Properties

Label 3724.2.a.m.1.6
Level $3724$
Weight $2$
Character 3724.1
Self dual yes
Analytic conductor $29.736$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,2,Mod(1,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3724.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7362897127\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 18x^{5} + 84x^{3} - 4x^{2} - 44x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.77904\) of defining polynomial
Character \(\chi\) \(=\) 3724.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.77904 q^{3} -3.08629 q^{5} +4.72304 q^{9} +5.16388 q^{11} +4.04970 q^{13} -8.57690 q^{15} +1.08292 q^{17} -1.00000 q^{19} +5.72837 q^{23} +4.52516 q^{25} +4.78838 q^{27} -3.16724 q^{29} -8.18192 q^{31} +14.3506 q^{33} -4.39755 q^{37} +11.2543 q^{39} -8.68032 q^{41} +7.99159 q^{43} -14.5766 q^{45} -0.190404 q^{47} +3.00948 q^{51} +7.44586 q^{53} -15.9372 q^{55} -2.77904 q^{57} +13.2439 q^{59} +9.35092 q^{61} -12.4985 q^{65} +8.16585 q^{67} +15.9193 q^{69} -4.71652 q^{71} +6.50522 q^{73} +12.5756 q^{75} -2.31841 q^{79} -0.862030 q^{81} +14.7229 q^{83} -3.34221 q^{85} -8.80188 q^{87} -3.67499 q^{89} -22.7378 q^{93} +3.08629 q^{95} +16.2607 q^{97} +24.3892 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{5} + 15 q^{9} + 14 q^{11} + 12 q^{15} - 10 q^{17} - 7 q^{19} + 7 q^{23} + 21 q^{25} + 2 q^{29} - 4 q^{31} + 24 q^{33} - 12 q^{37} + 18 q^{39} - 4 q^{41} - 6 q^{45} + 16 q^{47} + 2 q^{51} - 6 q^{53}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.77904 1.60448 0.802238 0.597004i \(-0.203642\pi\)
0.802238 + 0.597004i \(0.203642\pi\)
\(4\) 0 0
\(5\) −3.08629 −1.38023 −0.690115 0.723700i \(-0.742440\pi\)
−0.690115 + 0.723700i \(0.742440\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 4.72304 1.57435
\(10\) 0 0
\(11\) 5.16388 1.55697 0.778484 0.627664i \(-0.215989\pi\)
0.778484 + 0.627664i \(0.215989\pi\)
\(12\) 0 0
\(13\) 4.04970 1.12318 0.561592 0.827414i \(-0.310189\pi\)
0.561592 + 0.827414i \(0.310189\pi\)
\(14\) 0 0
\(15\) −8.57690 −2.21455
\(16\) 0 0
\(17\) 1.08292 0.262647 0.131324 0.991340i \(-0.458077\pi\)
0.131324 + 0.991340i \(0.458077\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.72837 1.19445 0.597224 0.802075i \(-0.296271\pi\)
0.597224 + 0.802075i \(0.296271\pi\)
\(24\) 0 0
\(25\) 4.52516 0.905032
\(26\) 0 0
\(27\) 4.78838 0.921525
\(28\) 0 0
\(29\) −3.16724 −0.588142 −0.294071 0.955784i \(-0.595010\pi\)
−0.294071 + 0.955784i \(0.595010\pi\)
\(30\) 0 0
\(31\) −8.18192 −1.46952 −0.734758 0.678329i \(-0.762704\pi\)
−0.734758 + 0.678329i \(0.762704\pi\)
\(32\) 0 0
\(33\) 14.3506 2.49812
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.39755 −0.722953 −0.361477 0.932381i \(-0.617727\pi\)
−0.361477 + 0.932381i \(0.617727\pi\)
\(38\) 0 0
\(39\) 11.2543 1.80212
