Properties

Label 368.3.k.b.45.19
Level $368$
Weight $3$
Character 368.45
Analytic conductor $10.027$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,3,Mod(45,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.45");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 368.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0272737285\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(88\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 45.19
Character \(\chi\) \(=\) 368.45
Dual form 368.3.k.b.229.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.52002 + 1.29982i) q^{2} +(0.968686 + 0.968686i) q^{3} +(0.620917 - 3.95151i) q^{4} +(-3.86184 - 3.86184i) q^{5} +(-2.73154 - 0.213300i) q^{6} -4.96433 q^{7} +(4.19246 + 6.81346i) q^{8} -7.12330i q^{9} +(10.8898 + 0.850361i) q^{10} +(-2.50654 - 2.50654i) q^{11} +(4.42925 - 3.22630i) q^{12} +(10.5972 + 10.5972i) q^{13} +(7.54588 - 6.45275i) q^{14} -7.48182i q^{15} +(-15.2289 - 4.90713i) q^{16} +22.9106i q^{17} +(9.25903 + 10.8275i) q^{18} +(-17.7764 + 17.7764i) q^{19} +(-17.6580 + 12.8622i) q^{20} +(-4.80888 - 4.80888i) q^{21} +(7.06805 + 0.551929i) q^{22} +(11.0659 + 20.1630i) q^{23} +(-2.53892 + 10.6613i) q^{24} +4.82766i q^{25} +(-29.8823 - 2.33345i) q^{26} +(15.6184 - 15.6184i) q^{27} +(-3.08244 + 19.6166i) q^{28} +(27.0630 + 27.0630i) q^{29} +(9.72505 + 11.3725i) q^{30} -3.45374 q^{31} +(29.5267 - 12.3360i) q^{32} -4.85610i q^{33} +(-29.7797 - 34.8245i) q^{34} +(19.1715 + 19.1715i) q^{35} +(-28.1478 - 4.42298i) q^{36} +(46.6306 + 46.6306i) q^{37} +(3.91429 - 50.1267i) q^{38} +20.5306i q^{39} +(10.1219 - 42.5032i) q^{40} +42.8441i q^{41} +(13.5603 + 1.05889i) q^{42} +(-47.6976 - 47.6976i) q^{43} +(-11.4610 + 8.34827i) q^{44} +(-27.5090 + 27.5090i) q^{45} +(-43.0287 - 16.2644i) q^{46} +5.74565 q^{47} +(-9.99858 - 19.5055i) q^{48} -24.3554 q^{49} +(-6.27511 - 7.33814i) q^{50} +(-22.1931 + 22.1931i) q^{51} +(48.4548 - 35.2948i) q^{52} +(-25.0753 - 25.0753i) q^{53} +(-3.43911 + 44.0415i) q^{54} +19.3597i q^{55} +(-20.8128 - 33.8243i) q^{56} -34.4395 q^{57} +(-76.3135 - 5.95916i) q^{58} +(-66.0777 + 66.0777i) q^{59} +(-29.5645 - 4.64560i) q^{60} +(8.06717 - 8.06717i) q^{61} +(5.24975 - 4.48925i) q^{62} +35.3624i q^{63} +(-28.8465 + 57.1304i) q^{64} -81.8491i q^{65} +(6.31207 + 7.38136i) q^{66} +(66.7527 - 66.7527i) q^{67} +(90.5314 + 14.2256i) q^{68} +(-8.81219 + 30.2510i) q^{69} +(-54.0605 - 4.22147i) q^{70} +109.541i q^{71} +(48.5343 - 29.8642i) q^{72} -59.8301i q^{73} +(-131.491 - 10.2679i) q^{74} +(-4.67649 + 4.67649i) q^{75} +(59.2061 + 81.2815i) q^{76} +(12.4433 + 12.4433i) q^{77} +(-26.6862 - 31.2070i) q^{78} +9.87381i q^{79} +(39.8612 + 77.7623i) q^{80} -33.8510 q^{81} +(-55.6897 - 65.1238i) q^{82} +(-80.3371 + 80.3371i) q^{83} +(-21.9883 + 16.0164i) q^{84} +(88.4770 - 88.4770i) q^{85} +(134.500 + 10.5028i) q^{86} +52.4312i q^{87} +(6.56963 - 27.5868i) q^{88} -26.4900 q^{89} +(6.05738 - 77.5712i) q^{90} +(-52.6078 - 52.6078i) q^{91} +(86.5453 - 31.2076i) q^{92} +(-3.34559 - 3.34559i) q^{93} +(-8.73350 + 7.46833i) q^{94} +137.300 q^{95} +(40.5517 + 16.6524i) q^{96} +152.701i q^{97} +(37.0207 - 31.6578i) q^{98} +(-17.8548 + 17.8548i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q - 4 q^{2} - 4 q^{3} - 16 q^{4} - 64 q^{6} - 4 q^{8} - 28 q^{12} - 4 q^{13} - 80 q^{16} + 72 q^{18} + 68 q^{24} + 96 q^{26} + 212 q^{27} + 28 q^{29} - 8 q^{31} + 136 q^{32} - 104 q^{35} - 264 q^{36}+ \cdots - 240 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.52002 + 1.29982i −0.760010 + 0.649912i
\(3\) 0.968686 + 0.968686i 0.322895 + 0.322895i 0.849877 0.526981i \(-0.176676\pi\)
−0.526981 + 0.849877i \(0.676676\pi\)
\(4\) 0.620917 3.95151i 0.155229 0.987878i
\(5\) −3.86184 3.86184i −0.772369 0.772369i 0.206152 0.978520i \(-0.433906\pi\)
−0.978520 + 0.206152i \(0.933906\pi\)
\(6\) −2.73154 0.213300i −0.455257 0.0355501i
\(7\) −4.96433 −0.709190 −0.354595 0.935020i \(-0.615381\pi\)
−0.354595 + 0.935020i \(0.615381\pi\)
\(8\) 4.19246 + 6.81346i 0.524058 + 0.851683i
\(9\) 7.12330i 0.791477i
\(10\) 10.8898 + 0.850361i 1.08898 + 0.0850361i
\(11\) −2.50654 2.50654i −0.227867 0.227867i 0.583934 0.811801i \(-0.301513\pi\)
−0.811801 + 0.583934i \(0.801513\pi\)
\(12\) 4.42925 3.22630i 0.369104 0.268858i
\(13\) 10.5972 + 10.5972i 0.815166 + 0.815166i 0.985403 0.170237i \(-0.0544534\pi\)
−0.170237 + 0.985403i \(0.554453\pi\)
\(14\) 7.54588 6.45275i 0.538991 0.460911i
\(15\) 7.48182i 0.498788i
\(16\) −15.2289 4.90713i −0.951808 0.306695i
\(17\) 22.9106i 1.34768i 0.738877 + 0.673840i \(0.235356\pi\)
−0.738877 + 0.673840i \(0.764644\pi\)
\(18\) 9.25903 + 10.8275i 0.514390 + 0.601530i
\(19\) −17.7764 + 17.7764i −0.935601 + 0.935601i −0.998048 0.0624470i \(-0.980110\pi\)
0.0624470 + 0.998048i \(0.480110\pi\)
\(20\) −17.6580 + 12.8622i −0.882901 + 0.643112i
\(21\) −4.80888 4.80888i −0.228994 0.228994i
\(22\) 7.06805 + 0.551929i 0.321275 + 0.0250877i
\(23\) 11.0659 + 20.1630i 0.481127 + 0.876651i
\(24\) −2.53892 + 10.6613i −0.105788 + 0.444220i
\(25\) 4.82766i 0.193106i
\(26\) −29.8823 2.33345i −1.14932 0.0897480i
\(27\) 15.6184 15.6184i 0.578460 0.578460i
\(28\) −3.08244 + 19.6166i −0.110087 + 0.700593i
\(29\) 27.0630 + 27.0630i 0.933208 + 0.933208i 0.997905 0.0646970i \(-0.0206081\pi\)
−0.0646970 + 0.997905i \(0.520608\pi\)
\(30\) 9.72505 + 11.3725i 0.324168 + 0.379084i
\(31\) −3.45374 −0.111411 −0.0557055 0.998447i \(-0.517741\pi\)
−0.0557055 + 0.998447i \(0.517741\pi\)
\(32\) 29.5267 12.3360i 0.922708 0.385500i
\(33\) 4.85610i 0.147154i
\(34\) −29.7797 34.8245i −0.875874 1.02425i
\(35\) 19.1715 + 19.1715i 0.547756 + 0.547756i
\(36\) −28.1478 4.42298i −0.781883 0.122861i
\(37\) 46.6306 + 46.6306i 1.26029 + 1.26029i 0.950954 + 0.309332i \(0.100106\pi\)
0.309332 + 0.950954i \(0.399894\pi\)
\(38\) 3.91429 50.1267i 0.103008 1.31912i
\(39\) 20.5306i 0.526426i
\(40\) 10.1219 42.5032i 0.253047 1.06258i
\(41\) 42.8441i 1.04498i 0.852646 + 0.522489i \(0.174996\pi\)
−0.852646 + 0.522489i \(0.825004\pi\)
\(42\) 13.5603 + 1.05889i 0.322864 + 0.0252118i
\(43\) −47.6976 47.6976i −1.10925 1.10925i −0.993250 0.115997i \(-0.962994\pi\)
−0.115997 0.993250i \(-0.537006\pi\)
\(44\) −11.4610 + 8.34827i −0.260477 + 0.189733i
\(45\) −27.5090 + 27.5090i −0.611312 + 0.611312i
\(46\) −43.0287 16.2644i −0.935407 0.353573i
\(47\) 5.74565 0.122248 0.0611240 0.998130i \(-0.480532\pi\)
0.0611240 + 0.998130i \(0.480532\pi\)
\(48\) −9.99858 19.5055i −0.208304 0.406365i
\(49\) −24.3554 −0.497050
\(50\) −6.27511 7.33814i −0.125502 0.146763i
\(51\) −22.1931 + 22.1931i −0.435160 + 0.435160i
\(52\) 48.4548 35.2948i 0.931822 0.678747i
\(53\) −25.0753 25.0753i −0.473119 0.473119i 0.429803 0.902923i \(-0.358583\pi\)
−0.902923 + 0.429803i \(0.858583\pi\)
\(54\) −3.43911 + 44.0415i −0.0636872 + 0.815583i
\(55\) 19.3597i 0.351995i
\(56\) −20.8128 33.8243i −0.371657 0.604005i
\(57\) −34.4395 −0.604202
\(58\) −76.3135 5.95916i −1.31575 0.102744i
\(59\) −66.0777 + 66.0777i −1.11996 + 1.11996i −0.128214 + 0.991746i \(0.540925\pi\)
−0.991746 + 0.128214i \(0.959075\pi\)
\(60\) −29.5645 4.64560i −0.492742 0.0774266i
\(61\) 8.06717 8.06717i 0.132249 0.132249i −0.637884 0.770133i \(-0.720190\pi\)
0.770133 + 0.637884i \(0.220190\pi\)
\(62\) 5.24975 4.48925i 0.0846734 0.0724073i
\(63\) 35.3624i 0.561308i
\(64\) −28.8465 + 57.1304i −0.450726 + 0.892662i
