Properties

Label 368.2.m.d.289.1
Level $368$
Weight $2$
Character 368.289
Analytic conductor $2.938$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(49,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 0, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.m (of order \(11\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 9 x^{19} + 51 x^{18} - 200 x^{17} + 633 x^{16} - 1688 x^{15} + 3957 x^{14} - 8161 x^{13} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 289.1
Root \(2.26168 + 0.664090i\) of defining polynomial
Character \(\chi\) \(=\) 368.289
Dual form 368.2.m.d.177.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.98297 - 1.27438i) q^{3} +(-0.105327 + 0.230633i) q^{5} +(3.93129 + 1.15433i) q^{7} +(1.06190 + 2.32523i) q^{9} +(-1.21513 + 1.40234i) q^{11} +(2.00683 - 0.589258i) q^{13} +(0.502775 - 0.323114i) q^{15} +(-0.898799 - 6.25129i) q^{17} +(0.956723 - 6.65416i) q^{19} +(-6.32460 - 7.29897i) q^{21} +(4.56155 - 1.48062i) q^{23} +(3.23221 + 3.73016i) q^{25} +(-0.148866 + 1.03539i) q^{27} +(-0.592832 - 4.12324i) q^{29} +(5.71804 - 3.67476i) q^{31} +(4.19668 - 1.23226i) q^{33} +(-0.680298 + 0.785105i) q^{35} +(0.771131 + 1.68854i) q^{37} +(-4.73043 - 1.38898i) q^{39} +(-1.82023 + 3.98575i) q^{41} +(-1.87245 - 1.20335i) q^{43} -0.648122 q^{45} -13.6462 q^{47} +(8.23382 + 5.29155i) q^{49} +(-6.18422 + 13.5416i) q^{51} +(7.33188 + 2.15283i) q^{53} +(-0.195440 - 0.427953i) q^{55} +(-10.3771 + 11.9758i) q^{57} +(10.1156 - 2.97021i) q^{59} +(-4.37602 + 2.81230i) q^{61} +(1.49054 + 10.3669i) q^{63} +(-0.0754701 + 0.524906i) q^{65} +(2.47443 + 2.85565i) q^{67} +(-10.9323 - 2.87713i) q^{69} +(0.813338 + 0.938643i) q^{71} +(0.676249 - 4.70342i) q^{73} +(-1.65573 - 11.5159i) q^{75} +(-6.39580 + 4.11033i) q^{77} +(-3.53674 + 1.03848i) q^{79} +(6.63660 - 7.65905i) q^{81} +(4.20174 + 9.20053i) q^{83} +(1.53642 + 0.451134i) q^{85} +(-4.07900 + 8.93176i) q^{87} +(11.1215 + 7.14733i) q^{89} +8.56964 q^{91} -16.0218 q^{93} +(1.43390 + 0.921513i) q^{95} +(-3.26961 + 7.15944i) q^{97} +(-4.55110 - 1.33632i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{3} + 2 q^{5} - 2 q^{7} - 4 q^{9} + 2 q^{11} + 6 q^{13} + 17 q^{15} - 9 q^{17} + 11 q^{19} - 47 q^{21} + 22 q^{23} - 16 q^{25} + 19 q^{27} - q^{29} + 13 q^{31} - 5 q^{33} - 14 q^{35} + 34 q^{37}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.98297 1.27438i −1.14487 0.735764i −0.176259 0.984344i \(-0.556400\pi\)
−0.968611 + 0.248580i \(0.920036\pi\)
\(4\) 0 0
\(5\) −0.105327 + 0.230633i −0.0471035 + 0.103142i −0.931721 0.363176i \(-0.881692\pi\)
0.884617 + 0.466318i \(0.154420\pi\)
\(6\) 0 0
\(7\) 3.93129 + 1.15433i 1.48589 + 0.436297i 0.921227 0.389025i \(-0.127188\pi\)
0.564663 + 0.825322i \(0.309006\pi\)
\(8\) 0 0
\(9\) 1.06190 + 2.32523i 0.353966 + 0.775077i
\(10\) 0 0
\(11\) −1.21513 + 1.40234i −0.366376 + 0.422820i −0.908766 0.417307i \(-0.862974\pi\)
0.542390 + 0.840127i \(0.317520\pi\)
\(12\) 0 0
\(13\) 2.00683 0.589258i 0.556594 0.163431i 0.00867553 0.999962i \(-0.497238\pi\)
0.547919 + 0.836532i \(0.315420\pi\)
\(14\) 0 0
\(15\) 0.502775 0.323114i 0.129816 0.0834276i
\(16\) 0 0
\(17\) −0.898799 6.25129i −0.217991 1.51616i −0.745440 0.666573i \(-0.767760\pi\)
0.527449 0.849587i \(-0.323149\pi\)
\(18\) 0 0
\(19\) 0.956723 6.65416i 0.219487 1.52657i −0.520450 0.853892i \(-0.674236\pi\)
0.739937 0.672676i \(-0.234855\pi\)
\(20\) 0 0
\(21\) −6.32460 7.29897i −1.38014 1.59277i
\(22\) 0 0
\(23\) 4.56155 1.48062i 0.951150 0.308730i
\(24\) 0 0
\(25\) 3.23221 + 3.73016i 0.646441 + 0.746033i
\(26\) 0 0
\(27\) −0.148866 + 1.03539i −0.0286493 + 0.199261i
\(28\) 0 0
\(29\) −0.592832 4.12324i −0.110086 0.765666i −0.967833 0.251593i \(-0.919045\pi\)
0.857747 0.514072i \(-0.171864\pi\)
\(30\) 0 0
\(31\) 5.71804 3.67476i 1.02699 0.660006i 0.0852536 0.996359i \(-0.472830\pi\)
0.941736 + 0.336353i \(0.109194\pi\)
\(32\) 0 0
\(33\) 4.19668 1.23226i 0.730549 0.214508i
\(34\) 0 0
\(35\) −0.680298 + 0.785105i −0.114991 + 0.132707i
\(36\) 0 0
\(37\) 0.771131 + 1.68854i 0.126773 + 0.277594i 0.962367 0.271753i \(-0.0876035\pi\)
−0.835594 + 0.549348i \(0.814876\pi\)
\(38\) 0 0
\(39\) −4.73043 1.38898i −0.757475 0.222415i
\(40\) 0 0
\(41\) −1.82023 + 3.98575i −0.284272 + 0.622469i −0.996866 0.0791076i \(-0.974793\pi\)
0.712594 + 0.701577i \(0.247520\pi\)
\(42\) 0 0
\(43\) −1.87245 1.20335i −0.285546 0.183510i 0.390025 0.920804i \(-0.372466\pi\)
−0.675571 + 0.737295i \(0.736103\pi\)
\(44\) 0 0
\(45\) −0.648122 −0.0966163
\(46\) 0 0
\(47\) −13.6462 −1.99050 −0.995249 0.0973620i \(-0.968960\pi\)
−0.995249 + 0.0973620i \(0.968960\pi\)
\(48\) 0 0
\(49\) 8.23382 + 5.29155i 1.17626 + 0.755936i
\(50\) 0 0
\(51\) −6.18422 + 13.5416i −0.865964 + 1.89620i
\(52\) 0 0
\(53\) 7.33188 + 2.15283i 1.00711 + 0.295714i 0.743371 0.668880i \(-0.233226\pi\)
0.263740 + 0.964594i \(0.415044\pi\)
\(54\) 0 0
\(55\) −0.195440 0.427953i −0.0263531 0.0577052i
\(56\) 0 0
\(57\) −10.3771 + 11.9758i −1.37448 + 1.58623i
\(58\) 0 0
\(59\) 10.1156 2.97021i 1.31694 0.386689i 0.453553 0.891229i \(-0.350156\pi\)
0.863388 + 0.504541i \(0.168338\pi\)
\(60\) 0 0
\(61\) −4.37602 + 2.81230i −0.560292 + 0.360078i −0.789929 0.613199i \(-0.789883\pi\)
0.229637 + 0.973276i \(0.426246\pi\)
\(62\) 0 0
\(63\) 1.49054 + 10.3669i 0.187791 + 1.30611i
\(64\) 0 0
\(65\) −0.0754701 + 0.524906i −0.00936092 + 0.0651066i
\(66\) 0 0
\(67\) 2.47443 + 2.85565i 0.302300 + 0.348873i 0.886493 0.462742i \(-0.153134\pi\)
−0.584193 + 0.811615i \(0.698589\pi\)
\(68\) 0 0
\(69\) −10.9323 2.87713i −1.31610 0.346366i
\(70\) 0 0
