Properties

Label 368.2.s.b.15.1
Level $368$
Weight $2$
Character 368.15
Analytic conductor $2.938$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(15,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 0, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.15");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.s (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(8\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 15.1
Character \(\chi\) \(=\) 368.15
Dual form 368.2.s.b.319.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.62148 + 1.19719i) q^{3} +(-2.71500 + 2.35256i) q^{5} +(-2.67155 - 1.71690i) q^{7} +(3.47433 - 4.00959i) q^{9} +(0.221876 + 1.54318i) q^{11} +(4.68212 - 3.00902i) q^{13} +(4.30087 - 9.41759i) q^{15} +(0.696159 + 2.37090i) q^{17} +(0.869524 + 0.255315i) q^{19} +(9.05888 + 1.30247i) q^{21} +(-2.08082 - 4.32090i) q^{23} +(1.12511 - 7.82533i) q^{25} +(-1.87186 + 6.37496i) q^{27} +(-5.86044 + 1.72078i) q^{29} +(6.32598 + 2.88898i) q^{31} +(-2.42913 - 3.77980i) q^{33} +(11.2924 - 1.62360i) q^{35} +(-7.19714 - 6.23636i) q^{37} +(-8.67174 + 13.4935i) q^{39} +(-4.06762 - 4.69428i) q^{41} +(-1.71347 - 3.75198i) q^{43} +19.0596i q^{45} -7.92656i q^{47} +(1.28152 + 2.80614i) q^{49} +(-4.66339 - 5.38184i) q^{51} +(2.63563 - 4.10113i) q^{53} +(-4.23283 - 3.66777i) q^{55} +(-2.58510 + 0.371682i) q^{57} +(5.30505 + 8.25482i) q^{59} +(-5.40210 - 2.46706i) q^{61} +(-16.1659 + 4.74674i) q^{63} +(-5.63307 + 19.1845i) q^{65} +(1.21940 - 8.48110i) q^{67} +(10.6278 + 8.83603i) q^{69} +(6.81133 + 0.979321i) q^{71} +(10.7034 + 3.14279i) q^{73} +(6.41895 + 21.8609i) q^{75} +(2.05674 - 4.50363i) q^{77} +(0.512379 - 0.329286i) q^{79} +(-0.459876 - 3.19851i) q^{81} +(-6.49352 + 7.49392i) q^{83} +(-7.46777 - 4.79924i) q^{85} +(13.3029 - 11.5271i) q^{87} +(-0.958620 + 0.437787i) q^{89} -17.6747 q^{91} -20.0421 q^{93} +(-2.96141 + 1.35243i) q^{95} +(-11.1499 + 9.66141i) q^{97} +(6.95840 + 4.47189i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 4 q^{9} + 12 q^{13} + 22 q^{17} + 66 q^{21} + 36 q^{25} + 34 q^{29} + 22 q^{33} + 12 q^{41} - 56 q^{49} - 66 q^{57} - 88 q^{61} - 154 q^{65} - 66 q^{69} - 16 q^{73} - 158 q^{77} - 248 q^{81} - 116 q^{85}+ \cdots - 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(-1\) \(e\left(\frac{17}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.62148 + 1.19719i −1.51351 + 0.691199i −0.987258 0.159127i \(-0.949132\pi\)
−0.526256 + 0.850326i \(0.676405\pi\)
\(4\) 0 0
\(5\) −2.71500 + 2.35256i −1.21419 + 1.05210i −0.217074 + 0.976155i \(0.569651\pi\)
−0.997112 + 0.0759434i \(0.975803\pi\)
\(6\) 0 0
\(7\) −2.67155 1.71690i −1.00975 0.648927i −0.0724221 0.997374i \(-0.523073\pi\)
−0.937329 + 0.348447i \(0.886709\pi\)
\(8\) 0 0
\(9\) 3.47433 4.00959i 1.15811 1.33653i
\(10\) 0 0
\(11\) 0.221876 + 1.54318i 0.0668982 + 0.465288i 0.995542 + 0.0943156i \(0.0300663\pi\)
−0.928644 + 0.370972i \(0.879025\pi\)
\(12\) 0 0
\(13\) 4.68212 3.00902i 1.29859 0.834551i 0.305530 0.952182i \(-0.401166\pi\)
0.993057 + 0.117631i \(0.0375300\pi\)
\(14\) 0 0
\(15\) 4.30087 9.41759i 1.11048 2.43161i
\(16\) 0 0
\(17\) 0.696159 + 2.37090i 0.168843 + 0.575028i 0.999825 + 0.0187273i \(0.00596145\pi\)
−0.830981 + 0.556300i \(0.812220\pi\)
\(18\) 0 0
\(19\) 0.869524 + 0.255315i 0.199482 + 0.0585733i 0.379947 0.925008i \(-0.375942\pi\)
−0.180465 + 0.983581i \(0.557760\pi\)
\(20\) 0 0
\(21\) 9.05888 + 1.30247i 1.97681 + 0.284222i
\(22\) 0 0
\(23\) −2.08082 4.32090i −0.433881 0.900970i
\(24\) 0 0
\(25\) 1.12511 7.82533i 0.225023 1.56507i
\(26\) 0 0
\(27\) −1.87186 + 6.37496i −0.360239 + 1.22686i
\(28\) 0 0
\(29\) −5.86044 + 1.72078i −1.08826 + 0.319541i −0.776177 0.630515i \(-0.782844\pi\)
−0.312079 + 0.950056i \(0.601025\pi\)
\(30\) 0 0
\(31\) 6.32598 + 2.88898i 1.13618 + 0.518876i 0.892530 0.450987i \(-0.148928\pi\)
0.243650 + 0.969863i \(0.421655\pi\)
\(32\) 0 0
\(33\) −2.42913 3.77980i −0.422858 0.657979i
\(34\) 0 0
\(35\) 11.2924 1.62360i 1.90876 0.274438i
\(36\) 0 0
\(37\) −7.19714 6.23636i −1.18320 1.02525i −0.999103 0.0423437i \(-0.986518\pi\)
−0.184100 0.982908i \(-0.558937\pi\)
\(38\) 0 0
\(39\) −8.67174 + 13.4935i −1.38859 + 2.16069i
\(40\) 0 0
\(41\) −4.06762 4.69428i −0.635255 0.733123i 0.343273 0.939236i \(-0.388464\pi\)
−0.978528 + 0.206112i \(0.933919\pi\)
\(42\) 0 0
\(43\) −1.71347 3.75198i −0.261302 0.572172i 0.732822 0.680421i \(-0.238203\pi\)
−0.994124 + 0.108249i \(0.965476\pi\)
\(44\) 0 0
\(45\) 19.0596i 2.84124i
\(46\) 0 0
\(47\) 7.92656i 1.15621i −0.815963 0.578104i \(-0.803793\pi\)
0.815963 0.578104i \(-0.196207\pi\)
\(48\) 0 0
\(49\) 1.28152 + 2.80614i 0.183075 + 0.400878i
\(50\) 0 0
\(51\) −4.66339 5.38184i −0.653005 0.753608i
\(52\) 0 0
\(53\) 2.63563 4.10113i 0.362032 0.563333i −0.611683 0.791103i \(-0.709507\pi\)
0.973715 + 0.227770i \(0.0731435\pi\)
\(54\) 0 0
\(55\) −4.23283 3.66777i −0.570755 0.494562i
\(56\) 0 0
\(57\) −2.58510 + 0.371682i −0.342405 + 0.0492305i
\(58\) 0 0
\(59\) 5.30505 + 8.25482i 0.690659 + 1.07469i 0.992608 + 0.121362i \(0.0387261\pi\)
−0.301950 + 0.953324i \(0.597637\pi\)
\(60\) 0 0
\(61\) −5.40210 2.46706i −0.691668 0.315874i 0.0383864 0.999263i \(-0.487778\pi\)
−0.730055 + 0.683389i \(0.760505\pi\)
\(62\) 0 0
\(63\) −16.1659 + 4.74674i −2.03671 + 0.598032i
\(64\) 0 0
\(65\) −5.63307 + 19.1845i −0.698697 + 2.37954i
\(66\) 0 0
\(67\) 1.21940 8.48110i 0.148973 1.03613i −0.768932 0.639331i \(-0.779211\pi\)
0.917905 0.396800i \(-0.129879\pi\)
\(68\) 0 0