\(65\) 81.8491i 1.25922i
\(66\) 6.31207 + 7.38136i 0.0956374 + 0.111839i
\(67\) 66.7527 66.7527i 0.996309 0.996309i −0.00368470 0.999993i \(-0.501173\pi\)
0.999993 + 0.00368470i \(0.00117288\pi\)
\(68\) 90.5314 + 14.2256i 1.33134 + 0.209200i
\(69\) −8.81219 + 30.2510i −0.127713 + 0.438420i
\(70\) −54.0605 4.22147i −0.772293 0.0603068i
\(71\) 109.541i 1.54282i 0.636335 + 0.771412i \(0.280449\pi\)
−0.636335 + 0.771412i \(0.719551\pi\)
\(72\) 48.5343 29.8642i 0.674087 0.414780i
\(73\) 59.8301i 0.819590i −0.912178 0.409795i \(-0.865600\pi\)
0.912178 0.409795i \(-0.134400\pi\)
\(74\) −131.491 10.2679i −1.77690 0.138755i
\(75\) −4.67649 + 4.67649i −0.0623532 + 0.0623532i
\(76\) 59.2061 + 81.2815i 0.779028 + 1.06949i
\(77\) 12.4433 + 12.4433i 0.161601 + 0.161601i
\(78\) −26.6862 31.2070i −0.342131 0.400089i
\(79\) 9.87381i 0.124985i 0.998045 + 0.0624925i \(0.0199049\pi\)
−0.998045 + 0.0624925i \(0.980095\pi\)
\(80\) 39.8612 + 77.7623i 0.498264 + 0.972028i
\(81\) −33.8510 −0.417914
\(82\) −55.6897 65.1238i −0.679143 0.794193i
\(83\) −80.3371 + 80.3371i −0.967917 + 0.967917i −0.999501 0.0315844i \(-0.989945\pi\)
0.0315844 + 0.999501i \(0.489945\pi\)
\(84\) −21.9883 + 16.0164i −0.261765 + 0.190672i
\(85\) 88.4770 88.4770i 1.04091 1.04091i
\(86\) 134.500 + 10.5028i 1.56395 + 0.122126i
\(87\) 52.4312i 0.602657i
\(88\) 6.56963 27.5868i 0.0746549 0.313486i
\(89\) −26.4900 −0.297641 −0.148820 0.988864i \(-0.547548\pi\)
−0.148820 + 0.988864i \(0.547548\pi\)
\(90\) 6.05738 77.5712i 0.0673042 0.861902i
\(91\) −52.6078 52.6078i −0.578107 0.578107i
\(92\) 86.5453 31.2076i 0.940710 0.339213i
\(93\) −3.34559 3.34559i −0.0359741 0.0359741i
\(94\) −8.73350 + 7.46833i −0.0929096 + 0.0794504i
\(95\) 137.300 1.44526
\(96\) 40.5517 + 16.6524i 0.422414 + 0.173462i
\(97\) 152.701i 1.57424i 0.616802 + 0.787119i \(0.288428\pi\)
−0.616802 + 0.787119i \(0.711572\pi\)
\(98\) 37.0207 31.6578i 0.377763 0.323038i
\(99\) −17.8548 + 17.8548i −0.180352 + 0.180352i
\(100\) 19.0766 + 2.99758i 0.190766 + 0.0299758i
\(101\) 112.234 112.234i 1.11123 1.11123i 0.118241 0.992985i \(-0.462275\pi\)
0.992985 0.118241i \(-0.0377254\pi\)
\(102\) 4.88684 62.5812i 0.0479102 0.613541i
\(103\) −61.8814 −0.600791 −0.300395 0.953815i \(-0.597119\pi\)
−0.300395 + 0.953815i \(0.597119\pi\)
\(104\) −27.7751 + 116.631i −0.267068 + 1.12146i
\(105\) 37.1422i 0.353736i
\(106\) 70.7085 + 5.52148i 0.667061 + 0.0520894i
\(107\) 69.6664 + 69.6664i 0.651087 + 0.651087i 0.953255 0.302167i \(-0.0977102\pi\)
−0.302167 + 0.953255i \(0.597710\pi\)
\(108\) −52.0186 71.4141i −0.481654 0.661242i
\(109\) 141.403 141.403i 1.29728 1.29728i 0.367095 0.930184i \(-0.380352\pi\)
0.930184 0.367095i \(-0.119648\pi\)
\(110\) −25.1642 29.4272i −0.228766 0.267520i
\(111\) 90.3408i 0.813881i
\(112\) 75.6014 + 24.3606i 0.675012 + 0.217505i
\(113\) 89.8043i 0.794728i 0.917661 + 0.397364i \(0.130075\pi\)
−0.917661 + 0.397364i \(0.869925\pi\)
\(114\) 52.3488 44.7653i 0.459200 0.392678i
\(115\) 35.1314 120.601i 0.305490 1.04870i
\(116\) 123.744 90.1360i 1.06676 0.777035i
\(117\) 75.4867 75.4867i 0.645185 0.645185i
\(118\) 14.5500 186.329i 0.123305 1.57906i
\(119\) 113.736i 0.955762i
\(120\) 50.9771 31.3673i 0.424809 0.261394i
\(121\) 108.435i 0.896153i
\(122\) −1.77636 + 22.7482i −0.0145603 + 0.186460i
\(123\) −41.5025 + 41.5025i −0.337418 + 0.337418i
\(124\) −2.14449 + 13.6475i −0.0172943 + 0.110060i
\(125\) −77.9024 + 77.9024i −0.623219 + 0.623219i
\(126\) −45.9649 53.7515i −0.364800 0.426599i
\(127\) −80.4144 −0.633184 −0.316592 0.948562i \(-0.602539\pi\)
−0.316592 + 0.948562i \(0.602539\pi\)
\(128\) −30.4122 124.335i −0.237595 0.971364i
\(129\) 92.4080i 0.716341i
\(130\) 106.389 + 124.412i 0.818380 + 0.957017i
\(131\) −48.3690 48.3690i −0.369229 0.369229i 0.497967 0.867196i \(-0.334080\pi\)
−0.867196 + 0.497967i \(0.834080\pi\)
\(132\) −19.1889 3.01524i −0.145371 0.0228427i
\(133\) 88.2480 88.2480i 0.663519 0.663519i
\(134\) −14.6987 + 188.232i −0.109691 + 1.40472i
\(135\) −120.632 −0.893568
\(136\) −156.100 + 96.0518i −1.14780 + 0.706263i
\(137\) 82.5459 0.602525 0.301263 0.953541i \(-0.402592\pi\)
0.301263 + 0.953541i \(0.402592\pi\)
\(138\) −25.9262 57.4364i −0.187871 0.416206i
\(139\) −48.0812 + 48.0812i −0.345908 + 0.345908i −0.858583 0.512675i \(-0.828655\pi\)
0.512675 + 0.858583i \(0.328655\pi\)
\(140\) 87.6602 63.8524i 0.626144 0.456089i
\(141\) 5.56573 + 5.56573i 0.0394733 + 0.0394733i
\(142\) −142.383 166.504i −1.00270 1.17256i
\(143\) 53.1244i 0.371499i
\(144\) −34.9549 + 108.480i −0.242742 + 0.753334i
\(145\) 209.026i 1.44156i
\(146\) 77.7685 + 90.9429i 0.532661 + 0.622896i
\(147\) −23.5928 23.5928i −0.160495 0.160495i
\(148\) 213.215 155.308i 1.44064 1.04938i
\(149\) 135.993 + 135.993i 0.912702 + 0.912702i 0.996484 0.0837822i \(-0.0267000\pi\)
−0.0837822 + 0.996484i \(0.526700\pi\)
\(150\) 1.02974 13.1870i 0.00686495 0.0879130i
\(151\) 99.7596i 0.660660i 0.943866 + 0.330330i \(0.107160\pi\)
−0.943866 + 0.330330i \(0.892840\pi\)
\(152\) −195.646 46.5919i −1.28714 0.306526i
\(153\) 163.199 1.06666
\(154\) −35.0881 2.73996i −0.227845 0.0177919i
\(155\) 13.3378 + 13.3378i 0.0860503 + 0.0860503i
\(156\) 81.1271 + 12.7478i 0.520045 + 0.0817168i
\(157\) −56.4880 + 56.4880i −0.359796 + 0.359796i −0.863738 0.503941i \(-0.831883\pi\)
0.503941 + 0.863738i \(0.331883\pi\)
\(158\) −12.8342 15.0084i −0.0812292 0.0949898i
\(159\) 48.5802i 0.305536i
\(160\) −161.667 66.3877i −1.01042 0.414923i
\(161\) −54.9349 100.096i −0.341210 0.621712i
\(162\) 51.4542 44.0003i 0.317618 0.271607i
\(163\) 89.3238 + 89.3238i 0.547999 + 0.547999i 0.925862 0.377863i \(-0.123341\pi\)
−0.377863 + 0.925862i \(0.623341\pi\)
\(164\) 169.299 + 26.6026i 1.03231 + 0.162211i
\(165\) −18.7535 + 18.7535i −0.113658 + 0.113658i
\(166\) 17.6899 226.538i 0.106566 1.36469i
\(167\) 109.877i 0.657949i 0.944339 + 0.328974i \(0.106703\pi\)
−0.944339 + 0.328974i \(0.893297\pi\)
\(168\) 12.6040 52.9261i 0.0750241 0.315036i
\(169\) 55.5994i 0.328991i
\(170\) −19.4823 + 249.491i −0.114602 + 1.46760i
\(171\) 126.627 + 126.627i 0.740507 + 0.740507i
\(172\) −218.094 + 158.861i −1.26799 + 0.923613i
\(173\) −147.003 147.003i −0.849728 0.849728i 0.140371 0.990099i \(-0.455171\pi\)
−0.990099 + 0.140371i \(0.955171\pi\)
\(174\) −68.1512 79.6964i −0.391674 0.458025i
\(175\) 23.9661i 0.136949i
\(176\) 25.8720 + 50.4718i 0.147000 + 0.286772i
\(177\) −128.017 −0.723260
\(178\) 40.2654 34.4324i 0.226210 0.193440i
\(179\) 130.969 + 130.969i 0.731672 + 0.731672i 0.970951 0.239279i \(-0.0769109\pi\)
−0.239279 + 0.970951i \(0.576911\pi\)
\(180\) 91.6215 + 125.783i 0.509009 + 0.698796i
\(181\) 80.3980 + 80.3980i 0.444188 + 0.444188i 0.893417 0.449229i \(-0.148301\pi\)
−0.449229 + 0.893417i \(0.648301\pi\)
\(182\) 148.346 + 11.5840i 0.815086 + 0.0636484i
\(183\) 15.6291 0.0854050
\(184\) −90.9861 + 159.930i −0.494490 + 0.869183i
\(185\) 360.160i 1.94681i
\(186\) 9.43403 + 0.736684i 0.0507206 + 0.00396067i
\(187\) 57.4263 57.4263i 0.307092 0.307092i
\(188\) 3.56758 22.7040i 0.0189765 0.120766i
\(189\) −77.5349 + 77.5349i −0.410238 + 0.410238i
\(190\) −208.698 + 178.465i −1.09841 + 0.939290i
\(191\) 99.0898i 0.518795i 0.965771 + 0.259397i \(0.0835239\pi\)
−0.965771 + 0.259397i \(0.916476\pi\)
\(192\) −83.2846 + 27.3982i −0.433774 + 0.142699i
\(193\) −169.000 −0.875645 −0.437823 0.899061i \(-0.644250\pi\)
