.5885i 0.0641500i
\(244\) 92.8582 + 79.1287i 0.380567 + 0.324298i
\(245\) −11.0864 −0.0452507
\(246\) −3.80967 + 7.47689i −0.0154864 + 0.0303939i
\(247\) 295.492 96.0113i 1.19633 0.388710i
\(248\) −44.4784 61.2192i −0.179348 0.246852i
\(249\) 75.1193 + 103.393i 0.301684 + 0.415232i
\(250\) 20.0060 126.313i 0.0800240 0.505252i
\(251\) −415.915 + 211.919i −1.65703 + 0.844300i −0.661494 + 0.749951i \(0.730077\pi\)
−0.995539 + 0.0943498i \(0.969923\pi\)
\(252\) 43.8130 6.93931i 0.173861 0.0275369i
\(253\) 207.250 150.576i 0.819171 0.595163i
\(254\) 126.282 20.0011i 0.497172 0.0787443i
\(255\) 33.1889 33.1889i 0.130153 0.130153i
\(256\) −12.9443 9.40456i −0.0505636 0.0367366i
\(257\) −239.658 −0.932520 −0.466260 0.884648i \(-0.654399\pi\)
−0.466260 + 0.884648i \(0.654399\pi\)
\(258\) 85.1879i 0.330186i
\(259\) 111.868 + 81.2767i 0.431922 + 0.313810i
\(260\) −17.4705 + 53.7688i −0.0671944 + 0.206803i
\(261\) 15.8842 100.289i 0.0608589 0.384248i
\(262\) 36.0864 + 227.840i 0.137734 + 0.869620i
\(263\) −41.3259 + 13.4276i −0.157133 + 0.0510555i −0.386527 0.922278i \(-0.626325\pi\)
0.229394 + 0.973334i \(0.426325\pi\)
\(264\) 9.82695 30.2442i 0.0372233 0.114562i
\(265\) 40.3659 40.3659i 0.152324 0.152324i
\(266\) −69.5663 214.103i −0.261528 0.804899i
\(267\) −116.248 18.4119i −0.435387 0.0689585i
\(268\) 123.839 63.0989i 0.462084 0.235444i
\(269\) −22.5317 + 69.3453i −0.0837608 + 0.257789i −0.984162 0.177271i \(-0.943273\pi\)
0.900401 + 0.435060i \(0.143273\pi\)
\(270\) 6.53532 12.8263i 0.0242049 0.0475048i
\(271\) −225.674 + 310.613i −0.832744 + 1.14617i 0.154663 + 0.987967i \(0.450571\pi\)
−0.987406 + 0.158206i \(0.949429\pi\)
\(272\) −49.3021 25.1207i −0.181258 0.0923554i
\(273\) −130.662 + 130.662i −0.478614 + 0.478614i
\(274\) 133.684 68.1156i 0.487900 0.248597i
\(275\) −62.3656 122.399i −0.226784 0.445088i
\(276\) −96.6680 96.6680i −0.350246 0.350246i
\(277\) −191.725 + 376.281i −0.692148 + 1.35842i 0.230614 + 0.973045i \(0.425927\pi\)
−0.922762 + 0.385371i \(0.874073\pi\)
\(278\) −288.383 209.522i −1.03735 0.753677i
\(279\) −71.5134 36.4379i −0.256320 0.130602i
\(280\) 38.9589 + 12.6585i 0.139139 + 0.0452090i
\(281\) −67.9811 133.420i −0.241926 0.474806i 0.737834 0.674982i \(-0.235849\pi\)
−0.979760 + 0.200176i \(0.935849\pi\)
\(282\) −31.4100 + 198.315i −0.111383 + 0.703244i
\(283\) 247.215 80.3249i 0.873550 0.283834i 0.162274 0.986746i \(-0.448117\pi\)
0.711277 + 0.702912i \(0.248117\pi\)
\(284\) 119.189 + 119.189i 0.419680 + 0.419680i
\(285\) −69.4800 22.5754i −0.243790 0.0792120i
\(286\) 40.9353 + 125.986i 0.143131 + 0.440511i
\(287\) −25.0159 + 3.96214i −0.0871635 + 0.0138053i
\(288\) −16.7616 2.65478i −0.0582001 0.00921799i
\(289\) 92.8622 + 30.1727i 0.321322 + 0.104404i
\(290\) 55.1148 75.8590i 0.190051 0.261583i
\(291\) 181.327 0.623117
\(292\) 6.25803i 0.0214316i
\(293\) −98.0839 + 135.001i −0.334757 + 0.460754i −0.942901 0.333073i \(-0.891914\pi\)
0.608144 + 0.793827i \(0.291914\pi\)
\(294\) 9.80231 + 9.80231i 0.0333412 + 0.0333412i
\(295\) −20.9384 132.200i −0.0709778 0.448136i
\(296\) −31.0941 42.7974i −0.105048 0.144586i
\(297\) −5.27649 33.3144i −0.0177660 0.112170i
\(298\) −82.0498 161.032i −0.275335 0.540375i
\(299\) 562.467 + 89.0860i 1.88116 + 0.297947i
\(300\) −59.3083 + 43.0900i −0.197694 + 0.143633i
\(301\) 208.014 151.131i 0.691076 0.502096i
\(302\) 60.2855 + 185.540i 0.199621 + 0.614370i
\(303\) 103.790 + 52.8835i 0.342541 + 0.174533i
\(304\) 86.1251i 0.283306i
\(305\) 90.9524 + 77.5046i 0.298204 + 0.254113i
\(306\) −58.6895 −0.191796
\(307\) −42.2994 + 83.0173i −0.137783 + 0.270415i −0.949580 0.313526i \(-0.898490\pi\)
0.811797 + 0.583940i \(0.198490\pi\)
\(308\) 91.2850 29.6603i 0.296380 0.0962997i
\(309\) −181.539 249.867i −0.587505 0.808632i
\(310\) −43.5655 59.9627i −0.140534 0.193428i
\(311\) 62.5978 395.227i 0.201279 1.27083i −0.655520 0.755178i \(-0.727551\pi\)
0.856800 0.515650i \(-0.172449\pi\)
\(312\) 62.9879 32.0939i 0.201884 0.102865i
\(313\) −398.959 + 63.1888i −1.27463 + 0.201881i −0.756824 0.653618i \(-0.773250\pi\)
−0.517804 + 0.855500i \(0.673250\pi\)
\(314\) 287.621 208.969i 0.915990 0.665506i
\(315\) 42.9138 6.79688i 0.136234 0.0215774i
\(316\) −80.2195 + 80.2195i −0.253859 + 0.253859i
\(317\) −468.005 340.025i −1.47636 1.07264i −0.978708 0.205256i \(-0.934197\pi\)
−0.497648 0.867379i \(-0.665803\pi\)
\(318\) −71.3809 −0.224468
\(319\) 219.706i 0.688733i
\(320\) −12.6786 9.21154i −0.0396206 0.0287861i
\(321\) −14.1875 + 43.6645i −0.0441977 + 0.136027i
\(322\) 64.5486 407.544i 0.200461 1.26566i
\(323\) 46.5936 + 294.180i 0.144253 + 0.910775i
\(324\) −17.1190 + 5.56231i −0.0528365 + 0.0171676i
\(325\) 94.3670 290.432i 0.290360 0.893636i
\(326\) 68.4004 68.4004i 0.209817 0.209817i
\(327\) −62.5143 192.399i −0.191175 0.588376i
\(328\) 9.57039 + 1.51580i 0.0291780 + 0.00462134i
\(329\) −539.974 + 275.130i −1.64126 + 0.836262i
\(330\) 9.62525 29.6235i 0.0291674 0.0897681i
\(331\) 14.5666 28.5885i 0.0440077 0.0863700i −0.867956 0.496642i \(-0.834566\pi\)
0.911963 + 0.410272i \(0.134566\pi\)
\(332\) 86.7403 119.388i 0.261266 0.359602i
\(333\) −49.9939 25.4732i −0.150132 0.0764960i
\(334\) −131.025 + 131.025i −0.392291 + 0.392291i
\(335\) 121.297 61.8038i 0.362080 0.184489i
\(336\) −23.2541 45.6388i −0.0692087 0.135830i
\(337\) −68.5881 68.5881i −0.203526 0.203526i 0.597983 0.801509i \(-0.295969\pi\)
−0.801509 + 0.597983i \(0.795969\pi\)