\(71\) 0.813338 + 0.938643i 0.0965255 + 0.111396i 0.801957 0.597382i \(-0.203792\pi\)
−0.705432 + 0.708778i \(0.749247\pi\)
\(72\) 0 0
\(73\) 0.676249 4.70342i 0.0791490 0.550493i −0.911207 0.411948i \(-0.864848\pi\)
0.990356 0.138545i \(-0.0442426\pi\)
\(74\) 0 0
\(75\) −1.65573 11.5159i −0.191188 1.32974i
\(76\) 0 0
\(77\) −6.39580 + 4.11033i −0.728869 + 0.468416i
\(78\) 0 0
\(79\) −3.53674 + 1.03848i −0.397914 + 0.116838i −0.474566 0.880220i \(-0.657395\pi\)
0.0766520 + 0.997058i \(0.475577\pi\)
\(80\) 0 0
\(81\) 6.63660 7.65905i 0.737400 0.851005i
\(82\) 0 0
\(83\) 4.20174 + 9.20053i 0.461201 + 1.00989i 0.987212 + 0.159411i \(0.0509596\pi\)
−0.526011 + 0.850478i \(0.676313\pi\)
\(84\) 0 0
\(85\) 1.53642 + 0.451134i 0.166648 + 0.0489324i
\(86\) 0 0
\(87\) −4.07900 + 8.93176i −0.437315 + 0.957586i
\(88\) 0 0
\(89\) 11.1215 + 7.14733i 1.17887 + 0.757616i 0.975179 0.221419i \(-0.0710688\pi\)
0.203694 + 0.979035i \(0.434705\pi\)
\(90\) 0 0
\(91\) 8.56964 0.898342
\(92\) 0 0
\(93\) −16.0218 −1.66138
\(94\) 0 0
\(95\) 1.43390 + 0.921513i 0.147115 + 0.0945452i
\(96\) 0 0
\(97\) −3.26961 + 7.15944i −0.331978 + 0.726931i −0.999850 0.0173456i \(-0.994478\pi\)
0.667871 + 0.744277i \(0.267206\pi\)
\(98\) 0 0
\(99\) −4.55110 1.33632i −0.457402 0.134305i
\(100\) 0 0
\(101\) −4.69596 10.2827i −0.467266 1.02317i −0.985771 0.168095i \(-0.946239\pi\)
0.518505 0.855075i \(-0.326489\pi\)
\(102\) 0 0
\(103\) 1.62818 1.87902i 0.160430 0.185146i −0.669844 0.742502i \(-0.733639\pi\)
0.830273 + 0.557356i \(0.188184\pi\)
\(104\) 0 0
\(105\) 2.34954 0.689886i 0.229291 0.0673260i
\(106\) 0 0
\(107\) −12.4637 + 8.00992i −1.20491 + 0.774348i −0.979799 0.199985i \(-0.935911\pi\)
−0.225111 + 0.974333i \(0.572274\pi\)
\(108\) 0 0
\(109\) −0.108111 0.751927i −0.0103551 0.0720216i 0.983989 0.178231i \(-0.0570376\pi\)
−0.994344 + 0.106210i \(0.966128\pi\)
\(110\) 0 0
\(111\) 0.622710 4.33105i 0.0591051 0.411085i
\(112\) 0 0
\(113\) −5.42962 6.26611i −0.510776 0.589466i 0.440522 0.897742i \(-0.354794\pi\)
−0.951297 + 0.308276i \(0.900248\pi\)
\(114\) 0 0
\(115\) −0.138974 + 1.20799i −0.0129594 + 0.112646i
\(116\) 0 0
\(117\) 3.50121 + 4.04061i 0.323687 + 0.373554i
\(118\) 0 0
\(119\) 3.68262 25.6132i 0.337585 2.34795i
\(120\) 0 0
\(121\) 1.07546 + 7.47999i 0.0977692 + 0.679999i
\(122\) 0 0
\(123\) 8.68882 5.58397i 0.783445 0.503489i
\(124\) 0 0
\(125\) −2.41711 + 0.709729i −0.216193 + 0.0634801i
\(126\) 0 0
\(127\) −10.6435 + 12.2832i −0.944457 + 1.08996i 0.0513677 + 0.998680i \(0.483642\pi\)
−0.995825 + 0.0912821i \(0.970904\pi\)
\(128\) 0 0
\(129\) 2.17950 + 4.77243i 0.191894 + 0.420189i
\(130\) 0 0
\(131\) −3.34138 0.981117i −0.291938 0.0857206i 0.132484 0.991185i \(-0.457705\pi\)
−0.424422 + 0.905464i \(0.639523\pi\)
\(132\) 0 0
\(133\) 11.4423 25.0551i 0.992170 2.17255i
\(134\) 0 0
\(135\) −0.223115 0.143388i −0.0192027 0.0123408i
\(136\) 0 0
\(137\) −16.4760 −1.40764 −0.703820 0.710379i \(-0.748524\pi\)
−0.703820 + 0.710379i \(0.748524\pi\)
\(138\) 0 0
\(139\) 5.23554 0.444073 0.222036 0.975038i \(-0.428730\pi\)
0.222036 + 0.975038i \(0.428730\pi\)
\(140\) 0 0
\(141\) 27.0600 + 17.3904i 2.27886 + 1.46454i
\(142\) 0 0
\(143\) −1.61222 + 3.53027i −0.134821 + 0.295216i
\(144\) 0 0
\(145\) 1.01340 + 0.297560i 0.0841580 + 0.0247110i
\(146\) 0 0
\(147\) −9.58400 20.9860i −0.790475 1.73090i
\(148\) 0 0
\(149\) 0.936158 1.08038i 0.0766931 0.0885085i −0.716106 0.697991i \(-0.754077\pi\)
0.792799 + 0.609483i \(0.208623\pi\)
\(150\) 0 0
\(151\) −0.363307 + 0.106676i −0.0295655 + 0.00868121i −0.296482 0.955038i \(-0.595813\pi\)
0.266916 + 0.963720i \(0.413995\pi\)
\(152\) 0 0
\(153\) 13.5812 8.72814i 1.09798 0.705628i
\(154\) 0 0
\(155\) 0.245260 + 1.70582i 0.0196997 + 0.137015i
\(156\) 0 0
\(157\) 1.70984 11.8922i 0.136460 0.949103i −0.800417 0.599444i \(-0.795388\pi\)
0.936877 0.349659i \(-0.113703\pi\)
\(158\) 0 0
\(159\) −11.7954 13.6126i −0.935435 1.07955i
\(160\) 0 0
\(161\) 19.6419 0.555191i 1.54800 0.0437551i
\(162\) 0 0
\(163\) 9.12665 + 10.5327i 0.714854 + 0.824986i 0.990678 0.136223i \(-0.0434962\pi\)
−0.275824 + 0.961208i \(0.588951\pi\)
\(164\) 0 0
\(165\) −0.157823 + 1.09768i −0.0122865 + 0.0854546i
\(166\) 0 0
\(167\) −0.504578 3.50942i −0.0390455 0.271567i 0.960941 0.276753i \(-0.0892584\pi\)
−0.999987 + 0.00518587i \(0.998349\pi\)
\(168\) 0 0
\(169\) −7.25616 + 4.66325i −0.558166 + 0.358711i
\(170\) 0 0
\(171\) 16.4884 4.84143i 1.26090 0.370233i
\(172\) 0 0
\(173\) −12.6441 + 14.5920i −0.961310 + 1.10941i 0.0326280 + 0.999468i \(0.489612\pi\)
−0.993938 + 0.109943i \(0.964933\pi\)
\(174\) 0 0
\(175\) 8.40090 + 18.3954i 0.635049 + 1.39056i
\(176\) 0 0
\(177\) −23.8442 7.00128i −1.79224 0.526249i
\(178\) 0 0
\(179\) −4.74609 + 10.3925i −0.354740 + 0.776771i 0.645179 + 0.764031i \(0.276783\pi\)
−0.999919 + 0.0127402i \(0.995945\pi\)
\(180\) 0 0
\(181\) 5.55530 + 3.57017i 0.412922 + 0.265369i 0.730567 0.682841i \(-0.239256\pi\)
−0.317645 + 0.948210i \(0.602892\pi\)
\(182\) 0 0
\(183\) 12.2615 0.906394
\(184\) 0 0
\(185\) −0.470654 −0.0346032
\(186\) 0 0
\(187\) 9.85856 + 6.33571i 0.720929 + 0.463313i
\(188\) 0 0
\(189\) −1.78042 + 3.89857i −0.129506 + 0.283580i
\(190\) 0 0
\(191\) −3.63954 1.06867i −0.263348 0.0773260i 0.147393 0.989078i \(-0.452912\pi\)
−0.410741 + 0.911752i \(0.634730\pi\)
\(192\) 0 0
\(193\) −7.36527 16.1277i −0.530163 1.16090i −0.965446 0.260602i \(-0.916079\pi\)
0.435283 0.900294i \(-0.356648\pi\)
\(194\) 0 0
\(195\) 0.818585 0.944698i 0.0586201 0.0676512i
\(196\) 0 0
\(197\) −11.5068 + 3.37869i −0.819822 + 0.240722i −0.664640 0.747164i \(-0.731415\pi\)