−0.437823 + 0.899061i \(0.644250\pi\)
\(194\) −198.484 232.108i −1.02312 1.19644i
\(195\) 79.2861 79.2861i 0.406595 0.406595i
\(196\) −15.1227 + 96.2408i −0.0771567 + 0.491025i
\(197\) 61.9870 61.9870i 0.314655 0.314655i −0.532055 0.846710i \(-0.678580\pi\)
0.846710 + 0.532055i \(0.178580\pi\)
\(198\) 3.93156 50.3478i 0.0198563 0.254282i
\(199\) −341.847 −1.71782 −0.858912 0.512123i \(-0.828859\pi\)
−0.858912 + 0.512123i \(0.828859\pi\)
\(200\) −32.8931 + 20.2398i −0.164465 + 0.101199i
\(201\) 129.325 0.643407
\(202\) −24.7134 + 316.482i −0.122344 + 1.56674i
\(203\) −134.350 134.350i −0.661822 0.661822i
\(204\) 73.9164 + 101.477i 0.362335 + 0.497435i
\(205\) 165.457 165.457i 0.807108 0.807108i
\(206\) 94.0610 80.4350i 0.456607 0.390461i
\(207\) 143.627 78.8258i 0.693849 0.380801i
\(208\) −109.382 213.385i −0.525873 1.02589i
\(209\) 89.1146 0.426386
\(210\) −48.2784 56.4569i −0.229897 0.268843i
\(211\) −163.693 163.693i −0.775797 0.775797i 0.203316 0.979113i \(-0.434828\pi\)
−0.979113 + 0.203316i \(0.934828\pi\)
\(212\) −114.655 + 83.5158i −0.540826 + 0.393942i
\(213\) −106.110 + 106.110i −0.498171 + 0.498171i
\(214\) −196.448 15.3402i −0.917982 0.0716833i
\(215\) 368.401i 1.71349i
\(216\) 171.895 + 40.9358i 0.795810 + 0.189518i
\(217\) 17.1455 0.0790115
\(218\) −31.1364 + 398.735i −0.142828 + 1.82906i
\(219\) 57.9565 57.9565i 0.264642 0.264642i
\(220\) 76.5002 + 12.0208i 0.347728 + 0.0546399i
\(221\) −242.787 + 242.787i −1.09858 + 1.09858i
\(222\) −117.427 137.320i −0.528951 0.618557i
\(223\) −178.675 −0.801232 −0.400616 0.916246i \(-0.631204\pi\)
−0.400616 + 0.916246i \(0.631204\pi\)
\(224\) −146.580 + 61.2399i −0.654375 + 0.273392i
\(225\) 34.3889 0.152839
\(226\) −116.730 136.504i −0.516503 0.604001i
\(227\) 280.890 280.890i 1.23740 1.23740i 0.276342 0.961059i \(-0.410878\pi\)
0.961059 0.276342i \(-0.0891223\pi\)
\(228\) −21.3841 + 136.088i −0.0937900 + 0.596879i
\(229\) 124.050 + 124.050i 0.541703 + 0.541703i 0.924028 0.382325i \(-0.124876\pi\)
−0.382325 + 0.924028i \(0.624876\pi\)
\(230\) 103.360 + 228.981i 0.449390 + 0.995568i
\(231\) 24.1073i 0.104360i
\(232\) −70.9321 + 297.854i −0.305742 + 1.28385i
\(233\) 389.389i 1.67120i 0.549339 + 0.835600i \(0.314880\pi\)
−0.549339 + 0.835600i \(0.685120\pi\)
\(234\) −16.6218 + 212.861i −0.0710335 + 0.909660i
\(235\) −22.1888 22.1888i −0.0944205 0.0944205i
\(236\) 220.078 + 302.136i 0.932534 + 1.28024i
\(237\) −9.56462 + 9.56462i −0.0403571 + 0.0403571i
\(238\) 147.836 + 172.880i 0.621161 + 0.726388i
\(239\) 98.6362 0.412704 0.206352 0.978478i \(-0.433841\pi\)
0.206352 + 0.978478i \(0.433841\pi\)
\(240\) −36.7143 + 113.940i −0.152976 + 0.474751i
\(241\) 212.141i 0.880252i −0.897936 0.440126i \(-0.854934\pi\)
0.897936 0.440126i \(-0.145066\pi\)
\(242\) 140.946 + 164.823i 0.582420 + 0.681085i
\(243\) −173.357 173.357i −0.713402 0.713402i
\(244\) −26.8685 36.8866i −0.110117 0.151175i
\(245\) 94.0569 + 94.0569i 0.383906 + 0.383906i
\(246\) 9.13866 117.030i 0.0371490 0.475733i
\(247\) −376.759 −1.52534
\(248\) −14.4797 23.5319i −0.0583858 0.0948868i
\(249\) −155.643 −0.625071
\(250\) 17.1538 219.673i 0.0686151 0.878690i
\(251\) −131.351 131.351i −0.523311 0.523311i 0.395259 0.918570i \(-0.370655\pi\)
−0.918570 + 0.395259i \(0.870655\pi\)
\(252\) 139.735 + 21.9571i 0.554504 + 0.0871314i
\(253\) 22.8021 78.2764i 0.0901270 0.309393i
\(254\) 122.231 104.524i 0.481226 0.411514i
\(255\) 171.413 0.672207
\(256\) 207.840 + 149.461i 0.811876 + 0.583830i
\(257\) −276.833 −1.07717 −0.538586 0.842571i \(-0.681041\pi\)
−0.538586 + 0.842571i \(0.681041\pi\)
\(258\) 120.114 + 140.462i 0.465558 + 0.544426i
\(259\) −231.490 231.490i −0.893782 0.893782i
\(260\) −323.428 50.8215i −1.24395 0.195467i
\(261\) 192.778 192.778i 0.738613 0.738613i
\(262\) 136.393 + 10.6506i 0.520584 + 0.0406513i
\(263\) −136.946 −0.520708 −0.260354 0.965513i \(-0.583839\pi\)
−0.260354 + 0.965513i \(0.583839\pi\)
\(264\) 33.0868 20.3590i 0.125329 0.0771175i
\(265\) 193.674i 0.730845i
\(266\) −19.4318 + 248.846i −0.0730520 + 0.935510i
\(267\) −25.6605 25.6605i −0.0961068 0.0961068i
\(268\) −222.326 305.222i −0.829575 1.13889i
\(269\) −269.558 269.558i −1.00207 1.00207i −0.999998 0.00207680i \(-0.999339\pi\)
−0.00207680 0.999998i \(-0.500661\pi\)
\(270\) 183.362 156.800i 0.679120 0.580740i
\(271\) −231.194 −0.853113 −0.426557 0.904461i \(-0.640274\pi\)
−0.426557 + 0.904461i \(0.640274\pi\)
\(272\) 112.425 348.903i 0.413328 1.28273i
\(273\) 101.921i 0.373336i
\(274\) −125.471 + 107.295i −0.457925 + 0.391588i
\(275\) 12.1007 12.1007i 0.0440026 0.0440026i
\(276\) 114.066 + 53.6048i 0.413281 + 0.194220i
\(277\) 147.801 147.801i 0.533576 0.533576i −0.388058 0.921635i \(-0.626854\pi\)
0.921635 + 0.388058i \(0.126854\pi\)
\(278\) 10.5873 135.582i 0.0380838 0.487703i
\(279\) 24.6020i 0.0881792i
\(280\) −50.2483 + 211.000i −0.179458 + 0.753570i
\(281\) −247.505 −0.880802 −0.440401 0.897801i \(-0.645164\pi\)
−0.440401 + 0.897801i \(0.645164\pi\)
\(282\) −15.6945 1.22555i −0.0556542 0.00434592i
\(283\) 315.317 + 315.317i 1.11419 + 1.11419i 0.992577 + 0.121617i \(0.0388079\pi\)
0.121617 + 0.992577i \(0.461192\pi\)
\(284\) 432.851 + 68.0156i 1.52412 + 0.239492i
\(285\) 133.000 + 133.000i 0.466667 + 0.466667i
\(286\) 69.0523 + 80.7501i 0.241442 + 0.282343i
\(287\) 212.692i 0.741088i
\(288\) −87.8729 210.327i −0.305114 0.730302i
\(289\) −235.894 −0.816243
\(290\) 271.697 + 317.724i 0.936888 + 1.09560i
\(291\) −147.919 + 147.919i −0.508314 + 0.508314i
\(292\) −236.419 37.1495i −0.809655 0.127224i
\(293\) −100.387 100.387i −0.342619 0.342619i 0.514732 0.857351i \(-0.327891\pi\)
−0.857351 + 0.514732i \(0.827891\pi\)
\(294\) 66.5279 + 5.19503i 0.226285 + 0.0176702i
\(295\) 510.363 1.73005
\(296\) −122.219 + 513.213i −0.412901 + 1.73383i
\(297\) −78.2963 −0.263624
\(298\) −383.478 29.9450i −1.28684 0.100487i
\(299\) −96.4029 + 330.937i −0.322418 + 1.10681i
\(300\) 15.5755 + 21.3829i 0.0519183 + 0.0712764i
\(301\) 236.787 + 236.787i 0.786666 + 0.786666i
\(302\) −129.670 151.637i −0.429371 0.502108i
\(303\) 217.439 0.717619
\(304\) 357.947 183.485i 1.17746 0.603568i
\(305\) −62.3083 −0.204290
\(306\) −248.065 + 212.130i −0.810671 + 0.693234i
\(307\) −208.170 208.170i −0.678079 0.678079i 0.281487 0.959565i \(-0.409173\pi\)
−0.959565 + 0.281487i \(0.909173\pi\)
\(308\) 56.8961 41.4436i 0.184728 0.134557i
\(309\) −59.9437 59.9437i −0.193992 0.193992i
\(310\) −37.6105 2.93693i −0.121324 0.00947396i
\(311\) 139.841i 0.449649i 0.974399 + 0.224825i \(0.0721809\pi\)
−0.974399 + 0.224825i \(0.927819\pi\)
\(312\) −139.885 + 86.0739i −0.448348 + 0.275878i
\(313\) −279.768 −0.893828 −0.446914 0.894577i \(-0.647477\pi\)
−0.446914 + 0.894577i \(0.647477\pi\)
\(314\) 12.4384 159.287i 0.0396128 0.507285i
\(315\) 136.564 136.564i 0.433536 0.433536i
\(316\) 39.0165 + 6.13082i 0.123470 + 0.0194013i
\(317\) 56.4863 + 56.4863i 0.178190 + 0.178190i 0.790566 0.612376i \(-0.209786\pi\)
−0.612376 + 0.790566i \(0.709786\pi\)
\(318\) 63.1457 + 73.8429i 0.198571 + 0.232210i
\(319\) 135.669i 0.425295i
\(320\) 332.029 109.228i 1.03759 0.341337i
\(321\) 134.970i 0.420466i
\(322\) 213.609 + 80.7417i 0.663381 + 0.250751i
\(323\) −407.268 407.268i −1.26089 1.26089i
\(324\) −21.0187 + 133.763i −0.0648724 + 0.412848i
\(325\) −51.1595 + 51.1595i −0.157414 + 0.157414i
\(326\) −251.879 19.6687i −0.772635 0.0603335i
