Properties

Label 3724.2.a.c.1.2
Level $3724$
Weight $2$
Character 3724.1
Self dual yes
Analytic conductor $29.736$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,2,Mod(1,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3724.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7362897127\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3724.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051 q^{3} -2.46410 q^{9} +0.464102 q^{11} -4.19615 q^{13} +6.46410 q^{17} -1.00000 q^{19} +6.46410 q^{23} -5.00000 q^{25} -4.00000 q^{27} -3.46410 q^{29} -4.19615 q^{31} +0.339746 q^{33} -4.00000 q^{37} -3.07180 q^{39} -3.46410 q^{41} +2.00000 q^{43} +3.92820 q^{47} +4.73205 q^{51} -2.19615 q^{53} -0.732051 q^{57} +1.26795 q^{59} +7.00000 q^{61} -10.0000 q^{67} +4.73205 q^{69} -10.7321 q^{71} -15.3923 q^{73} -3.66025 q^{75} -6.19615 q^{79} +4.46410 q^{81} +9.00000 q^{83} -2.53590 q^{87} +0.928203 q^{89} -3.07180 q^{93} -16.1962 q^{97} -1.14359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{9} - 6 q^{11} + 2 q^{13} + 6 q^{17} - 2 q^{19} + 6 q^{23} - 10 q^{25} - 8 q^{27} + 2 q^{31} + 18 q^{33} - 8 q^{37} - 20 q^{39} + 4 q^{43} - 6 q^{47} + 6 q^{51} + 6 q^{53} + 2 q^{57}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.732051 0.422650 0.211325 0.977416i \(-0.432222\pi\)
0.211325 + 0.977416i \(0.432222\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.46410 −0.821367
\(10\) 0 0
\(11\) 0.464102 0.139932 0.0699660 0.997549i \(-0.477711\pi\)
0.0699660 + 0.997549i \(0.477711\pi\)
\(12\) 0 0
\(13\) −4.19615 −1.16380 −0.581902 0.813259i \(-0.697691\pi\)
−0.581902 + 0.813259i \(0.697691\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.46410 1.56777 0.783887 0.620903i \(-0.213234\pi\)
0.783887 + 0.620903i \(0.213234\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.46410 1.34786 0.673929 0.738796i \(-0.264605\pi\)
0.673929 + 0.738796i \(0.264605\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −3.46410 −0.643268 −0.321634 0.946864i \(-0.604232\pi\)
−0.321634 + 0.946864i \(0.604232\pi\)
\(30\) 0 0
\(31\) −4.19615 −0.753651 −0.376826 0.926284i \(-0.622984\pi\)
−0.376826 + 0.926284i \(0.622984\pi\)
\(32\) 0 0
\(33\) 0.339746 0.0591422
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) −3.07180 −0.491881
\(40\) 0 0
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.92820 0.572987 0.286494 0.958082i \(-0.407510\pi\)
0.286494 + 0.958082i \(0.407510\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4.73205 0.662620
\(52\) 0 0
\(53\) −2.19615 −0.301665 −0.150832 0.988559i \(-0.548195\pi\)
−0.150832 + 0.988559i \(0.548195\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.732051 −0.0969625
\(58\) 0 0
\(59\) 1.26795 0.165073 0.0825365 0.996588i \(-0.473698\pi\)
0.0825365 + 0.996588i \(0.473698\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 0 0
\(69\) 4.73205 0.569672
\(70\) 0 0
\(71\) −10.7321 −1.27366 −0.636830 0.771004i \(-0.719755\pi\)
−0.636830 + 0.771004i \(0.719755\pi\)
\(72\) 0 0
\(73\) −15.3923 −1.80153 −0.900767 0.434304i \(-0.856994\pi\)
−0.900767 + 0.434304i \(0.856994\pi\)
\(74\) 0 0
\(75\) −3.66025 −0.422650
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.19615 −0.697122 −0.348561 0.937286i \(-0.613330\pi\)
−0.348561 + 0.937286i \(0.613330\pi\)
\(80\) 0 0
\(81\) 4.46410 0.496011
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.53590 −0.271877
\(88\) 0 0
\(89\) 0.928203 0.0983893 0.0491947 0.998789i \(-0.484335\pi\)
0.0491947 + 0.998789i \(0.484335\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.07180 −0.318530
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −16.1962 −1.64447 −0.822235 0.569148i \(-0.807273\pi\)
−0.822235 + 0.569148i \(0.807273\pi\)