\(338\) −25.1864 + 49.4311i −0.0745160 + 0.146246i
\(339\) −21.5485 15.6559i −0.0635650 0.0461827i
\(340\) −48.2902 24.6051i −0.142030 0.0723679i
\(341\) −165.167 53.6659i −0.484360 0.157378i
\(342\) 41.4718 + 81.3929i 0.121262 + 0.237991i
\(343\) 50.1256 316.481i 0.146139 0.922685i
\(344\) −93.5521 + 30.3969i −0.271954 + 0.0883632i
\(345\) −94.6839 94.6839i −0.274446 0.274446i
\(346\) 246.911 + 80.2262i 0.713615 + 0.231868i
\(347\) 55.2948 + 170.180i 0.159351 + 0.490432i 0.998576 0.0533527i \(-0.0169908\pi\)
−0.839225 + 0.543785i \(0.816991\pi\)
\(348\) −115.803 + 18.3415i −0.332769 + 0.0527054i
\(349\) −337.001 53.3758i −0.965620 0.152939i −0.346340 0.938109i \(-0.612576\pi\)
−0.619280 + 0.785170i \(0.712576\pi\)
\(350\) −210.436 68.3749i −0.601247 0.195357i
\(351\) 44.0728 60.6610i 0.125564 0.172823i
\(352\) −36.7203 −0.104319
\(353\) 379.670i 1.07555i 0.843088 + 0.537776i \(0.180735\pi\)
−0.843088 + 0.537776i \(0.819265\pi\)
\(354\) −98.3745 + 135.401i −0.277894 + 0.382488i
\(355\) 116.743 + 116.743i 0.328853 + 0.328853i
\(356\) 21.2602 + 134.232i 0.0597198 + 0.377056i
\(357\) −104.120 143.309i −0.291654 0.401427i
\(358\) 57.7729 + 364.764i 0.161377 + 1.01889i
\(359\) 257.209 + 504.802i 0.716460 + 1.40613i 0.905579 + 0.424178i \(0.139437\pi\)
−0.189118 + 0.981954i \(0.560563\pi\)
\(360\) −16.4176 2.60029i −0.0456044 0.00722303i
\(361\) 83.0013 60.3040i 0.229921 0.167047i
\(362\) 249.118 180.995i 0.688172 0.499986i
\(363\) 42.2102 + 129.910i 0.116282 + 0.357878i
\(364\) 190.114 + 96.8678i 0.522291 + 0.266120i
\(365\) 6.12958i 0.0167934i
\(366\) −11.8902 148.945i −0.0324868 0.406954i
\(367\) 581.597 1.58473 0.792366 0.610046i \(-0.208849\pi\)
0.792366 + 0.610046i \(0.208849\pi\)
\(368\) −71.6661 + 140.653i −0.194745 + 0.382208i
\(369\) 9.77445 3.17591i 0.0264890 0.00860680i
\(370\) −30.4559 41.9190i −0.0823134 0.113295i
\(371\) −126.636 174.300i −0.341337 0.469810i
\(372\) −14.4980 + 91.5368i −0.0389731 + 0.246067i
\(373\) −12.7775 + 6.51046i −0.0342560 + 0.0174543i −0.471035 0.882115i \(-0.656119\pi\)
0.436779 + 0.899569i \(0.356119\pi\)
\(374\) −125.427 + 19.8656i −0.335366 + 0.0531167i
\(375\) −126.716 + 92.0645i −0.337909 + 0.245505i
\(376\) 228.994 36.2691i 0.609027 0.0964604i
\(377\) 345.355 345.355i 0.916062 0.916062i
\(378\) −43.9528 31.9336i −0.116277 0.0844804i
\(379\) −196.623 −0.518794 −0.259397 0.965771i \(-0.583524\pi\)
−0.259397 + 0.965771i \(0.583524\pi\)
\(380\) 84.3574i 0.221993i
\(381\) −126.685 92.0418i −0.332506 0.241579i
\(382\) 61.9882 190.780i 0.162273 0.499425i
\(383\) −8.17891 + 51.6396i −0.0213548 + 0.134829i −0.996062 0.0886550i \(-0.971743\pi\)
0.974708 + 0.223484i \(0.0717431\pi\)
\(384\) 3.06548 + 19.3547i 0.00798301 + 0.0504028i
\(385\) 89.4114 29.0515i 0.232237 0.0754585i
\(386\) −7.73690 + 23.8117i −0.0200438 + 0.0616885i
\(387\) −73.7749 + 73.7749i −0.190633 + 0.190633i
\(388\) −64.7015 199.131i −0.166757 0.513224i
\(389\) −298.313 47.2482i −0.766872 0.121461i −0.239271 0.970953i \(-0.576908\pi\)
−0.527601 + 0.849492i \(0.676908\pi\)
\(390\) 61.6950 31.4352i 0.158192 0.0806031i
\(391\) −168.699 + 519.203i −0.431456 + 1.32789i
\(392\) 7.26708 14.2624i 0.0185385 0.0363838i
\(393\) 166.064 228.567i 0.422554 0.581596i
\(394\) −158.246 80.6304i −0.401640 0.204646i
\(395\) −78.5730 + 78.5730i −0.198919 + 0.198919i
\(396\) −34.7027 + 17.6819i −0.0876330 + 0.0446512i
\(397\) −92.9254 182.376i −0.234069 0.459386i 0.743857 0.668339i \(-0.232994\pi\)
−0.977926 + 0.208953i \(0.932994\pi\)
\(398\) 156.150 + 156.150i 0.392336 + 0.392336i
\(399\) −125.173 + 245.665i −0.313716 + 0.615702i
\(400\) 68.4833 + 49.7561i 0.171208 + 0.124390i
\(401\) −293.977 149.789i −0.733110 0.373538i 0.0472382 0.998884i \(-0.484958\pi\)
−0.780348 + 0.625346i \(0.784958\pi\)
\(402\) −161.893 52.6021i −0.402718 0.130851i
\(403\) −175.268 343.983i −0.434908 0.853555i
\(404\) 21.0414 132.850i 0.0520828 0.328838i
\(405\) −16.7677 + 5.44814i −0.0414016 + 0.0134522i
\(406\) −250.232 250.232i −0.616336 0.616336i
\(407\) −115.465 37.5170i −0.283699 0.0921794i
\(408\) 20.9417 + 64.4520i 0.0513277 + 0.157971i
\(409\) 105.311 16.6796i 0.257484 0.0407815i −0.0263578 0.999653i \(-0.508391\pi\)
0.283842 + 0.958871i \(0.408391\pi\)
\(410\) 9.37396 + 1.48469i 0.0228633 + 0.00362119i
\(411\) −174.764 56.7843i −0.425217 0.138161i
\(412\) −209.623 + 288.522i −0.508794 + 0.700295i
\(413\) −505.150 −1.22312
\(414\) 167.434i 0.404429i
\(415\) 84.9599 116.937i 0.204723 0.281777i
\(416\) −57.7205 57.7205i −0.138751 0.138751i
\(417\) 68.2951 + 431.198i 0.163777 + 1.03405i
\(418\) 116.181 + 159.909i 0.277944 + 0.382557i
\(419\) −52.9858 334.539i −0.126458 0.798423i −0.966644 0.256124i \(-0.917554\pi\)
0.840186 0.542298i \(-0.182446\pi\)
\(420\) −22.7768 44.7020i −0.0542305 0.106433i
\(421\) 173.483 + 27.4771i 0.412075 + 0.0652662i 0.359030 0.933326i \(-0.383108\pi\)
0.0530444 + 0.998592i \(0.483108\pi\)
\(422\) −329.898 + 239.685i −0.781748 + 0.567973i
\(423\) 198.947 144.544i 0.470325 0.341711i
\(424\) 25.4703 + 78.3894i 0.0600714 + 0.184881i
\(425\) 260.839 + 132.904i 0.613739 + 0.312716i
\(426\) 206.441i 0.484604i
\(427\) 342.603 293.275i 0.802350 0.686828i
\(428\) 53.0141 0.123865
\(429\) 73.6561 144.558i 0.171692 0.336965i
\(430\) −91.6320 + 29.7730i −0.213098 + 0.0692396i
\(431\) −10.3962 14.3092i −0.0241212 0.0332000i 0.796786 0.604261i \(-0.206532\pi\)
−0.820907 + 0.571062i \(0.806532\pi\)
\(432\) 12.2169 + 16.8151i 0.0282798 + 0.0389238i