\(69\) 10.6278 + 8.83603i 1.27943 + 1.06373i
\(70\) 0 0
\(71\) 6.81133 + 0.979321i 0.808356 + 0.116224i 0.534088 0.845429i \(-0.320655\pi\)
0.274268 + 0.961653i \(0.411564\pi\)
\(72\) 0 0
\(73\) 10.7034 + 3.14279i 1.25273 + 0.367836i 0.839785 0.542919i \(-0.182681\pi\)
0.412948 + 0.910755i \(0.364499\pi\)
\(74\) 0 0
\(75\) 6.41895 + 21.8609i 0.741197 + 2.52428i
\(76\) 0 0
\(77\) 2.05674 4.50363i 0.234387 0.513236i
\(78\) 0 0
\(79\) 0.512379 0.329286i 0.0576471 0.0370475i −0.511500 0.859283i \(-0.670910\pi\)
0.569147 + 0.822236i \(0.307274\pi\)
\(80\) 0 0
\(81\) −0.459876 3.19851i −0.0510973 0.355390i
\(82\) 0 0
\(83\) −6.49352 + 7.49392i −0.712756 + 0.822564i −0.990416 0.138115i \(-0.955896\pi\)
0.277660 + 0.960679i \(0.410441\pi\)
\(84\) 0 0
\(85\) −7.46777 4.79924i −0.809993 0.520551i
\(86\) 0 0
\(87\) 13.3029 11.5271i 1.42622 1.23583i
\(88\) 0 0
\(89\) −0.958620 + 0.437787i −0.101614 + 0.0464053i −0.465573 0.885009i \(-0.654152\pi\)
0.363960 + 0.931415i \(0.381425\pi\)
\(90\) 0 0
\(91\) −17.6747 −1.85281
\(92\) 0 0
\(93\) −20.0421 −2.07827
\(94\) 0 0
\(95\) −2.96141 + 1.35243i −0.303834 + 0.138756i
\(96\) 0 0
\(97\) −11.1499 + 9.66141i −1.13210 + 0.980968i −0.999947 0.0102618i \(-0.996734\pi\)
−0.132150 + 0.991230i \(0.542188\pi\)
\(98\) 0 0
\(99\) 6.95840 + 4.47189i 0.699346 + 0.449442i
\(100\) 0 0
\(101\) 4.95371 5.71689i 0.492913 0.568852i −0.453729 0.891140i \(-0.649907\pi\)
0.946642 + 0.322288i \(0.104452\pi\)
\(102\) 0 0
\(103\) −0.551681 3.83703i −0.0543587 0.378073i −0.998782 0.0493413i \(-0.984288\pi\)
0.944423 0.328732i \(-0.106621\pi\)
\(104\) 0 0
\(105\) −27.6590 + 17.7754i −2.69925 + 1.73470i
\(106\) 0 0
\(107\) 2.72415 5.96505i 0.263353 0.576663i −0.731049 0.682325i \(-0.760969\pi\)
0.994402 + 0.105662i \(0.0336961\pi\)
\(108\) 0 0
\(109\) −5.42836 18.4873i −0.519943 1.77076i −0.629738 0.776808i \(-0.716838\pi\)
0.109795 0.993954i \(-0.464981\pi\)
\(110\) 0 0
\(111\) 26.3333 + 7.73216i 2.49945 + 0.733904i
\(112\) 0 0
\(113\) 7.19134 + 1.03396i 0.676504 + 0.0972666i 0.471999 0.881599i \(-0.343532\pi\)
0.204505 + 0.978866i \(0.434442\pi\)
\(114\) 0 0
\(115\) 15.8146 + 6.83599i 1.47472 + 0.637460i
\(116\) 0 0
\(117\) 4.20231 29.2277i 0.388503 2.70210i
\(118\) 0 0
\(119\) 2.21078 7.52921i 0.202662 0.690202i
\(120\) 0 0
\(121\) 8.22223 2.41427i 0.747476 0.219479i
\(122\) 0 0
\(123\) 16.2831 + 7.43626i 1.46820 + 0.670505i
\(124\) 0 0
\(125\) 5.64374 + 8.78183i 0.504791 + 0.785471i
\(126\) 0 0
\(127\) −16.8463 + 2.42213i −1.49487 + 0.214929i −0.840733 0.541450i \(-0.817875\pi\)
−0.654133 + 0.756379i \(0.726966\pi\)
\(128\) 0 0
\(129\) 8.98368 + 7.78440i 0.790969 + 0.685379i
\(130\) 0 0
\(131\) 1.78738 2.78122i 0.156164 0.242996i −0.754352 0.656471i \(-0.772049\pi\)
0.910516 + 0.413475i \(0.135685\pi\)
\(132\) 0 0
\(133\) −1.88463 2.17497i −0.163418 0.188594i
\(134\) 0 0
\(135\) −9.91541 21.7117i −0.853382 1.86865i
\(136\) 0 0
\(137\) 14.4120i 1.23130i −0.788021 0.615648i \(-0.788894\pi\)
0.788021 0.615648i \(-0.211106\pi\)
\(138\) 0 0
\(139\) 6.66562i 0.565370i −0.959213 0.282685i \(-0.908775\pi\)
0.959213 0.282685i \(-0.0912252\pi\)
\(140\) 0 0
\(141\) 9.48961 + 20.7793i 0.799169 + 1.74994i
\(142\) 0 0
\(143\) 5.68232 + 6.55775i 0.475180 + 0.548386i
\(144\) 0 0
\(145\) 11.8629 18.4590i 0.985157 1.53293i
\(146\) 0 0
\(147\) −6.71898 5.82203i −0.554172 0.480193i
\(148\) 0 0
\(149\) −5.50273 + 0.791173i −0.450801 + 0.0648154i −0.363976 0.931408i \(-0.618581\pi\)
−0.0868248 + 0.996224i \(0.527672\pi\)
\(150\) 0 0
\(151\) −2.89576 4.50589i −0.235654 0.366684i 0.703205 0.710987i \(-0.251752\pi\)
−0.938859 + 0.344303i \(0.888115\pi\)
\(152\) 0 0
\(153\) 11.9250 + 5.44597i 0.964080 + 0.440281i
\(154\) 0 0
\(155\) −23.9716 + 7.03869i −1.92544 + 0.565361i
\(156\) 0 0
\(157\) −3.08540 + 10.5079i −0.246241 + 0.838621i 0.739900 + 0.672717i \(0.234873\pi\)
−0.986142 + 0.165905i \(0.946946\pi\)
\(158\) 0 0
\(159\) −1.99944 + 13.9064i −0.158566 + 1.10285i
\(160\) 0 0
\(161\) −1.85954 + 15.1161i −0.146552 + 1.19131i
\(162\) 0 0
\(163\) −5.24785 0.754527i −0.411043 0.0590991i −0.0663083 0.997799i \(-0.521122\pi\)
−0.344735 + 0.938700i \(0.612031\pi\)
\(164\) 0 0
\(165\) 15.4873 + 4.54749i 1.20569 + 0.354022i
\(166\) 0 0
\(167\) −6.17757 21.0389i −0.478035 1.62804i −0.746955 0.664875i \(-0.768485\pi\)
0.268920 0.963162i \(-0.413333\pi\)
\(168\) 0 0
\(169\) 7.46769 16.3520i 0.574438 1.25784i
\(170\) 0 0
\(171\) 4.04472 2.59938i 0.309307 0.198780i
\(172\) 0 0
\(173\) −0.446969 3.10874i −0.0339824 0.236353i 0.965750 0.259473i \(-0.0835490\pi\)
−0.999733 + 0.0231204i \(0.992640\pi\)
\(174\) 0 0
\(175\) −16.4411 + 18.9740i −1.24283 + 1.43430i
\(176\) 0 0
\(177\) −23.7897 15.2887i −1.78814 1.14917i
\(178\) 0 0
\(179\) −12.6055 + 10.9228i −0.942182 + 0.816406i −0.983159 0.182755i \(-0.941499\pi\)
0.0409763 + 0.999160i \(0.486953\pi\)
\(180\) 0 0
\(181\) 1.85095 0.845299i 0.137580 0.0628306i −0.345436 0.938442i \(-0.612269\pi\)
0.483015 + 0.875612i \(0.339542\pi\)
\(182\) 0 0
\(183\) 17.1151 1.26518
\(184\) 0 0
\(185\) 34.2117 2.51529
\(186\) 0 0
\(187\) −3.50427 + 1.60035i −0.256258 + 0.117029i
\(188\) 0 0
\(189\) 15.9459 13.8172i 1.15990 1.00506i
\(190\) 0 0
\(191\) −0.637825 0.409905i −0.0461514 0.0296597i 0.517362 0.855767i \(-0.326914\pi\)
−0.563513 + 0.826107i \(0.690551\pi\)
\(192\) 0 0
\(193\) −8.07815 + 9.32268i −0.581478 + 0.671061i −0.967922 0.251252i \(-0.919158\pi\)
0.386444 + 0.922313i \(0.373703\pi\)
\(194\) 0 0
\(195\) −8.20049 57.0357i −0.587249 4.08441i