\(98\) 0 0
\(99\) −1.14359 −0.114935
\(100\) 0 0
\(101\) −13.3923 −1.33258 −0.666292 0.745691i \(-0.732120\pi\)
−0.666292 + 0.745691i \(0.732120\pi\)
\(102\) 0 0
\(103\) 1.80385 0.177738 0.0888692 0.996043i \(-0.471675\pi\)
0.0888692 + 0.996043i \(0.471675\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.8564 −1.91959 −0.959796 0.280700i \(-0.909433\pi\)
−0.959796 + 0.280700i \(0.909433\pi\)
\(108\) 0 0
\(109\) −2.39230 −0.229141 −0.114571 0.993415i \(-0.536549\pi\)
−0.114571 + 0.993415i \(0.536549\pi\)
\(110\) 0 0
\(111\) −2.92820 −0.277933
\(112\) 0 0
\(113\) −9.80385 −0.922268 −0.461134 0.887330i \(-0.652557\pi\)
−0.461134 + 0.887330i \(0.652557\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.3397 0.955910
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.7846 −0.980419
\(122\) 0 0
\(123\) −2.53590 −0.228654
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −20.3923 −1.80952 −0.904762 0.425917i \(-0.859952\pi\)
−0.904762 + 0.425917i \(0.859952\pi\)
\(128\) 0 0
\(129\) 1.46410 0.128907
\(130\) 0 0
\(131\) 9.00000 0.786334 0.393167 0.919467i \(-0.371379\pi\)
0.393167 + 0.919467i \(0.371379\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.39230 0.631567 0.315784 0.948831i \(-0.397733\pi\)
0.315784 + 0.948831i \(0.397733\pi\)
\(138\) 0 0
\(139\) −0.607695 −0.0515440 −0.0257720 0.999668i \(-0.508204\pi\)
−0.0257720 + 0.999668i \(0.508204\pi\)
\(140\) 0 0
\(141\) 2.87564 0.242173
\(142\) 0 0
\(143\) −1.94744 −0.162853
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 20.7846 1.70274 0.851371 0.524564i \(-0.175772\pi\)
0.851371 + 0.524564i \(0.175772\pi\)
\(150\) 0 0
\(151\) −1.80385 −0.146795 −0.0733975 0.997303i \(-0.523384\pi\)
−0.0733975 + 0.997303i \(0.523384\pi\)
\(152\) 0 0
\(153\) −15.9282 −1.28772
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.39230 0.430353 0.215176 0.976575i \(-0.430967\pi\)
0.215176 + 0.976575i \(0.430967\pi\)
\(158\) 0 0
\(159\) −1.60770 −0.127499
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.00000 0.391630 0.195815 0.980641i \(-0.437265\pi\)
0.195815 + 0.980641i \(0.437265\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.0526 1.70648 0.853239 0.521520i \(-0.174635\pi\)
0.853239 + 0.521520i \(0.174635\pi\)
\(168\) 0 0
\(169\) 4.60770 0.354438
\(170\) 0 0
\(171\) 2.46410 0.188435
\(172\) 0 0
\(173\) 18.5885 1.41325 0.706627 0.707586i \(-0.250216\pi\)
0.706627 + 0.707586i \(0.250216\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.928203 0.0697680
\(178\) 0 0
\(179\) −15.1244 −1.13045 −0.565224 0.824938i \(-0.691210\pi\)
−0.565224 + 0.824938i \(0.691210\pi\)
\(180\) 0 0
\(181\) 8.39230 0.623795 0.311898 0.950116i \(-0.399035\pi\)
0.311898 + 0.950116i \(0.399035\pi\)
\(182\) 0 0
\(183\) 5.12436 0.378803
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.928203 0.0671624 0.0335812 0.999436i \(-0.489309\pi\)
0.0335812 + 0.999436i \(0.489309\pi\)
\(192\) 0 0
\(193\) −1.80385 −0.129844 −0.0649219 0.997890i \(-0.520680\pi\)
−0.0649219 + 0.997890i \(0.520680\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −25.3923 −1.80913 −0.904563 0.426339i \(-0.859803\pi\)
−0.904563 + 0.426339i \(0.859803\pi\)
\(198\) 0 0
\(199\) 14.3923 1.02024 0.510122 0.860102i \(-0.329600\pi\)
0.510122 + 0.860102i \(0.329600\pi\)
\(200\) 0 0
\(201\) −7.32051 −0.516349
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −15.9282 −1.10709
\(208\) 0 0
\(209\) −0.464102 −0.0321026
\(210\) 0 0
\(211\) 26.5885 1.83042 0.915212 0.402972i \(-0.132023\pi\)
0.915212 + 0.402972i \(0.132023\pi\)
\(212\) 0 0
\(213\) −7.85641 −0.538312
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −11.2679 −0.761417
\(220\) 0 0
\(221\) −27.1244 −1.82458
\(222\) 0 0