−0.155183 + 0.987886i \(0.549597\pi\)
\(198\) 0 0
\(199\) 7.24476 4.65593i 0.513568 0.330050i −0.258055 0.966130i \(-0.583082\pi\)
0.771623 + 0.636080i \(0.219445\pi\)
\(200\) 0 0
\(201\) −1.26756 8.81604i −0.0894064 0.621835i
\(202\) 0 0
\(203\) 2.42899 16.8940i 0.170481 1.18572i
\(204\) 0 0
\(205\) −0.727527 0.839611i −0.0508127 0.0586410i
\(206\) 0 0
\(207\) 8.28667 + 9.03440i 0.575964 + 0.627934i
\(208\) 0 0
\(209\) 8.16882 + 9.42732i 0.565049 + 0.652101i
\(210\) 0 0
\(211\) −0.458612 + 3.18971i −0.0315721 + 0.219589i −0.999499 0.0316421i \(-0.989926\pi\)
0.967927 + 0.251231i \(0.0808354\pi\)
\(212\) 0 0
\(213\) −0.416642 2.89781i −0.0285478 0.198554i
\(214\) 0 0
\(215\) 0.474752 0.305105i 0.0323778 0.0208080i
\(216\) 0 0
\(217\) 26.7212 7.84604i 1.81395 0.532624i
\(218\) 0 0
\(219\) −7.33493 + 8.46496i −0.495649 + 0.572009i
\(220\) 0 0
\(221\) −5.48736 12.0156i −0.369120 0.808260i
\(222\) 0 0
\(223\) −9.96439 2.92581i −0.667265 0.195927i −0.0694802 0.997583i \(-0.522134\pi\)
−0.597785 + 0.801657i \(0.703952\pi\)
\(224\) 0 0
\(225\) −5.24122 + 11.4767i −0.349415 + 0.765112i
\(226\) 0 0
\(227\) −4.41116 2.83488i −0.292779 0.188158i 0.386003 0.922498i \(-0.373856\pi\)
−0.678782 + 0.734340i \(0.737492\pi\)
\(228\) 0 0
\(229\) 15.6825 1.03633 0.518163 0.855282i \(-0.326616\pi\)
0.518163 + 0.855282i \(0.326616\pi\)
\(230\) 0 0
\(231\) 17.9208 1.17910
\(232\) 0 0
\(233\) −11.5443 7.41906i −0.756291 0.486039i 0.104798 0.994494i \(-0.466580\pi\)
−0.861089 + 0.508455i \(0.830217\pi\)
\(234\) 0 0
\(235\) 1.43731 3.14726i 0.0937595 0.205305i
\(236\) 0 0
\(237\) 8.33669 + 2.44787i 0.541526 + 0.159006i
\(238\) 0 0
\(239\) −2.60385 5.70164i −0.168429 0.368808i 0.806530 0.591194i \(-0.201343\pi\)
−0.974959 + 0.222385i \(0.928616\pi\)
\(240\) 0 0
\(241\) −7.71902 + 8.90823i −0.497226 + 0.573829i −0.947782 0.318919i \(-0.896680\pi\)
0.450556 + 0.892748i \(0.351226\pi\)
\(242\) 0 0
\(243\) −19.9098 + 5.84603i −1.27721 + 0.375023i
\(244\) 0 0
\(245\) −2.08765 + 1.34165i −0.133375 + 0.0857149i
\(246\) 0 0
\(247\) −2.00104 13.9175i −0.127323 0.885550i
\(248\) 0 0
\(249\) 3.39303 23.5990i 0.215024 1.49553i
\(250\) 0 0
\(251\) −1.67105 1.92850i −0.105476 0.121726i 0.700557 0.713597i \(-0.252935\pi\)
−0.806033 + 0.591871i \(0.798390\pi\)
\(252\) 0 0
\(253\) −3.46656 + 8.19597i −0.217941 + 0.515276i
\(254\) 0 0
\(255\) −2.47177 2.85257i −0.154788 0.178635i
\(256\) 0 0
\(257\) −0.0588063 + 0.409007i −0.00366823 + 0.0255131i −0.991573 0.129546i \(-0.958648\pi\)
0.987905 + 0.155060i \(0.0495570\pi\)
\(258\) 0 0
\(259\) 1.08240 + 7.52829i 0.0672574 + 0.467785i
\(260\) 0 0
\(261\) 8.95795 5.75692i 0.554483 0.356345i
\(262\) 0 0
\(263\) 8.81824 2.58927i 0.543756 0.159661i 0.00169242 0.999999i \(-0.499461\pi\)
0.542064 + 0.840337i \(0.317643\pi\)
\(264\) 0 0
\(265\) −1.26876 + 1.46422i −0.0779391 + 0.0899465i
\(266\) 0 0
\(267\) −12.9452 28.3460i −0.792231 1.73474i
\(268\) 0 0
\(269\) 21.6606 + 6.36013i 1.32067 + 0.387784i 0.864735 0.502229i \(-0.167487\pi\)
0.455936 + 0.890013i \(0.349305\pi\)
\(270\) 0 0
\(271\) 11.5194 25.2240i 0.699756 1.53225i −0.140511 0.990079i \(-0.544875\pi\)
0.840267 0.542172i \(-0.182398\pi\)
\(272\) 0 0
\(273\) −16.9934 10.9210i −1.02849 0.660968i
\(274\) 0 0
\(275\) −9.15850 −0.552278
\(276\) 0 0
\(277\) 14.7388 0.885569 0.442784 0.896628i \(-0.353991\pi\)
0.442784 + 0.896628i \(0.353991\pi\)
\(278\) 0 0
\(279\) 14.6166 + 9.39353i 0.875074 + 0.562376i
\(280\) 0 0
\(281\) 6.68475 14.6376i 0.398779 0.873204i −0.598614 0.801038i \(-0.704282\pi\)
0.997393 0.0721659i \(-0.0229911\pi\)
\(282\) 0 0
\(283\) −13.9357 4.09188i −0.828388 0.243237i −0.160064 0.987107i \(-0.551170\pi\)
−0.668325 + 0.743870i \(0.732988\pi\)
\(284\) 0 0
\(285\) −1.66903 3.65467i −0.0988649 0.216484i
\(286\) 0 0
\(287\) −11.7567 + 13.5680i −0.693978 + 0.800893i
\(288\) 0 0
\(289\) −21.9594 + 6.44785i −1.29173 + 0.379285i
\(290\) 0 0
\(291\) 15.6074 10.0303i 0.914922 0.587985i
\(292\) 0 0
\(293\) 3.90734 + 27.1762i 0.228269 + 1.58765i 0.705396 + 0.708813i \(0.250769\pi\)
−0.477127 + 0.878834i \(0.658322\pi\)
\(294\) 0 0
\(295\) −0.380414 + 2.64584i −0.0221486 + 0.154047i
\(296\) 0 0
\(297\) −1.27107 1.46689i −0.0737550 0.0851178i
\(298\) 0 0
\(299\) 8.28180 5.65928i 0.478949 0.327284i
\(300\) 0 0
\(301\) −5.97210 6.89217i −0.344226 0.397258i
\(302\) 0 0
\(303\) −3.79213 + 26.3748i −0.217852 + 1.51519i
\(304\) 0 0
\(305\) −0.187698 1.30547i −0.0107475 0.0747508i
\(306\) 0 0
\(307\) −17.3606 + 11.1570i −0.990821 + 0.636762i −0.932361 0.361528i \(-0.882255\pi\)
−0.0584598 + 0.998290i \(0.518619\pi\)
\(308\) 0 0
\(309\) −5.62324 + 1.65113i −0.319895 + 0.0939296i
\(310\) 0 0
\(311\) −8.96468 + 10.3458i −0.508340 + 0.586656i −0.950673 0.310195i \(-0.899606\pi\)
0.442333 + 0.896851i \(0.354151\pi\)
\(312\) 0 0
\(313\) 14.0820 + 30.8353i 0.795963 + 1.74292i 0.658733 + 0.752377i \(0.271093\pi\)
0.137231 + 0.990539i \(0.456180\pi\)
\(314\) 0 0
\(315\) −2.54796 0.748148i −0.143561 0.0421533i
\(316\) 0 0
\(317\) −5.69742 + 12.4756i −0.319999 + 0.700700i −0.999455 0.0330163i \(-0.989489\pi\)
0.679456 + 0.733716i \(0.262216\pi\)
\(318\) 0 0
\(319\) 6.50253 + 4.17892i 0.364072 + 0.233975i
\(320\) 0 0
\(321\) 34.9228 1.94920
\(322\) 0 0
\(323\) −42.4569 −2.36237
\(324\) 0 0
\(325\) 8.68452 + 5.58120i 0.481730 + 0.309589i
\(326\) 0 0
\(327\) −0.743860 + 1.62883i −0.0411356 + 0.0900743i
\(328\) 0 0
\(329\) −53.6471 15.7522i −2.95766 0.868447i
\(330\) 0 0
\(331\) 4.61740 + 10.1107i 0.253796 + 0.555735i 0.993050 0.117691i \(-0.0375493\pi\)