\(196\) 0 0
\(197\) −2.84329 + 1.82727i −0.202576 + 0.130188i −0.637996 0.770040i \(-0.720236\pi\)
0.435420 + 0.900227i \(0.356600\pi\)
\(198\) 0 0
\(199\) −1.35272 + 2.96205i −0.0958918 + 0.209974i −0.951499 0.307652i \(-0.900457\pi\)
0.855607 + 0.517626i \(0.173184\pi\)
\(200\) 0 0
\(201\) 6.95687 + 23.6929i 0.490699 + 1.67117i
\(202\) 0 0
\(203\) 18.6109 + 5.46464i 1.30623 + 0.383542i
\(204\) 0 0
\(205\) 22.0872 + 3.17566i 1.54264 + 0.221798i
\(206\) 0 0
\(207\) −24.5545 6.66898i −1.70665 0.463526i
\(208\) 0 0
\(209\) −0.201072 + 1.39848i −0.0139084 + 0.0967352i
\(210\) 0 0
\(211\) 0.805779 2.74423i 0.0554721 0.188921i −0.927096 0.374824i \(-0.877703\pi\)
0.982568 + 0.185904i \(0.0595212\pi\)
\(212\) 0 0
\(213\) −19.0282 + 5.58719i −1.30379 + 0.382828i
\(214\) 0 0
\(215\) 13.4789 + 6.15559i 0.919251 + 0.419808i
\(216\) 0 0
\(217\) −11.9401 18.5791i −0.810546 1.26123i
\(218\) 0 0
\(219\) −31.8212 + 4.57520i −2.15028 + 0.309163i
\(220\) 0 0
\(221\) 10.3936 + 9.00609i 0.699148 + 0.605815i
\(222\) 0 0
\(223\) 5.29632 8.24123i 0.354668 0.551874i −0.617378 0.786667i \(-0.711805\pi\)
0.972045 + 0.234793i \(0.0754413\pi\)
\(224\) 0 0
\(225\) −27.4673 31.6990i −1.83116 2.11327i
\(226\) 0 0
\(227\) −0.582740 1.27602i −0.0386778 0.0846927i 0.889307 0.457311i \(-0.151187\pi\)
−0.927985 + 0.372618i \(0.878460\pi\)
\(228\) 0 0
\(229\) 1.93810i 0.128073i 0.997948 + 0.0640366i \(0.0203974\pi\)
−0.997948 + 0.0640366i \(0.979603\pi\)
\(230\) 0 0
\(231\) 14.2685i 0.938799i
\(232\) 0 0
\(233\) −2.31962 5.07925i −0.151963 0.332753i 0.818305 0.574784i \(-0.194914\pi\)
−0.970269 + 0.242031i \(0.922187\pi\)
\(234\) 0 0
\(235\) 18.6477 + 21.5206i 1.21644 + 1.40385i
\(236\) 0 0
\(237\) −0.948974 + 1.47663i −0.0616425 + 0.0959176i
\(238\) 0 0
\(239\) 5.96246 + 5.16650i 0.385679 + 0.334193i 0.826023 0.563636i \(-0.190598\pi\)
−0.440344 + 0.897829i \(0.645143\pi\)
\(240\) 0 0
\(241\) 2.86833 0.412404i 0.184766 0.0265653i −0.0493109 0.998783i \(-0.515703\pi\)
0.234076 + 0.972218i \(0.424793\pi\)
\(242\) 0 0
\(243\) −5.74142 8.93383i −0.368313 0.573106i
\(244\) 0 0
\(245\) −10.0810 4.60383i −0.644050 0.294128i
\(246\) 0 0
\(247\) 4.83947 1.42100i 0.307928 0.0904158i
\(248\) 0 0
\(249\) 8.05099 27.4192i 0.510211 1.73762i
\(250\) 0 0
\(251\) 2.72826 18.9755i 0.172206 1.19772i −0.702004 0.712173i \(-0.747711\pi\)
0.874210 0.485548i \(-0.161380\pi\)
\(252\) 0 0
\(253\) 6.20626 4.16980i 0.390184 0.262153i
\(254\) 0 0
\(255\) 25.3222 + 3.64079i 1.58574 + 0.227995i
\(256\) 0 0
\(257\) −7.38914 2.16965i −0.460922 0.135339i 0.0430241 0.999074i \(-0.486301\pi\)
−0.503946 + 0.863735i \(0.668119\pi\)
\(258\) 0 0
\(259\) 8.52031 + 29.0175i 0.529426 + 1.80306i
\(260\) 0 0
\(261\) −13.4615 + 29.4765i −0.833243 + 1.82455i
\(262\) 0 0
\(263\) −11.4276 + 7.34409i −0.704658 + 0.452856i −0.843270 0.537491i \(-0.819372\pi\)
0.138612 + 0.990347i \(0.455736\pi\)
\(264\) 0 0
\(265\) 2.49241 + 17.3351i 0.153107 + 1.06488i
\(266\) 0 0
\(267\) 1.98889 2.29530i 0.121718 0.140470i
\(268\) 0 0
\(269\) −15.5348 9.98362i −0.947175 0.608712i −0.0267543 0.999642i \(-0.508517\pi\)
−0.920421 + 0.390930i \(0.872154\pi\)
\(270\) 0 0
\(271\) −0.142738 + 0.123684i −0.00867074 + 0.00751324i −0.659185 0.751981i \(-0.729099\pi\)
0.650515 + 0.759494i \(0.274553\pi\)
\(272\) 0 0
\(273\) 46.3340 21.1600i 2.80426 1.28066i
\(274\) 0 0
\(275\) 12.3256 0.743259
\(276\) 0 0
\(277\) 2.91065 0.174884 0.0874419 0.996170i \(-0.472131\pi\)
0.0874419 + 0.996170i \(0.472131\pi\)
\(278\) 0 0
\(279\) 33.5621 15.3273i 2.00931 0.917622i
\(280\) 0 0
\(281\) −14.8589 + 12.8753i −0.886407 + 0.768076i −0.973635 0.228112i \(-0.926745\pi\)
0.0872279 + 0.996188i \(0.472199\pi\)
\(282\) 0 0
\(283\) 15.7863 + 10.1453i 0.938401 + 0.603074i 0.917941 0.396717i \(-0.129851\pi\)
0.0204600 + 0.999791i \(0.493487\pi\)
\(284\) 0 0
\(285\) 6.14416 7.09074i 0.363949 0.420019i
\(286\) 0 0
\(287\) 2.80723 + 19.5247i 0.165705 + 1.15251i
\(288\) 0 0
\(289\) 9.16478 5.88985i 0.539105 0.346462i
\(290\) 0 0
\(291\) 17.6626 38.6758i 1.03540 2.26721i
\(292\) 0 0
\(293\) 6.80464 + 23.1745i 0.397531 + 1.35387i 0.878757 + 0.477270i \(0.158374\pi\)
−0.481225 + 0.876597i \(0.659808\pi\)
\(294\) 0 0
\(295\) −33.8232 9.93139i −1.96926 0.578228i
\(296\) 0 0
\(297\) −10.2531 1.47417i −0.594943 0.0855399i
\(298\) 0 0
\(299\) −22.7443 13.9698i −1.31534 0.807892i
\(300\) 0 0
\(301\) −1.86415 + 12.9655i −0.107448 + 0.747317i
\(302\) 0 0
\(303\) −6.14186 + 20.9173i −0.352841 + 1.20167i
\(304\) 0 0
\(305\) 20.4706 6.01072i 1.17215 0.344173i
\(306\) 0 0
\(307\) −21.6037 9.86608i −1.23299 0.563087i −0.311039 0.950397i \(-0.600677\pi\)
−0.921950 + 0.387310i \(0.873404\pi\)
\(308\) 0 0
\(309\) 6.03988 + 9.39823i 0.343597 + 0.534647i
\(310\) 0 0
\(311\) −17.3715 + 2.49764i −0.985046 + 0.141628i −0.615969 0.787771i \(-0.711235\pi\)
−0.369077 + 0.929399i \(0.620326\pi\)
\(312\) 0 0
\(313\) 5.75286 + 4.98488i 0.325171 + 0.281762i 0.802113 0.597173i \(-0.203709\pi\)
−0.476942 + 0.878935i \(0.658255\pi\)
\(314\) 0 0
\(315\) 32.7235 50.9187i 1.84376 2.86894i
\(316\) 0 0
\(317\) −3.30516 3.81436i −0.185636 0.214236i 0.655302 0.755367i \(-0.272542\pi\)
−0.840938 + 0.541132i \(0.817996\pi\)
\(318\) 0 0
\(319\) −3.95577 8.66193i −0.221481 0.484975i
\(320\) 0 0
\(321\) 18.8986i 1.05482i
\(322\) 0 0
\(323\) 2.23929i 0.124598i
\(324\) 0 0
\(325\) −18.2786 40.0246i −1.01392 2.22017i
\(326\) 0 0
\(327\) 36.3632 + 41.9654i 2.01089 + 2.32069i
\(328\) 0 0
\(329\) −13.6091 + 21.1762i −0.750295 + 1.16748i