\(327\) 273.951 0.837770
\(328\) −291.916 + 179.622i −0.889989 + 0.547629i
\(329\) −28.5233 −0.0866970
\(330\) 4.12944 52.8819i 0.0125134 0.160248i
\(331\) 146.057 146.057i 0.441259 0.441259i −0.451176 0.892435i \(-0.648995\pi\)
0.892435 + 0.451176i \(0.148995\pi\)
\(332\) 267.570 + 367.336i 0.805935 + 1.10643i
\(333\) 332.164 332.164i 0.997488 0.997488i
\(334\) −142.821 167.016i −0.427609 0.500047i
\(335\) −515.577 −1.53903
\(336\) 49.6362 + 96.8318i 0.147727 + 0.288190i
\(337\) 58.9622i 0.174962i −0.996166 0.0874810i \(-0.972118\pi\)
0.996166 0.0874810i \(-0.0278817\pi\)
\(338\) −72.2694 84.5122i −0.213815 0.250036i
\(339\) −86.9921 + 86.9921i −0.256614 + 0.256614i
\(340\) −294.681 404.555i −0.866710 1.18987i
\(341\) 8.65694 + 8.65694i 0.0253869 + 0.0253869i
\(342\) −357.067 27.8827i −1.04406 0.0815283i
\(343\) 364.161 1.06169
\(344\) 125.015 524.956i 0.363416 1.52604i
\(345\) 150.856 82.7933i 0.437263 0.239980i
\(346\) 414.525 + 32.3694i 1.19805 + 0.0935533i
\(347\) 291.060 291.060i 0.838790 0.838790i −0.149909 0.988700i \(-0.547898\pi\)
0.988700 + 0.149909i \(0.0478982\pi\)
\(348\) 207.182 + 32.5554i 0.595352 + 0.0935500i
\(349\) 145.858 + 145.858i 0.417931 + 0.417931i 0.884490 0.466559i \(-0.154507\pi\)
−0.466559 + 0.884490i \(0.654507\pi\)
\(350\) 31.1517 + 36.4289i 0.0890049 + 0.104083i
\(351\) 331.021 0.943081
\(352\) −104.930 43.0891i −0.298098 0.122412i
\(353\) 116.102 0.328900 0.164450 0.986385i \(-0.447415\pi\)
0.164450 + 0.986385i \(0.447415\pi\)
\(354\) 194.588 166.400i 0.549685 0.470055i
\(355\) 423.028 423.028i 1.19163 1.19163i
\(356\) −16.4481 + 104.676i −0.0462026 + 0.294033i
\(357\) 110.174 110.174i 0.308611 0.308611i
\(358\) −369.313 28.8389i −1.03160 0.0805556i
\(359\) 282.619 0.787241 0.393620 0.919273i \(-0.371222\pi\)
0.393620 + 0.919273i \(0.371222\pi\)
\(360\) −302.763 72.1011i −0.841007 0.200281i
\(361\) 271.003i 0.750700i
\(362\) −226.710 17.7033i −0.626270 0.0489041i
\(363\) 105.039 105.039i 0.289364 0.289364i
\(364\) −240.545 + 175.215i −0.660839 + 0.481361i
\(365\) −231.054 + 231.054i −0.633026 + 0.633026i
\(366\) −23.7566 + 20.3151i −0.0649086 + 0.0555057i
\(367\) 707.871i 1.92880i 0.264439 + 0.964402i \(0.414813\pi\)
−0.264439 + 0.964402i \(0.585187\pi\)
\(368\) −69.5797 361.362i −0.189075 0.981963i
\(369\) 305.191 0.827076
\(370\) 468.145 + 547.450i 1.26526 + 1.47960i
\(371\) 124.482 + 124.482i 0.335531 + 0.335531i
\(372\) −15.2975 + 11.1428i −0.0411222 + 0.0299538i
\(373\) 297.466 + 297.466i 0.797497 + 0.797497i 0.982700 0.185204i \(-0.0592945\pi\)
−0.185204 + 0.982700i \(0.559294\pi\)
\(374\) −12.6450 + 161.933i −0.0338102 + 0.432976i
\(375\) −150.926 −0.402469
\(376\) 24.0884 + 39.1478i 0.0640650 + 0.104116i
\(377\) 573.582i 1.52144i
\(378\) 17.0729 218.636i 0.0451663 0.578403i
\(379\) −133.617 133.617i −0.352551 0.352551i 0.508507 0.861058i \(-0.330198\pi\)
−0.861058 + 0.508507i \(0.830198\pi\)
\(380\) 85.2517 542.541i 0.224346 1.42774i
\(381\) −77.8963 77.8963i −0.204452 0.204452i
\(382\) −128.799 150.618i −0.337171 0.394289i
\(383\) 75.1085i 0.196106i 0.995181 + 0.0980529i \(0.0312614\pi\)
−0.995181 + 0.0980529i \(0.968739\pi\)
\(384\) 90.9813 149.901i 0.236931 0.390367i
\(385\) 96.1080i 0.249631i
\(386\) 256.883 219.670i 0.665499 0.569092i
\(387\) −339.764 + 339.764i −0.877943 + 0.877943i
\(388\) 603.400 + 94.8147i 1.55515 + 0.244368i
\(389\) −456.914 456.914i −1.17459 1.17459i −0.981104 0.193483i \(-0.938021\pi\)
−0.193483 0.981104i \(-0.561979\pi\)
\(390\) −17.4585 + 223.574i −0.0447653 + 0.573267i
\(391\) −461.945 + 253.527i −1.18145 + 0.648405i
\(392\) −102.109 165.945i −0.260483 0.423329i
\(393\) 93.7087i 0.238444i
\(394\) −13.6493 + 174.794i −0.0346429 + 0.443639i
\(395\) 38.1311 38.1311i 0.0965345 0.0965345i
\(396\) 59.4672 + 81.6399i 0.150170 + 0.206161i
\(397\) −98.4535 98.4535i −0.247994 0.247994i 0.572153 0.820147i \(-0.306108\pi\)
−0.820147 + 0.572153i \(0.806108\pi\)
\(398\) 519.614 444.341i 1.30556 1.11643i
\(399\) 170.969 0.428494
\(400\) 23.6899 73.5201i 0.0592249 0.183800i
\(401\) 262.459i 0.654510i 0.944936 + 0.327255i \(0.106124\pi\)
−0.944936 + 0.327255i \(0.893876\pi\)
\(402\) −196.576 + 168.099i −0.488995 + 0.418158i
\(403\) −36.5998 36.5998i −0.0908184 0.0908184i
\(404\) −373.805 513.181i −0.925261 1.27025i
\(405\) 130.727 + 130.727i 0.322783 + 0.322783i
\(406\) 378.845 + 29.5833i 0.933117 + 0.0728652i
\(407\) 233.763i 0.574356i
\(408\) −244.256 58.1681i −0.598667 0.142569i
\(409\) 394.126i 0.963632i 0.876272 + 0.481816i \(0.160023\pi\)
−0.876272 + 0.481816i \(0.839977\pi\)
\(410\) −36.4329 + 466.563i −0.0888608 + 1.13796i
\(411\) 79.9611 + 79.9611i 0.194553 + 0.194553i
\(412\) −38.4233 + 244.525i −0.0932603 + 0.593508i
\(413\) 328.031 328.031i 0.794265 0.794265i
\(414\) −115.856 + 306.506i −0.279845 + 0.740353i
\(415\) 620.498 1.49518
\(416\) 443.625 + 182.172i 1.06641 + 0.437914i
\(417\) −93.1513 −0.223384
\(418\) −135.456 + 115.833i −0.324057 + 0.277113i
\(419\) −269.657 + 269.657i −0.643573 + 0.643573i −0.951432 0.307859i \(-0.900387\pi\)
0.307859 + 0.951432i \(0.400387\pi\)
\(420\) 146.768 + 23.0623i 0.349448 + 0.0549102i
\(421\) 121.759 + 121.759i 0.289214 + 0.289214i 0.836769 0.547555i \(-0.184441\pi\)
−0.547555 + 0.836769i \(0.684441\pi\)
\(422\) 461.589 + 36.0445i 1.09381 + 0.0854136i
\(423\) 40.9280i 0.0967565i
\(424\) 65.7223 275.977i 0.155005 0.650889i
\(425\) −110.604 −0.260246
\(426\) 23.3651 299.215i 0.0548476 0.702382i
\(427\) −40.0481 + 40.0481i −0.0937895 + 0.0937895i
\(428\) 318.545 232.031i 0.744263 0.542127i
\(429\) 51.4608 51.4608i 0.119955 0.119955i
\(430\) −478.857 559.977i −1.11362 1.30227i
\(431\) 283.847i 0.658579i 0.944229 + 0.329289i \(0.106809\pi\)
−0.944229 + 0.329289i \(0.893191\pi\)
\(432\) −314.493 + 161.210i −0.727993 + 0.373171i
\(433\) 498.566i 1.15142i −0.817653 0.575711i \(-0.804725\pi\)
0.817653 0.575711i \(-0.195275\pi\)
\(434\) −26.0615 + 22.2861i −0.0600495 + 0.0513505i
\(435\) 202.481 202.481i 0.465473 0.465473i
\(436\) −470.957 646.557i −1.08018 1.48293i
\(437\) −555.138 161.713i −1.27034 0.370053i
\(438\) −12.7618 + 163.428i −0.0291365 + 0.373124i
\(439\) 302.918i 0.690019i −0.938599 0.345009i \(-0.887876\pi\)
0.938599 0.345009i \(-0.112124\pi\)
\(440\) −131.907 + 81.1649i −0.299788 + 0.184466i
\(441\) 173.491i 0.393404i
\(442\) 53.4606 684.621i 0.120952 1.54892i
\(443\) 408.336 408.336i 0.921751 0.921751i −0.0754026 0.997153i \(-0.524024\pi\)
0.997153 + 0.0754026i \(0.0240242\pi\)
\(444\) 356.983 + 56.0942i 0.804016 + 0.126338i
\(445\) 102.300 + 102.300i 0.229888 + 0.229888i
\(446\) 271.589 232.246i 0.608944 0.520730i
\(447\) 263.468i 0.589414i
\(448\) 143.203 283.614i 0.319651 0.633067i
\(449\) −305.430 −0.680245 −0.340123 0.940381i \(-0.610469\pi\)
−0.340123 + 0.940381i \(0.610469\pi\)
\(450\) −52.2717 + 44.6994i −0.116159 + 0.0993321i
\(451\) 107.390 107.390i 0.238116 0.238116i
\(452\) 354.863 + 55.7610i 0.785095 + 0.123365i
\(453\) −96.6357 + 96.6357i −0.213324 + 0.213324i
\(454\) −61.8508 + 792.066i −0.136235 + 1.74464i
\(455\) 406.326i 0.893024i
\(456\) −144.387 234.652i −0.316637 0.514589i
\(457\) −119.262 −0.260967 −0.130483 0.991451i \(-0.541653\pi\)
−0.130483 + 0.991451i \(0.541653\pi\)
\(458\) −349.802 27.3153i −0.763759 0.0596404i
\(459\) 357.827 + 357.827i 0.779579 + 0.779579i
\(460\) −454.743 213.705i −0.988572 0.464577i