\(40\) 0 0
\(41\) −8.68032 −1.35564 −0.677819 0.735229i \(-0.737075\pi\)
−0.677819 + 0.735229i \(0.737075\pi\)
\(42\) 0 0
\(43\) 7.99159 1.21871 0.609353 0.792899i \(-0.291429\pi\)
0.609353 + 0.792899i \(0.291429\pi\)
\(44\) 0 0
\(45\) −14.5766 −2.17296
\(46\) 0 0
\(47\) −0.190404 −0.0277733 −0.0138866 0.999904i \(-0.504420\pi\)
−0.0138866 + 0.999904i \(0.504420\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.00948 0.421412
\(52\) 0 0
\(53\) 7.44586 1.02277 0.511383 0.859353i \(-0.329133\pi\)
0.511383 + 0.859353i \(0.329133\pi\)
\(54\) 0 0
\(55\) −15.9372 −2.14897
\(56\) 0 0
\(57\) −2.77904 −0.368092
\(58\) 0 0
\(59\) 13.2439 1.72421 0.862107 0.506726i \(-0.169145\pi\)
0.862107 + 0.506726i \(0.169145\pi\)
\(60\) 0 0
\(61\) 9.35092 1.19726 0.598631 0.801025i \(-0.295711\pi\)
0.598631 + 0.801025i \(0.295711\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.4985 −1.55025
\(66\) 0 0
\(67\) 8.16585 0.997617 0.498808 0.866712i \(-0.333771\pi\)
0.498808 + 0.866712i \(0.333771\pi\)
\(68\) 0 0
\(69\) 15.9193 1.91646
\(70\) 0 0
\(71\) −4.71652 −0.559748 −0.279874 0.960037i \(-0.590293\pi\)
−0.279874 + 0.960037i \(0.590293\pi\)
\(72\) 0 0
\(73\) 6.50522 0.761378 0.380689 0.924703i \(-0.375687\pi\)
0.380689 + 0.924703i \(0.375687\pi\)
\(74\) 0 0
\(75\) 12.5756 1.45210
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.31841 −0.260842 −0.130421 0.991459i \(-0.541633\pi\)
−0.130421 + 0.991459i \(0.541633\pi\)
\(80\) 0 0
\(81\) −0.862030 −0.0957811
\(82\) 0 0
\(83\) 14.7229 1.61605 0.808027 0.589146i \(-0.200536\pi\)
0.808027 + 0.589146i \(0.200536\pi\)
\(84\) 0 0
\(85\) −3.34221 −0.362514
\(86\) 0 0
\(87\) −8.80188 −0.943661
\(88\) 0 0
\(89\) −3.67499 −0.389548 −0.194774 0.980848i \(-0.562397\pi\)
−0.194774 + 0.980848i \(0.562397\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −22.7378 −2.35780
\(94\) 0 0
\(95\) 3.08629 0.316646
\(96\) 0 0
\(97\) 16.2607 1.65102 0.825511 0.564386i \(-0.190887\pi\)
0.825511 + 0.564386i \(0.190887\pi\)
\(98\) 0 0
\(99\) 24.3892 2.45121
\(100\) 0 0
\(101\) −7.28741 −0.725124 −0.362562 0.931960i \(-0.618098\pi\)
−0.362562 + 0.931960i \(0.618098\pi\)
\(102\) 0 0
\(103\) −16.2875 −1.60486 −0.802429 0.596747i \(-0.796460\pi\)
−0.802429 + 0.596747i \(0.796460\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.56624 −0.441435 −0.220718 0.975338i \(-0.570840\pi\)
−0.220718 + 0.975338i \(0.570840\pi\)
\(108\) 0 0
\(109\) 13.5687 1.29965 0.649824 0.760084i \(-0.274842\pi\)
0.649824 + 0.760084i \(0.274842\pi\)
\(110\) 0 0
\(111\) −12.2210 −1.15996
\(112\) 0 0
\(113\) −2.16842 −0.203988 −0.101994 0.994785i \(-0.532522\pi\)
−0.101994 + 0.994785i \(0.532522\pi\)
\(114\) 0 0
\(115\) −17.6794 −1.64861
\(116\) 0 0
\(117\) 19.1269 1.76828
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 15.6657 1.42415