\(330\) 0 0
\(331\) −2.37148 2.05490i −0.130348 0.112947i 0.587247 0.809408i \(-0.300212\pi\)
−0.717595 + 0.696460i \(0.754757\pi\)
\(332\) 0 0
\(333\) −50.0104 + 7.19042i −2.74056 + 0.394032i
\(334\) 0 0
\(335\) 16.6417 + 25.8949i 0.909231 + 1.41479i
\(336\) 0 0
\(337\) 13.6755 + 6.24539i 0.744952 + 0.340208i 0.751467 0.659771i \(-0.229347\pi\)
−0.00651524 + 0.999979i \(0.502074\pi\)
\(338\) 0 0
\(339\) −20.0898 + 5.89890i −1.09113 + 0.320385i
\(340\) 0 0
\(341\) −3.05464 + 10.4032i −0.165418 + 0.563362i
\(342\) 0 0
\(343\) −1.76940 + 12.3065i −0.0955388 + 0.664487i
\(344\) 0 0
\(345\) −49.6418 + 1.01270i −2.67262 + 0.0545219i
\(346\) 0 0
\(347\) 23.8299 + 3.42622i 1.27926 + 0.183929i 0.748238 0.663430i \(-0.230900\pi\)
0.531019 + 0.847360i \(0.321809\pi\)
\(348\) 0 0
\(349\) −0.403546 0.118492i −0.0216013 0.00634272i 0.270914 0.962604i \(-0.412674\pi\)
−0.292515 + 0.956261i \(0.594492\pi\)
\(350\) 0 0
\(351\) 10.4181 + 35.4808i 0.556077 + 1.89383i
\(352\) 0 0
\(353\) 1.04159 2.28076i 0.0554383 0.121393i −0.879886 0.475186i \(-0.842381\pi\)
0.935324 + 0.353793i \(0.115108\pi\)
\(354\) 0 0
\(355\) −20.7967 + 13.3652i −1.10377 + 0.709352i
\(356\) 0 0
\(357\) 3.21840 + 22.3844i 0.170336 + 1.18471i
\(358\) 0 0
\(359\) −9.57531 + 11.0505i −0.505366 + 0.583223i −0.949906 0.312536i \(-0.898822\pi\)
0.444540 + 0.895759i \(0.353367\pi\)
\(360\) 0 0
\(361\) −15.2929 9.82817i −0.804891 0.517272i
\(362\) 0 0
\(363\) −18.6641 + 16.1725i −0.979612 + 0.848839i
\(364\) 0 0
\(365\) −36.4533 + 16.6476i −1.90805 + 0.871378i
\(366\) 0 0
\(367\) −35.5624 −1.85634 −0.928170 0.372156i \(-0.878619\pi\)
−0.928170 + 0.372156i \(0.878619\pi\)
\(368\) 0 0
\(369\) −32.9543 −1.71553
\(370\) 0 0
\(371\) −14.0824 + 6.43124i −0.731124 + 0.333893i
\(372\) 0 0
\(373\) 3.16532 2.74277i 0.163894 0.142015i −0.569053 0.822301i \(-0.692690\pi\)
0.732947 + 0.680286i \(0.238144\pi\)
\(374\) 0 0
\(375\) −25.3085 16.2648i −1.30693 0.839910i
\(376\) 0 0
\(377\) −22.2614 + 25.6911i −1.14652 + 1.32316i
\(378\) 0 0
\(379\) −4.08383 28.4037i −0.209772 1.45900i −0.773899 0.633310i \(-0.781696\pi\)
0.564126 0.825689i \(-0.309213\pi\)
\(380\) 0 0
\(381\) 41.2625 26.5178i 2.11394 1.35855i
\(382\) 0 0
\(383\) −14.3068 + 31.3276i −0.731044 + 1.60076i 0.0667040 + 0.997773i \(0.478752\pi\)
−0.797748 + 0.602991i \(0.793976\pi\)
\(384\) 0 0
\(385\) 5.01103 + 17.0660i 0.255386 + 0.869763i
\(386\) 0 0
\(387\) −20.9971 6.16529i −1.06734 0.313399i
\(388\) 0 0
\(389\) 10.8712 + 1.56304i 0.551191 + 0.0792493i 0.412283 0.911056i \(-0.364732\pi\)
0.138908 + 0.990305i \(0.455641\pi\)
\(390\) 0 0
\(391\) 8.79584 7.94146i 0.444825 0.401617i
\(392\) 0 0
\(393\) −1.35594 + 9.43075i −0.0683980 + 0.475719i
\(394\) 0 0
\(395\) −0.616444 + 2.09942i −0.0310167 + 0.105633i
\(396\) 0 0
\(397\) 28.5572 8.38516i 1.43325 0.420839i 0.529282 0.848446i \(-0.322461\pi\)
0.903965 + 0.427607i \(0.140643\pi\)
\(398\) 0 0
\(399\) 7.54437 + 3.44540i 0.377691 + 0.172486i
\(400\) 0 0
\(401\) 4.31386 + 6.71250i 0.215424 + 0.335206i 0.932101 0.362199i \(-0.117974\pi\)
−0.716677 + 0.697406i \(0.754338\pi\)
\(402\) 0 0
\(403\) 38.3120 5.50844i 1.90846 0.274395i
\(404\) 0 0
\(405\) 8.77326 + 7.60207i 0.435947 + 0.377750i
\(406\) 0 0
\(407\) 8.02698 12.4902i 0.397882 0.619117i
\(408\) 0 0
\(409\) 14.0767 + 16.2454i 0.696048 + 0.803282i 0.988213 0.153086i \(-0.0489210\pi\)
−0.292165 + 0.956368i \(0.594376\pi\)
\(410\) 0 0
\(411\) 17.2539 + 37.7807i 0.851070 + 1.86358i
\(412\) 0 0
\(413\) 31.1614i 1.53335i
\(414\) 0 0
\(415\) 35.6224i 1.74864i
\(416\) 0 0
\(417\) 7.98002 + 17.4738i 0.390783 + 0.855696i
\(418\) 0 0
\(419\) −2.73602 3.15754i −0.133663 0.154256i 0.684972 0.728569i \(-0.259814\pi\)
−0.818635 + 0.574314i \(0.805269\pi\)
\(420\) 0 0
\(421\) −1.77477 + 2.76160i −0.0864971 + 0.134592i −0.881806 0.471612i \(-0.843672\pi\)
0.795309 + 0.606204i \(0.207309\pi\)
\(422\) 0 0
\(423\) −31.7822 27.5395i −1.54530 1.33901i
\(424\) 0 0
\(425\) 19.3363 2.78015i 0.937950 0.134857i
\(426\) 0 0
\(427\) 10.1963 + 15.8657i 0.493433 + 0.767797i
\(428\) 0 0
\(429\) −22.7470 10.3882i −1.09823 0.501547i
\(430\) 0 0
\(431\) 30.8996 9.07293i 1.48838 0.437028i 0.566356 0.824161i \(-0.308353\pi\)
0.922024 + 0.387133i \(0.126534\pi\)
\(432\) 0 0
\(433\) 1.70932 5.82141i 0.0821447 0.279759i −0.908170 0.418602i \(-0.862520\pi\)
0.990314 + 0.138843i \(0.0443383\pi\)
\(434\) 0 0
\(435\) −8.99937 + 62.5920i −0.431487 + 3.00106i
\(436\) 0 0
\(437\) −0.706133 4.28839i −0.0337789 0.205142i
\(438\) 0 0
\(439\) 19.2142 + 2.76258i 0.917043 + 0.131851i 0.584646 0.811288i \(-0.301233\pi\)
0.332397 + 0.943139i \(0.392142\pi\)
\(440\) 0 0
\(441\) 15.7039 + 4.61108i 0.747805 + 0.219575i
\(442\) 0 0
\(443\) −4.82913 16.4465i −0.229439 0.781398i −0.991065 0.133381i \(-0.957417\pi\)
0.761626 0.648017i \(-0.224401\pi\)
\(444\) 0 0
\(445\) 1.57273 3.44381i 0.0745548 0.163252i
\(446\) 0 0
\(447\) 13.4781 8.66187i 0.637494 0.409692i
\(448\) 0 0
\(449\) −2.75195 19.1402i −0.129873 0.903284i −0.945712 0.325006i \(-0.894634\pi\)
0.815839 0.578278i \(-0.196275\pi\)
\(450\) 0 0
\(451\) 6.34163 7.31863i 0.298616 0.344621i
\(452\) 0 0
\(453\) 12.9856 + 8.34535i 0.610117 + 0.392099i
\(454\) 0 0
\(455\) 47.9869 41.5809i 2.24966 1.94934i
\(456\) 0 0
\(457\) −20.0966 + 9.17780i −0.940078 + 0.429319i −0.825695 0.564117i \(-0.809217\pi\)
−0.114384 + 0.993437i \(0.536489\pi\)
\(458\) 0 0
\(459\) −16.4175 −0.766304
\(460\) 0 0
\(461\) 11.3163 0.527052 0.263526 0.964652i \(-0.415114\pi\)