\(461\) 542.761 + 542.761i 1.17736 + 1.17736i 0.980415 + 0.196941i \(0.0631007\pi\)
0.196941 + 0.980415i \(0.436899\pi\)
\(462\) −31.3352 36.6435i −0.0678251 0.0793150i
\(463\) −506.187 −1.09328 −0.546638 0.837369i \(-0.684093\pi\)
−0.546638 + 0.837369i \(0.684093\pi\)
\(464\) −279.339 544.943i −0.602024 1.17445i
\(465\) 25.8403i 0.0555705i
\(466\) −506.138 591.880i −1.08613 1.27013i
\(467\) 390.153 390.153i 0.835445 0.835445i −0.152810 0.988256i \(-0.548832\pi\)
0.988256 + 0.152810i \(0.0488324\pi\)
\(468\) −251.416 345.158i −0.537213 0.737516i
\(469\) −331.382 + 331.382i −0.706572 + 0.706572i
\(470\) 62.5690 + 4.88588i 0.133125 + 0.0103955i
\(471\) −109.438 −0.232353
\(472\) −727.246 173.189i −1.54078 0.366927i
\(473\) 239.112i 0.505522i
\(474\) 2.10609 26.9707i 0.00444323 0.0569003i
\(475\) −85.8185 85.8185i −0.180671 0.180671i
\(476\) −449.428 70.6204i −0.944176 0.148362i
\(477\) −178.619 + 178.619i −0.374463 + 0.374463i
\(478\) −149.929 + 128.210i −0.313659 + 0.268221i
\(479\) 448.578i 0.936490i −0.883599 0.468245i \(-0.844887\pi\)
0.883599 0.468245i \(-0.155113\pi\)
\(480\) −92.2957 220.913i −0.192283 0.460236i
\(481\) 988.303i 2.05468i
\(482\) 275.746 + 322.458i 0.572086 + 0.669000i
\(483\) 43.7466 150.176i 0.0905727 0.310923i
\(484\) −428.481 67.3289i −0.885290 0.139109i
\(485\) 589.707 589.707i 1.21589 1.21589i
\(486\) 488.839 + 38.1724i 1.00584 + 0.0785440i
\(487\) 126.573i 0.259903i −0.991520 0.129951i \(-0.958518\pi\)
0.991520 0.129951i \(-0.0414821\pi\)
\(488\) 88.7867 + 21.1440i 0.181940 + 0.0433279i
\(489\) 173.053i 0.353893i
\(490\) −265.226 20.7109i −0.541277 0.0422672i
\(491\) −25.7043 + 25.7043i −0.0523509 + 0.0523509i −0.732798 0.680447i \(-0.761786\pi\)
0.680447 + 0.732798i \(0.261786\pi\)
\(492\) 138.228 + 189.767i 0.280951 + 0.385705i
\(493\) −620.030 + 620.030i −1.25767 + 1.25767i
\(494\) 572.681 489.720i 1.15927 0.991337i
\(495\) 137.905 0.278596
\(496\) 52.5967 + 16.9479i 0.106042 + 0.0341692i
\(497\) 543.795i 1.09416i
\(498\) 236.580 202.308i 0.475060 0.406241i
\(499\) −196.030 196.030i −0.392845 0.392845i 0.482855 0.875700i \(-0.339600\pi\)
−0.875700 + 0.482855i \(0.839600\pi\)
\(500\) 259.461 + 356.203i 0.518923 + 0.712407i
\(501\) −106.437 + 106.437i −0.212449 + 0.212449i
\(502\) 370.389 + 28.9229i 0.737827 + 0.0576154i
\(503\) 492.988 0.980096 0.490048 0.871695i \(-0.336979\pi\)
0.490048 + 0.871695i \(0.336979\pi\)
\(504\) −240.940 + 148.256i −0.478056 + 0.294158i
\(505\) −866.858 −1.71655
\(506\) 67.0859 + 148.620i 0.132581 + 0.293716i
\(507\) −53.8584 + 53.8584i −0.106230 + 0.106230i
\(508\) −49.9307 + 317.758i −0.0982887 + 0.625509i
\(509\) −42.3253 42.3253i −0.0831539 0.0831539i 0.664306 0.747460i \(-0.268727\pi\)
−0.747460 + 0.664306i \(0.768727\pi\)
\(510\) −260.551 + 222.807i −0.510884 + 0.436876i
\(511\) 297.016i 0.581245i
\(512\) −510.193 + 42.9727i −0.996472 + 0.0839311i
\(513\) 555.279i 1.08242i
\(514\) 420.792 359.834i 0.818661 0.700067i
\(515\) 238.976 + 238.976i 0.464032 + 0.464032i
\(516\) −365.151 57.3777i −0.707658 0.111197i
\(517\) −14.4017 14.4017i −0.0278563 0.0278563i
\(518\) 652.764 + 50.9730i 1.26016 + 0.0984035i
\(519\) 284.799i 0.548746i
\(520\) 557.676 343.149i 1.07245 0.659903i
\(521\) 273.112 0.524208 0.262104 0.965040i \(-0.415584\pi\)
0.262104 + 0.965040i \(0.415584\pi\)
\(522\) −42.4489 + 543.604i −0.0813197 + 1.04139i
\(523\) −598.146 598.146i −1.14368 1.14368i −0.987771 0.155911i \(-0.950169\pi\)
−0.155911 0.987771i \(-0.549831\pi\)
\(524\) −221.164 + 161.098i −0.422068 + 0.307438i
\(525\) 23.2156 23.2156i 0.0442202 0.0442202i
\(526\) 208.161 178.006i 0.395743 0.338414i
\(527\) 79.1272i 0.150146i
\(528\) −23.8295 + 73.9532i −0.0451316 + 0.140063i
\(529\) −284.091 + 446.244i −0.537034 + 0.843561i
\(530\) −251.742 294.388i −0.474985 0.555449i
\(531\) 470.691 + 470.691i 0.886424 + 0.886424i
\(532\) −293.919 403.508i −0.552479 0.758474i
\(533\) −454.025 + 454.025i −0.851830 + 0.851830i
\(534\) 72.3586 + 5.65034i 0.135503 + 0.0105812i
\(535\) 538.081i 1.00576i
\(536\) 734.675 + 174.958i 1.37066 + 0.326415i
\(537\) 253.736i 0.472507i
\(538\) 760.111 + 59.3555i 1.41285 + 0.110326i
\(539\) 61.0479 + 61.0479i 0.113261 + 0.113261i
\(540\) −74.9023 + 476.678i −0.138708 + 0.882737i
\(541\) 236.983 + 236.983i 0.438046 + 0.438046i 0.891354 0.453308i \(-0.149756\pi\)
−0.453308 + 0.891354i \(0.649756\pi\)
\(542\) 351.419 300.511i 0.648374 0.554448i
\(543\) 155.761i 0.286852i
\(544\) 282.624 + 676.473i 0.519530 + 1.24352i
\(545\) −1092.15 −2.00395
\(546\) 132.479 + 154.922i 0.242636 + 0.283739i
\(547\) 52.8163 + 52.8163i 0.0965563 + 0.0965563i 0.753735 0.657179i \(-0.228250\pi\)
−0.657179 + 0.753735i \(0.728250\pi\)
\(548\) 51.2542 326.181i 0.0935296 0.595222i
\(549\) −57.4649 57.4649i −0.104672 0.104672i
\(550\) −2.66453 + 34.1221i −0.00484460 + 0.0620402i
\(551\) −962.168 −1.74622
\(552\) −243.059 + 66.7847i −0.440324 + 0.120987i
\(553\) 49.0169i 0.0886381i
\(554\) −32.5451 + 416.775i −0.0587456 + 0.752301i
\(555\) 348.882 348.882i 0.628616 0.628616i
\(556\) 160.139 + 219.848i 0.288020 + 0.395410i
\(557\) 251.390 251.390i 0.451328 0.451328i −0.444467 0.895795i \(-0.646607\pi\)
0.895795 + 0.444467i \(0.146607\pi\)
\(558\) −31.9783 37.3955i −0.0573087 0.0670171i
\(559\) 1010.92i 1.80844i
\(560\) −197.884 386.037i −0.353364 0.689353i
\(561\) 111.256 0.198317
\(562\) 376.213 321.713i 0.669418 0.572444i
\(563\) −33.8785 + 33.8785i −0.0601750 + 0.0601750i −0.736554 0.676379i \(-0.763548\pi\)
0.676379 + 0.736554i \(0.263548\pi\)
\(564\) 25.4489 18.5372i 0.0451222 0.0328674i
\(565\) 346.810 346.810i 0.613823 0.613823i
\(566\) −889.144 69.4314i −1.57093 0.122670i
\(567\) 168.048 0.296380
\(568\) −746.350 + 459.245i −1.31400 + 0.808530i
\(569\) 737.778 1.29662 0.648311 0.761376i \(-0.275476\pi\)
0.648311 + 0.761376i \(0.275476\pi\)
\(570\) −375.039 29.2861i −0.657964 0.0513790i
\(571\) −6.63781 6.63781i −0.0116249 0.0116249i 0.701270 0.712895i \(-0.252617\pi\)
−0.712895 + 0.701270i \(0.752617\pi\)
\(572\) −209.922 32.9858i −0.366996 0.0576676i
\(573\) −95.9868 + 95.9868i −0.167516 + 0.167516i
\(574\) 276.462 + 323.296i 0.481642 + 0.563234i
\(575\) −97.3400 + 53.4225i −0.169287 + 0.0929087i
\(576\) 406.957 + 205.482i 0.706522 + 0.356740i
\(577\) 1032.74 1.78985 0.894924 0.446218i \(-0.147229\pi\)
0.894924 + 0.446218i \(0.147229\pi\)
\(578\) 358.564 306.621i 0.620353 0.530486i
\(579\) −163.707 163.707i −0.282742 0.282742i
\(580\) −825.971 129.788i −1.42409 0.223773i
\(581\) 398.820 398.820i 0.686437 0.686437i
\(582\) 32.5712 417.109i 0.0559643 0.716682i
\(583\) 125.705i 0.215617i
\(584\) 407.650 250.835i 0.698031 0.429513i
\(585\) −583.035 −0.996642
\(586\) 283.076 + 22.1048i 0.483065 + 0.0377216i
\(587\) −78.3187 + 78.3187i −0.133422 + 0.133422i −0.770664 0.637242i \(-0.780075\pi\)
0.637242 + 0.770664i \(0.280075\pi\)
\(588\) −107.876 + 78.5780i −0.183463 + 0.133636i
\(589\) 61.3951 61.3951i 0.104236 0.104236i
\(590\) −775.762 + 663.382i −1.31485 + 1.12438i
\(591\) 120.092 0.203201
\(592\) −481.311 938.956i −0.813026 1.58607i
\(593\) −476.153 −0.802957 −0.401478 0.915868i \(-0.631504\pi\)
−0.401478 + 0.915868i \(0.631504\pi\)
\(594\) 119.012 101.771i 0.200357 0.171332i
\(595\) −439.229 + 439.229i −0.738200 + 0.738200i
\(596\) 621.817 452.936i 1.04332 0.759960i
\(597\) −331.142 331.142i −0.554677 0.554677i