−0.739255 + 0.673426i \(0.764822\pi\)
\(332\) 0 0
\(333\) −3.10738 + 3.58611i −0.170284 + 0.196518i
\(334\) 0 0
\(335\) −0.919231 + 0.269911i −0.0502229 + 0.0147468i
\(336\) 0 0
\(337\) −5.98904 + 3.84892i −0.326244 + 0.209664i −0.693502 0.720455i \(-0.743933\pi\)
0.367258 + 0.930119i \(0.380297\pi\)
\(338\) 0 0
\(339\) 2.78138 + 19.3449i 0.151064 + 1.05067i
\(340\) 0 0
\(341\) −1.79492 + 12.4839i −0.0972002 + 0.676042i
\(342\) 0 0
\(343\) 7.47940 + 8.63169i 0.403850 + 0.466067i
\(344\) 0 0
\(345\) 1.81503 2.21832i 0.0977177 0.119430i
\(346\) 0 0
\(347\) 14.5262 + 16.7641i 0.779805 + 0.899943i 0.997095 0.0761639i \(-0.0242672\pi\)
−0.217290 + 0.976107i \(0.569722\pi\)
\(348\) 0 0
\(349\) 3.20623 22.2998i 0.171625 1.19368i −0.703825 0.710373i \(-0.748526\pi\)
0.875450 0.483308i \(-0.160565\pi\)
\(350\) 0 0
\(351\) 0.311362 + 2.16557i 0.0166193 + 0.115589i
\(352\) 0 0
\(353\) −0.0989141 + 0.0635682i −0.00526467 + 0.00338340i −0.543271 0.839558i \(-0.682814\pi\)
0.538006 + 0.842941i \(0.319178\pi\)
\(354\) 0 0
\(355\) −0.302148 + 0.0887188i −0.0160364 + 0.00470871i
\(356\) 0 0
\(357\) −39.9434 + 46.0972i −2.11403 + 2.43972i
\(358\) 0 0
\(359\) 7.22273 + 15.8156i 0.381201 + 0.834714i 0.998835 + 0.0482488i \(0.0153640\pi\)
−0.617634 + 0.786466i \(0.711909\pi\)
\(360\) 0 0
\(361\) −25.1321 7.37945i −1.32274 0.388392i
\(362\) 0 0
\(363\) 7.39974 16.2032i 0.388386 0.850446i
\(364\) 0 0
\(365\) 1.01354 + 0.651361i 0.0530510 + 0.0340938i
\(366\) 0 0
\(367\) 20.0955 1.04898 0.524488 0.851418i \(-0.324257\pi\)
0.524488 + 0.851418i \(0.324257\pi\)
\(368\) 0 0
\(369\) −11.2007 −0.583084
\(370\) 0 0
\(371\) 26.3387 + 16.9268i 1.36744 + 0.878798i
\(372\) 0 0
\(373\) −10.4200 + 22.8167i −0.539528 + 1.18140i 0.421974 + 0.906608i \(0.361337\pi\)
−0.961503 + 0.274795i \(0.911390\pi\)
\(374\) 0 0
\(375\) 5.69754 + 1.67295i 0.294220 + 0.0863907i
\(376\) 0 0
\(377\) −3.61936 7.92530i −0.186407 0.408174i
\(378\) 0 0
\(379\) −13.4789 + 15.5555i −0.692366 + 0.799033i −0.987700 0.156361i \(-0.950024\pi\)
0.295334 + 0.955394i \(0.404569\pi\)
\(380\) 0 0
\(381\) 36.7593 10.7935i 1.88324 0.552968i
\(382\) 0 0
\(383\) 7.26607 4.66962i 0.371279 0.238606i −0.341674 0.939819i \(-0.610994\pi\)
0.712953 + 0.701212i \(0.247357\pi\)
\(384\) 0 0
\(385\) −0.274331 1.90801i −0.0139812 0.0972413i
\(386\) 0 0
\(387\) 0.809719 5.63172i 0.0411603 0.286276i
\(388\) 0 0
\(389\) 3.32783 + 3.84052i 0.168728 + 0.194722i 0.833816 0.552043i \(-0.186151\pi\)
−0.665088 + 0.746765i \(0.731606\pi\)
\(390\) 0 0
\(391\) −13.3557 27.1848i −0.675426 1.37479i
\(392\) 0 0
\(393\) 5.37555 + 6.20372i 0.271161 + 0.312936i
\(394\) 0 0
\(395\) 0.133005 0.925070i 0.00669221 0.0465453i
\(396\) 0 0
\(397\) −3.24076 22.5400i −0.162649 1.13125i −0.893614 0.448836i \(-0.851839\pi\)
0.730965 0.682415i \(-0.239070\pi\)
\(398\) 0 0
\(399\) −54.6194 + 35.1018i −2.73439 + 1.75729i
\(400\) 0 0
\(401\) −3.39941 + 0.998156i −0.169758 + 0.0498456i −0.365507 0.930809i \(-0.619104\pi\)
0.195749 + 0.980654i \(0.437286\pi\)
\(402\) 0 0
\(403\) 9.30974 10.7440i 0.463751 0.535197i
\(404\) 0 0
\(405\) 1.06742 + 2.33732i 0.0530405 + 0.116143i
\(406\) 0 0
\(407\) −3.30493 0.970414i −0.163819 0.0481016i
\(408\) 0 0
\(409\) −9.54188 + 20.8938i −0.471815 + 1.03313i 0.512818 + 0.858497i \(0.328602\pi\)
−0.984633 + 0.174634i \(0.944126\pi\)
\(410\) 0 0
\(411\) 32.6715 + 20.9967i 1.61157 + 1.03569i
\(412\) 0 0
\(413\) 43.1961 2.12554
\(414\) 0 0
\(415\) −2.56450 −0.125886
\(416\) 0 0
\(417\) −10.3819 6.67207i −0.508406 0.326733i
\(418\) 0 0
\(419\) 8.52270 18.6621i 0.416361 0.911703i −0.578985 0.815338i \(-0.696551\pi\)
0.995346 0.0963651i \(-0.0307216\pi\)
\(420\) 0 0
\(421\) −5.28793 1.55268i −0.257718 0.0756728i 0.150321 0.988637i \(-0.451969\pi\)
−0.408039 + 0.912964i \(0.633787\pi\)
\(422\) 0 0
\(423\) −14.4908 31.7305i −0.704568 1.54279i
\(424\) 0 0
\(425\) 20.4132 23.5581i 0.990187 1.14274i
\(426\) 0 0
\(427\) −20.4497 + 6.00459i −0.989633 + 0.290582i
\(428\) 0 0
\(429\) 7.69591 4.94586i 0.371562 0.238788i
\(430\) 0 0
\(431\) −1.96921 13.6962i −0.0948537 0.659722i −0.980668 0.195681i \(-0.937308\pi\)
0.885814 0.464041i \(-0.153601\pi\)
\(432\) 0 0
\(433\) −2.73014 + 18.9885i −0.131202 + 0.912530i 0.812789 + 0.582558i \(0.197948\pi\)
−0.943991 + 0.329972i \(0.892961\pi\)
\(434\) 0 0
\(435\) −1.63033 1.88151i −0.0781685 0.0902113i
\(436\) 0 0
\(437\) −5.48811 31.7698i −0.262532 1.51976i
\(438\) 0 0
\(439\) −23.7272 27.3827i −1.13244 1.30690i −0.945901 0.324455i \(-0.894819\pi\)
−0.186536 0.982448i \(-0.559726\pi\)
\(440\) 0 0
\(441\) −3.56061 + 24.7646i −0.169553 + 1.17927i
\(442\) 0 0
\(443\) 2.26323 + 15.7411i 0.107529 + 0.747883i 0.970233 + 0.242173i \(0.0778603\pi\)
−0.862704 + 0.505710i \(0.831231\pi\)
\(444\) 0 0
\(445\) −2.81980 + 1.81218i −0.133671 + 0.0859054i
\(446\) 0 0
\(447\) −3.23320 + 0.949353i −0.152925 + 0.0449028i
\(448\) 0 0
\(449\) 13.1586 15.1859i 0.620994 0.716665i −0.354901 0.934904i \(-0.615486\pi\)
0.975895 + 0.218238i \(0.0700311\pi\)
\(450\) 0 0
\(451\) −3.37754 7.39578i −0.159042 0.348253i
\(452\) 0 0
\(453\) 0.856374 + 0.251454i 0.0402360 + 0.0118143i
\(454\) 0 0
\(455\) −0.902612 + 1.97644i −0.0423151 + 0.0926571i
\(456\) 0 0
\(457\) 7.12001 + 4.57575i 0.333060 + 0.214045i 0.696472 0.717584i \(-0.254752\pi\)
−0.363412 + 0.931628i \(0.618388\pi\)
\(458\) 0 0
\(459\) 6.60631 0.308356
\(460\) 0 0
\(461\) 5.29967 0.246830 0.123415 0.992355i \(-0.460615\pi\)
0.123415 + 0.992355i \(0.460615\pi\)
\(462\) 0 0
\(463\) −17.5549 11.2819i −0.815848 0.524313i 0.0649042 0.997891i \(-0.479326\pi\)