\(433\) −50.7351 + 320.329i −0.117171 + 0.739789i 0.857224 + 0.514944i \(0.172187\pi\)
−0.974395 + 0.224845i \(0.927813\pi\)
\(434\) −249.238 + 126.993i −0.574280 + 0.292610i
\(435\) −113.427 + 17.9650i −0.260751 + 0.0412989i
\(436\) −188.983 + 137.304i −0.433448 + 0.314919i
\(437\) 839.260 132.926i 1.92050 0.304178i
\(438\) 5.41961 5.41961i 0.0123735 0.0123735i
\(439\) −127.258 92.4584i −0.289882 0.210611i 0.433334 0.901233i \(-0.357337\pi\)
−0.723216 + 0.690622i \(0.757337\pi\)
\(440\) −35.9666 −0.0817422
\(441\) 16.9781i 0.0384991i
\(442\) −228.385 165.931i −0.516708 0.375410i
\(443\) 111.656 343.642i 0.252045 0.775715i −0.742352 0.670010i \(-0.766290\pi\)
0.994397 0.105706i \(-0.0337101\pi\)
\(444\) −10.1353 + 63.9920i −0.0228273 + 0.144126i
\(445\) 20.8239 + 131.477i 0.0467952 + 0.295453i
\(446\) −575.974 + 187.145i −1.29142 + 0.419608i
\(447\) −68.4004 + 210.515i −0.153021 + 0.470950i
\(448\) −41.8222 + 41.8222i −0.0933532 + 0.0933532i
\(449\) 43.9043 + 135.123i 0.0977823 + 0.300943i 0.987969 0.154653i \(-0.0494261\pi\)
−0.890186 + 0.455596i \(0.849426\pi\)
\(450\) 88.6795 + 14.0455i 0.197066 + 0.0312121i
\(451\) 19.8142 10.0958i 0.0439339 0.0223854i
\(452\) −9.50412 + 29.2507i −0.0210268 + 0.0647139i
\(453\) 108.473 212.891i 0.239455 0.469958i
\(454\) −353.363 + 486.363i −0.778333 + 1.07128i
\(455\) 186.212 + 94.8796i 0.409257 + 0.208527i
\(456\) 74.5865 74.5865i 0.163567 0.163567i
\(457\) 21.0821 10.7419i 0.0461315 0.0235052i −0.430773 0.902461i \(-0.641759\pi\)
0.476904 + 0.878955i \(0.341759\pi\)
\(458\) 73.6040 + 144.456i 0.160707 + 0.315406i
\(459\) 50.8266 + 50.8266i 0.110733 + 0.110733i
\(460\) −70.1952 + 137.766i −0.152598 + 0.299491i
\(461\) 50.9714 + 37.0329i 0.110567 + 0.0803316i 0.641695 0.766960i \(-0.278232\pi\)
−0.531128 + 0.847292i \(0.678232\pi\)
\(462\) −104.742 53.3686i −0.226714 0.115516i
\(463\) 109.942 + 35.7225i 0.237457 + 0.0771543i 0.425328 0.905039i \(-0.360159\pi\)
−0.187871 + 0.982194i \(0.560159\pi\)
\(464\) 61.4636 + 120.629i 0.132465 + 0.259976i
\(465\) −14.2004 + 89.6580i −0.0305386 + 0.192813i
\(466\) −420.021 + 136.473i −0.901334 + 0.292861i
\(467\) −96.7006 96.7006i −0.207068 0.207068i 0.595952 0.803020i \(-0.296775\pi\)
−0.803020 + 0.595952i \(0.796775\pi\)
\(468\) −82.3432 26.7549i −0.175947 0.0571687i
\(469\) −158.767 488.634i −0.338522 1.04186i
\(470\) 224.294 35.5247i 0.477221 0.0755844i
\(471\) −430.059 68.1147i −0.913077 0.144617i
\(472\) 183.798 + 59.7194i 0.389402 + 0.126524i
\(473\) −132.694 + 182.638i −0.280537 + 0.386127i
\(474\) 138.944 0.293131
\(475\) 455.656i 0.959275i
\(476\) −120.228 + 165.480i −0.252580 + 0.347646i
\(477\) 61.8176 + 61.8176i 0.129597 + 0.129597i
\(478\) −27.5768 174.113i −0.0576921 0.364253i
\(479\) 62.3808 + 85.8598i 0.130231 + 0.179248i 0.869153 0.494543i \(-0.164665\pi\)
−0.738922 + 0.673791i \(0.764665\pi\)
\(480\) 3.00256 + 18.9574i 0.00625533 + 0.0394946i
\(481\) −122.527 240.473i −0.254734 0.499944i
\(482\) 61.1243 + 9.68114i 0.126814 + 0.0200853i
\(483\) −408.844 + 297.042i −0.846468 + 0.614995i
\(484\) 127.603 92.7093i 0.263643 0.191548i
\(485\) −63.3735 195.044i −0.130667 0.402152i
\(486\) 19.6426 + 10.0084i 0.0404169 + 0.0205934i
\(487\) 440.275i 0.904056i 0.892004 + 0.452028i \(0.149299\pi\)
−0.892004 + 0.452028i \(0.850701\pi\)
\(488\) −159.327 + 66.2045i −0.326489 + 0.135665i
\(489\) −118.473 −0.242276
\(490\) 7.11792 13.9697i 0.0145264 0.0285096i
\(491\) 28.0503 9.11410i 0.0571289 0.0185623i −0.280313 0.959909i \(-0.590438\pi\)
0.337442 + 0.941346i \(0.390438\pi\)
\(492\) −6.97548 9.60092i −0.0141778 0.0195141i
\(493\) 275.204 + 378.785i 0.558222 + 0.768327i
\(494\) −68.7365 + 433.985i −0.139143 + 0.878512i
\(495\) −33.9904 + 17.3190i −0.0686675 + 0.0349878i
\(496\) 105.698 16.7409i 0.213100 0.0337517i
\(497\) 504.094 366.245i 1.01427 0.736912i
\(498\) −178.512 + 28.2735i −0.358458 + 0.0567742i
\(499\) −99.1735 + 99.1735i −0.198745 + 0.198745i −0.799462 0.600717i \(-0.794882\pi\)
0.600717 + 0.799462i \(0.294882\pi\)
\(500\) 146.319 + 106.307i 0.292638 + 0.212614i
\(501\) 226.942 0.452979
\(502\) 660.144i 1.31503i
\(503\) −543.206 394.662i −1.07993 0.784617i −0.102261 0.994758i \(-0.532608\pi\)
−0.977671 + 0.210141i \(0.932608\pi\)
\(504\) −19.3857 + 59.6630i −0.0384636 + 0.118379i
\(505\) 20.6096 130.124i 0.0408110 0.257671i
\(506\) 56.6742 + 357.827i 0.112004 + 0.707167i
\(507\) 64.6207 20.9965i 0.127457 0.0414133i
\(508\) −55.8751 + 171.966i −0.109990 + 0.338515i
\(509\) −615.575 + 615.575i −1.20938 + 1.20938i −0.238155 + 0.971227i \(0.576543\pi\)
−0.971227 + 0.238155i \(0.923457\pi\)
\(510\) 20.5119 + 63.1291i 0.0402194 + 0.123783i
\(511\) 22.8486 + 3.61886i 0.0447135 + 0.00708193i
\(512\) 20.1612 10.2726i 0.0393773 0.0200637i
\(513\) 34.5727 106.404i 0.0673932 0.207415i
\(514\) 153.870 301.986i 0.299357 0.587522i
\(515\) −205.321 + 282.600i −0.398681 + 0.548738i
\(516\) 107.343 + 54.6940i 0.208029 + 0.105996i
\(517\) 376.249 376.249i 0.727754 0.727754i
\(518\) −174.238 + 88.7788i −0.336367 + 0.171388i
\(519\) −144.353 283.309i −0.278137 0.545875i
\(520\) −56.5358 56.5358i −0.108723 0.108723i
\(521\) −2.70826 + 5.31525i −0.00519819 + 0.0102020i −0.893591 0.448882i \(-0.851822\pi\)
0.888393 + 0.459084i \(0.151822\pi\)
\(522\) 116.173 + 84.4046i 0.222553 + 0.161695i
\(523\) −197.110 100.433i −0.376883 0.192032i 0.255279 0.966867i \(-0.417833\pi\)
−0.632163 + 0.774836i \(0.717833\pi\)