0.263526 + 0.964652i \(0.415114\pi\)
\(462\) 0 0
\(463\) 38.7469 17.6951i 1.80072 0.822363i 0.841205 0.540716i \(-0.181847\pi\)
0.959518 0.281646i \(-0.0908805\pi\)
\(464\) 0 0
\(465\) 54.4144 47.1504i 2.52341 2.18655i
\(466\) 0 0
\(467\) −11.0899 7.12706i −0.513180 0.329801i 0.258289 0.966068i \(-0.416841\pi\)
−0.771469 + 0.636267i \(0.780478\pi\)
\(468\) 0 0
\(469\) −17.8189 + 20.5641i −0.822799 + 0.949561i
\(470\) 0 0
\(471\) −4.49165 31.2401i −0.206964 1.43947i
\(472\) 0 0
\(473\) 5.40982 3.47668i 0.248744 0.159858i
\(474\) 0 0
\(475\) 2.97624 6.51705i 0.136559 0.299023i
\(476\) 0 0
\(477\) −7.28677 24.8164i −0.333638 1.13627i
\(478\) 0 0
\(479\) 17.8799 + 5.25002i 0.816955 + 0.239880i 0.663404 0.748261i \(-0.269111\pi\)
0.153551 + 0.988141i \(0.450929\pi\)
\(480\) 0 0
\(481\) −52.4632 7.54307i −2.39212 0.343935i
\(482\) 0 0
\(483\) −13.2221 41.8527i −0.601625 1.90437i
\(484\) 0 0
\(485\) 7.54283 52.4615i 0.342502 2.38216i
\(486\) 0 0
\(487\) −10.9379 + 37.2511i −0.495644 + 1.68801i 0.208560 + 0.978009i \(0.433122\pi\)
−0.704204 + 0.709998i \(0.748696\pi\)
\(488\) 0 0
\(489\) 14.6605 4.30470i 0.662969 0.194665i
\(490\) 0 0
\(491\) −24.4109 11.1481i −1.10165 0.503106i −0.220233 0.975447i \(-0.570682\pi\)
−0.881416 + 0.472341i \(0.843409\pi\)
\(492\) 0 0
\(493\) −8.15959 12.6966i −0.367490 0.571825i
\(494\) 0 0
\(495\) −29.4125 + 4.22888i −1.32199 + 0.190074i
\(496\) 0 0
\(497\) −16.5154 14.3107i −0.740817 0.641921i
\(498\) 0 0
\(499\) 9.15908 14.2518i 0.410017 0.637998i −0.573418 0.819263i \(-0.694383\pi\)
0.983434 + 0.181265i \(0.0580191\pi\)
\(500\) 0 0
\(501\) 41.3820 + 47.7573i 1.84881 + 2.13364i
\(502\) 0 0
\(503\) −1.71151 3.74768i −0.0763123 0.167101i 0.867631 0.497209i \(-0.165642\pi\)
−0.943943 + 0.330109i \(0.892915\pi\)
\(504\) 0 0
\(505\) 27.1753i 1.20928i
\(506\) 0 0
\(507\) 51.8067i 2.30081i
\(508\) 0 0
\(509\) 10.7453 + 23.5289i 0.476276 + 1.04290i 0.983471 + 0.181067i \(0.0579551\pi\)
−0.507195 + 0.861831i \(0.669318\pi\)
\(510\) 0 0
\(511\) −23.1987 26.7727i −1.02625 1.18436i
\(512\) 0 0
\(513\) −3.25525 + 5.06527i −0.143723 + 0.223637i
\(514\) 0 0
\(515\) 10.5247 + 9.11967i 0.463772 + 0.401861i
\(516\) 0 0
\(517\) 12.2321 1.75872i 0.537969 0.0773483i
\(518\) 0 0
\(519\) 4.89348 + 7.61440i 0.214800 + 0.334235i
\(520\) 0 0
\(521\) −20.1672 9.21005i −0.883541 0.403500i −0.0786360 0.996903i \(-0.525056\pi\)
−0.804905 + 0.593404i \(0.797784\pi\)
\(522\) 0 0
\(523\) 20.1374 5.91288i 0.880548 0.258552i 0.189952 0.981793i \(-0.439167\pi\)
0.690596 + 0.723241i \(0.257348\pi\)
\(524\) 0 0
\(525\) 20.3845 69.4233i 0.889653 3.02988i
\(526\) 0 0
\(527\) −2.44559 + 17.0095i −0.106532 + 0.740944i
\(528\) 0 0
\(529\) −14.3404 + 17.9820i −0.623494 + 0.781828i
\(530\) 0 0
\(531\) 51.5299 + 7.40888i 2.23621 + 0.321518i
\(532\) 0 0
\(533\) −33.1703 9.73966i −1.43676 0.421872i
\(534\) 0 0
\(535\) 6.63710 + 22.6039i 0.286947 + 0.977251i
\(536\) 0 0
\(537\) 19.9686 43.7251i 0.861708 1.88688i
\(538\) 0 0
\(539\) −4.04606 + 2.60024i −0.174276 + 0.112000i
\(540\) 0 0
\(541\) 1.46031 + 10.1567i 0.0627836 + 0.436669i 0.996833 + 0.0795252i \(0.0253404\pi\)
−0.934049 + 0.357144i \(0.883751\pi\)
\(542\) 0 0
\(543\) −3.84024 + 4.43188i −0.164801 + 0.190190i
\(544\) 0 0
\(545\) 58.2306 + 37.4225i 2.49432 + 1.60300i
\(546\) 0 0
\(547\) 19.8392 17.1908i 0.848264 0.735025i −0.117880 0.993028i \(-0.537610\pi\)
0.966144 + 0.258003i \(0.0830645\pi\)
\(548\) 0 0
\(549\) −28.6605 + 13.0888i −1.22320 + 0.558618i
\(550\) 0 0
\(551\) −5.53513 −0.235805
\(552\) 0 0
\(553\) −1.93420 −0.0822504
\(554\) 0 0
\(555\) −89.6854 + 40.9580i −3.80693 + 1.73857i
\(556\) 0 0
\(557\) 32.8971 28.5055i 1.39389 1.20782i 0.443691 0.896180i \(-0.353669\pi\)
0.950202 0.311635i \(-0.100877\pi\)
\(558\) 0 0
\(559\) −19.3125 12.4114i −0.816831 0.524945i
\(560\) 0 0
\(561\) 7.27047 8.39057i 0.306960 0.354250i
\(562\) 0 0
\(563\) −4.41596 30.7137i −0.186111 1.29443i −0.841961 0.539538i \(-0.818599\pi\)
0.655851 0.754891i \(-0.272310\pi\)
\(564\) 0 0
\(565\) −21.9570 + 14.1109i −0.923736 + 0.593649i
\(566\) 0 0
\(567\) −4.26294 + 9.33453i −0.179027 + 0.392013i
\(568\) 0 0
\(569\) −11.7175 39.9060i −0.491222 1.67295i −0.715651 0.698458i \(-0.753870\pi\)
0.224430 0.974490i \(-0.427948\pi\)
\(570\) 0 0
\(571\) 28.7035 + 8.42810i 1.20120 + 0.352705i 0.820313 0.571915i \(-0.193799\pi\)
0.380890 + 0.924620i \(0.375618\pi\)
\(572\) 0 0
\(573\) 2.16278 + 0.310961i 0.0903516 + 0.0129906i
\(574\) 0 0
\(575\) −36.1536 + 11.4216i −1.50771 + 0.476314i
\(576\) 0 0
\(577\) −2.98419 + 20.7555i −0.124233 + 0.864062i 0.828443 + 0.560074i \(0.189227\pi\)
−0.952676 + 0.303988i \(0.901682\pi\)
\(578\) 0 0
\(579\) 10.0157 34.1104i 0.416238 1.41758i
\(580\) 0 0
\(581\) 30.2141 8.87165i 1.25349 0.368058i
\(582\) 0 0
\(583\) 6.91358 + 3.15732i 0.286331 + 0.130763i
\(584\) 0 0
\(585\) 57.3507 + 89.2395i 2.37116 + 3.68960i
\(586\) 0 0
\(587\) −36.9064 + 5.30634i −1.52329 + 0.219016i −0.852538 0.522665i \(-0.824938\pi\)
−0.670753 + 0.741681i \(0.734029\pi\)
\(588\) 0 0
\(589\) 4.76299 + 4.12716i 0.196256 + 0.170057i
\(590\) 0 0
\(591\) 5.26604 8.19412i 0.216616 0.337061i
\(592\) 0 0
\(593\) −2.75305 3.17719i −0.113054 0.130472i 0.696402 0.717652i \(-0.254783\pi\)
−0.809456 + 0.587181i \(0.800238\pi\)
\(594\) 0 0
\(595\) 11.7107 + 25.6428i 0.480091 + 1.05125i
\(596\) 0 0
\(597\) 9.38442i 0.384079i
\(598\) 0 0
\(599\) 17.9135i 0.731927i −0.930629 0.365963i \(-0.880740\pi\)