\(598\) −283.626 628.338i −0.474291 1.05073i
\(599\) 391.546i 0.653666i 0.945082 + 0.326833i \(0.105982\pi\)
−0.945082 + 0.326833i \(0.894018\pi\)
\(600\) −51.4691 12.2571i −0.0857818 0.0204284i
\(601\) 433.682i 0.721600i 0.932643 + 0.360800i \(0.117496\pi\)
−0.932643 + 0.360800i \(0.882504\pi\)
\(602\) −667.701 52.1394i −1.10914 0.0866103i
\(603\) −475.499 475.499i −0.788556 0.788556i
\(604\) 394.202 + 61.9425i 0.652652 + 0.102554i
\(605\) −418.757 + 418.757i −0.692160 + 0.692160i
\(606\) −330.511 + 282.632i −0.545397 + 0.466389i
\(607\) 742.545 1.22330 0.611652 0.791127i \(-0.290505\pi\)
0.611652 + 0.791127i \(0.290505\pi\)
\(608\) −305.589 + 744.168i −0.502613 + 1.22396i
\(609\) 260.286i 0.427398i
\(610\) 94.7098 80.9898i 0.155262 0.132770i
\(611\) 60.8876 + 60.8876i 0.0996523 + 0.0996523i
\(612\) 101.333 644.882i 0.165577 1.05373i
\(613\) 93.7355 + 93.7355i 0.152913 + 0.152913i 0.779418 0.626505i \(-0.215515\pi\)
−0.626505 + 0.779418i \(0.715515\pi\)
\(614\) 587.007 + 45.8382i 0.956038 + 0.0746550i
\(615\) 320.552 0.521223
\(616\) −32.6138 + 136.950i −0.0529445 + 0.222321i
\(617\) 942.229 1.52711 0.763557 0.645741i \(-0.223451\pi\)
0.763557 + 0.645741i \(0.223451\pi\)
\(618\) 169.032 + 13.1993i 0.273514 + 0.0213582i
\(619\) 631.547 + 631.547i 1.02027 + 1.02027i 0.999790 + 0.0204802i \(0.00651951\pi\)
0.0204802 + 0.999790i \(0.493480\pi\)
\(620\) 60.9862 44.4228i 0.0983648 0.0716497i
\(621\) 487.746 + 142.082i 0.785420 + 0.228795i
\(622\) −181.769 212.561i −0.292232 0.341738i
\(623\) 131.505 0.211084
\(624\) 100.746 312.659i 0.161453 0.501057i
\(625\) 722.385 1.15582
\(626\) 425.253 363.649i 0.679318 0.580909i
\(627\) 86.3241 + 86.3241i 0.137678 + 0.137678i
\(628\) 188.139 + 258.288i 0.299584 + 0.411286i
\(629\) −1068.33 + 1068.33i −1.69846 + 1.69846i
\(630\) −30.0708 + 385.089i −0.0477314 + 0.611252i
\(631\) −24.5704 −0.0389388 −0.0194694 0.999810i \(-0.506198\pi\)
−0.0194694 + 0.999810i \(0.506198\pi\)
\(632\) −67.2748 + 41.3956i −0.106448 + 0.0654994i
\(633\) 317.134i 0.501002i
\(634\) −159.282 12.4380i −0.251234 0.0196184i
\(635\) 310.548 + 310.548i 0.489051 + 0.489051i
\(636\) −191.965 30.1643i −0.301832 0.0474281i
\(637\) −258.098 258.098i −0.405178 0.405178i
\(638\) 176.346 + 206.220i 0.276404 + 0.323228i
\(639\) 780.290 1.22111
\(640\) −362.714 + 597.608i −0.566740 + 0.933762i
\(641\) 1087.77i 1.69700i −0.529198 0.848498i \(-0.677507\pi\)
0.529198 0.848498i \(-0.322493\pi\)
\(642\) −175.437 205.156i −0.273266 0.319558i
\(643\) 152.471 152.471i 0.237125 0.237125i −0.578534 0.815658i \(-0.696375\pi\)
0.815658 + 0.578534i \(0.196375\pi\)
\(644\) −429.639 + 154.925i −0.667142 + 0.240566i
\(645\) −356.865 + 356.865i −0.553279 + 0.553279i
\(646\) 1148.43 + 89.6787i 1.77776 + 0.138822i
\(647\) 39.7499i 0.0614372i 0.999528 + 0.0307186i \(0.00977957\pi\)
−0.999528 + 0.0307186i \(0.990220\pi\)
\(648\) −141.919 230.642i −0.219011 0.355930i
\(649\) 331.253 0.510405
\(650\) 11.2651 144.262i 0.0173309 0.221941i
\(651\) 16.6086 + 16.6086i 0.0255125 + 0.0255125i
\(652\) 408.427 297.502i 0.626422 0.456291i
\(653\) 395.876 + 395.876i 0.606242 + 0.606242i 0.941962 0.335720i \(-0.108980\pi\)
−0.335720 + 0.941962i \(0.608980\pi\)
\(654\) −416.411 + 356.088i −0.636713 + 0.544477i
\(655\) 373.587i 0.570361i
\(656\) 210.241 652.469i 0.320490 0.994618i
\(657\) −426.187 −0.648687
\(658\) 43.3560 37.0753i 0.0658906 0.0563454i
\(659\) −405.743 + 405.743i −0.615695 + 0.615695i −0.944424 0.328729i \(-0.893380\pi\)
0.328729 + 0.944424i \(0.393380\pi\)
\(660\) 62.4603 + 85.7490i 0.0946368 + 0.129923i
\(661\) 505.963 + 505.963i 0.765450 + 0.765450i 0.977302 0.211852i \(-0.0679494\pi\)
−0.211852 + 0.977302i \(0.567949\pi\)
\(662\) −32.1611 + 411.857i −0.0485817 + 0.622140i
\(663\) −470.368 −0.709455
\(664\) −884.184 210.563i −1.33160 0.317113i
\(665\) −681.600 −1.02496
\(666\) −73.1410 + 936.649i −0.109821 + 1.40638i
\(667\) −246.194 + 845.148i −0.369106 + 1.26709i
\(668\) 434.182 + 68.2248i 0.649973 + 0.102133i
\(669\) −173.080 173.080i −0.258714 0.258714i
\(670\) 783.686 670.159i 1.16968 1.00024i
\(671\) −40.4414 −0.0602703
\(672\) −201.312 82.6678i −0.299572 0.123018i
\(673\) 826.926 1.22872 0.614358 0.789027i \(-0.289415\pi\)
0.614358 + 0.789027i \(0.289415\pi\)
\(674\) 76.6404 + 89.6236i 0.113710 + 0.132973i
\(675\) 75.4004 + 75.4004i 0.111704 + 0.111704i
\(676\) 219.702 + 34.5226i 0.325003 + 0.0510690i
\(677\) 359.452 + 359.452i 0.530948 + 0.530948i 0.920854 0.389906i \(-0.127493\pi\)
−0.389906 + 0.920854i \(0.627493\pi\)
\(678\) 19.1553 245.304i 0.0282526 0.361805i
\(679\) 758.058i 1.11643i
\(680\) 973.772 + 231.898i 1.43202 + 0.341026i
\(681\) 544.189 0.799102
\(682\) −24.4112 1.90622i −0.0357935 0.00279504i
\(683\) −728.526 + 728.526i −1.06666 + 1.06666i −0.0690415 + 0.997614i \(0.521994\pi\)
−0.997614 + 0.0690415i \(0.978006\pi\)
\(684\) 578.992 421.743i 0.846480 0.616583i
\(685\) −318.779 318.779i −0.465371 0.465371i
\(686\) −553.531 + 473.344i −0.806897 + 0.690006i
\(687\) 240.331i 0.349827i
\(688\) 492.325 + 960.441i 0.715589 + 1.39599i
\(689\) 531.454i 0.771341i
\(690\) −121.687 + 321.933i −0.176358 + 0.466570i
\(691\) 658.838 + 658.838i 0.953456 + 0.953456i 0.998964 0.0455076i \(-0.0144905\pi\)
−0.0455076 + 0.998964i \(0.514491\pi\)
\(692\) −672.161 + 489.608i −0.971331 + 0.707525i
\(693\) 88.6372 88.6372i 0.127904 0.127904i
\(694\) −64.0902 + 820.744i −0.0923490 + 1.18263i
\(695\) 371.364 0.534337
\(696\) −357.238 + 219.816i −0.513272 + 0.315827i
\(697\) −981.582 −1.40830
\(698\) −411.296 32.1173i −0.589250 0.0460133i
\(699\) −377.196 + 377.196i −0.539622 + 0.539622i
\(700\) −94.7024 14.8810i −0.135289 0.0212585i
\(701\) −377.367 + 377.367i −0.538327 + 0.538327i −0.923037 0.384711i \(-0.874301\pi\)
0.384711 + 0.923037i \(0.374301\pi\)
\(702\) −503.159 + 430.269i −0.716751 + 0.612919i
\(703\) −1657.85 −2.35825
\(704\) 215.504 70.8947i 0.306114 0.100703i
\(705\) 42.9880i 0.0609758i
\(706\) −176.477 + 150.912i −0.249967 + 0.213756i
\(707\) −557.165 + 557.165i −0.788070 + 0.788070i
\(708\) −79.4880 + 505.861i −0.112271 + 0.714493i
\(709\) −8.38287 8.38287i −0.0118235 0.0118235i 0.701170 0.712994i \(-0.252661\pi\)
−0.712994 + 0.701170i \(0.752661\pi\)
\(710\) −93.1491 + 1192.87i −0.131196 + 1.68010i
\(711\) 70.3341 0.0989228
\(712\) −111.059 180.489i −0.155981 0.253495i
\(713\) −38.2188 69.6377i −0.0536028 0.0976685i
\(714\) −24.2599 + 310.674i −0.0339774 + 0.435117i
\(715\) −205.158 + 205.158i −0.286934 + 0.286934i
\(716\) 598.848 436.206i 0.836380 0.609226i
\(717\) 95.5475 + 95.5475i 0.133260 + 0.133260i
\(718\) −429.587 + 367.355i −0.598310 + 0.511637i
\(719\) −493.164 −0.685902 −0.342951 0.939353i \(-0.611426\pi\)
−0.342951 + 0.939353i \(0.611426\pi\)
\(720\) 553.924 283.943i 0.769338 0.394365i
\(721\) 307.200 0.426075
\(722\) 352.256 + 411.929i 0.487889 + 0.570539i
\(723\) 205.498 205.498i 0.284229 0.284229i
\(724\) 367.614 267.773i 0.507754 0.369852i
\(725\) −130.651 + 130.651i −0.180208 + 0.180208i
\(726\) −23.1291 + 296.193i −0.0318583 + 0.407980i
\(727\) 1075.26 1.47904 0.739521 0.673133i \(-0.235052\pi\)
0.739521 + 0.673133i \(0.235052\pi\)
\(728\) 137.885 578.997i 0.189402 0.795326i
\(729\) 31.1973i 0.0427946i
\(730\) 50.8772 651.537i 0.0696948 0.892516i
\(731\) 1092.78 1092.78i 1.49491 1.49491i
\(732\) 9.70439 61.7587i 0.0132574 0.0843697i