\(122\) 0 0
\(123\) −24.1229 −2.17509
\(124\) 0 0
\(125\) 1.46548 0.131077
\(126\) 0 0
\(127\) 4.27599 0.379433 0.189716 0.981839i \(-0.439243\pi\)
0.189716 + 0.981839i \(0.439243\pi\)
\(128\) 0 0
\(129\) 22.2089 1.95538
\(130\) 0 0
\(131\) −10.9881 −0.960039 −0.480019 0.877258i \(-0.659370\pi\)
−0.480019 + 0.877258i \(0.659370\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −14.7783 −1.27191
\(136\) 0 0
\(137\) 15.1226 1.29201 0.646004 0.763334i \(-0.276439\pi\)
0.646004 + 0.763334i \(0.276439\pi\)
\(138\) 0 0
\(139\) −20.9836 −1.77981 −0.889904 0.456149i \(-0.849229\pi\)
−0.889904 + 0.456149i \(0.849229\pi\)
\(140\) 0 0
\(141\) −0.529140 −0.0445616
\(142\) 0 0
\(143\) 20.9122 1.74876
\(144\) 0 0
\(145\) 9.77502 0.811771
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.419466 −0.0343640 −0.0171820 0.999852i \(-0.505469\pi\)
−0.0171820 + 0.999852i \(0.505469\pi\)
\(150\) 0 0
\(151\) 3.47957 0.283164 0.141582 0.989927i \(-0.454781\pi\)
0.141582 + 0.989927i \(0.454781\pi\)
\(152\) 0 0
\(153\) 5.11469 0.413498
\(154\) 0 0
\(155\) 25.2517 2.02827
\(156\) 0 0
\(157\) 6.77536 0.540732 0.270366 0.962758i \(-0.412855\pi\)
0.270366 + 0.962758i \(0.412855\pi\)
\(158\) 0 0
\(159\) 20.6923 1.64101
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.5176 0.902131 0.451066 0.892491i \(-0.351044\pi\)
0.451066 + 0.892491i \(0.351044\pi\)
\(164\) 0 0
\(165\) −44.2901 −3.44798
\(166\) 0 0
\(167\) 14.3708 1.11205 0.556024 0.831166i \(-0.312326\pi\)
0.556024 + 0.831166i \(0.312326\pi\)
\(168\) 0 0
\(169\) 3.40006 0.261543
\(170\) 0 0
\(171\) −4.72304 −0.361180
\(172\) 0 0
\(173\) 10.1302 0.770181 0.385091 0.922879i \(-0.374170\pi\)
0.385091 + 0.922879i \(0.374170\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 36.8054 2.76646
\(178\) 0 0
\(179\) 17.2266 1.28757 0.643786 0.765205i \(-0.277362\pi\)
0.643786 + 0.765205i \(0.277362\pi\)
\(180\) 0 0
\(181\) −7.55315 −0.561421 −0.280711 0.959792i \(-0.590570\pi\)
−0.280711 + 0.959792i \(0.590570\pi\)
\(182\) 0 0
\(183\) 25.9865 1.92098
\(184\) 0 0
\(185\) 13.5721 0.997841
\(186\) 0 0
\(187\) 5.59208 0.408934
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.4102 −1.25976 −0.629878 0.776694i \(-0.716895\pi\)
−0.629878 + 0.776694i \(0.716895\pi\)
\(192\) 0 0
\(193\) −4.31688 −0.310736 −0.155368 0.987857i \(-0.549656\pi\)
−0.155368 + 0.987857i \(0.549656\pi\)
\(194\) 0 0
\(195\) −34.7339 −2.48734
\(196\) 0 0
\(197\) 3.63036 0.258652 0.129326 0.991602i \(-0.458719\pi\)
0.129326 + 0.991602i \(0.458719\pi\)
\(198\) 0 0
\(199\) −18.4689 −1.30922 −0.654611 0.755966i \(-0.727168\pi\)
−0.654611 + 0.755966i \(0.727168\pi\)
\(200\) 0 0
\(201\) 22.6932 1.60065
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 26.7899 1.87109
\(206\) 0 0
\(207\) 27.0553 1.88047
\(208\) 0 0
\(209\) −5.16388 −0.357193