−0.880752 + 0.473578i \(0.842962\pi\)
\(464\) 0 0
\(465\) 1.68752 3.69515i 0.0782568 0.171358i
\(466\) 0 0
\(467\) 17.2389 + 5.06180i 0.797722 + 0.234232i 0.655097 0.755544i \(-0.272628\pi\)
0.142625 + 0.989777i \(0.454446\pi\)
\(468\) 0 0
\(469\) 6.43135 + 14.0827i 0.296972 + 0.650279i
\(470\) 0 0
\(471\) −18.5458 + 21.4030i −0.854545 + 0.986198i
\(472\) 0 0
\(473\) 3.96278 1.16358i 0.182209 0.0535013i
\(474\) 0 0
\(475\) 27.9134 17.9389i 1.28076 0.823092i
\(476\) 0 0
\(477\) 2.77986 + 19.3344i 0.127281 + 0.885261i
\(478\) 0 0
\(479\) −1.48271 + 10.3125i −0.0677468 + 0.471189i 0.927501 + 0.373819i \(0.121952\pi\)
−0.995248 + 0.0973698i \(0.968957\pi\)
\(480\) 0 0
\(481\) 2.54251 + 2.93422i 0.115929 + 0.133789i
\(482\) 0 0
\(483\) −39.6570 23.9304i −1.80445 1.08887i
\(484\) 0 0
\(485\) −1.30683 1.50816i −0.0593400 0.0684821i
\(486\) 0 0
\(487\) −1.74332 + 12.1251i −0.0789974 + 0.549439i 0.911435 + 0.411443i \(0.134975\pi\)
−0.990433 + 0.137996i \(0.955934\pi\)
\(488\) 0 0
\(489\) −4.67523 32.5169i −0.211421 1.47047i
\(490\) 0 0
\(491\) 32.7547 21.0501i 1.47820 0.949979i 0.480879 0.876787i \(-0.340318\pi\)
0.997318 0.0731926i \(-0.0233188\pi\)
\(492\) 0 0
\(493\) −25.2427 + 7.41192i −1.13687 + 0.333816i
\(494\) 0 0
\(495\) 0.787553 0.908884i 0.0353979 0.0408513i
\(496\) 0 0
\(497\) 2.11397 + 4.62894i 0.0948244 + 0.207636i
\(498\) 0 0
\(499\) 14.5673 + 4.27736i 0.652124 + 0.191481i 0.591028 0.806651i \(-0.298722\pi\)
0.0610959 + 0.998132i \(0.480540\pi\)
\(500\) 0 0
\(501\) −3.47177 + 7.60211i −0.155107 + 0.339637i
\(502\) 0 0
\(503\) 17.3335 + 11.1396i 0.772864 + 0.496689i 0.866658 0.498902i \(-0.166263\pi\)
−0.0937945 + 0.995592i \(0.529900\pi\)
\(504\) 0 0
\(505\) 2.86615 0.127542
\(506\) 0 0
\(507\) 20.3315 0.902955
\(508\) 0 0
\(509\) −27.5633 17.7139i −1.22172 0.785154i −0.239141 0.970985i \(-0.576866\pi\)
−0.982582 + 0.185831i \(0.940502\pi\)
\(510\) 0 0
\(511\) 8.08784 17.7099i 0.357785 0.783440i
\(512\) 0 0
\(513\) 6.74721 + 1.98116i 0.297897 + 0.0874704i
\(514\) 0 0
\(515\) 0.261874 + 0.573425i 0.0115396 + 0.0252681i
\(516\) 0 0
\(517\) 16.5819 19.1365i 0.729270 0.841623i
\(518\) 0 0
\(519\) 43.6686 12.8223i 1.91684 0.562835i
\(520\) 0 0
\(521\) 29.0617 18.6768i 1.27322 0.818247i 0.283182 0.959066i \(-0.408610\pi\)
0.990035 + 0.140819i \(0.0449737\pi\)
\(522\) 0 0
\(523\) −3.25825 22.6616i −0.142473 0.990924i −0.928129 0.372260i \(-0.878583\pi\)
0.785655 0.618665i \(-0.212326\pi\)
\(524\) 0 0
\(525\) 6.78397 47.1836i 0.296077 2.05926i
\(526\) 0 0
\(527\) −28.1113 32.4422i −1.22455 1.41320i
\(528\) 0 0
\(529\) 18.6155 13.5078i 0.809372 0.587297i
\(530\) 0 0
\(531\) 17.6482 + 20.3671i 0.765865 + 0.883855i
\(532\) 0 0
\(533\) −1.30426 + 9.07130i −0.0564936 + 0.392922i
\(534\) 0 0
\(535\) −0.534596 3.71820i −0.0231126 0.160752i
\(536\) 0 0
\(537\) 22.6554 14.5597i 0.977651 0.628298i
\(538\) 0 0
\(539\) −17.4257 + 5.11665i −0.750578 + 0.220390i
\(540\) 0 0
\(541\) −16.7348 + 19.3130i −0.719485 + 0.830330i −0.991245 0.132035i \(-0.957849\pi\)
0.271760 + 0.962365i \(0.412394\pi\)
\(542\) 0 0
\(543\) −6.46625 14.1591i −0.277494 0.607626i
\(544\) 0 0
\(545\) 0.184806 + 0.0542641i 0.00791624 + 0.00232442i
\(546\) 0 0
\(547\) −15.0121 + 32.8719i −0.641872 + 1.40550i 0.256620 + 0.966512i \(0.417391\pi\)
−0.898492 + 0.438990i \(0.855336\pi\)
\(548\) 0 0
\(549\) −11.1861 7.18888i −0.477412 0.306814i
\(550\) 0 0
\(551\) −28.0038 −1.19300
\(552\) 0 0
\(553\) −15.1027 −0.642233
\(554\) 0 0
\(555\) 0.933295 + 0.599793i 0.0396162 + 0.0254598i
\(556\) 0 0
\(557\) 4.55328 9.97029i 0.192929 0.422455i −0.788303 0.615287i \(-0.789040\pi\)
0.981232 + 0.192832i \(0.0617673\pi\)
\(558\) 0 0
\(559\) −4.46678 1.31156i −0.188925 0.0554733i
\(560\) 0 0
\(561\) −11.4752 25.1271i −0.484482 1.06087i
\(562\) 0 0
\(563\) 22.6790 26.1730i 0.955806 1.10306i −0.0387911 0.999247i \(-0.512351\pi\)
0.994597 0.103811i \(-0.0331039\pi\)
\(564\) 0 0
\(565\) 2.01706 0.592262i 0.0848583 0.0249166i
\(566\) 0 0
\(567\) 34.9315 22.4491i 1.46699 0.942775i
\(568\) 0 0
\(569\) 3.29710 + 22.9318i 0.138222 + 0.961353i 0.934383 + 0.356269i \(0.115951\pi\)
−0.796162 + 0.605084i \(0.793140\pi\)
\(570\) 0 0
\(571\) −0.681807 + 4.74207i −0.0285327 + 0.198450i −0.999102 0.0423732i \(-0.986508\pi\)
0.970569 + 0.240823i \(0.0774172\pi\)
\(572\) 0 0
\(573\) 5.85523 + 6.75730i 0.244606 + 0.282290i
\(574\) 0 0
\(575\) 20.2668 + 12.2297i 0.845185 + 0.510013i
\(576\) 0 0
\(577\) −2.31471 2.67131i −0.0963624 0.111208i 0.705520 0.708690i \(-0.250713\pi\)
−0.801882 + 0.597482i \(0.796168\pi\)
\(578\) 0 0
\(579\) −5.94767 + 41.3669i −0.247177 + 1.71915i
\(580\) 0 0
\(581\) 5.89781 + 41.0202i 0.244682 + 1.70180i
\(582\) 0 0
\(583\) −11.9282 + 7.66578i −0.494015 + 0.317484i
\(584\) 0 0
\(585\) −1.30067 + 0.381911i −0.0537761 + 0.0157901i
\(586\) 0 0
\(587\) 5.29262 6.10801i 0.218450 0.252105i −0.635938 0.771740i \(-0.719387\pi\)
0.854388 + 0.519635i \(0.173932\pi\)
\(588\) 0 0
\(589\) −18.9818 41.5644i −0.782133 1.71263i
\(590\) 0 0
\(591\) 27.1233 + 7.96413i 1.11570 + 0.327601i
\(592\) 0 0
\(593\) −7.38894 + 16.1795i −0.303427 + 0.664413i −0.998513 0.0545138i \(-0.982639\pi\)
0.695086 + 0.718927i \(0.255366\pi\)
\(594\) 0 0
\(595\) 5.51937 + 3.54708i 0.226272 + 0.145416i
\(596\) 0 0
\(597\) −20.2996 −0.830807
\(598\) 0 0
\(599\) 23.0324 0.941079 0.470540 0.882379i \(-0.344059\pi\)
0.470540 + 0.882379i \(0.344059\pi\)
\(600\) 0 0
\(601\) −24.4283 15.6991i −0.996451 0.640380i −0.0625985 0.998039i \(-0.519939\pi\)
−0.933852 + 0.357659i \(0.883575\pi\)
\(602\) 0 0