\(524\) −310.264 100.811i −0.592108 0.192387i
\(525\) 123.029 + 241.458i 0.234341 + 0.459919i
\(526\) 9.61310 60.6947i 0.0182758 0.115389i
\(527\) 351.978 114.365i 0.667891 0.217011i
\(528\) 31.8007 + 31.8007i 0.0602286 + 0.0602286i
\(529\) 978.113 + 317.808i 1.84898 + 0.600772i
\(530\) 24.9475 + 76.7805i 0.0470708 + 0.144869i
\(531\) 202.455 32.0658i 0.381272 0.0603876i
\(532\) 314.450 + 49.8040i 0.591072 + 0.0936165i
\(533\) 47.0155 + 15.2763i 0.0882092 + 0.0286609i
\(534\) 97.8363 134.660i 0.183214 0.252173i
\(535\) 51.9260 0.0970580
\(536\) 196.558i 0.366712i
\(537\) 265.862 365.927i 0.495087 0.681429i
\(538\) −72.9140 72.9140i −0.135528 0.135528i
\(539\) −5.74687 36.2843i −0.0106621 0.0673178i
\(540\) 11.9661 + 16.4700i 0.0221595 + 0.0305000i
\(541\) 139.727 + 882.199i 0.258275 + 1.63068i 0.686584 + 0.727050i \(0.259109\pi\)
−0.428309 + 0.903632i \(0.640891\pi\)
\(542\) −246.504 483.791i −0.454804 0.892603i
\(543\) −372.489 58.9964i −0.685983 0.108649i
\(544\) 63.3078 45.9958i 0.116375 0.0845511i
\(545\) −185.105 + 134.486i −0.339641 + 0.246764i
\(546\) −80.7534 248.533i −0.147900 0.455189i
\(547\) −65.6426 33.4466i −0.120005 0.0611455i 0.392958 0.919557i \(-0.371452\pi\)
−0.512962 + 0.858411i \(0.671452\pi\)
\(548\) 212.185i 0.387199i
\(549\) −118.693 + 139.287i −0.216199 + 0.253711i
\(550\) 194.273 0.353224
\(551\) 330.847 649.324i 0.600448 1.17845i
\(552\) 183.873 59.7441i 0.333104 0.108232i
\(553\) 246.499 + 339.277i 0.445750 + 0.613522i
\(554\) −351.047 483.175i −0.633659 0.872157i
\(555\) −9.92731 + 62.6786i −0.0178870 + 0.112934i
\(556\) 449.167 228.862i 0.807854 0.411622i
\(557\) −629.608 + 99.7202i −1.13036 + 0.179031i −0.693470 0.720486i \(-0.743919\pi\)
−0.436886 + 0.899517i \(0.643919\pi\)
\(558\) 91.8288 66.7176i 0.164568 0.119566i
\(559\) −495.670 + 78.5064i −0.886709 + 0.140441i
\(560\) −40.9638 + 40.9638i −0.0731497 + 0.0731497i
\(561\) 125.827 + 91.4186i 0.224290 + 0.162956i
\(562\) 211.766 0.376808
\(563\) 755.764i 1.34239i −0.741282 0.671194i \(-0.765782\pi\)
0.741282 0.671194i \(-0.234218\pi\)
\(564\) −229.725 166.905i −0.407313 0.295930i
\(565\) −9.30905 + 28.6503i −0.0164762 + 0.0507085i
\(566\) −57.5063 + 363.081i −0.101601 + 0.641485i
\(567\) 10.4090 + 65.7196i 0.0183580 + 0.115908i
\(568\) −226.711 + 73.6629i −0.399139 + 0.129688i
\(569\) 21.7862 67.0510i 0.0382886 0.117840i −0.930085 0.367343i \(-0.880267\pi\)
0.968374 + 0.249503i \(0.0802674\pi\)
\(570\) 73.0556 73.0556i 0.128168 0.128168i
\(571\) 95.3616 + 293.493i 0.167008 + 0.513998i 0.999179 0.0405219i \(-0.0129020\pi\)
−0.832171 + 0.554520i \(0.812902\pi\)
\(572\) −185.034 29.3065i −0.323486 0.0512351i
\(573\) −218.904 + 111.537i −0.382031 + 0.194655i
\(574\) 11.0686 34.0658i 0.0192833 0.0593480i
\(575\) 379.159 744.141i 0.659406 1.29416i
\(576\) 14.1068 19.4164i 0.0244911 0.0337090i
\(577\) −26.6296 13.5685i −0.0461519 0.0235156i 0.430762 0.902465i \(-0.358245\pi\)
−0.476914 + 0.878950i \(0.658245\pi\)
\(578\) −97.6411 + 97.6411i −0.168929 + 0.168929i
\(579\) 27.3219 13.9212i 0.0471881 0.0240436i
\(580\) 60.2020 + 118.153i 0.103797 + 0.203712i
\(581\) −385.735 385.735i −0.663916 0.663916i
\(582\) −116.419 + 228.486i −0.200033 + 0.392587i
\(583\) 153.036 + 111.187i 0.262498 + 0.190716i
\(584\) −7.88557 4.01790i −0.0135027 0.00687997i
\(585\) −80.6532 26.2058i −0.137869 0.0447962i
\(586\) −107.137 210.269i −0.182828 0.358821i
\(587\) −74.3497 + 469.426i −0.126660 + 0.799703i 0.839802 + 0.542893i \(0.182671\pi\)
−0.966462 + 0.256809i \(0.917329\pi\)
\(588\) −18.6451 + 6.05816i −0.0317094 + 0.0103030i
\(589\) −407.324 407.324i −0.691551 0.691551i
\(590\) 180.025 + 58.4937i 0.305127 + 0.0991419i
\(591\) 67.2171 + 206.873i 0.113735 + 0.350039i
\(592\) 73.8916 11.7033i 0.124817 0.0197690i
\(593\) −557.434 88.2889i −0.940024 0.148885i −0.332425 0.943130i \(-0.607867\pi\)
−0.607598 + 0.794244i \(0.707867\pi\)
\(594\) 45.3664 + 14.7404i 0.0763744 + 0.0248155i
\(595\) −117.760 + 162.083i −0.197916 + 0.272409i
\(596\) 255.591 0.428844
\(597\) 270.459i 0.453031i
\(598\) −473.381 + 651.553i −0.791607 + 1.08955i
\(599\) −15.8858 15.8858i −0.0265205 0.0265205i 0.693722 0.720243i \(-0.255970\pi\)
−0.720243 + 0.693722i \(0.755970\pi\)
\(600\) −16.2183 102.398i −0.0270305 0.170664i
\(601\) −305.259 420.153i −0.507918 0.699090i 0.475648 0.879636i \(-0.342214\pi\)
−0.983567 + 0.180546i \(0.942214\pi\)
\(602\) 56.8830 + 359.145i 0.0944900 + 0.596586i
\(603\) 94.6484 + 185.758i 0.156962 + 0.308056i
\(604\) −272.499 43.1597i −0.451158 0.0714564i
\(605\) 124.984 90.8064i 0.206586 0.150093i
\(606\) −133.274 + 96.8294i −0.219925 + 0.159785i
\(607\) −322.033 991.117i −0.530533 1.63281i −0.753109 0.657896i \(-0.771446\pi\)
0.222576 0.974915i \(-0.428554\pi\)
\(608\) −108.524 55.2957i −0.178493 0.0909469i
\(609\) 433.415i 0.711683i
\(610\) −156.056 + 64.8457i −0.255830 + 0.106304i
\(611\) 1182.85 1.93592
\(612\) 37.6810 73.9531i 0.0615703 0.120838i
\(613\) 439.717 142.873i 0.717320 0.233071i 0.0724592 0.997371i \(-0.476915\pi\)
0.644861 + 0.764300i \(0.276915\pi\)
\(614\) −77.4500 106.601i −0.126140 0.173617i
\(615\) −6.83231 9.40386i −0.0111094 0.0152908i
\(616\) −21.2344 + 134.069i −0.0344715 + 0.217644i
\(617\) 693.663 353.439i 1.12425 0.572834i 0.209886 0.977726i \(-0.432691\pi\)
0.914365 + 0.404892i \(0.132691\pi\)
\(618\) 431.406 68.3280i 0.698068 0.110563i
\(619\) −365.043 + 265.220i −0.589731 + 0.428465i −0.842219 0.539135i \(-0.818751\pi\)