\(210\) 0 0
\(211\) −14.4742 −0.996448 −0.498224 0.867048i \(-0.666014\pi\)
−0.498224 + 0.867048i \(0.666014\pi\)
\(212\) 0 0
\(213\) −13.1074 −0.898102
\(214\) 0 0
\(215\) −24.6643 −1.68209
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 18.0782 1.22161
\(220\) 0 0
\(221\) 4.38551 0.295001
\(222\) 0 0
\(223\) 19.0914 1.27845 0.639226 0.769019i \(-0.279255\pi\)
0.639226 + 0.769019i \(0.279255\pi\)
\(224\) 0 0
\(225\) 21.3725 1.42483
\(226\) 0 0
\(227\) −0.119758 −0.00794860 −0.00397430 0.999992i \(-0.501265\pi\)
−0.00397430 + 0.999992i \(0.501265\pi\)
\(228\) 0 0
\(229\) −13.8077 −0.912438 −0.456219 0.889868i \(-0.650797\pi\)
−0.456219 + 0.889868i \(0.650797\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.4113 1.33719 0.668593 0.743629i \(-0.266897\pi\)
0.668593 + 0.743629i \(0.266897\pi\)
\(234\) 0 0
\(235\) 0.587642 0.0383335
\(236\) 0 0
\(237\) −6.44295 −0.418515
\(238\) 0 0
\(239\) 3.06182 0.198053 0.0990263 0.995085i \(-0.468427\pi\)
0.0990263 + 0.995085i \(0.468427\pi\)
\(240\) 0 0
\(241\) −26.1291 −1.68313 −0.841563 0.540159i \(-0.818364\pi\)
−0.841563 + 0.540159i \(0.818364\pi\)
\(242\) 0 0
\(243\) −16.7608 −1.07520
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.04970 −0.257676
\(248\) 0 0
\(249\) 40.9156 2.59292
\(250\) 0 0
\(251\) −17.5062 −1.10498 −0.552490 0.833520i \(-0.686322\pi\)
−0.552490 + 0.833520i \(0.686322\pi\)
\(252\) 0 0
\(253\) 29.5806 1.85972
\(254\) 0 0
\(255\) −9.28812 −0.581645
\(256\) 0 0
\(257\) 6.93487 0.432585 0.216293 0.976329i \(-0.430603\pi\)
0.216293 + 0.976329i \(0.430603\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −14.9590 −0.925939
\(262\) 0 0
\(263\) −10.3126 −0.635902 −0.317951 0.948107i \(-0.602995\pi\)
−0.317951 + 0.948107i \(0.602995\pi\)
\(264\) 0 0
\(265\) −22.9800 −1.41165
\(266\) 0 0
\(267\) −10.2129 −0.625021
\(268\) 0 0
\(269\) 20.0185 1.22055 0.610276 0.792189i \(-0.291059\pi\)
0.610276 + 0.792189i \(0.291059\pi\)
\(270\) 0 0
\(271\) −5.60895 −0.340719 −0.170360 0.985382i \(-0.554493\pi\)
−0.170360 + 0.985382i \(0.554493\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 23.3674 1.40911
\(276\) 0 0
\(277\) −1.10303 −0.0662747 −0.0331374 0.999451i \(-0.510550\pi\)
−0.0331374 + 0.999451i \(0.510550\pi\)
\(278\) 0 0
\(279\) −38.6435 −2.31353
\(280\) 0 0
\(281\) 12.5761 0.750229 0.375115 0.926978i \(-0.377603\pi\)
0.375115 + 0.926978i \(0.377603\pi\)
\(282\) 0 0
\(283\) −31.9245 −1.89771 −0.948857 0.315706i \(-0.897759\pi\)
−0.948857 + 0.315706i \(0.897759\pi\)
\(284\) 0 0
\(285\) 8.57690 0.508052
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.8273 −0.931016
\(290\) 0 0
\(291\) 45.1890 2.64903
\(292\) 0 0
\(293\) −0.574159 −0.0335428 −0.0167714 0.999859i \(-0.505339\pi\)
−0.0167714 + 0.999859i \(0.505339\pi\)
\(294\) 0 0
\(295\) −40.8746 −2.37981