0.930629 0.365963i \(-0.119260\pi\)
\(600\) 0 0
\(601\) −8.71474 19.0826i −0.355482 0.778396i −0.999906 0.0137281i \(-0.995630\pi\)
0.644424 0.764668i \(-0.277097\pi\)
\(602\) 0 0
\(603\) −29.7691 34.3554i −1.21229 1.39906i
\(604\) 0 0
\(605\) −16.6437 + 25.8981i −0.676662 + 1.05291i
\(606\) 0 0
\(607\) −13.2993 11.5239i −0.539803 0.467742i 0.341774 0.939782i \(-0.388972\pi\)
−0.881577 + 0.472040i \(0.843518\pi\)
\(608\) 0 0
\(609\) −55.3303 + 7.95529i −2.24210 + 0.322365i
\(610\) 0 0
\(611\) −23.8512 37.1131i −0.964915 1.50144i
\(612\) 0 0
\(613\) −0.838356 0.382865i −0.0338609 0.0154638i 0.398413 0.917206i \(-0.369561\pi\)
−0.432274 + 0.901743i \(0.642288\pi\)
\(614\) 0 0
\(615\) −61.7031 + 18.1177i −2.48811 + 0.730574i
\(616\) 0 0
\(617\) 4.92141 16.7608i 0.198129 0.674764i −0.799156 0.601123i \(-0.794720\pi\)
0.997285 0.0736407i \(-0.0234618\pi\)
\(618\) 0 0
\(619\) −0.894602 + 6.22209i −0.0359571 + 0.250087i −0.999870 0.0161311i \(-0.994865\pi\)
0.963913 + 0.266218i \(0.0857742\pi\)
\(620\) 0 0
\(621\) 31.4406 5.17705i 1.26167 0.207748i
\(622\) 0 0
\(623\) 3.31264 + 0.476285i 0.132718 + 0.0190820i
\(624\) 0 0
\(625\) 1.94521 + 0.571165i 0.0778084 + 0.0228466i
\(626\) 0 0
\(627\) −1.14715 3.90682i −0.0458126 0.156024i
\(628\) 0 0
\(629\) 9.77543 21.4052i 0.389772 0.853482i
\(630\) 0 0
\(631\) −3.55820 + 2.28672i −0.141650 + 0.0910328i −0.609546 0.792750i \(-0.708648\pi\)
0.467897 + 0.883783i \(0.345012\pi\)
\(632\) 0 0
\(633\) 1.17303 + 8.15863i 0.0466239 + 0.324277i
\(634\) 0 0
\(635\) 40.0395 46.2080i 1.58892 1.83371i
\(636\) 0 0
\(637\) 14.4440 + 9.28259i 0.572292 + 0.367789i
\(638\) 0 0
\(639\) 27.5914 23.9081i 1.09150 0.945791i
\(640\) 0 0
\(641\) 5.25735 2.40095i 0.207653 0.0948319i −0.308874 0.951103i \(-0.599952\pi\)
0.516527 + 0.856271i \(0.327225\pi\)
\(642\) 0 0
\(643\) −14.3533 −0.566041 −0.283020 0.959114i \(-0.591336\pi\)
−0.283020 + 0.959114i \(0.591336\pi\)
\(644\) 0 0
\(645\) −42.7040 −1.68147
\(646\) 0 0
\(647\) −30.6323 + 13.9893i −1.20428 + 0.549976i −0.913510 0.406817i \(-0.866639\pi\)
−0.290770 + 0.956793i \(0.593911\pi\)
\(648\) 0 0
\(649\) −11.5616 + 10.0182i −0.453834 + 0.393249i
\(650\) 0 0
\(651\) 53.5435 + 34.4103i 2.09854 + 1.34865i
\(652\) 0 0
\(653\) −1.12461 + 1.29787i −0.0440094 + 0.0507895i −0.777327 0.629096i \(-0.783425\pi\)
0.733318 + 0.679886i \(0.237971\pi\)
\(654\) 0 0
\(655\) 1.69025 + 11.7559i 0.0660435 + 0.459343i
\(656\) 0 0
\(657\) 49.7882 31.9970i 1.94242 1.24832i
\(658\) 0 0
\(659\) 1.22489 2.68213i 0.0477148 0.104481i −0.884273 0.466970i \(-0.845346\pi\)
0.931988 + 0.362489i \(0.118073\pi\)
\(660\) 0 0
\(661\) 13.5901 + 46.2835i 0.528593 + 1.80022i 0.596603 + 0.802537i \(0.296517\pi\)
−0.0680102 + 0.997685i \(0.521665\pi\)
\(662\) 0 0
\(663\) −38.0286 11.1662i −1.47691 0.433660i
\(664\) 0 0
\(665\) 10.2335 + 1.47136i 0.396839 + 0.0570569i
\(666\) 0 0
\(667\) 19.6298 + 21.7417i 0.760071 + 0.841843i
\(668\) 0 0
\(669\) −4.01788 + 27.9450i −0.155340 + 1.08041i
\(670\) 0 0
\(671\) 2.60853 8.88382i 0.100701 0.342956i
\(672\) 0 0
\(673\) 24.5121 7.19740i 0.944872 0.277440i 0.227222 0.973843i \(-0.427036\pi\)
0.717650 + 0.696404i \(0.245218\pi\)
\(674\) 0 0
\(675\) 47.7801 + 21.8205i 1.83906 + 0.839870i
\(676\) 0 0
\(677\) −24.4475 38.0410i −0.939593 1.46203i −0.886115 0.463466i \(-0.846606\pi\)
−0.0534777 0.998569i \(-0.517031\pi\)
\(678\) 0 0
\(679\) 46.3751 6.66773i 1.77971 0.255884i
\(680\) 0 0
\(681\) 3.05529 + 2.64742i 0.117079 + 0.101449i
\(682\) 0 0
\(683\) −13.4305 + 20.8983i −0.513905 + 0.799652i −0.997119 0.0758501i \(-0.975833\pi\)
0.483214 + 0.875502i \(0.339469\pi\)
\(684\) 0 0
\(685\) 33.9050 + 39.1285i 1.29544 + 1.49502i
\(686\) 0 0
\(687\) −2.32028 5.08070i −0.0885241 0.193841i
\(688\) 0 0
\(689\) 27.1326i 1.03367i
\(690\) 0 0
\(691\) 1.38246i 0.0525912i −0.999654 0.0262956i \(-0.991629\pi\)
0.999654 0.0262956i \(-0.00837112\pi\)
\(692\) 0 0
\(693\) −10.9119 23.8938i −0.414509 0.907649i
\(694\) 0 0
\(695\) 15.6813 + 18.0972i 0.594825 + 0.686465i
\(696\) 0 0
\(697\) 8.29796 12.9119i 0.314308 0.489072i
\(698\) 0 0
\(699\) 12.1617 + 10.5382i 0.459997 + 0.398590i
\(700\) 0 0
\(701\) −25.4916 + 3.66514i −0.962806 + 0.138431i −0.605752 0.795653i \(-0.707128\pi\)
−0.357054 + 0.934084i \(0.616219\pi\)
\(702\) 0 0
\(703\) −4.66585 7.26021i −0.175976 0.273824i
\(704\) 0 0
\(705\) −74.6491 34.0911i −2.81145 1.28394i
\(706\) 0 0
\(707\) −23.0494 + 6.76792i −0.866862 + 0.254534i
\(708\) 0 0
\(709\) −2.01926 + 6.87698i −0.0758350 + 0.258270i −0.988681 0.150034i \(-0.952062\pi\)
0.912846 + 0.408305i \(0.133880\pi\)
\(710\) 0 0
\(711\) 0.459871 3.19847i 0.0172465 0.119952i
\(712\) 0 0
\(713\) −0.680250 33.3454i −0.0254756 1.24879i
\(714\) 0 0
\(715\) −30.8550 4.43628i −1.15391 0.165908i
\(716\) 0 0
\(717\) −21.8158 6.40569i −0.814725 0.239225i
\(718\) 0 0
\(719\) −12.0214 40.9412i −0.448323 1.52685i −0.805376 0.592765i \(-0.798036\pi\)
0.357053 0.934084i \(-0.383782\pi\)
\(720\) 0 0
\(721\) −5.11395 + 11.1980i −0.190453 + 0.417035i
\(722\) 0 0
\(723\) −7.02556 + 4.51505i −0.261283 + 0.167917i
\(724\) 0 0
\(725\) 6.87202 + 47.7959i 0.255220 + 1.77510i
\(726\) 0 0
\(727\) −15.8678 + 18.3124i −0.588504 + 0.679170i −0.969411 0.245444i \(-0.921066\pi\)
0.380907 + 0.924613i \(0.375612\pi\)
\(728\) 0 0
\(729\) 33.9018 + 21.7874i 1.25562 + 0.806940i
\(730\) 0 0
\(731\) 7.70273 6.67445i 0.284896 0.246863i
\(732\) 0 0
\(733\) −48.7756 + 22.2751i −1.80157 + 0.822749i −0.842984 + 0.537939i \(0.819203\pi\)