\(603\) −4.01244 + 8.78603i −0.163399 + 0.357795i
\(604\) 0 0
\(605\) −1.83841 0.539806i −0.0747420 0.0219462i
\(606\) 0 0
\(607\) 5.96499 + 13.0615i 0.242111 + 0.530150i 0.991208 0.132310i \(-0.0422396\pi\)
−0.749097 + 0.662460i \(0.769512\pi\)
\(608\) 0 0
\(609\) −26.3460 + 30.4049i −1.06759 + 1.23207i
\(610\) 0 0
\(611\) −27.3855 + 8.04112i −1.10790 + 0.325309i
\(612\) 0 0
\(613\) 35.1140 22.5664i 1.41824 0.911448i 0.418245 0.908334i \(-0.362645\pi\)
0.999995 0.00311388i \(-0.000991180\pi\)
\(614\) 0 0
\(615\) 0.372684 + 2.59207i 0.0150281 + 0.104522i
\(616\) 0 0
\(617\) −2.90999 + 20.2394i −0.117152 + 0.814807i 0.843516 + 0.537105i \(0.180482\pi\)
−0.960667 + 0.277703i \(0.910427\pi\)
\(618\) 0 0
\(619\) −25.9815 29.9842i −1.04428 1.20517i −0.978267 0.207349i \(-0.933516\pi\)
−0.0660169 0.997819i \(-0.521029\pi\)
\(620\) 0 0
\(621\) 0.853951 + 4.94339i 0.0342679 + 0.198372i
\(622\) 0 0
\(623\) 35.4714 + 40.9361i 1.42113 + 1.64007i
\(624\) 0 0
\(625\) −3.42123 + 23.7952i −0.136849 + 0.951806i
\(626\) 0 0
\(627\) −4.18457 29.1043i −0.167116 1.16231i
\(628\) 0 0
\(629\) 9.86246 6.33822i 0.393242 0.252721i
\(630\) 0 0
\(631\) −3.90579 + 1.14684i −0.155487 + 0.0456551i −0.358550 0.933511i \(-0.616729\pi\)
0.203063 + 0.979166i \(0.434910\pi\)
\(632\) 0 0
\(633\) 4.97432 5.74068i 0.197712 0.228171i
\(634\) 0 0
\(635\) −1.71188 3.74850i −0.0679339 0.148755i
\(636\) 0 0
\(637\) 19.6420 + 5.76740i 0.778243 + 0.228513i
\(638\) 0 0
\(639\) −1.31888 + 2.88794i −0.0521740 + 0.114245i
\(640\) 0 0
\(641\) 41.7239 + 26.8143i 1.64800 + 1.05910i 0.932937 + 0.360038i \(0.117236\pi\)
0.715059 + 0.699064i \(0.246400\pi\)
\(642\) 0 0
\(643\) 40.9629 1.61542 0.807711 0.589579i \(-0.200706\pi\)
0.807711 + 0.589579i \(0.200706\pi\)
\(644\) 0 0
\(645\) −1.33024 −0.0523782
\(646\) 0 0
\(647\) 14.4760 + 9.30313i 0.569108 + 0.365744i 0.793328 0.608795i \(-0.208347\pi\)
−0.224219 + 0.974539i \(0.571983\pi\)
\(648\) 0 0
\(649\) −8.12656 + 17.7947i −0.318995 + 0.698502i
\(650\) 0 0
\(651\) −62.9862 18.4944i −2.46863 0.724854i
\(652\) 0 0
\(653\) −5.54824 12.1490i −0.217119 0.475425i 0.769463 0.638692i \(-0.220524\pi\)
−0.986582 + 0.163267i \(0.947797\pi\)
\(654\) 0 0
\(655\) 0.578215 0.667295i 0.0225927 0.0260734i
\(656\) 0 0
\(657\) 11.6546 3.42211i 0.454691 0.133509i
\(658\) 0 0
\(659\) −20.7936 + 13.3633i −0.810006 + 0.520559i −0.878867 0.477067i \(-0.841700\pi\)
0.0688612 + 0.997626i \(0.478063\pi\)
\(660\) 0 0
\(661\) −0.145017 1.00862i −0.00564051 0.0392306i 0.986807 0.161902i \(-0.0517629\pi\)
−0.992447 + 0.122672i \(0.960854\pi\)
\(662\) 0 0
\(663\) −4.43120 + 30.8197i −0.172094 + 1.19694i
\(664\) 0 0
\(665\) 4.57336 + 5.27794i 0.177347 + 0.204670i
\(666\) 0 0
\(667\) −8.80916 17.9306i −0.341092 0.694276i
\(668\) 0 0
\(669\) 16.0305 + 18.5002i 0.619776 + 0.715260i
\(670\) 0 0
\(671\) 1.37365 9.55396i 0.0530292 0.368826i
\(672\) 0 0
\(673\) −0.119569 0.831623i −0.00460906 0.0320567i 0.987387 0.158325i \(-0.0506092\pi\)
−0.991996 + 0.126268i \(0.959700\pi\)
\(674\) 0 0
\(675\) −4.34333 + 2.79129i −0.167175 + 0.107437i
\(676\) 0 0
\(677\) −16.8545 + 4.94892i −0.647771 + 0.190203i −0.589081 0.808074i \(-0.700510\pi\)
−0.0586892 + 0.998276i \(0.518692\pi\)
\(678\) 0 0
\(679\) −21.1182 + 24.3717i −0.810441 + 0.935299i
\(680\) 0 0
\(681\) 5.13451 + 11.2430i 0.196755 + 0.430833i
\(682\) 0 0
\(683\) −22.0946 6.48756i −0.845427 0.248240i −0.169795 0.985479i \(-0.554311\pi\)
−0.675631 + 0.737240i \(0.736129\pi\)
\(684\) 0 0
\(685\) 1.73536 3.79991i 0.0663048 0.145187i
\(686\) 0 0
\(687\) −31.0979 19.9854i −1.18646 0.762492i
\(688\) 0 0
\(689\) 15.9824 0.608881
\(690\) 0 0
\(691\) 3.15260 0.119931 0.0599654 0.998200i \(-0.480901\pi\)
0.0599654 + 0.998200i \(0.480901\pi\)
\(692\) 0 0
\(693\) −16.3491 10.5070i −0.621053 0.399126i
\(694\) 0 0
\(695\) −0.551442 + 1.20749i −0.0209174 + 0.0458027i
\(696\) 0 0
\(697\) 26.5521 + 7.79639i 1.00573 + 0.295309i
\(698\) 0 0
\(699\) 13.4373 + 29.4236i 0.508246 + 1.11290i
\(700\) 0 0
\(701\) −9.65715 + 11.1450i −0.364746 + 0.420939i −0.908224 0.418484i \(-0.862562\pi\)
0.543478 + 0.839423i \(0.317107\pi\)
\(702\) 0 0
\(703\) 11.9736 3.51576i 0.451592 0.132599i
\(704\) 0 0
\(705\) −6.86095 + 4.40926i −0.258398 + 0.166062i
\(706\) 0 0
\(707\) −6.59153 45.8451i −0.247900 1.72418i
\(708\) 0 0
\(709\) 7.14161 49.6710i 0.268209 1.86543i −0.197236 0.980356i \(-0.563196\pi\)
0.465444 0.885077i \(-0.345894\pi\)
\(710\) 0 0
\(711\) −6.17036 7.12098i −0.231407 0.267058i
\(712\) 0 0
\(713\) 20.6422 25.2288i 0.773057 0.944827i
\(714\) 0 0
\(715\) −0.644389 0.743664i −0.0240988 0.0278115i
\(716\) 0 0
\(717\) −2.10269 + 14.6245i −0.0785263 + 0.546162i
\(718\) 0 0
\(719\) −1.87983 13.0745i −0.0701058 0.487597i −0.994380 0.105868i \(-0.966238\pi\)
0.924274 0.381729i \(-0.124671\pi\)
\(720\) 0 0
\(721\) 8.56989 5.50753i 0.319159 0.205111i
\(722\) 0 0
\(723\) 26.6591 7.82782i 0.991463 0.291120i
\(724\) 0 0
\(725\) 13.4642 15.5385i 0.500048 0.577086i
\(726\) 0 0
\(727\) −10.0155 21.9308i −0.371454 0.813370i −0.999384 0.0351003i \(-0.988825\pi\)
0.627930 0.778270i \(-0.283902\pi\)
\(728\) 0 0
\(729\) 17.7590 + 5.21452i 0.657742 + 0.193131i
\(730\) 0 0
\(731\) −5.83954 + 12.7868i −0.215983 + 0.472937i
\(732\) 0 0
\(733\) −13.9247 8.94889i −0.514322 0.330535i 0.257600 0.966252i \(-0.417068\pi\)
−0.771922 + 0.635717i \(0.780705\pi\)
\(734\) 0 0
\(735\) 5.84953 0.215763
\(736\) 0 0
\(737\) −7.01133 −0.258266
\(738\) 0 0
\(739\) −36.5060 23.4610i −1.34290 0.863027i −0.345735 0.938332i \(-0.612370\pi\)
−0.997161 + 0.0753055i \(0.976007\pi\)