\(296\) 0 0
\(297\) 24.7266 1.43478
\(298\) 0 0
\(299\) 23.1982 1.34158
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −20.2520 −1.16344
\(304\) 0 0
\(305\) −28.8596 −1.65250
\(306\) 0 0
\(307\) 7.42536 0.423788 0.211894 0.977293i \(-0.432037\pi\)
0.211894 + 0.977293i \(0.432037\pi\)
\(308\) 0 0
\(309\) −45.2636 −2.57496
\(310\) 0 0
\(311\) −32.8935 −1.86522 −0.932610 0.360887i \(-0.882474\pi\)
−0.932610 + 0.360887i \(0.882474\pi\)
\(312\) 0 0
\(313\) −19.4604 −1.09997 −0.549985 0.835175i \(-0.685366\pi\)
−0.549985 + 0.835175i \(0.685366\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.4794 −0.644749 −0.322375 0.946612i \(-0.604481\pi\)
−0.322375 + 0.946612i \(0.604481\pi\)
\(318\) 0 0
\(319\) −16.3553 −0.915719
\(320\) 0 0
\(321\) −12.6897 −0.708272
\(322\) 0 0
\(323\) −1.08292 −0.0602554
\(324\) 0 0
\(325\) 18.3255 1.01652
\(326\) 0 0
\(327\) 37.7080 2.08526
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 16.5371 0.908963 0.454481 0.890756i \(-0.349825\pi\)
0.454481 + 0.890756i \(0.349825\pi\)
\(332\) 0 0
\(333\) −20.7698 −1.13818
\(334\) 0 0
\(335\) −25.2021 −1.37694
\(336\) 0 0
\(337\) −11.7147 −0.638139 −0.319069 0.947731i \(-0.603370\pi\)
−0.319069 + 0.947731i \(0.603370\pi\)
\(338\) 0 0
\(339\) −6.02612 −0.327294
\(340\) 0 0
\(341\) −42.2504 −2.28799
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −49.1316 −2.64516
\(346\) 0 0
\(347\) −32.6556 −1.75304 −0.876522 0.481361i \(-0.840143\pi\)
−0.876522 + 0.481361i \(0.840143\pi\)
\(348\) 0 0
\(349\) −12.9112 −0.691123 −0.345561 0.938396i \(-0.612312\pi\)
−0.345561 + 0.938396i \(0.612312\pi\)
\(350\) 0 0
\(351\) 19.3915 1.03504
\(352\) 0 0
\(353\) 8.76458 0.466492 0.233246 0.972418i \(-0.425065\pi\)
0.233246 + 0.972418i \(0.425065\pi\)
\(354\) 0 0
\(355\) 14.5565 0.772580
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.0423 1.16335 0.581673 0.813423i \(-0.302398\pi\)
0.581673 + 0.813423i \(0.302398\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 43.5354 2.28502
\(364\) 0 0
\(365\) −20.0770 −1.05088
\(366\) 0 0
\(367\) −20.4585 −1.06792 −0.533961 0.845509i \(-0.679297\pi\)
−0.533961 + 0.845509i \(0.679297\pi\)
\(368\) 0 0
\(369\) −40.9975 −2.13424
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −15.9329 −0.824975 −0.412488 0.910963i \(-0.635340\pi\)
−0.412488 + 0.910963i \(0.635340\pi\)
\(374\) 0 0
\(375\) 4.07263 0.210310
\(376\) 0 0
\(377\) −12.8264 −0.660592
\(378\) 0 0
\(379\) −1.32037 −0.0678227 −0.0339113 0.999425i \(-0.510796\pi\)
−0.0339113 + 0.999425i \(0.510796\pi\)
\(380\) 0 0
\(381\) 11.8831 0.608791
\(382\) 0 0
\(383\) −25.3496 −1.29530 −0.647651 0.761937i \(-0.724248\pi\)
−0.647651 + 0.761937i \(0.724248\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 37.7446 1.91866
\(388\) 0 0
\(389\) −26.9070 −1.36424 −0.682119 0.731241i \(-0.738941\pi\)