\(223\) −18.3923 −1.23164 −0.615820 0.787887i \(-0.711175\pi\)
−0.615820 + 0.787887i \(0.711175\pi\)
\(224\) 0 0
\(225\) 12.3205 0.821367
\(226\) 0 0
\(227\) −3.46410 −0.229920 −0.114960 0.993370i \(-0.536674\pi\)
−0.114960 + 0.993370i \(0.536674\pi\)
\(228\) 0 0
\(229\) 21.7846 1.43957 0.719784 0.694198i \(-0.244241\pi\)
0.719784 + 0.694198i \(0.244241\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.39230 0.484286 0.242143 0.970241i \(-0.422150\pi\)
0.242143 + 0.970241i \(0.422150\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.53590 −0.294638
\(238\) 0 0
\(239\) −15.0000 −0.970269 −0.485135 0.874439i \(-0.661229\pi\)
−0.485135 + 0.874439i \(0.661229\pi\)
\(240\) 0 0
\(241\) −12.3923 −0.798259 −0.399129 0.916895i \(-0.630688\pi\)
−0.399129 + 0.916895i \(0.630688\pi\)
\(242\) 0 0
\(243\) 15.2679 0.979439
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.19615 0.266995
\(248\) 0 0
\(249\) 6.58846 0.417527
\(250\) 0 0
\(251\) 3.46410 0.218652 0.109326 0.994006i \(-0.465131\pi\)
0.109326 + 0.994006i \(0.465131\pi\)
\(252\) 0 0
\(253\) 3.00000 0.188608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.26795 −0.453362 −0.226681 0.973969i \(-0.572788\pi\)
−0.226681 + 0.973969i \(0.572788\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 8.53590 0.528359
\(262\) 0 0
\(263\) −16.8564 −1.03941 −0.519705 0.854346i \(-0.673958\pi\)
−0.519705 + 0.854346i \(0.673958\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.679492 0.0415842
\(268\) 0 0
\(269\) 21.4641 1.30869 0.654345 0.756196i \(-0.272945\pi\)
0.654345 + 0.756196i \(0.272945\pi\)
\(270\) 0 0
\(271\) −0.607695 −0.0369149 −0.0184574 0.999830i \(-0.505876\pi\)
−0.0184574 + 0.999830i \(0.505876\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.32051 −0.139932
\(276\) 0 0
\(277\) −15.7846 −0.948405 −0.474203 0.880416i \(-0.657264\pi\)
−0.474203 + 0.880416i \(0.657264\pi\)
\(278\) 0 0
\(279\) 10.3397 0.619024
\(280\) 0 0
\(281\) −2.87564 −0.171547 −0.0857733 0.996315i \(-0.527336\pi\)
−0.0857733 + 0.996315i \(0.527336\pi\)
\(282\) 0 0
\(283\) −2.00000 −0.118888 −0.0594438 0.998232i \(-0.518933\pi\)
−0.0594438 + 0.998232i \(0.518933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 24.7846 1.45792
\(290\) 0 0
\(291\) −11.8564 −0.695035
\(292\) 0 0
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.85641 −0.107720
\(298\) 0 0
\(299\) −27.1244 −1.56864
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.80385 −0.563216
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −22.1962 −1.26680 −0.633401 0.773824i \(-0.718341\pi\)
−0.633401 + 0.773824i \(0.718341\pi\)
\(308\) 0 0
\(309\) 1.32051 0.0751211
\(310\) 0 0
\(311\) −14.0718 −0.797938 −0.398969 0.916964i \(-0.630632\pi\)
−0.398969 + 0.916964i \(0.630632\pi\)
\(312\) 0 0
\(313\) 8.60770 0.486536 0.243268 0.969959i \(-0.421781\pi\)
0.243268 + 0.969959i \(0.421781\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.6603 0.991899 0.495949 0.868351i \(-0.334820\pi\)
0.495949 + 0.868351i \(0.334820\pi\)
\(318\) 0 0
\(319\) −1.60770 −0.0900136
\(320\) 0 0
\(321\) −14.5359 −0.811315
\(322\) 0 0
\(323\) −6.46410 −0.359672
\(324\) 0 0
\(325\) 20.9808 1.16380
\(326\) 0 0
\(327\) −1.75129 −0.0968465
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −24.1962 −1.32994 −0.664970 0.746870i \(-0.731556\pi\)
−0.664970 + 0.746870i \(0.731556\pi\)
\(332\) 0 0
\(333\) 9.85641 0.540128
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −26.9808 −1.46974 −0.734868 0.678210i \(-0.762756\pi\)
−0.734868 + 0.678210i \(0.762756\pi\)
\(338\) 0 0
\(339\) −7.17691 −0.389796
\(340\) 0 0
\(341\) −1.94744 −0.105460
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.92820 0.371925 0.185963 0.982557i \(-0.440460\pi\)