0.252488 + 0.967600i \(0.418751\pi\)
\(620\) 103.528 16.3973i 0.166981 0.0264472i
\(621\) 145.002 145.002i 0.233497 0.233497i
\(622\) 457.825 + 332.629i 0.736053 + 0.534774i
\(623\) 502.387 0.806399
\(624\) 99.9749i 0.160216i
\(625\) −284.705 206.850i −0.455528 0.330961i
\(626\) 176.525 543.287i 0.281988 0.867870i
\(627\) 37.8698 239.101i 0.0603985 0.381341i
\(628\) 78.6521 + 496.590i 0.125242 + 0.790748i
\(629\) 246.063 79.9506i 0.391197 0.127107i
\(630\) −18.9878 + 58.4384i −0.0301393 + 0.0927594i
\(631\) −802.927 + 802.927i −1.27247 + 1.27247i −0.327678 + 0.944789i \(0.606266\pi\)
−0.944789 + 0.327678i \(0.893734\pi\)
\(632\) −49.5784 152.587i −0.0784468 0.241434i
\(633\) 493.273 + 78.1268i 0.779262 + 0.123423i
\(634\) 728.935 371.411i 1.14974 0.585821i
\(635\) −54.7282 + 168.436i −0.0861862 + 0.265254i
\(636\) 45.8293 89.9451i 0.0720587 0.141423i
\(637\) 48.0017 66.0687i 0.0753559 0.103719i
\(638\) 276.846 + 141.060i 0.433927 + 0.221097i
\(639\) −178.784 + 178.784i −0.279786 + 0.279786i
\(640\) 19.7474 10.0618i 0.0308553 0.0157215i
\(641\) −135.193 265.331i −0.210910 0.413933i 0.761181 0.648540i \(-0.224620\pi\)
−0.972090 + 0.234606i \(0.924620\pi\)
\(642\) −45.9116 45.9116i −0.0715134 0.0715134i
\(643\) −43.7832 + 85.9293i −0.0680920 + 0.133638i −0.922544 0.385893i \(-0.873893\pi\)
0.854452 + 0.519531i \(0.173893\pi\)
\(644\) 472.092 + 342.995i 0.733062 + 0.532601i
\(645\) 105.140 + 53.5714i 0.163008 + 0.0830565i
\(646\) −400.604 130.164i −0.620130 0.201492i
\(647\) 177.370 + 348.108i 0.274142 + 0.538034i 0.986496 0.163787i \(-0.0523709\pi\)
−0.712354 + 0.701820i \(0.752371\pi\)
\(648\) 3.98217 25.1424i 0.00614533 0.0388001i
\(649\) 421.818 137.057i 0.649951 0.211182i
\(650\) 305.378 + 305.378i 0.469812 + 0.469812i
\(651\) 325.825 + 105.867i 0.500499 + 0.162622i
\(652\) 42.2738 + 130.105i 0.0648371 + 0.199548i
\(653\) 967.294 153.204i 1.48131 0.234616i 0.637162 0.770730i \(-0.280108\pi\)
0.844146 + 0.536114i \(0.180108\pi\)
\(654\) 282.574 + 44.7553i 0.432070 + 0.0684331i
\(655\) −303.896 98.7419i −0.463964 0.150751i
\(656\) −8.05459 + 11.0862i −0.0122783 + 0.0168997i
\(657\) −9.38704 −0.0142877
\(658\) 857.051i 1.30251i
\(659\) 497.481 684.723i 0.754902 1.03903i −0.242719 0.970097i \(-0.578039\pi\)
0.997621 0.0689370i \(-0.0219607\pi\)
\(660\) 31.1480 + 31.1480i 0.0471939 + 0.0471939i
\(661\) −16.8426 106.340i −0.0254805 0.160877i 0.971667 0.236354i \(-0.0759523\pi\)
−0.997148 + 0.0754761i \(0.975952\pi\)
\(662\) 26.6713 + 36.7099i 0.0402889 + 0.0554529i
\(663\) 54.0864 + 341.488i 0.0815782 + 0.515065i
\(664\) 94.7466 + 185.951i 0.142691 + 0.280046i
\(665\) 307.996 + 48.7818i 0.463152 + 0.0733561i
\(666\) 64.1961 46.6412i 0.0963906 0.0700319i
\(667\) 1080.63 785.121i 1.62013 1.17709i
\(668\) −80.9781 249.225i −0.121225 0.373091i
\(669\) 660.881 + 336.736i 0.987864 + 0.503342i
\(670\) 192.523i 0.287348i
\(671\) −206.515 + 337.850i −0.307771 + 0.503503i
\(672\) 72.4382 0.107795
\(673\) −463.647 + 909.959i −0.688926 + 1.35209i 0.235928 + 0.971770i \(0.424187\pi\)
−0.924854 + 0.380322i \(0.875813\pi\)
\(674\) 130.462 42.3898i 0.193564 0.0628929i
\(675\) −64.6350 88.9625i −0.0957556 0.131796i
\(676\) −46.1162 63.4734i −0.0682192 0.0938956i
\(677\) 31.6672 199.939i 0.0467758 0.295330i −0.953200 0.302342i \(-0.902232\pi\)
0.999975 + 0.00701102i \(0.00223170\pi\)
\(678\) 33.5626 17.1010i 0.0495024 0.0252227i
\(679\) −764.459 + 121.078i −1.12586 + 0.178319i
\(680\) 62.0084 45.0517i 0.0911888 0.0662526i
\(681\) 727.224 115.181i 1.06788 0.169135i
\(682\) 173.666 173.666i 0.254643 0.254643i
\(683\) 281.370 + 204.427i 0.411962 + 0.299308i 0.774396 0.632702i \(-0.218054\pi\)
−0.362434 + 0.932010i \(0.618054\pi\)
\(684\) −129.188 −0.188871
\(685\) 207.830i 0.303402i
\(686\) 366.607 + 266.355i 0.534412 + 0.388273i
\(687\) 61.3596 188.845i 0.0893153 0.274884i
\(688\) 21.7618 137.399i 0.0316305 0.199707i
\(689\) 65.7823 + 415.333i 0.0954750 + 0.602806i
\(690\) 180.099 58.5178i 0.261014 0.0848085i
\(691\) −374.487 + 1152.55i −0.541950 + 1.66795i 0.186184 + 0.982515i \(0.440388\pi\)
−0.728134 + 0.685435i \(0.759612\pi\)
\(692\) −259.617 + 259.617i −0.375170 + 0.375170i
\(693\) 44.4904 + 136.927i 0.0641998 + 0.197587i
\(694\) −249.941 39.5867i −0.360145 0.0570414i
\(695\) 439.948 224.164i 0.633018 0.322539i
\(696\) 51.2388 157.697i 0.0736190 0.226576i
\(697\) −21.5147 + 42.2250i −0.0308676 + 0.0605811i
\(698\) 283.626 390.377i 0.406340 0.559280i
\(699\) 481.939 + 245.560i 0.689469 + 0.351302i
\(700\) 221.266 221.266i 0.316094 0.316094i
\(701\) 72.3345 36.8563i 0.103188 0.0525767i −0.401635 0.915800i \(-0.631558\pi\)
0.504823 + 0.863223i \(0.331558\pi\)
\(702\) 48.1409 + 94.4818i 0.0685767 + 0.134589i
\(703\) −284.754 284.754i −0.405055 0.405055i
\(704\) 23.5759 46.2702i 0.0334884 0.0657248i
\(705\) −225.010 163.479i −0.319163 0.231885i
\(706\) −478.412 243.763i −0.677637 0.345273i
\(707\) −472.881 153.648i −0.668856 0.217324i
\(708\) −107.455 210.892i −0.151772 0.297870i
\(709\) −5.84360 + 36.8950i −0.00824203 + 0.0520381i −0.991467 0.130361i \(-0.958386\pi\)
0.983225 + 0.182399i \(0.0583863\pi\)
\(710\) −222.058 + 72.1510i −0.312757 + 0.101621i
\(711\) −120.329 120.329i −0.169239 0.169239i
\(712\) −182.792 59.3927i −0.256730 0.0834167i
\(713\) −326.268 1004.15i −0.457599 1.40834i
\(714\) 247.430 39.1891i 0.346541 0.0548866i
\(715\) −181.236 28.7050i −0.253477 0.0401468i