\(733\) −228.200 + 228.200i −0.311323 + 0.311323i −0.845422 0.534099i \(-0.820651\pi\)
0.534099 + 0.845422i \(0.320651\pi\)
\(734\) −920.108 1075.98i −1.25355 1.46591i
\(735\) 182.223i 0.247923i
\(736\) 575.470 + 458.836i 0.781888 + 0.623419i
\(737\) −334.636 −0.454052
\(738\) −463.896 + 396.694i −0.628586 + 0.537526i
\(739\) 227.365 + 227.365i 0.307666 + 0.307666i 0.844003 0.536338i \(-0.180193\pi\)
−0.536338 + 0.844003i \(0.680193\pi\)
\(740\) −1423.18 223.630i −1.92321 0.302202i
\(741\) −364.961 364.961i −0.492525 0.492525i
\(742\) −351.020 27.4104i −0.473073 0.0369413i
\(743\) −214.590 −0.288816 −0.144408 0.989518i \(-0.546128\pi\)
−0.144408 + 0.989518i \(0.546128\pi\)
\(744\) 8.76877 36.8213i 0.0117860 0.0494910i
\(745\) 1050.36i 1.40988i
\(746\) −838.808 65.5008i −1.12441 0.0878027i
\(747\) 572.265 + 572.265i 0.766084 + 0.766084i
\(748\) −191.264 262.578i −0.255700 0.351040i
\(749\) −345.847 345.847i −0.461745 0.461745i
\(750\) 229.410 196.177i 0.305880 0.261569i
\(751\) 584.412i 0.778178i −0.921200 0.389089i \(-0.872790\pi\)
0.921200 0.389089i \(-0.127210\pi\)
\(752\) −87.5001 28.1946i −0.116357 0.0374929i
\(753\) 254.476i 0.337949i
\(754\) −745.556 871.856i −0.988801 1.15631i
\(755\) 385.256 385.256i 0.510273 0.510273i
\(756\) 258.238 + 354.523i 0.341584 + 0.468946i
\(757\) −523.764 523.764i −0.691895 0.691895i 0.270754 0.962649i \(-0.412727\pi\)
−0.962649 + 0.270754i \(0.912727\pi\)
\(758\) 376.778 + 29.4219i 0.497069 + 0.0388151i
\(759\) 97.9134 53.7372i 0.129003 0.0708000i
\(760\) 575.623 + 935.485i 0.757399 + 1.23090i
\(761\) 513.357i 0.674583i 0.941400 + 0.337291i \(0.109511\pi\)
−0.941400 + 0.337291i \(0.890489\pi\)
\(762\) 219.655 + 17.1524i 0.288261 + 0.0225097i
\(763\) −701.973 + 701.973i −0.920017 + 0.920017i
\(764\) 391.555 + 61.5266i 0.512506 + 0.0805321i
\(765\) −630.248 630.248i −0.823854 0.823854i
\(766\) −97.6278 114.166i −0.127451 0.149042i
\(767\) −1400.47 −1.82591
\(768\) 56.5516 + 346.112i 0.0736348 + 0.450667i
\(769\) 510.984i 0.664479i −0.943195 0.332240i \(-0.892196\pi\)
0.943195 0.332240i \(-0.107804\pi\)
\(770\) 124.923 + 146.086i 0.162238 + 0.189722i
\(771\) −268.164 268.164i −0.347814 0.347814i
\(772\) −104.935 + 667.804i −0.135926 + 0.865031i
\(773\) −389.388 389.388i −0.503735 0.503735i 0.408861 0.912597i \(-0.365926\pi\)
−0.912597 + 0.408861i \(0.865926\pi\)
\(774\) 74.8146 958.081i 0.0966597 1.23783i
\(775\) 16.6735i 0.0215142i
\(776\) −1040.42 + 640.194i −1.34075 + 0.824992i
\(777\) 448.481i 0.577196i
\(778\) 1288.43 + 100.611i 1.65608 + 0.129320i
\(779\) −761.615 761.615i −0.977682 0.977682i
\(780\) −264.070 362.530i −0.338551 0.464782i
\(781\) 274.568 274.568i 0.351559 0.351559i
\(782\) 372.626 985.813i 0.476504 1.26063i
\(783\) 845.363 1.07965
\(784\) 370.907 + 119.515i 0.473096 + 0.152443i
\(785\) 436.296 0.555791
\(786\) 121.805 + 142.439i 0.154968 + 0.181220i
\(787\) 163.512 163.512i 0.207767 0.207767i −0.595551 0.803318i \(-0.703066\pi\)
0.803318 + 0.595551i \(0.203066\pi\)
\(788\) −206.454 283.432i −0.261997 0.359685i
\(789\) −132.658 132.658i −0.168134 0.168134i
\(790\) −8.39631 + 107.524i −0.0106282 + 0.136106i
\(791\) 445.818i 0.563613i
\(792\) −196.509 46.7974i −0.248117 0.0590876i
\(793\) 170.978 0.215609
\(794\) 277.623 + 21.6790i 0.349652 + 0.0273036i
\(795\) −187.609 + 187.609i −0.235986 + 0.235986i
\(796\) −212.259 + 1350.81i −0.266657 + 1.69700i
\(797\) 369.221 369.221i 0.463264 0.463264i −0.436460 0.899724i \(-0.643768\pi\)
0.899724 + 0.436460i \(0.143768\pi\)
\(798\) −259.877 + 222.230i −0.325660 + 0.278484i
\(799\) 131.636i 0.164751i
\(800\) 59.5539 + 142.545i 0.0744424 + 0.178181i
\(801\) 188.696i 0.235576i
\(802\) −341.150 398.942i −0.425374 0.497434i
\(803\) −149.966 + 149.966i −0.186758 + 0.186758i
\(804\) 80.3000 511.028i 0.0998756 0.635608i
\(805\) −174.404 + 598.703i −0.216651 + 0.743731i
\(806\) 103.206 + 8.05912i 0.128047 + 0.00999891i
\(807\) 522.234i 0.647130i
\(808\) 1235.24 + 294.164i 1.52876 + 0.364065i
\(809\) 1152.53i 1.42463i −0.701860 0.712315i \(-0.747647\pi\)
0.701860 0.712315i \(-0.252353\pi\)
\(810\) −368.630 28.7856i −0.455099 0.0355378i
\(811\) 26.1148 26.1148i 0.0322007 0.0322007i −0.690823 0.723024i \(-0.742752\pi\)
0.723024 + 0.690823i \(0.242752\pi\)
\(812\) −614.305 + 447.465i −0.756534 + 0.551065i
\(813\) −223.954 223.954i −0.275466 0.275466i
\(814\) 303.850 + 355.324i 0.373281 + 0.436516i
\(815\) 689.909i 0.846514i
\(816\) 446.882 229.073i 0.547650 0.280727i
\(817\) 1695.79 2.07563
\(818\) −512.294 599.078i −0.626276 0.732370i
\(819\) −374.741 + 374.741i −0.457559 + 0.457559i
\(820\) −551.071 756.541i −0.672038 0.922611i
\(821\) −835.893 + 835.893i −1.01814 + 1.01814i −0.0183073 + 0.999832i \(0.505828\pi\)
−0.999832 + 0.0183073i \(0.994172\pi\)
\(822\) −225.478 17.6071i −0.274304 0.0214198i
\(823\) 1023.01i 1.24303i −0.783403 0.621515i \(-0.786518\pi\)
0.783403 0.621515i \(-0.213482\pi\)
\(824\) −259.436 421.627i −0.314849 0.511683i
\(825\) 23.4436 0.0284165
\(826\) −72.2311 + 924.997i −0.0874469 + 1.11985i
\(827\) −199.641 199.641i −0.241403 0.241403i 0.576027 0.817431i \(-0.304602\pi\)
−0.817431 + 0.576027i \(0.804602\pi\)
\(828\) −222.301 616.488i −0.268479 0.744550i
\(829\) 680.945 + 680.945i 0.821405 + 0.821405i 0.986310 0.164904i \(-0.0527316\pi\)
−0.164904 + 0.986310i \(0.552732\pi\)
\(830\) −943.170 + 806.538i −1.13635 + 0.971733i
\(831\) 286.345 0.344579
\(832\) −911.110 + 299.729i −1.09508 + 0.360251i
\(833\) 557.997i 0.669864i
\(834\) 141.592 121.080i 0.169774 0.145180i
\(835\) 424.329 424.329i 0.508179 0.508179i
\(836\) 55.3328 352.138i 0.0661876 0.421217i
\(837\) −53.9419 + 53.9419i −0.0644467 + 0.0644467i
\(838\) 59.3773 760.390i 0.0708560 0.907387i
\(839\) −1233.69 −1.47043 −0.735216 0.677833i \(-0.762919\pi\)
−0.735216 + 0.677833i \(0.762919\pi\)
\(840\) −253.067 + 155.718i −0.301270 + 0.185378i
\(841\) 623.815i 0.741754i
\(842\) −343.342 26.8108i −0.407769 0.0318419i
\(843\) −239.755 239.755i −0.284407 0.284407i
\(844\) −748.476 + 545.196i −0.886820 + 0.645967i
\(845\) 214.716 214.716i 0.254102 0.254102i
\(846\) 53.1992 + 62.2113i 0.0628832 + 0.0735358i
\(847\) 538.305i 0.635543i
\(848\) 258.822 + 504.918i 0.305215 + 0.595422i
\(849\) 610.886i 0.719536i
\(850\) 168.121 143.766i 0.197789 0.169137i
\(851\) −424.201 + 1456.22i −0.498474 + 1.71119i
\(852\) 353.411 + 485.182i 0.414802 + 0.569463i
\(853\) 852.790 852.790i 0.999754 0.999754i −0.000246301 1.00000i \(-0.500078\pi\)
1.00000 0.000246301i \(7.84002e-5\pi\)
\(854\) 8.81842 112.929i 0.0103260 0.132236i
\(855\) 978.025i 1.14389i
\(856\) −182.595 + 766.743i −0.213312 + 0.895727i
\(857\) 963.509i 1.12428i −0.827042 0.562141i \(-0.809978\pi\)
0.827042 0.562141i \(-0.190022\pi\)
\(858\) −11.3315 + 145.111i −0.0132068 + 0.169128i
\(859\) −143.123 + 143.123i −0.166616 + 0.166616i −0.785490 0.618874i \(-0.787589\pi\)
0.618874 + 0.785490i \(0.287589\pi\)
\(860\) 1455.74 + 228.747i 1.69272 + 0.265985i
\(861\) 206.032 206.032i 0.239294 0.239294i
\(862\) −368.952 431.454i −0.428018 0.500526i
\(863\) −353.986 −0.410181 −0.205090 0.978743i \(-0.565749\pi\)
−0.205090 + 0.978743i \(0.565749\pi\)
\(864\) 268.491 653.828i 0.310753 0.756745i
\(865\) 1135.40i 1.31261i
\(866\) 648.047 + 757.829i 0.748323 + 0.875092i
\(867\) −228.508 228.508i −0.263561 0.263561i