0.185963 + 0.982557i \(0.440460\pi\)
\(348\) 0 0
\(349\) 21.7846 1.16610 0.583052 0.812435i \(-0.301858\pi\)
0.583052 + 0.812435i \(0.301858\pi\)
\(350\) 0 0
\(351\) 16.7846 0.895896
\(352\) 0 0
\(353\) 14.5359 0.773668 0.386834 0.922149i \(-0.373569\pi\)
0.386834 + 0.922149i \(0.373569\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0000 −0.791670 −0.395835 0.918322i \(-0.629545\pi\)
−0.395835 + 0.918322i \(0.629545\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −7.89488 −0.414374
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6.39230 −0.333676 −0.166838 0.985984i \(-0.553356\pi\)
−0.166838 + 0.985984i \(0.553356\pi\)
\(368\) 0 0
\(369\) 8.53590 0.444361
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 20.5885 1.06603 0.533015 0.846106i \(-0.321059\pi\)
0.533015 + 0.846106i \(0.321059\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.5359 0.748637
\(378\) 0 0
\(379\) 3.60770 0.185315 0.0926574 0.995698i \(-0.470464\pi\)
0.0926574 + 0.995698i \(0.470464\pi\)
\(380\) 0 0
\(381\) −14.9282 −0.764795
\(382\) 0 0
\(383\) 3.80385 0.194368 0.0971838 0.995266i \(-0.469017\pi\)
0.0971838 + 0.995266i \(0.469017\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.92820 −0.250515
\(388\) 0 0
\(389\) −3.00000 −0.152106 −0.0760530 0.997104i \(-0.524232\pi\)
−0.0760530 + 0.997104i \(0.524232\pi\)
\(390\) 0 0
\(391\) 41.7846 2.11314
\(392\) 0 0
\(393\) 6.58846 0.332344
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −32.1962 −1.60780 −0.803900 0.594765i \(-0.797245\pi\)
−0.803900 + 0.594765i \(0.797245\pi\)
\(402\) 0 0
\(403\) 17.6077 0.877102
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.85641 −0.0920187
\(408\) 0 0
\(409\) 24.7846 1.22552 0.612760 0.790269i \(-0.290059\pi\)
0.612760 + 0.790269i \(0.290059\pi\)
\(410\) 0 0
\(411\) 5.41154 0.266932
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.444864 −0.0217851
\(418\) 0 0
\(419\) 4.60770 0.225101 0.112550 0.993646i \(-0.464098\pi\)
0.112550 + 0.993646i \(0.464098\pi\)
\(420\) 0 0
\(421\) 28.7846 1.40288 0.701438 0.712730i \(-0.252542\pi\)
0.701438 + 0.712730i \(0.252542\pi\)
\(422\) 0 0
\(423\) −9.67949 −0.470633
\(424\) 0 0
\(425\) −32.3205 −1.56777
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.42563 −0.0688299
\(430\) 0 0
\(431\) 14.7846 0.712150 0.356075 0.934457i \(-0.384115\pi\)
0.356075 + 0.934457i \(0.384115\pi\)
\(432\) 0 0
\(433\) 14.3923 0.691650 0.345825 0.938299i \(-0.387599\pi\)
0.345825 + 0.938299i \(0.387599\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.46410 −0.309220
\(438\) 0 0
\(439\) −6.39230 −0.305088 −0.152544 0.988297i \(-0.548747\pi\)
−0.152544 + 0.988297i \(0.548747\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.3205 −0.965456 −0.482728 0.875770i \(-0.660354\pi\)
−0.482728 + 0.875770i \(0.660354\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 15.2154 0.719663
\(448\) 0 0
\(449\) 8.19615 0.386800 0.193400 0.981120i \(-0.438048\pi\)
0.193400 + 0.981120i \(0.438048\pi\)
\(450\) 0 0
\(451\) −1.60770 −0.0757034
\(452\) 0 0
\(453\) −1.32051 −0.0620429
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.7846 0.644817 0.322408 0.946601i \(-0.395508\pi\)
0.322408 + 0.946601i \(0.395508\pi\)
\(458\) 0 0
\(459\) −25.8564 −1.20687
\(460\) 0 0
\(461\) −12.4641 −0.580511 −0.290256 0.956949i \(-0.593740\pi\)
−0.290256 + 0.956949i \(0.593740\pi\)
\(462\) 0 0
\(463\) −27.7846 −1.29126 −0.645630 0.763650i \(-0.723405\pi\)
−0.645630 + 0.763650i \(0.723405\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.4641 0.576770 0.288385 0.957515i \(-0.406882\pi\)
0.288385 + 0.957515i \(0.406882\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.94744 0.181888