\(740\) 0 0
\(741\) −13.7682 + 30.1482i −0.505787 + 1.10752i
\(742\) 0 0
\(743\) 9.85124 + 2.89259i 0.361407 + 0.106119i 0.457395 0.889264i \(-0.348783\pi\)
−0.0959876 + 0.995383i \(0.530601\pi\)
\(744\) 0 0
\(745\) 0.150570 + 0.329703i 0.00551646 + 0.0120794i
\(746\) 0 0
\(747\) −16.9315 + 19.5400i −0.619492 + 0.714932i
\(748\) 0 0
\(749\) −58.2445 + 17.1021i −2.12821 + 0.624898i
\(750\) 0 0
\(751\) 9.19040 5.90631i 0.335362 0.215524i −0.362111 0.932135i \(-0.617944\pi\)
0.697473 + 0.716611i \(0.254308\pi\)
\(752\) 0 0
\(753\) 0.856016 + 5.95372i 0.0311949 + 0.216966i
\(754\) 0 0
\(755\) 0.0136627 0.0950265i 0.000497238 0.00345837i
\(756\) 0 0
\(757\) −34.9495 40.3339i −1.27026 1.46596i −0.819242 0.573448i \(-0.805605\pi\)
−0.451021 0.892513i \(-0.648940\pi\)
\(758\) 0 0
\(759\) 17.3189 11.8347i 0.628636 0.429572i
\(760\) 0 0
\(761\) −21.0945 24.3444i −0.764675 0.882482i 0.231229 0.972899i \(-0.425725\pi\)
−0.995904 + 0.0904170i \(0.971180\pi\)
\(762\) 0 0
\(763\) 0.442958 3.08084i 0.0160362 0.111534i
\(764\) 0 0
\(765\) 0.582531 + 4.05159i 0.0210615 + 0.146486i
\(766\) 0 0
\(767\) 18.5501 11.9214i 0.669805 0.430457i
\(768\) 0 0
\(769\) −4.39089 + 1.28928i −0.158340 + 0.0464927i −0.359942 0.932975i \(-0.617203\pi\)
0.201602 + 0.979468i \(0.435385\pi\)
\(770\) 0 0
\(771\) 0.637841 0.736108i 0.0229713 0.0265103i
\(772\) 0 0
\(773\) −5.12581 11.2240i −0.184363 0.403698i 0.794773 0.606907i \(-0.207590\pi\)
−0.979135 + 0.203209i \(0.934863\pi\)
\(774\) 0 0
\(775\) 32.1893 + 9.45164i 1.15627 + 0.339513i
\(776\) 0 0
\(777\) 7.44752 16.3078i 0.267178 0.585039i
\(778\) 0 0
\(779\) 24.7803 + 15.9253i 0.887847 + 0.570585i
\(780\) 0 0
\(781\) −2.30460 −0.0824652
\(782\) 0 0
\(783\) 4.35740 0.155721
\(784\) 0 0
\(785\) 2.56265 + 1.64692i 0.0914650 + 0.0587810i
\(786\) 0 0
\(787\) −16.0845 + 35.2201i −0.573350 + 1.25546i 0.371644 + 0.928375i \(0.378794\pi\)
−0.944994 + 0.327087i \(0.893933\pi\)
\(788\) 0 0
\(789\) −20.7861 6.10334i −0.740004 0.217285i
\(790\) 0 0
\(791\) −14.1123 30.9015i −0.501774 1.09873i
\(792\) 0 0
\(793\) −7.12476 + 8.22241i −0.253008 + 0.291986i
\(794\) 0 0
\(795\) 4.38189 1.28664i 0.155410 0.0456324i
\(796\) 0 0
\(797\) 19.9303 12.8084i 0.705967 0.453698i −0.137763 0.990465i \(-0.543991\pi\)
0.843730 + 0.536768i \(0.180355\pi\)
\(798\) 0 0
\(799\) 12.2652 + 85.3061i 0.433910 + 3.01791i
\(800\) 0 0
\(801\) −4.80934 + 33.4497i −0.169930 + 1.18189i
\(802\) 0 0
\(803\) 5.77404 + 6.66360i 0.203761 + 0.235153i
\(804\) 0 0
\(805\) −1.94077 + 4.58856i −0.0684033 + 0.161726i
\(806\) 0 0
\(807\) −34.8472 40.2158i −1.22668 1.41566i
\(808\) 0 0
\(809\) −5.89803 + 41.0217i −0.207364 + 1.44225i 0.574351 + 0.818609i \(0.305255\pi\)
−0.781714 + 0.623637i \(0.785655\pi\)
\(810\) 0 0
\(811\) 3.74221 + 26.0276i 0.131407 + 0.913954i 0.943723 + 0.330737i \(0.107297\pi\)
−0.812316 + 0.583217i \(0.801794\pi\)
\(812\) 0 0
\(813\) −54.9878 + 35.3385i −1.92851 + 1.23937i
\(814\) 0 0
\(815\) −3.39047 + 0.995533i −0.118763 + 0.0348720i
\(816\) 0 0
\(817\) −9.79872 + 11.3083i −0.342814 + 0.395628i
\(818\) 0 0
\(819\) 9.10007 + 19.9264i 0.317982 + 0.696284i
\(820\) 0 0
\(821\) 17.9426 + 5.26841i 0.626200 + 0.183869i 0.579411 0.815036i \(-0.303283\pi\)
0.0467895 + 0.998905i \(0.485101\pi\)
\(822\) 0 0
\(823\) −9.67159 + 21.1778i −0.337130 + 0.738212i −0.999944 0.0105718i \(-0.996635\pi\)
0.662814 + 0.748784i \(0.269362\pi\)
\(824\) 0 0
\(825\) 18.1611 + 11.6714i 0.632287 + 0.406346i
\(826\) 0 0
\(827\) 28.7698 1.00042 0.500212 0.865903i \(-0.333255\pi\)
0.500212 + 0.865903i \(0.333255\pi\)
\(828\) 0 0
\(829\) −22.8006 −0.791899 −0.395949 0.918272i \(-0.629584\pi\)
−0.395949 + 0.918272i \(0.629584\pi\)
\(830\) 0 0
\(831\) −29.2267 18.7828i −1.01386 0.651569i
\(832\) 0 0
\(833\) 25.6785 56.2280i 0.889706 1.94819i
\(834\) 0 0
\(835\) 0.862535 + 0.253263i 0.0298492 + 0.00876453i
\(836\) 0 0
\(837\) 2.95358 + 6.46743i 0.102091 + 0.223547i
\(838\) 0 0
\(839\) −14.2675 + 16.4655i −0.492567 + 0.568453i −0.946550 0.322558i \(-0.895457\pi\)
0.453982 + 0.891011i \(0.350003\pi\)
\(840\) 0 0
\(841\) 11.1757 3.28147i 0.385368 0.113154i
\(842\) 0 0
\(843\) −31.9095 + 20.5070i −1.09902 + 0.706298i
\(844\) 0 0
\(845\) −0.311233 2.16468i −0.0107068 0.0744671i
\(846\) 0 0
\(847\) −4.40644 + 30.6475i −0.151407 + 1.05306i
\(848\) 0 0
\(849\) 22.4194 + 25.8734i 0.769433 + 0.887973i
\(850\) 0 0
\(851\) 6.01763 + 6.56062i 0.206282 + 0.224895i
\(852\) 0 0
\(853\) −1.68392 1.94334i −0.0576562 0.0665388i 0.726189 0.687495i \(-0.241290\pi\)
−0.783845 + 0.620957i \(0.786744\pi\)
\(854\) 0 0
\(855\) −0.620073 + 4.31270i −0.0212060 + 0.147491i
\(856\) 0 0
\(857\) 3.47499 + 24.1691i 0.118703 + 0.825600i 0.958986 + 0.283452i \(0.0914796\pi\)
−0.840283 + 0.542148i \(0.817611\pi\)
\(858\) 0 0
\(859\) −18.5782 + 11.9395i −0.633882 + 0.407371i −0.817745 0.575581i \(-0.804776\pi\)
0.183863 + 0.982952i \(0.441140\pi\)
\(860\) 0 0
\(861\) 40.6041 11.9224i 1.38378 0.406315i
\(862\) 0 0
\(863\) 11.0631 12.7675i 0.376592 0.434611i −0.535538 0.844511i \(-0.679891\pi\)
0.912130 + 0.409900i \(0.134437\pi\)
\(864\) 0 0
\(865\) −2.03365 4.45307i −0.0691461 0.151409i
\(866\) 0 0
\(867\) 51.7619 + 15.1987i 1.75793 + 0.516173i
\(868\) 0 0
\(869\) 2.84130 6.22159i 0.0963846 0.211053i
\(870\) 0 0
\(871\) 6.64848 + 4.27272i 0.225275 + 0.144775i
\(872\) 0 0
\(873\) −20.1193 −0.680936
\(874\) 0 0
\(875\) −10.3217 −0.348935
\(876\) 0 0
\(877\) 10.5180 + 6.75953i 0.355169 + 0.228253i 0.706042 0.708170i \(-0.250479\pi\)
−0.350873 + 0.936423i \(0.614115\pi\)
\(878\) 0 0