\(868\) 10.6459 67.7507i 0.0122649 0.0780538i
\(869\) 24.7491 24.7491i 0.0284800 0.0284800i
\(870\) −44.5854 + 570.964i −0.0512476 + 0.656281i
\(871\) 1414.78 1.62431
\(872\) 1556.27 + 370.618i 1.78472 + 0.425020i
\(873\) 1087.73 1.24597
\(874\) 1054.02 475.774i 1.20597 0.544364i
\(875\) 386.733 386.733i 0.441981 0.441981i
\(876\) −193.030 265.002i −0.220354 0.302514i
\(877\) −791.110 791.110i −0.902064 0.902064i 0.0935505 0.995615i \(-0.470178\pi\)
−0.995615 + 0.0935505i \(0.970178\pi\)
\(878\) 393.740 + 460.442i 0.448451 + 0.524421i
\(879\) 194.487i 0.221260i
\(880\) 95.0006 294.828i 0.107955 0.335032i
\(881\) 495.654i 0.562604i 0.959619 + 0.281302i \(0.0907663\pi\)
−0.959619 + 0.281302i \(0.909234\pi\)
\(882\) −225.508 263.710i −0.255678 0.298990i
\(883\) 510.320 + 510.320i 0.577939 + 0.577939i 0.934335 0.356396i \(-0.115995\pi\)
−0.356396 + 0.934335i \(0.615995\pi\)
\(884\) 808.625 + 1110.13i 0.914734 + 1.25580i
\(885\) 494.382 + 494.382i 0.558623 + 0.558623i
\(886\) −89.9137 + 1151.44i −0.101483 + 1.29960i
\(887\) 160.804i 0.181290i −0.995883 0.0906448i \(-0.971107\pi\)
0.995883 0.0906448i \(-0.0288928\pi\)
\(888\) −615.533 + 378.751i −0.693168 + 0.426521i
\(889\) 399.203 0.449048
\(890\) −288.471 22.5261i −0.324125 0.0253102i
\(891\) 84.8489 + 84.8489i 0.0952288 + 0.0952288i
\(892\) −110.942 + 706.036i −0.124375 + 0.791520i
\(893\) −102.137 + 102.137i −0.114375 + 0.114375i
\(894\) −342.462 400.477i −0.383067 0.447961i
\(895\) 1011.57i 1.13024i
\(896\) 150.976 + 617.238i 0.168500 + 0.688882i
\(897\) −413.958 + 227.190i −0.461492 + 0.253278i
\(898\) 464.260 397.005i 0.516993 0.442100i
\(899\) −93.4687 93.4687i −0.103970 0.103970i
\(900\) 21.3526 135.888i 0.0237252 0.150987i
\(901\) 574.490 574.490i 0.637614 0.637614i
\(902\) −23.6469 + 302.824i −0.0262161 + 0.335725i
\(903\) 458.744i 0.508022i
\(904\) −611.878 + 376.501i −0.676856 + 0.416484i
\(905\) 620.969i 0.686153i
\(906\) 21.2788 272.498i 0.0234865 0.300770i
\(907\) −557.020 557.020i −0.614135 0.614135i 0.329886 0.944021i \(-0.392990\pi\)
−0.944021 + 0.329886i \(0.892990\pi\)
\(908\) −935.532 1284.35i −1.03032 1.41448i
\(909\) −799.474 799.474i −0.879510 0.879510i
\(910\) −528.152 617.623i −0.580387 0.678707i
\(911\) 1089.62i 1.19607i −0.801471 0.598034i \(-0.795949\pi\)
0.801471 0.598034i \(-0.204051\pi\)
\(912\) 524.477 + 168.999i 0.575085 + 0.185306i
\(913\) 402.736 0.441113
\(914\) 181.280 155.019i 0.198337 0.169605i
\(915\) −60.3572 60.3572i −0.0659641 0.0659641i
\(916\) 567.211 413.161i 0.619225 0.451049i
\(917\) 240.120 + 240.120i 0.261853 + 0.261853i
\(918\) −1009.01 78.7919i −1.09914 0.0858300i
\(919\) 506.594 0.551245 0.275622 0.961266i \(-0.411116\pi\)
0.275622 + 0.961266i \(0.411116\pi\)
\(920\) 968.998 266.249i 1.05326 0.289401i
\(921\) 403.303i 0.437897i
\(922\) −1530.50 119.514i −1.65998 0.129624i
\(923\) −1160.82 + 1160.82i −1.25766 + 1.25766i
\(924\) 95.2602 + 14.9686i 0.103095 + 0.0161998i
\(925\) −225.117 + 225.117i −0.243369 + 0.243369i
\(926\) 769.413 657.953i 0.830900 0.710533i
\(927\) 440.800i 0.475512i
\(928\) 1132.93 + 465.232i 1.22083 + 0.501327i
\(929\) −478.159 −0.514703 −0.257351 0.966318i \(-0.582850\pi\)
−0.257351 + 0.966318i \(0.582850\pi\)
\(930\) −33.5878 39.2777i −0.0361159 0.0422341i
\(931\) 432.953 432.953i 0.465040 0.465040i
\(932\) 1538.68 + 241.779i 1.65094 + 0.259419i
\(933\) −135.462 + 135.462i −0.145190 + 0.145190i
\(934\) −85.9100 + 1100.17i −0.0919807 + 1.17791i
\(935\) −443.542 −0.474377
\(936\) 830.801 + 197.850i 0.887607 + 0.211378i
\(937\) 539.497 0.575771 0.287885 0.957665i \(-0.407048\pi\)
0.287885 + 0.957665i \(0.407048\pi\)
\(938\) 72.9690 934.446i 0.0777921 0.996211i
\(939\) −271.007 271.007i −0.288613 0.288613i
\(940\) −101.457 + 73.9020i −0.107933 + 0.0786191i
\(941\) 145.998 145.998i 0.155151 0.155151i −0.625263 0.780414i \(-0.715008\pi\)
0.780414 + 0.625263i \(0.215008\pi\)
\(942\) 166.348 142.251i 0.176591 0.151009i
\(943\) −863.864 + 474.109i −0.916081 + 0.502767i
\(944\) 1330.54 682.040i 1.40947 0.722500i
\(945\) 598.855 0.633709
\(946\) −310.803 363.455i −0.328545 0.384202i
\(947\) −999.395 999.395i −1.05533 1.05533i −0.998377 0.0569505i \(-0.981862\pi\)
−0.0569505 0.998377i \(-0.518138\pi\)
\(948\) 31.8559 + 43.7336i 0.0336033 + 0.0461325i
\(949\) 634.029 634.029i 0.668102 0.668102i
\(950\) 241.995 + 18.8969i 0.254731 + 0.0198915i
\(951\) 109.435i 0.115074i
\(952\) 774.933 476.833i 0.814005 0.500875i
\(953\) 641.807 0.673460 0.336730 0.941601i \(-0.390679\pi\)
0.336730 + 0.941601i \(0.390679\pi\)
\(954\) 39.3311 503.677i 0.0412276 0.527964i
\(955\) 382.669 382.669i 0.400701 0.400701i
\(956\) 61.2450 389.762i 0.0640638 0.407701i
\(957\) 131.421 131.421i 0.137326 0.137326i
\(958\) 583.073 + 681.848i 0.608636 + 0.711741i
\(959\) −409.785 −0.427305
\(960\) 427.440 + 215.824i 0.445249 + 0.224817i
\(961\) −949.072 −0.987588
\(962\) −1284.62 1502.24i −1.33536 1.56158i
\(963\) 496.254 496.254i 0.515321 0.515321i
\(964\) −838.277 131.722i −0.869582 0.136641i
\(965\) 652.650 + 652.650i 0.676321 + 0.676321i
\(966\) 128.706 + 285.133i 0.133236 + 0.295169i
\(967\) 90.2380i 0.0933174i −0.998911 0.0466587i \(-0.985143\pi\)
0.998911 0.0466587i \(-0.0148573\pi\)
\(968\) 738.814 454.608i 0.763238 0.469636i
\(969\) 789.030i 0.814272i
\(970\) −129.851 + 1662.88i −0.133867 + 1.71431i
\(971\) 869.444 + 869.444i 0.895411 + 0.895411i 0.995026 0.0996148i \(-0.0317611\pi\)
−0.0996148 + 0.995026i \(0.531761\pi\)
\(972\) −792.661 + 577.381i −0.815495 + 0.594013i
\(973\) 238.691 238.691i 0.245315 0.245315i
\(974\) 164.522 + 192.393i 0.168914 + 0.197529i
\(975\) −99.1149 −0.101656
\(976\) −162.441 + 83.2677i −0.166435 + 0.0853153i
\(977\) 1505.30i 1.54074i 0.637596 + 0.770371i \(0.279929\pi\)
−0.637596 + 0.770371i \(0.720071\pi\)
\(978\) −224.939 263.045i −0.229999 0.268962i
\(979\) 66.3983 + 66.3983i 0.0678226 + 0.0678226i
\(980\) 430.069 313.265i 0.438845 0.319659i
\(981\) −1007.26 1007.26i −1.02677 1.02677i
\(982\) 5.65997 72.4820i 0.00576372 0.0738106i
\(983\) 305.706 0.310992 0.155496 0.987836i \(-0.450302\pi\)
0.155496 + 0.987836i \(0.450302\pi\)
\(984\) −456.773 108.778i −0.464200 0.110546i
\(985\) −478.768 −0.486059
\(986\) 136.528 1748.39i 0.138466 1.77321i
\(987\) −27.6301 27.6301i −0.0279941 0.0279941i
\(988\) −233.936 + 1488.77i −0.236778 + 1.50685i
\(989\) 433.908 1489.54i 0.438734 1.50611i
\(990\) −209.618 + 179.252i −0.211736 + 0.181063i
\(991\) 406.920 0.410615 0.205308 0.978697i \(-0.434181\pi\)
0.205308 + 0.978697i \(0.434181\pi\)
\(992\) −101.977 + 42.6053i −0.102800 + 0.0429489i
\(993\) 282.966 0.284961
\(994\) 706.838 + 826.580i 0.711105 + 0.831569i
\(995\) 1320.16 + 1320.16i 1.32679 + 1.32679i
\(996\) −96.6413 + 615.025i −0.0970294 + 0.617495i
\(997\) −79.2605 + 79.2605i −0.0794990 + 0.0794990i −0.745738 0.666239i \(-0.767903\pi\)
0.666239 + 0.745738i \(0.267903\pi\)
\(998\) 552.773 + 43.1649i 0.553881 + 0.0432514i
\(999\) 1456.59 1.45805
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 368.3.k.b.45.19 176
16.5 even 4 inner 368.3.k.b.229.20 yes 176
23.22 odd 2 inner 368.3.k.b.45.20 yes 176
368.229 odd 4 inner 368.3.k.b.229.19 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
368.3.k.b.45.19 176 1.1 even 1 trivial
368.3.k.b.45.20 yes 176 23.22 odd 2 inner
368.3.k.b.229.19 yes 176 368.229 odd 4 inner
368.3.k.b.229.20 yes 176 16.5 even 4 inner