\(716\) −496.722 161.395i −0.693745 0.225411i
\(717\) −126.904 + 174.669i −0.176993 + 0.243610i
\(718\) −801.226 −1.11591
\(719\) 777.272i 1.08105i 0.841329 + 0.540523i \(0.181774\pi\)
−0.841329 + 0.540523i \(0.818226\pi\)
\(720\) 13.8173 19.0179i 0.0191907 0.0264137i
\(721\) 932.198 + 932.198i 1.29292 + 1.29292i
\(722\) 22.6973 + 143.305i 0.0314368 + 0.198484i
\(723\) −44.5511 61.3193i −0.0616198 0.0848123i
\(724\) 68.1232 + 430.113i 0.0940928 + 0.594079i
\(725\) −325.181 638.203i −0.448525 0.880281i
\(726\) −190.796 30.2192i −0.262805 0.0416242i
\(727\) 649.901 472.181i 0.893950 0.649492i −0.0429552 0.999077i \(-0.513677\pi\)
0.936905 + 0.349585i \(0.113677\pi\)
\(728\) −244.121 + 177.364i −0.335331 + 0.243632i
\(729\) −8.34346 25.6785i −0.0114451 0.0352243i
\(730\) −7.72373 3.93543i −0.0105804 0.00539101i
\(731\) 481.091i 0.658127i
\(732\) 195.316 + 80.6461i 0.266825 + 0.110172i
\(733\) 85.2324 0.116279 0.0581394 0.998308i \(-0.481483\pi\)
0.0581394 + 0.998308i \(0.481483\pi\)
\(734\) −373.408 + 732.854i −0.508730 + 0.998439i
\(735\) −18.2624 + 5.93382i −0.0248468 + 0.00807322i
\(736\) −131.220 180.609i −0.178288 0.245393i
\(737\) 265.152 + 364.950i 0.359772 + 0.495183i
\(738\) −2.27370 + 14.3556i −0.00308089 + 0.0194520i
\(739\) −839.806 + 427.903i −1.13641 + 0.579029i −0.917902 0.396806i \(-0.870118\pi\)
−0.218507 + 0.975835i \(0.570118\pi\)
\(740\) 72.3750 11.4631i 0.0978040 0.0154906i
\(741\) 435.370 316.315i 0.587543 0.426875i
\(742\) 300.936 47.6635i 0.405573 0.0642365i
\(743\) 523.261 523.261i 0.704254 0.704254i −0.261067 0.965321i \(-0.584074\pi\)
0.965321 + 0.261067i \(0.0840743\pi\)
\(744\) −106.035 77.0388i −0.142520 0.103547i
\(745\) 250.345 0.336034
\(746\) 20.2806i 0.0271857i
\(747\) 179.082 + 130.110i 0.239734 + 0.174177i
\(748\) 55.4967 170.801i 0.0741935 0.228344i
\(749\) 30.6568 193.559i 0.0409303 0.258424i
\(750\) −34.6514 218.780i −0.0462019 0.291707i
\(751\) −592.885 + 192.640i −0.789460 + 0.256511i −0.675874 0.737017i \(-0.736234\pi\)
−0.113586 + 0.993528i \(0.536234\pi\)
\(752\) −101.322 + 311.836i −0.134736 + 0.414675i
\(753\) −571.702 + 571.702i −0.759232 + 0.759232i
\(754\) 213.441 + 656.905i 0.283079 + 0.871227i
\(755\) −266.906 42.2738i −0.353518 0.0559918i
\(756\) 68.4581 34.8812i 0.0905531 0.0461391i
\(757\) 57.9383 178.316i 0.0765368 0.235556i −0.905467 0.424416i \(-0.860479\pi\)
0.982004 + 0.188860i \(0.0604793\pi\)
\(758\) 126.240 247.759i 0.166543 0.326859i
\(759\) 260.806 358.968i 0.343617 0.472949i
\(760\) −106.296 54.1608i −0.139864 0.0712642i
\(761\) −522.813 + 522.813i −0.687008 + 0.687008i −0.961570 0.274561i \(-0.911467\pi\)
0.274561 + 0.961570i \(0.411467\pi\)
\(762\) 197.316 100.537i 0.258945 0.131939i
\(763\) 392.026 + 769.395i 0.513796 + 1.00838i
\(764\) 200.598 + 200.598i 0.262563 + 0.262563i
\(765\) 36.9076 72.4353i 0.0482452 0.0946866i
\(766\) −59.8185 43.4607i −0.0780920 0.0567372i
\(767\) 878.496 + 447.616i 1.14537 + 0.583593i
\(768\) −26.3565 8.56373i −0.0343183 0.0111507i
\(769\) −27.4655 53.9041i −0.0357159 0.0700964i 0.872459 0.488687i \(-0.162524\pi\)
−0.908175 + 0.418591i \(0.862524\pi\)
\(770\) −20.7986 + 131.317i −0.0270112 + 0.170542i
\(771\) −394.783 + 128.273i −0.512040 + 0.166372i
\(772\) −25.0371 25.0371i −0.0324315 0.0324315i
\(773\) −674.458 219.145i −0.872520 0.283499i −0.161672 0.986845i \(-0.551689\pi\)
−0.710848 + 0.703345i \(0.751689\pi\)
\(774\) −45.5954 140.328i −0.0589088 0.181303i
\(775\) −559.207 + 88.5696i −0.721557 + 0.114283i
\(776\) 292.460 + 46.3212i 0.376882 + 0.0596922i
\(777\) 227.779 + 74.0100i 0.293152 + 0.0952509i
\(778\) 251.065 345.561i 0.322706 0.444166i
\(779\) 73.7622 0.0946884
\(780\) 97.9229i 0.125542i
\(781\) −321.566 + 442.598i −0.411737 + 0.566707i
\(782\) −545.923 545.923i −0.698111 0.698111i
\(783\) −27.5122 173.705i −0.0351369 0.221846i
\(784\) 13.3060 + 18.3141i 0.0169719 + 0.0233598i
\(785\) 77.0378 + 486.397i 0.0981373 + 0.619615i
\(786\) 181.392 + 356.002i 0.230779 + 0.452929i
\(787\) −814.263 128.967i −1.03464 0.163871i −0.384060 0.923308i \(-0.625475\pi\)
−0.650581 + 0.759437i \(0.725475\pi\)
\(788\) 203.200 147.634i 0.257869 0.187352i
\(789\) −60.8883 + 44.2380i −0.0771715 + 0.0560684i
\(790\) −48.5608 149.455i −0.0614694 0.189183i
\(791\) 101.301 + 51.6153i 0.128067 + 0.0652533i
\(792\) 55.0804i 0.0695459i
\(793\) −855.686 + 206.446i −1.07905 + 0.260336i
\(794\) 289.469 0.364571
\(795\) 44.8887 88.0990i 0.0564638 0.110816i
\(796\) −297.015 + 96.5059i −0.373134 + 0.121239i
\(797\) −302.581 416.468i −0.379650 0.522544i 0.575841 0.817561i \(-0.304675\pi\)
−0.955492 + 0.295017i \(0.904675\pi\)
\(798\) −229.190 315.453i −0.287206 0.395305i
\(799\) −177.385 + 1119.96i −0.222008 + 1.40171i
\(800\) −106.665 + 54.3487i −0.133332 + 0.0679358i
\(801\) −201.348 + 31.8904i −0.251371 + 0.0398132i
\(802\) 377.490 274.262i 0.470685 0.341973i
\(803\) −20.0613 + 3.17739i −0.0249829 + 0.00395690i
\(804\) 170.224 170.224i 0.211721 0.211721i
\(805\) 462.403 + 335.955i 0.574413 + 0.417336i
\(806\) 545.972 0.677385
\(807\) 126.291i 0.156494i
\(808\) 153.892 + 111.809i 0.190460 + 0.138377i
\(809\) −264.742 + 814.792i −0.327246 + 1.00716i 0.643170 + 0.765723i \(0.277619\pi\)
−0.970417 + 0.241437i \(0.922381\pi\)
\(810\) 3.90044 24.6264i 0.00481536 0.0304030i
\(811\) −3.46444 21.8736i −0.00427181 0.0269712i 0.985460 0.169905i \(-0.0543462\pi\)
−0.989732 + 0.142934i \(0.954346\pi\)
\(812\) 475.970 154.652i 0.586170 0.190458i