\(472\) 0 0
\(473\) 0.928203 0.0426788
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 5.41154 0.247778
\(478\) 0 0
\(479\) −15.0000 −0.685367 −0.342684 0.939451i \(-0.611336\pi\)
−0.342684 + 0.939451i \(0.611336\pi\)
\(480\) 0 0
\(481\) 16.7846 0.765312
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 36.9808 1.67576 0.837879 0.545856i \(-0.183795\pi\)
0.837879 + 0.545856i \(0.183795\pi\)
\(488\) 0 0
\(489\) 3.66025 0.165522
\(490\) 0 0
\(491\) −33.9282 −1.53116 −0.765579 0.643342i \(-0.777547\pi\)
−0.765579 + 0.643342i \(0.777547\pi\)
\(492\) 0 0
\(493\) −22.3923 −1.00850
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6.39230 0.286159 0.143079 0.989711i \(-0.454300\pi\)
0.143079 + 0.989711i \(0.454300\pi\)
\(500\) 0 0
\(501\) 16.1436 0.721243
\(502\) 0 0
\(503\) 24.4641 1.09080 0.545400 0.838176i \(-0.316378\pi\)
0.545400 + 0.838176i \(0.316378\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.37307 0.149803
\(508\) 0 0
\(509\) −27.4641 −1.21732 −0.608662 0.793429i \(-0.708294\pi\)
−0.608662 + 0.793429i \(0.708294\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.82309 0.0801792
\(518\) 0 0
\(519\) 13.6077 0.597312
\(520\) 0 0
\(521\) 24.3397 1.06634 0.533172 0.846007i \(-0.321000\pi\)
0.533172 + 0.846007i \(0.321000\pi\)
\(522\) 0 0
\(523\) 35.1769 1.53818 0.769090 0.639141i \(-0.220710\pi\)
0.769090 + 0.639141i \(0.220710\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −27.1244 −1.18156
\(528\) 0 0
\(529\) 18.7846 0.816722
\(530\) 0 0
\(531\) −3.12436 −0.135585
\(532\) 0 0
\(533\) 14.5359 0.629620
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −11.0718 −0.477783
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.39230 −0.360813 −0.180407 0.983592i \(-0.557741\pi\)
−0.180407 + 0.983592i \(0.557741\pi\)
\(542\) 0 0
\(543\) 6.14359 0.263647
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 22.7846 0.974200 0.487100 0.873346i \(-0.338055\pi\)
0.487100 + 0.873346i \(0.338055\pi\)
\(548\) 0 0
\(549\) −17.2487 −0.736157
\(550\) 0 0
\(551\) 3.46410 0.147576
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 0 0
\(559\) −8.39230 −0.354957
\(560\) 0 0
\(561\) 2.19615 0.0927216
\(562\) 0 0
\(563\) 3.12436 0.131676 0.0658379 0.997830i \(-0.479028\pi\)
0.0658379 + 0.997830i \(0.479028\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 35.3205 1.48071 0.740356 0.672215i \(-0.234657\pi\)
0.740356 + 0.672215i \(0.234657\pi\)
\(570\) 0 0
\(571\) −33.7846 −1.41384 −0.706921 0.707293i \(-0.749916\pi\)
−0.706921 + 0.707293i \(0.749916\pi\)
\(572\) 0 0
\(573\) 0.679492 0.0283862
\(574\) 0 0
\(575\) −32.3205 −1.34786
\(576\) 0 0
\(577\) 5.39230 0.224485 0.112242 0.993681i \(-0.464197\pi\)
0.112242 + 0.993681i \(0.464197\pi\)
\(578\) 0 0
\(579\) −1.32051 −0.0548784
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.01924 −0.0422125
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −37.6410 −1.55361 −0.776806 0.629741i \(-0.783161\pi\)
−0.776806 + 0.629741i \(0.783161\pi\)
\(588\) 0 0
\(589\) 4.19615 0.172899
\(590\) 0 0
\(591\) −18.5885 −0.764627
\(592\) 0 0
\(593\) −27.2487 −1.11897 −0.559485 0.828840i \(-0.689001\pi\)
−0.559485 + 0.828840i \(0.689001\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10.5359 0.431206
\(598\) 0 0
\(599\) 25.1769 1.02870 0.514350 0.857580i \(-0.328033\pi\)
0.514350 + 0.857580i \(0.328033\pi\)
\(600\) 0 0
\(601\) −28.7846 −1.17415 −0.587074 0.809533i \(-0.699720\pi\)
−0.587074 + 0.809533i \(0.699720\pi\)
\(602\) 0 0
\(603\) 24.6410 1.00346
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −32.5885 −1.32272 −0.661362 0.750067i \(-0.730021\pi\)
−0.661362 + 0.750067i \(0.730021\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.4833 −0.666845