−0.958584 + 0.284810i \(0.908070\pi\)
\(734\) 0 0
\(735\) 31.9388 1.17808
\(736\) 0 0
\(737\) 13.3584 0.492065
\(738\) 0 0
\(739\) 45.7331 20.8856i 1.68232 0.768289i 0.683037 0.730384i \(-0.260659\pi\)
0.999281 0.0379049i \(-0.0120684\pi\)
\(740\) 0 0
\(741\) −10.9854 + 9.51888i −0.403558 + 0.349685i
\(742\) 0 0
\(743\) 15.3836 + 9.88645i 0.564370 + 0.362699i 0.791503 0.611165i \(-0.209299\pi\)
−0.227133 + 0.973864i \(0.572935\pi\)
\(744\) 0 0
\(745\) 13.0786 15.0936i 0.479164 0.552985i
\(746\) 0 0
\(747\) 7.48691 + 52.0726i 0.273932 + 1.90524i
\(748\) 0 0
\(749\) −17.5191 + 11.2588i −0.640134 + 0.411389i
\(750\) 0 0
\(751\) −2.97374 + 6.51159i −0.108513 + 0.237611i −0.956097 0.293051i \(-0.905329\pi\)
0.847583 + 0.530662i \(0.178057\pi\)
\(752\) 0 0
\(753\) 15.5652 + 53.0101i 0.567227 + 1.93180i
\(754\) 0 0
\(755\) 18.4624 + 5.42105i 0.671916 + 0.197292i
\(756\) 0 0
\(757\) −0.213655 0.0307190i −0.00776543 0.00111650i 0.138431 0.990372i \(-0.455794\pi\)
−0.146196 + 0.989256i \(0.546703\pi\)
\(758\) 0 0
\(759\) −11.2776 + 18.3611i −0.409350 + 0.666467i
\(760\) 0 0
\(761\) 0.657950 4.57614i 0.0238507 0.165885i −0.974415 0.224757i \(-0.927841\pi\)
0.998266 + 0.0588718i \(0.0187503\pi\)
\(762\) 0 0
\(763\) −17.2387 + 58.7097i −0.624083 + 2.12543i
\(764\) 0 0
\(765\) −45.1884 + 13.2685i −1.63379 + 0.479725i
\(766\) 0 0
\(767\) 49.6778 + 22.6871i 1.79376 + 0.819183i
\(768\) 0 0
\(769\) −6.93110 10.7850i −0.249942 0.388917i 0.693499 0.720457i \(-0.256068\pi\)
−0.943441 + 0.331540i \(0.892432\pi\)
\(770\) 0 0
\(771\) 21.9680 3.15852i 0.791158 0.113751i
\(772\) 0 0
\(773\) 17.3167 + 15.0050i 0.622838 + 0.539693i 0.908098 0.418758i \(-0.137534\pi\)
−0.285260 + 0.958450i \(0.592080\pi\)
\(774\) 0 0
\(775\) 29.7247 46.2525i 1.06774 1.66144i
\(776\) 0 0
\(777\) −57.0754 65.8685i −2.04757 2.36302i
\(778\) 0 0
\(779\) −2.33837 5.12031i −0.0837808 0.183454i
\(780\) 0 0
\(781\) 10.7284i 0.383893i
\(782\) 0 0
\(783\) 40.5811i 1.45025i
\(784\) 0 0
\(785\) −16.3436 35.7876i −0.583329 1.27731i
\(786\) 0 0
\(787\) 0.801379 + 0.924841i 0.0285661 + 0.0329670i 0.769853 0.638221i \(-0.220330\pi\)
−0.741287 + 0.671188i \(0.765784\pi\)
\(788\) 0 0
\(789\) 21.1651 32.9335i 0.753496 1.17246i
\(790\) 0 0
\(791\) −17.4368 15.1091i −0.619982 0.537217i
\(792\) 0 0
\(793\) −32.7167 + 4.70396i −1.16181 + 0.167042i
\(794\) 0 0
\(795\) −27.2872 42.4597i −0.967777 1.50589i
\(796\) 0 0
\(797\) 47.5908 + 21.7340i 1.68575 + 0.769857i 0.999080 + 0.0428900i \(0.0136565\pi\)
0.686672 + 0.726967i \(0.259071\pi\)
\(798\) 0 0
\(799\) 18.7931 5.51815i 0.664851 0.195218i
\(800\) 0 0
\(801\) −1.57521 + 5.36469i −0.0556574 + 0.189552i
\(802\) 0 0
\(803\) −2.47508 + 17.2146i −0.0873437 + 0.607489i
\(804\) 0 0
\(805\) −30.5128 45.4148i −1.07544 1.60066i
\(806\) 0 0
\(807\) 52.6766 + 7.57375i 1.85430 + 0.266609i
\(808\) 0 0
\(809\) −34.7807 10.2125i −1.22283 0.359054i −0.394288 0.918987i \(-0.629009\pi\)
−0.828538 + 0.559933i \(0.810827\pi\)
\(810\) 0 0
\(811\) 14.1830 + 48.3027i 0.498031 + 1.69614i 0.697798 + 0.716294i \(0.254163\pi\)
−0.199768 + 0.979843i \(0.564019\pi\)
\(812\) 0 0
\(813\) 0.226114 0.495120i 0.00793015 0.0173646i
\(814\) 0 0
\(815\) 16.0230 10.2974i 0.561261 0.360701i
\(816\) 0 0
\(817\) −0.531967 3.69991i −0.0186112 0.129444i
\(818\) 0 0
\(819\) −61.4077 + 70.8683i −2.14576 + 2.47634i
\(820\) 0 0
\(821\) 5.39453 + 3.46685i 0.188270 + 0.120994i 0.631381 0.775473i \(-0.282489\pi\)
−0.443110 + 0.896467i \(0.646125\pi\)
\(822\) 0 0
\(823\) −4.84389 + 4.19726i −0.168847 + 0.146307i −0.735186 0.677866i \(-0.762905\pi\)
0.566338 + 0.824173i \(0.308360\pi\)
\(824\) 0 0
\(825\) −32.3113 + 14.7561i −1.12493 + 0.513740i
\(826\) 0 0
\(827\) −4.03565 −0.140333 −0.0701667 0.997535i \(-0.522353\pi\)
−0.0701667 + 0.997535i \(0.522353\pi\)
\(828\) 0 0
\(829\) 0.478153 0.0166070 0.00830348 0.999966i \(-0.497357\pi\)
0.00830348 + 0.999966i \(0.497357\pi\)
\(830\) 0 0
\(831\) −7.63021 + 3.48460i −0.264689 + 0.120879i
\(832\) 0 0
\(833\) −5.76094 + 4.99189i −0.199605 + 0.172959i
\(834\) 0 0
\(835\) 66.2674 + 42.5875i 2.29328 + 1.47380i
\(836\) 0 0
\(837\) −30.2585 + 34.9201i −1.04589 + 1.20702i
\(838\) 0 0
\(839\) 1.59148 + 11.0690i 0.0549440 + 0.382144i 0.998676 + 0.0514339i \(0.0163792\pi\)
−0.943732 + 0.330710i \(0.892712\pi\)
\(840\) 0 0
\(841\) 6.98729 4.49046i 0.240941 0.154843i
\(842\) 0 0
\(843\) 23.5381 51.5413i 0.810696 1.77518i
\(844\) 0 0
\(845\) 18.1942 + 61.9639i 0.625901 + 2.13162i
\(846\) 0 0
\(847\) −26.1112 7.66693i −0.897190 0.263439i
\(848\) 0 0
\(849\) −53.5295 7.69638i −1.83713 0.264139i
\(850\) 0 0
\(851\) −11.9707 + 44.0749i −0.410351 + 1.51087i
\(852\) 0 0
\(853\) 2.07554 14.4357i 0.0710651 0.494269i −0.922941 0.384942i \(-0.874221\pi\)
0.994006 0.109327i \(-0.0348695\pi\)
\(854\) 0 0
\(855\) −4.86621 + 16.5728i −0.166421 + 0.566778i
\(856\) 0 0
\(857\) −36.0319 + 10.5799i −1.23083 + 0.361404i −0.831562 0.555432i \(-0.812553\pi\)
−0.399265 + 0.916835i \(0.630735\pi\)
\(858\) 0 0
\(859\) −46.4409 21.2088i −1.58454 0.723636i −0.588170 0.808737i \(-0.700151\pi\)
−0.996372 + 0.0851010i \(0.972879\pi\)
\(860\) 0 0
\(861\) −30.7339 47.8229i −1.04741 1.62980i
\(862\) 0 0
\(863\) −6.11821 + 0.879666i −0.208266 + 0.0299442i −0.245658 0.969356i \(-0.579004\pi\)
0.0373919 + 0.999301i \(0.488095\pi\)
\(864\) 0 0
\(865\) 8.52703 + 7.38871i 0.289928 + 0.251224i
\(866\) 0 0
\(867\) −16.9740 + 26.4121i −0.576469 + 0.897003i
\(868\) 0 0
\(869\) 0.621833 + 0.717634i 0.0210942 + 0.0243441i