\(813\) −205.497 + 632.454i −0.252763 + 0.777926i
\(814\) 121.408 121.408i 0.149149 0.149149i
\(815\) 41.4061 + 127.435i 0.0508051 + 0.156362i
\(816\) −94.6597 14.9926i −0.116004 0.0183733i
\(817\) −667.195 + 339.953i −0.816640 + 0.416099i
\(818\) −46.5963 + 143.409i −0.0569636 + 0.175316i
\(819\) −145.302 + 285.171i −0.177414 + 0.348194i
\(820\) −7.88927 + 10.8586i −0.00962106 + 0.0132422i
\(821\) 671.735 + 342.266i 0.818191 + 0.416889i 0.812404 0.583094i \(-0.198158\pi\)
0.00578617 + 0.999983i \(0.498158\pi\)
\(822\) 183.758 183.758i 0.223550 0.223550i
\(823\) 1280.40 652.396i 1.55577 0.792705i 0.556499 0.830848i \(-0.312144\pi\)
0.999272 + 0.0381436i \(0.0121444\pi\)
\(824\) −228.972 449.383i −0.277879 0.545368i
\(825\) −168.246 168.246i −0.203934 0.203934i
\(826\) 324.326 636.527i 0.392647 0.770613i
\(827\) −1050.61 763.313i −1.27039 0.922990i −0.271169 0.962532i \(-0.587410\pi\)
−0.999218 + 0.0395417i \(0.987410\pi\)
\(828\) −210.979 107.499i −0.254805 0.129830i
\(829\) −1370.71 445.371i −1.65345 0.537239i −0.673967 0.738761i \(-0.735411\pi\)
−0.979484 + 0.201522i \(0.935411\pi\)
\(830\) 92.8020 + 182.134i 0.111810 + 0.219439i
\(831\) −114.426 + 722.458i −0.137697 + 0.869384i
\(832\) 109.791 35.6733i 0.131960 0.0428765i
\(833\) 55.3576 + 55.3576i 0.0664557 + 0.0664557i
\(834\) −587.190 190.790i −0.704065 0.228764i
\(835\) −79.3160 244.110i −0.0949892 0.292347i
\(836\) −276.090 + 43.7283i −0.330251 + 0.0523066i
\(837\) −137.305 21.7470i −0.164044 0.0259821i
\(838\) 455.563 + 148.021i 0.543631 + 0.176636i
\(839\) −351.965 + 484.439i −0.419506 + 0.577400i −0.965505 0.260386i \(-0.916150\pi\)
0.545999 + 0.837786i \(0.316150\pi\)
\(840\) 70.9515 0.0844660
\(841\) 304.571i 0.362153i
\(842\) −146.006 + 200.961i −0.173404 + 0.238670i
\(843\) −183.395 183.395i −0.217550 0.217550i
\(844\) −90.2130 569.583i −0.106887 0.674861i
\(845\) −45.1696 62.1707i −0.0534552 0.0735747i
\(846\) 54.4036 + 343.491i 0.0643069 + 0.406018i
\(847\) −264.700 519.502i −0.312514 0.613344i
\(848\) −115.129 18.2347i −0.135766 0.0215032i
\(849\) 364.239 264.635i 0.429021 0.311702i
\(850\) −334.938 + 243.347i −0.394045 + 0.286290i
\(851\) −228.089 701.986i −0.268025 0.824895i
\(852\) 260.131 + 132.544i 0.305319 + 0.155568i
\(853\) 839.987i 0.984744i −0.870385 0.492372i \(-0.836130\pi\)
0.870385 0.492372i \(-0.163870\pi\)
\(854\) 149.584 + 620.000i 0.175157 + 0.725995i
\(855\) −126.536 −0.147995
\(856\) −34.0372 + 66.8017i −0.0397631 + 0.0780394i
\(857\) 491.679 159.756i 0.573721 0.186413i −0.00776463 0.999970i \(-0.502472\pi\)
0.581486 + 0.813557i \(0.302472\pi\)
\(858\) 134.864 + 185.624i 0.157184 + 0.216345i
\(859\) −763.309 1050.61i −0.888602 1.22306i −0.973963 0.226706i \(-0.927204\pi\)
0.0853611 0.996350i \(-0.472796\pi\)
\(860\) 21.3151 134.579i 0.0247851 0.156487i
\(861\) −39.0875 + 19.9161i −0.0453978 + 0.0231314i
\(862\) 24.7054 3.91296i 0.0286606 0.00453939i
\(863\) −294.748 + 214.147i −0.341539 + 0.248143i −0.745311 0.666717i \(-0.767699\pi\)
0.403772 + 0.914860i \(0.367699\pi\)
\(864\) −29.0320 + 4.59822i −0.0336018 + 0.00532201i
\(865\) −254.289 + 254.289i −0.293976 + 0.293976i
\(866\) −371.064 269.594i −0.428480 0.311309i
\(867\) 169.119 0.195063
\(868\) 395.592i 0.455751i
\(869\) −297.888 216.429i −0.342794 0.249055i
\(870\) 50.1871 154.460i 0.0576864 0.177540i
\(871\) −156.873 + 990.457i −0.180107 + 1.13715i
\(872\) −51.6789 326.288i −0.0592648 0.374183i
\(873\) 298.696 97.0523i 0.342149 0.111171i
\(874\) −371.342 + 1142.87i −0.424876 + 1.30763i
\(875\) 472.749 472.749i 0.540284 0.540284i
\(876\) 3.34950 + 10.3087i 0.00382363 + 0.0117679i
\(877\) 1699.44 + 269.165i 1.93779 + 0.306915i 0.999266 0.0383109i \(-0.0121977\pi\)
0.938520 + 0.345226i \(0.112198\pi\)
\(878\) 198.209 100.993i 0.225751 0.115026i
\(879\) −89.3145 + 274.882i −0.101609 + 0.312721i
\(880\) 23.0920 45.3205i 0.0262409 0.0515006i
\(881\) −379.809 + 522.762i −0.431111 + 0.593374i −0.968208 0.250147i \(-0.919521\pi\)
0.537097 + 0.843521i \(0.319521\pi\)
\(882\) 21.3937 + 10.9006i 0.0242558 + 0.0123590i
\(883\) −1163.55 + 1163.55i −1.31773 + 1.31773i −0.402159 + 0.915570i \(0.631740\pi\)
−0.915570 + 0.402159i \(0.868260\pi\)
\(884\) 355.718 181.247i 0.402396 0.205031i
\(885\) −105.249 206.563i −0.118926 0.233405i
\(886\) 361.326 + 361.326i 0.407818 + 0.407818i
\(887\) −450.041 + 883.255i −0.507374 + 0.995778i 0.485230 + 0.874386i \(0.338736\pi\)
−0.992605 + 0.121392i \(0.961264\pi\)
\(888\) −74.1273 53.8566i −0.0834767 0.0606494i
\(889\) 595.551 + 303.448i 0.669911 + 0.341337i
\(890\) −179.040 58.1737i −0.201169 0.0653637i
\(891\) −26.5228 52.0540i −0.0297675 0.0584220i
\(892\) 133.981 845.924i 0.150203 0.948346i
\(893\) 1678.55 545.395i 1.87968 0.610745i
\(894\) −221.348 221.348i −0.247593 0.247593i
\(895\) −486.526 158.082i −0.543605 0.176628i
\(896\) −25.8476 79.5506i −0.0288477 0.0887842i
\(897\) 974.222 154.302i 1.08609 0.172020i
\(898\) −198.454 31.4320i −0.220995 0.0350022i
\(899\) −861.197 279.820i −0.957950 0.311257i
\(900\) −74.6341 + 102.725i −0.0829268 + 0.114139i
\(901\) −403.117 −0.447410
\(902\) 31.4493i 0.0348661i
\(903\) 261.766 360.291i 0.289885 0.398993i
\(904\) −30.7560 30.7560i −0.0340221 0.0340221i
\(905\) 66.7250 + 421.285i 0.0737293 + 0.465508i
\(906\) 198.614 + 273.369i 0.219221 + 0.301732i
\(907\) −218.623 1380.33i −0.241040 1.52187i −0.750209 0.661201i \(-0.770047\pi\)
0.509169 0.860667i \(-0.329953\pi\)