\(612\) 0 0
\(613\) 46.5692 1.88091 0.940457 0.339914i \(-0.110398\pi\)
0.940457 + 0.339914i \(0.110398\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −28.6410 −1.15304 −0.576522 0.817082i \(-0.695590\pi\)
−0.576522 + 0.817082i \(0.695590\pi\)
\(618\) 0 0
\(619\) −24.1769 −0.971752 −0.485876 0.874028i \(-0.661499\pi\)
−0.485876 + 0.874028i \(0.661499\pi\)
\(620\) 0 0
\(621\) −25.8564 −1.03758
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) −0.339746 −0.0135681
\(628\) 0 0
\(629\) −25.8564 −1.03096
\(630\) 0 0
\(631\) −14.3923 −0.572949 −0.286474 0.958088i \(-0.592483\pi\)
−0.286474 + 0.958088i \(0.592483\pi\)
\(632\) 0 0
\(633\) 19.4641 0.773629
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 26.4449 1.04614
\(640\) 0 0
\(641\) 46.7321 1.84581 0.922903 0.385034i \(-0.125810\pi\)
0.922903 + 0.385034i \(0.125810\pi\)
\(642\) 0 0
\(643\) −9.39230 −0.370396 −0.185198 0.982701i \(-0.559293\pi\)
−0.185198 + 0.982701i \(0.559293\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.9282 1.68768 0.843841 0.536593i \(-0.180289\pi\)
0.843841 + 0.536593i \(0.180289\pi\)
\(648\) 0 0
\(649\) 0.588457 0.0230990
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.9282 0.858117 0.429058 0.903277i \(-0.358845\pi\)
0.429058 + 0.903277i \(0.358845\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 37.9282 1.47972
\(658\) 0 0
\(659\) −5.66025 −0.220492 −0.110246 0.993904i \(-0.535164\pi\)
−0.110246 + 0.993904i \(0.535164\pi\)
\(660\) 0 0
\(661\) −5.80385 −0.225744 −0.112872 0.993610i \(-0.536005\pi\)
−0.112872 + 0.993610i \(0.536005\pi\)
\(662\) 0 0
\(663\) −19.8564 −0.771159
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −22.3923 −0.867034
\(668\) 0 0
\(669\) −13.4641 −0.520552
\(670\) 0 0
\(671\) 3.24871 0.125415
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 0 0
\(675\) 20.0000 0.769800
\(676\) 0 0
\(677\) 21.4641 0.824932 0.412466 0.910973i \(-0.364667\pi\)
0.412466 + 0.910973i \(0.364667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.53590 −0.0971758
\(682\) 0 0
\(683\) 36.8372 1.40954 0.704768 0.709438i \(-0.251051\pi\)
0.704768 + 0.709438i \(0.251051\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 15.9474 0.608433
\(688\) 0 0
\(689\) 9.21539 0.351078
\(690\) 0 0
\(691\) −33.3923 −1.27030 −0.635152 0.772388i \(-0.719062\pi\)
−0.635152 + 0.772388i \(0.719062\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −22.3923 −0.848169
\(698\) 0 0
\(699\) 5.41154 0.204683
\(700\) 0 0
\(701\) 32.0718 1.21134 0.605668 0.795718i \(-0.292906\pi\)
0.605668 + 0.795718i \(0.292906\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 12.6077 0.473492 0.236746 0.971572i \(-0.423919\pi\)
0.236746 + 0.971572i \(0.423919\pi\)
\(710\) 0 0
\(711\) 15.2679 0.572593
\(712\) 0 0
\(713\) −27.1244 −1.01582
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −10.9808 −0.410084
\(718\) 0 0
\(719\) 1.39230 0.0519242 0.0259621 0.999663i \(-0.491735\pi\)
0.0259621 + 0.999663i \(0.491735\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −9.07180 −0.337384
\(724\) 0 0
\(725\) 17.3205 0.643268
\(726\) 0 0
\(727\) 5.60770 0.207978 0.103989 0.994578i \(-0.466839\pi\)
0.103989 + 0.994578i \(0.466839\pi\)
\(728\) 0 0
\(729\) −2.21539 −0.0820515
\(730\) 0 0
\(731\) 12.9282 0.478167
\(732\) 0 0
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.64102 −0.170954
\(738\) 0 0
\(739\) −2.60770 −0.0959256 −0.0479628 0.998849i \(-0.515273\pi\)
−0.0479628 + 0.998849i \(0.515273\pi\)
\(740\) 0 0
\(741\) 3.07180 0.112845
\(742\) 0 0
\(743\) 32.4449 1.19029 0.595143 0.803620i \(-0.297095\pi\)
0.595143 + 0.803620i \(0.297095\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −22.1769 −0.811411