\(870\) 0 0
\(871\) −19.8104 43.3787i −0.671250 1.46983i
\(872\) 0 0
\(873\) 78.2733i 2.64915i
\(874\) 0 0
\(875\) 33.1508i 1.12070i
\(876\) 0 0
\(877\) 21.3820 + 46.8200i 0.722019 + 1.58100i 0.811054 + 0.584972i \(0.198894\pi\)
−0.0890349 + 0.996029i \(0.528378\pi\)
\(878\) 0 0
\(879\) −45.5825 52.6050i −1.53746 1.77432i
\(880\) 0 0
\(881\) −15.7504 + 24.5082i −0.530646 + 0.825701i −0.998304 0.0582079i \(-0.981461\pi\)
0.467658 + 0.883909i \(0.345098\pi\)
\(882\) 0 0
\(883\) 21.9487 + 19.0187i 0.738634 + 0.640030i 0.940660 0.339350i \(-0.110207\pi\)
−0.202026 + 0.979380i \(0.564753\pi\)
\(884\) 0 0
\(885\) 100.557 14.4579i 3.38018 0.485996i
\(886\) 0 0
\(887\) −1.26358 1.96617i −0.0424269 0.0660175i 0.819392 0.573233i \(-0.194311\pi\)
−0.861819 + 0.507216i \(0.830675\pi\)
\(888\) 0 0
\(889\) 49.1642 + 22.4526i 1.64892 + 0.753034i
\(890\) 0 0
\(891\) 4.83385 1.41935i 0.161940 0.0475499i
\(892\) 0 0
\(893\) 2.02377 6.89233i 0.0677229 0.230643i
\(894\) 0 0
\(895\) 8.52759 59.3107i 0.285046 1.98254i
\(896\) 0 0
\(897\) 76.3484 + 9.39217i 2.54920 + 0.313596i
\(898\) 0 0
\(899\) −42.0443 6.04506i −1.40226 0.201614i
\(900\) 0 0
\(901\) 11.5582 + 3.39379i 0.385059 + 0.113063i
\(902\) 0 0
\(903\) −10.6353 36.2205i −0.353921 1.20534i
\(904\) 0 0
\(905\) −3.03671 + 6.64946i −0.100944 + 0.221036i
\(906\) 0 0
\(907\) 40.2996 25.8990i 1.33813 0.859962i 0.341331 0.939943i \(-0.389122\pi\)
0.996796 + 0.0799806i \(0.0254858\pi\)
\(908\) 0 0
\(909\) −5.71154 39.7247i −0.189440 1.31758i
\(910\) 0 0
\(911\) −24.1453 + 27.8651i −0.799968 + 0.923213i −0.998380 0.0569062i \(-0.981876\pi\)
0.198411 + 0.980119i \(0.436422\pi\)
\(912\) 0 0
\(913\) −13.0053 8.35797i −0.430411 0.276608i
\(914\) 0 0
\(915\) −46.4675 + 40.2643i −1.53617 + 1.33110i
\(916\) 0 0
\(917\) −9.55015 + 4.36141i −0.315374 + 0.144026i
\(918\) 0 0
\(919\) −19.0546 −0.628554 −0.314277 0.949331i \(-0.601762\pi\)
−0.314277 + 0.949331i \(0.601762\pi\)
\(920\) 0 0
\(921\) 68.4454 2.25535
\(922\) 0 0
\(923\) 34.8383 15.9101i 1.14672 0.523687i
\(924\) 0 0
\(925\) −56.8992 + 49.3034i −1.87083 + 1.62109i
\(926\) 0 0
\(927\) −17.3016 11.1191i −0.568259 0.365198i
\(928\) 0 0
\(929\) 29.8655 34.4666i 0.979856 1.13081i −0.0115426 0.999933i \(-0.503674\pi\)
0.991398 0.130880i \(-0.0417804\pi\)
\(930\) 0 0
\(931\) 0.397864 + 2.76720i 0.0130395 + 0.0906914i
\(932\) 0 0
\(933\) 42.5489 27.3445i 1.39299 0.895219i
\(934\) 0 0
\(935\) 5.74919 12.5890i 0.188019 0.411704i
\(936\) 0 0
\(937\) −1.70122 5.79381i −0.0555763 0.189276i 0.927026 0.374997i \(-0.122356\pi\)
−0.982603 + 0.185721i \(0.940538\pi\)
\(938\) 0 0
\(939\) −21.0489 6.18051i −0.686905 0.201693i
\(940\) 0 0
\(941\) 6.12520 + 0.880671i 0.199676 + 0.0287091i 0.241427 0.970419i \(-0.422385\pi\)
−0.0417511 + 0.999128i \(0.513294\pi\)
\(942\) 0 0
\(943\) −11.8195 + 27.3437i −0.384897 + 0.890434i
\(944\) 0 0
\(945\) −10.7873 + 75.0277i −0.350913 + 2.44065i
\(946\) 0 0
\(947\) −16.1108 + 54.8685i −0.523532 + 1.78299i 0.0930107 + 0.995665i \(0.470351\pi\)
−0.616543 + 0.787321i \(0.711467\pi\)
\(948\) 0 0
\(949\) 59.5711 17.4917i 1.93376 0.567803i
\(950\) 0 0
\(951\) 13.2309 + 6.04237i 0.429043 + 0.195937i
\(952\) 0 0
\(953\) −12.5907 19.5915i −0.407853 0.634631i 0.575187 0.818022i \(-0.304929\pi\)
−0.983040 + 0.183390i \(0.941293\pi\)
\(954\) 0 0
\(955\) 2.69603 0.387630i 0.0872413 0.0125434i
\(956\) 0 0
\(957\) 20.7400 + 17.9713i 0.670428 + 0.580930i
\(958\) 0 0
\(959\) −24.7439 + 38.5022i −0.799022 + 1.24330i
\(960\) 0 0
\(961\) 11.3712 + 13.1230i 0.366812 + 0.423323i
\(962\) 0 0
\(963\) −14.4528 31.6472i −0.465735 1.01982i
\(964\) 0 0
\(965\) 44.3155i 1.42657i
\(966\) 0 0
\(967\) 49.0196i 1.57636i 0.615442 + 0.788182i \(0.288978\pi\)
−0.615442 + 0.788182i \(0.711022\pi\)
\(968\) 0 0
\(969\) −2.68086 5.87027i −0.0861218 0.188580i
\(970\) 0 0
\(971\) 23.5968 + 27.2321i 0.757257 + 0.873921i 0.995251 0.0973459i \(-0.0310353\pi\)
−0.237994 + 0.971267i \(0.576490\pi\)
\(972\) 0 0
\(973\) −11.4442 + 17.8075i −0.366884 + 0.570883i
\(974\) 0 0
\(975\) 95.8343 + 83.0409i 3.06915 + 2.65944i
\(976\) 0 0
\(977\) −30.8286 + 4.43249i −0.986296 + 0.141808i −0.616542 0.787322i \(-0.711467\pi\)
−0.369754 + 0.929130i \(0.620558\pi\)
\(978\) 0 0
\(979\) −0.888281 1.38219i −0.0283896 0.0441751i
\(980\) 0 0
\(981\) −92.9863 42.4654i −2.96882 1.35582i
\(982\) 0 0
\(983\) −3.49421 + 1.02599i −0.111448 + 0.0327241i −0.336981 0.941511i \(-0.609406\pi\)
0.225533 + 0.974236i \(0.427588\pi\)
\(984\) 0 0
\(985\) 3.42077 11.6501i 0.108995 0.371202i
\(986\) 0 0
\(987\) 10.3241 71.8058i 0.328620 2.28560i
\(988\) 0 0
\(989\) −12.6465 + 15.2110i −0.402136 + 0.483680i
\(990\) 0 0
\(991\) −46.5214 6.68876i −1.47780 0.212476i −0.644205 0.764853i \(-0.722812\pi\)
−0.833594 + 0.552377i \(0.813721\pi\)
\(992\) 0 0
\(993\) 8.67689 + 2.54776i 0.275353 + 0.0808508i
\(994\) 0 0
\(995\) −3.29576 11.2243i −0.104483 0.355835i
\(996\) 0 0
\(997\) −14.5767 + 31.9185i −0.461649 + 1.01087i 0.525460 + 0.850819i \(0.323893\pi\)
−0.987109 + 0.160052i \(0.948834\pi\)
\(998\) 0 0
\(999\) 53.2286 34.2079i 1.68408 1.08229i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 368.2.s.b.15.1 80
4.3 odd 2 inner 368.2.s.b.15.8 yes 80
23.20 odd 22 inner 368.2.s.b.319.8 yes 80
92.43 even 22 inner 368.2.s.b.319.1 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
368.2.s.b.15.1 80 1.1 even 1 trivial
368.2.s.b.15.8 yes 80 4.3 odd 2 inner
368.2.s.b.319.1 yes 80 92.43 even 22 inner
368.2.s.b.319.8 yes 80 23.20 odd 22 inner