\(908\) −385.980 757.528i −0.425088 0.834282i
\(909\) 199.276 + 31.5622i 0.219225 + 0.0347219i
\(910\) −239.111 + 173.724i −0.262759 + 0.190905i
\(911\) −525.763 + 381.989i −0.577127 + 0.419307i −0.837687 0.546150i \(-0.816093\pi\)
0.260560 + 0.965458i \(0.416093\pi\)
\(912\) 46.0970 + 141.872i 0.0505449 + 0.155561i
\(913\) 426.760 + 217.445i 0.467426 + 0.238165i
\(914\) 33.4617i 0.0366102i
\(915\) 191.307 + 78.9909i 0.209079 + 0.0863288i
\(916\) −229.282 −0.250308
\(917\) −547.488 + 1074.51i −0.597043 + 1.17176i
\(918\) −96.6780 + 31.4126i −0.105314 + 0.0342185i
\(919\) −185.488 255.302i −0.201836 0.277804i 0.696085 0.717959i \(-0.254923\pi\)
−0.897922 + 0.440155i \(0.854923\pi\)
\(920\) −128.527 176.902i −0.139703 0.192285i
\(921\) −25.2453 + 159.393i −0.0274108 + 0.173065i
\(922\) −79.3898 + 40.4511i −0.0861061 + 0.0438732i
\(923\) −1201.19 + 190.250i −1.30140 + 0.206121i
\(924\) 134.497 97.7175i 0.145559 0.105755i
\(925\) −390.933 + 61.9177i −0.422630 + 0.0669380i
\(926\) −115.600 + 115.600i −0.124838 + 0.124838i
\(927\) −432.783 314.435i −0.466864 0.339196i
\(928\) −191.463 −0.206318
\(929\) 91.8133i 0.0988302i −0.998778 0.0494151i \(-0.984264\pi\)
0.998778 0.0494151i \(-0.0157357\pi\)
\(930\) −103.858 75.4576i −0.111676 0.0811372i
\(931\) 37.6548 115.889i 0.0404455 0.124478i
\(932\) 97.7040 616.879i 0.104833 0.661887i
\(933\) −108.423 684.554i −0.116209 0.733712i
\(934\) 183.935 59.7642i 0.196933 0.0639874i
\(935\) 54.3577 167.296i 0.0581366 0.178926i
\(936\) 86.5808 86.5808i 0.0925009 0.0925009i
\(937\) 65.6949 + 202.188i 0.0701120 + 0.215782i 0.979973 0.199131i \(-0.0638119\pi\)
−0.909861 + 0.414913i \(0.863812\pi\)
\(938\) 717.650 + 113.665i 0.765085 + 0.121178i
\(939\) −623.375 + 317.625i −0.663871 + 0.338259i
\(940\) −99.2419 + 305.435i −0.105577 + 0.324931i
\(941\) 585.249 1148.62i 0.621944 1.22063i −0.338186 0.941079i \(-0.609813\pi\)
0.960130 0.279555i \(-0.0901868\pi\)
\(942\) 361.945 498.174i 0.384230 0.528847i
\(943\) 120.463 + 61.3788i 0.127744 + 0.0650888i
\(944\) −193.256 + 193.256i −0.204721 + 0.204721i
\(945\) 67.0530 34.1652i 0.0709556 0.0361537i
\(946\) −144.942 284.465i −0.153216 0.300703i
\(947\) 434.208 + 434.208i 0.458509 + 0.458509i 0.898166 0.439657i \(-0.144900\pi\)
−0.439657 + 0.898166i \(0.644900\pi\)
\(948\) −89.2077 + 175.080i −0.0941010 + 0.184684i
\(949\) −36.5288 26.5397i −0.0384919 0.0279660i
\(950\) 574.160 + 292.549i 0.604379 + 0.307946i
\(951\) −952.927 309.625i −1.00203 0.325578i
\(952\) −131.325 257.740i −0.137947 0.270736i
\(953\) −186.575 + 1177.99i −0.195777 + 1.23608i 0.672535 + 0.740065i \(0.265205\pi\)
−0.868311 + 0.496019i \(0.834795\pi\)
\(954\) −117.584 + 38.2054i −0.123254 + 0.0400476i
\(955\) 196.481 + 196.481i 0.205739 + 0.205739i
\(956\) 237.101 + 77.0387i 0.248013 + 0.0805844i
\(957\) −117.594 361.917i −0.122878 0.378178i
\(958\) −148.241 + 23.4790i −0.154740 + 0.0245084i
\(959\) 774.707 + 122.701i 0.807828 + 0.127947i
\(960\) −25.8155 8.38796i −0.0268911 0.00873746i
\(961\) 144.146 198.399i 0.149995 0.206451i
\(962\) 381.681 0.396758
\(963\) 79.5212i 0.0825766i
\(964\) −51.4432 + 70.8054i −0.0533643 + 0.0734496i
\(965\) −24.5233 24.5233i −0.0254127 0.0254127i
\(966\) −111.801 705.886i −0.115736 0.730731i
\(967\) −948.438 1305.41i −0.980804 1.34996i −0.936395 0.350948i \(-0.885860\pi\)
−0.0444089 0.999013i \(-0.514140\pi\)
\(968\) 34.8941 + 220.313i 0.0360476 + 0.227596i
\(969\) 234.208 + 459.659i 0.241700 + 0.474364i
\(970\) 286.458 + 45.3704i 0.295317 + 0.0467737i
\(971\) −657.146 + 477.445i −0.676773 + 0.491704i −0.872285 0.488997i \(-0.837363\pi\)
0.195513 + 0.980701i \(0.437363\pi\)
\(972\) −25.2227 + 18.3253i −0.0259492 + 0.0188532i
\(973\) −575.853 1772.29i −0.591832 1.82147i
\(974\) −554.779 282.674i −0.569589 0.290220i
\(975\) 528.930i 0.542492i
\(976\) 18.8714 243.269i 0.0193355 0.249251i
\(977\) 550.401 0.563359 0.281679 0.959509i \(-0.409109\pi\)
0.281679 + 0.959509i \(0.409109\pi\)
\(978\) 76.0643 149.285i 0.0777754 0.152643i
\(979\) −419.511 + 136.307i −0.428509 + 0.139231i
\(980\) 13.0329 + 17.9382i 0.0132988 + 0.0183043i
\(981\) −205.957 283.475i −0.209946 0.288965i
\(982\) −6.52497 + 41.1971i −0.00664458 + 0.0419522i
\(983\) 1457.15 742.457i 1.48235 0.755298i 0.489208 0.872167i \(-0.337286\pi\)
0.993147 + 0.116870i \(0.0372860\pi\)
\(984\) 16.5764 2.62544i 0.0168459 0.00266813i
\(985\) 199.030 144.604i 0.202061 0.146806i
\(986\) −653.989 + 103.582i −0.663275 + 0.105052i
\(987\) −742.228 + 742.228i −0.752004 + 0.752004i
\(988\) −502.722 365.249i −0.508827 0.369685i
\(989\) −1372.49 −1.38776
\(990\) 53.9499i 0.0544948i
\(991\) 259.916 + 188.840i 0.262276 + 0.190555i 0.711150 0.703040i \(-0.248175\pi\)
−0.448874 + 0.893595i \(0.648175\pi\)
\(992\) −46.7673 + 143.935i −0.0471445 + 0.145096i
\(993\) 8.69367 54.8897i 0.00875495 0.0552766i
\(994\) 137.848 + 870.339i 0.138680 + 0.875593i
\(995\) −290.918 + 94.5251i −0.292380 + 0.0950001i
\(996\) 78.9851 243.091i 0.0793023 0.244067i
\(997\) 1149.53 1149.53i 1.15299 1.15299i 0.167042 0.985950i \(-0.446578\pi\)
0.985950 0.167042i \(-0.0534216\pi\)
\(998\) −61.2926 188.639i −0.0614155 0.189017i
\(999\) −95.9880 15.2030i −0.0960840 0.0152182i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 366.3.s.a.37.8 80
61.33 odd 20 inner 366.3.s.a.277.8 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
366.3.s.a.37.8 80 1.1 even 1 trivial
366.3.s.a.277.8 yes 80 61.33 odd 20 inner