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 28.1962 1.02889 0.514446 0.857523i \(-0.327998\pi\)
0.514446 + 0.857523i \(0.327998\pi\)
\(752\) 0 0
\(753\) 2.53590 0.0924133
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 15.3923 0.559443 0.279721 0.960081i \(-0.409758\pi\)
0.279721 + 0.960081i \(0.409758\pi\)
\(758\) 0 0
\(759\) 2.19615 0.0797153
\(760\) 0 0
\(761\) −21.7128 −0.787089 −0.393544 0.919306i \(-0.628751\pi\)
−0.393544 + 0.919306i \(0.628751\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.32051 −0.192112
\(768\) 0 0
\(769\) 24.7846 0.893756 0.446878 0.894595i \(-0.352536\pi\)
0.446878 + 0.894595i \(0.352536\pi\)
\(770\) 0 0
\(771\) −5.32051 −0.191613
\(772\) 0 0
\(773\) 24.0000 0.863220 0.431610 0.902060i \(-0.357946\pi\)
0.431610 + 0.902060i \(0.357946\pi\)
\(774\) 0 0
\(775\) 20.9808 0.753651
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.46410 0.124114
\(780\) 0 0
\(781\) −4.98076 −0.178226
\(782\) 0 0
\(783\) 13.8564 0.495188
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −35.3731 −1.26091 −0.630457 0.776224i \(-0.717132\pi\)
−0.630457 + 0.776224i \(0.717132\pi\)
\(788\) 0 0
\(789\) −12.3397 −0.439307
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −29.3731 −1.04307
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −50.7846 −1.79888 −0.899442 0.437041i \(-0.856026\pi\)
−0.899442 + 0.437041i \(0.856026\pi\)
\(798\) 0 0
\(799\) 25.3923 0.898315
\(800\) 0 0
\(801\) −2.28719 −0.0808138
\(802\) 0 0
\(803\) −7.14359 −0.252092
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 15.7128 0.553117
\(808\) 0 0
\(809\) −30.9282 −1.08738 −0.543689 0.839287i \(-0.682973\pi\)
−0.543689 + 0.839287i \(0.682973\pi\)
\(810\) 0 0
\(811\) 50.3923 1.76951 0.884757 0.466053i \(-0.154325\pi\)
0.884757 + 0.466053i \(0.154325\pi\)
\(812\) 0 0
\(813\) −0.444864 −0.0156021
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.00000 −0.0699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −26.3205 −0.918592 −0.459296 0.888283i \(-0.651898\pi\)
−0.459296 + 0.888283i \(0.651898\pi\)
\(822\) 0 0
\(823\) −20.6077 −0.718339 −0.359170 0.933272i \(-0.616940\pi\)
−0.359170 + 0.933272i \(0.616940\pi\)
\(824\) 0 0
\(825\) −1.69873 −0.0591422
\(826\) 0 0
\(827\) 31.5167 1.09594 0.547971 0.836497i \(-0.315400\pi\)
0.547971 + 0.836497i \(0.315400\pi\)
\(828\) 0 0
\(829\) 20.9808 0.728692 0.364346 0.931264i \(-0.381293\pi\)
0.364346 + 0.931264i \(0.381293\pi\)
\(830\) 0 0
\(831\) −11.5551 −0.400843
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 16.7846 0.580161
\(838\) 0 0
\(839\) 6.92820 0.239188 0.119594 0.992823i \(-0.461841\pi\)
0.119594 + 0.992823i \(0.461841\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 0 0
\(843\) −2.10512 −0.0725041
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.46410 −0.0502478
\(850\) 0 0
\(851\) −25.8564 −0.886346
\(852\) 0 0
\(853\) 27.7846 0.951327 0.475663 0.879627i \(-0.342208\pi\)
0.475663 + 0.879627i \(0.342208\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.0526 1.57313 0.786563 0.617510i \(-0.211859\pi\)
0.786563 + 0.617510i \(0.211859\pi\)
\(858\) 0 0
\(859\) −46.7846 −1.59627 −0.798135 0.602478i \(-0.794180\pi\)
−0.798135 + 0.602478i \(0.794180\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −51.0333 −1.73719 −0.868597 0.495519i \(-0.834978\pi\)
−0.868597 + 0.495519i \(0.834978\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 18.1436 0.616189
\(868\) 0 0
\(869\) −2.87564 −0.0975496
\(870\) 0 0
\(871\) 41.9615 1.42181
\(872\) 0 0
\(873\) 39.9090 1.35071
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.7846 0.566776 0.283388 0.959005i \(-0.408542\pi\)
0.283388 + 0.959005i \(0.408542\pi\)