\(879\) 26.8846 58.8690i 0.906795 1.98560i
\(880\) 0 0
\(881\) −38.0568 11.1745i −1.28217 0.376478i −0.431466 0.902129i \(-0.642003\pi\)
−0.850700 + 0.525652i \(0.823822\pi\)
\(882\) 0 0
\(883\) −2.54042 5.56274i −0.0854919 0.187201i 0.862058 0.506810i \(-0.169176\pi\)
−0.947549 + 0.319609i \(0.896448\pi\)
\(884\) 0 0
\(885\) 4.12616 4.76184i 0.138699 0.160067i
\(886\) 0 0
\(887\) −24.8394 + 7.29352i −0.834027 + 0.244892i −0.670746 0.741687i \(-0.734026\pi\)
−0.163281 + 0.986580i \(0.552208\pi\)
\(888\) 0 0
\(889\) −56.0217 + 36.0029i −1.87891 + 1.20750i
\(890\) 0 0
\(891\) 2.67622 + 18.6135i 0.0896566 + 0.623575i
\(892\) 0 0
\(893\) −13.0556 + 90.8037i −0.436889 + 3.03863i
\(894\) 0 0
\(895\) −1.89696 2.18921i −0.0634085 0.0731774i
\(896\) 0 0
\(897\) −23.6347 + 0.668047i −0.789138 + 0.0223054i
\(898\) 0 0
\(899\) −18.5417 21.3983i −0.618401 0.713673i
\(900\) 0 0
\(901\) 6.86809 47.7686i 0.228809 1.59140i
\(902\) 0 0
\(903\) 3.05927 + 21.2777i 0.101806 + 0.708078i
\(904\) 0 0
\(905\) −1.40852 + 0.905202i −0.0468208 + 0.0300899i
\(906\) 0 0
\(907\) −28.4997 + 8.36827i −0.946317 + 0.277864i −0.718253 0.695782i \(-0.755058\pi\)
−0.228064 + 0.973646i \(0.573240\pi\)
\(908\) 0 0
\(909\) 18.9231 21.8384i 0.627639 0.724334i
\(910\) 0 0
\(911\) 21.4746 + 47.0228i 0.711485 + 1.55794i 0.825465 + 0.564453i \(0.190913\pi\)
−0.113980 + 0.993483i \(0.536360\pi\)
\(912\) 0 0
\(913\) −18.0079 5.28759i −0.595974 0.174994i
\(914\) 0 0
\(915\) −1.29146 + 2.82790i −0.0426944 + 0.0934876i
\(916\) 0 0
\(917\) −12.0034 7.71412i −0.396387 0.254743i
\(918\) 0 0
\(919\) −34.5860 −1.14089 −0.570443 0.821337i \(-0.693228\pi\)
−0.570443 + 0.821337i \(0.693228\pi\)
\(920\) 0 0
\(921\) 48.6438 1.60287
\(922\) 0 0
\(923\) 2.18533 + 1.40443i 0.0719312 + 0.0462274i
\(924\) 0 0
\(925\) −3.80608 + 8.33415i −0.125143 + 0.274025i
\(926\) 0 0
\(927\) 6.09813 + 1.79057i 0.200289 + 0.0588101i
\(928\) 0 0
\(929\) 14.7852 + 32.3751i 0.485087 + 1.06219i 0.981033 + 0.193839i \(0.0620939\pi\)
−0.495947 + 0.868353i \(0.665179\pi\)
\(930\) 0 0
\(931\) 43.0883 49.7266i 1.41216 1.62972i
\(932\) 0 0
\(933\) 30.9612 9.09103i 1.01362 0.297627i
\(934\) 0 0
\(935\) −2.49960 + 1.60639i −0.0817455 + 0.0525347i
\(936\) 0 0
\(937\) −0.128379 0.892894i −0.00419395 0.0291696i 0.987617 0.156884i \(-0.0501449\pi\)
−0.991811 + 0.127715i \(0.959236\pi\)
\(938\) 0 0
\(939\) 11.3716 79.0915i 0.371100 2.58105i
\(940\) 0 0
\(941\) −14.7349 17.0050i −0.480344 0.554346i 0.462916 0.886402i \(-0.346803\pi\)
−0.943260 + 0.332056i \(0.892258\pi\)
\(942\) 0 0
\(943\) −2.40171 + 20.8763i −0.0782105 + 0.679824i
\(944\) 0 0
\(945\) −0.711615 0.821248i −0.0231489 0.0267152i
\(946\) 0 0
\(947\) 3.26381 22.7003i 0.106060 0.737660i −0.865508 0.500896i \(-0.833004\pi\)
0.971567 0.236765i \(-0.0760870\pi\)
\(948\) 0 0
\(949\) −1.41441 9.83744i −0.0459137 0.319337i
\(950\) 0 0
\(951\) 27.1965 17.4781i 0.881907 0.566767i
\(952\) 0 0
\(953\) 5.12485 1.50479i 0.166010 0.0487450i −0.197671 0.980268i \(-0.563338\pi\)
0.363681 + 0.931523i \(0.381520\pi\)
\(954\) 0 0
\(955\) 0.629811 0.726841i 0.0203802 0.0235200i
\(956\) 0 0
\(957\) −7.56881 16.5734i −0.244665 0.535742i
\(958\) 0 0
\(959\) −64.7720 19.0188i −2.09160 0.614148i
\(960\) 0 0
\(961\) 6.31422 13.8262i 0.203684 0.446007i
\(962\) 0 0
\(963\) −31.8601 20.4752i −1.02668 0.659805i
\(964\) 0 0
\(965\) 4.49534 0.144710
\(966\) 0 0
\(967\) −19.1486 −0.615777 −0.307889 0.951422i \(-0.599622\pi\)
−0.307889 + 0.951422i \(0.599622\pi\)
\(968\) 0 0
\(969\) 84.1910 + 54.1063i 2.70461 + 1.73814i
\(970\) 0 0
\(971\) −12.4461 + 27.2532i −0.399414 + 0.874596i 0.597915 + 0.801560i \(0.295996\pi\)
−0.997329 + 0.0730359i \(0.976731\pi\)
\(972\) 0 0
\(973\) 20.5824 + 6.04355i 0.659843 + 0.193747i
\(974\) 0 0
\(975\) −10.1086 22.1347i −0.323734 0.708879i
\(976\) 0 0
\(977\) 27.5628 31.8092i 0.881812 1.01767i −0.117885 0.993027i \(-0.537611\pi\)
0.999696 0.0246378i \(-0.00784324\pi\)
\(978\) 0 0
\(979\) −23.5370 + 6.91109i −0.752246 + 0.220879i
\(980\) 0 0
\(981\) 1.63360 1.04985i 0.0521569 0.0335192i
\(982\) 0 0
\(983\) 6.33817 + 44.0829i 0.202156 + 1.40603i 0.797869 + 0.602830i \(0.205960\pi\)
−0.595713 + 0.803197i \(0.703130\pi\)
\(984\) 0 0
\(985\) 0.432731 3.00971i 0.0137879 0.0958972i
\(986\) 0 0
\(987\) 86.3065 + 99.6030i 2.74717 + 3.17040i
\(988\) 0 0
\(989\) −10.3230 2.71677i −0.328252 0.0863883i
\(990\) 0 0
\(991\) −13.7448 15.8624i −0.436619 0.503885i 0.494209 0.869343i \(-0.335458\pi\)
−0.930828 + 0.365458i \(0.880912\pi\)
\(992\) 0 0
\(993\) 3.72869 25.9336i 0.118326 0.822978i
\(994\) 0 0
\(995\) 0.310745 + 2.16128i 0.00985127 + 0.0685171i
\(996\) 0 0
\(997\) −39.0508 + 25.0964i −1.23675 + 0.794811i −0.984928 0.172962i \(-0.944666\pi\)
−0.251822 + 0.967774i \(0.581030\pi\)
\(998\) 0 0
\(999\) −1.86309 + 0.547053i −0.0589456 + 0.0173080i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 368.2.m.d.289.1 20
4.3 odd 2 92.2.e.a.13.2 20
12.11 even 2 828.2.q.a.289.2 20
23.4 even 11 8464.2.a.ce.1.2 10
23.16 even 11 inner 368.2.m.d.177.1 20
23.19 odd 22 8464.2.a.cd.1.2 10
92.19 even 22 2116.2.a.i.1.9 10
92.27 odd 22 2116.2.a.j.1.9 10
92.39 odd 22 92.2.e.a.85.2 yes 20
276.131 even 22 828.2.q.a.361.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.2.e.a.13.2 20 4.3 odd 2
92.2.e.a.85.2 yes 20 92.39 odd 22
368.2.m.d.177.1 20 23.16 even 11 inner
368.2.m.d.289.1 20 1.1 even 1 trivial
828.2.q.a.289.2 20 12.11 even 2
828.2.q.a.361.2 20 276.131 even 22
2116.2.a.i.1.9 10 92.19 even 22
2116.2.a.j.1.9 10 92.27 odd 22
8464.2.a.cd.1.2 10 23.19 odd 22
8464.2.a.ce.1.2 10 23.4 even 11