\(878\) 0 0
\(879\) −21.9615 −0.740744
\(880\) 0 0
\(881\) −28.6077 −0.963818 −0.481909 0.876221i \(-0.660056\pi\)
−0.481909 + 0.876221i \(0.660056\pi\)
\(882\) 0 0
\(883\) 47.0000 1.58168 0.790838 0.612026i \(-0.209645\pi\)
0.790838 + 0.612026i \(0.209645\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.0718 −0.371755 −0.185877 0.982573i \(-0.559513\pi\)
−0.185877 + 0.982573i \(0.559513\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.07180 0.0694078
\(892\) 0 0
\(893\) −3.92820 −0.131452
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −19.8564 −0.662986
\(898\) 0 0
\(899\) 14.5359 0.484799
\(900\) 0 0
\(901\) −14.1962 −0.472942
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.1962 0.537784 0.268892 0.963170i \(-0.413342\pi\)
0.268892 + 0.963170i \(0.413342\pi\)
\(908\) 0 0
\(909\) 33.0000 1.09454
\(910\) 0 0
\(911\) −23.4115 −0.775659 −0.387830 0.921731i \(-0.626775\pi\)
−0.387830 + 0.921731i \(0.626775\pi\)
\(912\) 0 0
\(913\) 4.17691 0.138236
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 33.3923 1.10151 0.550755 0.834667i \(-0.314340\pi\)
0.550755 + 0.834667i \(0.314340\pi\)
\(920\) 0 0
\(921\) −16.2487 −0.535413
\(922\) 0 0
\(923\) 45.0333 1.48229
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 0 0
\(927\) −4.44486 −0.145988
\(928\) 0 0
\(929\) 32.5692 1.06856 0.534281 0.845307i \(-0.320583\pi\)
0.534281 + 0.845307i \(0.320583\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −10.3013 −0.337248
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.60770 −0.117858 −0.0589291 0.998262i \(-0.518769\pi\)
−0.0589291 + 0.998262i \(0.518769\pi\)
\(938\) 0 0
\(939\) 6.30127 0.205634
\(940\) 0 0
\(941\) 28.9808 0.944746 0.472373 0.881399i \(-0.343398\pi\)
0.472373 + 0.881399i \(0.343398\pi\)
\(942\) 0 0
\(943\) −22.3923 −0.729194
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10.3923 0.337705 0.168852 0.985641i \(-0.445994\pi\)
0.168852 + 0.985641i \(0.445994\pi\)
\(948\) 0 0
\(949\) 64.5885 2.09663
\(950\) 0 0
\(951\) 12.9282 0.419226
\(952\) 0 0
\(953\) 7.85641 0.254494 0.127247 0.991871i \(-0.459386\pi\)
0.127247 + 0.991871i \(0.459386\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.17691 −0.0380442
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −13.3923 −0.432010
\(962\) 0 0
\(963\) 48.9282 1.57669
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 22.7846 0.732704 0.366352 0.930476i \(-0.380607\pi\)
0.366352 + 0.930476i \(0.380607\pi\)
\(968\) 0 0
\(969\) −4.73205 −0.152015
\(970\) 0 0
\(971\) −26.7846 −0.859559 −0.429780 0.902934i \(-0.641409\pi\)
−0.429780 + 0.902934i \(0.641409\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 15.3590 0.491881
\(976\) 0 0
\(977\) −16.7321 −0.535306 −0.267653 0.963515i \(-0.586248\pi\)
−0.267653 + 0.963515i \(0.586248\pi\)
\(978\) 0 0
\(979\) 0.430781 0.0137678
\(980\) 0 0
\(981\) 5.89488 0.188209
\(982\) 0 0
\(983\) −3.71281 −0.118420 −0.0592102 0.998246i \(-0.518858\pi\)
−0.0592102 + 0.998246i \(0.518858\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.9282 0.411093
\(990\) 0 0
\(991\) 12.9808 0.412347 0.206174 0.978515i \(-0.433899\pi\)
0.206174 + 0.978515i \(0.433899\pi\)
\(992\) 0 0
\(993\) −17.7128 −0.562099
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −45.3923 −1.43759 −0.718794 0.695223i \(-0.755306\pi\)
−0.718794 + 0.695223i \(0.755306\pi\)
\(998\) 0 0
\(999\) 16.0000 0.506218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.2.a.c.1.2 2
7.3 odd 6 532.2.i.a.457.2 yes 4
7.5 odd 6 532.2.i.a.305.2 4
7.6 odd 2 3724.2.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.i.a.305.2 4 7.5 odd 6
532.2.i.a.457.2 yes 4 7.3 odd 6
3724.2.a.c.1.2 2 1.1 even 1 trivial
3724.2.a.f.1.1 2 7.6 odd 2