−0.682119 + 0.731241i \(0.738941\pi\)
\(390\) 0 0
\(391\) 6.20338 0.313718
\(392\) 0 0
\(393\) −30.5364 −1.54036
\(394\) 0 0
\(395\) 7.15529 0.360022
\(396\) 0 0
\(397\) −5.96986 −0.299619 −0.149809 0.988715i \(-0.547866\pi\)
−0.149809 + 0.988715i \(0.547866\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 34.9373 1.74469 0.872344 0.488893i \(-0.162599\pi\)
0.872344 + 0.488893i \(0.162599\pi\)
\(402\) 0 0
\(403\) −33.1343 −1.65054
\(404\) 0 0
\(405\) 2.66047 0.132200
\(406\) 0 0
\(407\) −22.7084 −1.12562
\(408\) 0 0
\(409\) −4.48194 −0.221618 −0.110809 0.993842i \(-0.535344\pi\)
−0.110809 + 0.993842i \(0.535344\pi\)
\(410\) 0 0
\(411\) 42.0261 2.07300
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −45.4392 −2.23052
\(416\) 0 0
\(417\) −58.3142 −2.85566
\(418\) 0 0
\(419\) −0.577870 −0.0282308 −0.0141154 0.999900i \(-0.504493\pi\)
−0.0141154 + 0.999900i \(0.504493\pi\)
\(420\) 0 0
\(421\) 6.21914 0.303103 0.151551 0.988449i \(-0.451573\pi\)
0.151551 + 0.988449i \(0.451573\pi\)
\(422\) 0 0
\(423\) −0.899286 −0.0437248
\(424\) 0 0
\(425\) 4.90040 0.237704
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 58.1156 2.80585
\(430\) 0 0
\(431\) 33.0876 1.59377 0.796887 0.604128i \(-0.206478\pi\)
0.796887 + 0.604128i \(0.206478\pi\)
\(432\) 0 0
\(433\) −7.81123 −0.375384 −0.187692 0.982228i \(-0.560101\pi\)
−0.187692 + 0.982228i \(0.560101\pi\)
\(434\) 0 0
\(435\) 27.1651 1.30247
\(436\) 0 0
\(437\) −5.72837 −0.274025
\(438\) 0 0
\(439\) −29.5411 −1.40992 −0.704960 0.709248i \(-0.749035\pi\)
−0.704960 + 0.709248i \(0.749035\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.89611 −0.0900871 −0.0450436 0.998985i \(-0.514343\pi\)
−0.0450436 + 0.998985i \(0.514343\pi\)
\(444\) 0 0
\(445\) 11.3421 0.537666
\(446\) 0 0
\(447\) −1.16571 −0.0551363
\(448\) 0 0
\(449\) 10.1049 0.476881 0.238441 0.971157i \(-0.423364\pi\)
0.238441 + 0.971157i \(0.423364\pi\)
\(450\) 0 0
\(451\) −44.8241 −2.11069
\(452\) 0 0
\(453\) 9.66985 0.454329
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12.0503 −0.563688 −0.281844 0.959460i \(-0.590946\pi\)
−0.281844 + 0.959460i \(0.590946\pi\)
\(458\) 0 0
\(459\) 5.18545 0.242036
\(460\) 0 0
\(461\) 23.7612 1.10667 0.553335 0.832959i \(-0.313355\pi\)
0.553335 + 0.832959i \(0.313355\pi\)
\(462\) 0 0
\(463\) −21.2804 −0.988985 −0.494493 0.869182i \(-0.664646\pi\)
−0.494493 + 0.869182i \(0.664646\pi\)
\(464\) 0 0
\(465\) 70.1755 3.25431
\(466\) 0 0
\(467\) −11.5986 −0.536719 −0.268360 0.963319i \(-0.586482\pi\)
−0.268360 + 0.963319i \(0.586482\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 18.8290 0.867592
\(472\) 0 0
\(473\) 41.2676 1.89749
\(474\) 0 0
\(475\) −4.52516 −0.207629
\(476\) 0 0
\(477\) 35.1671 1.61019
\(478\) 0 0
\(479\) 11.7538 0.537046 0.268523 0.963273i \(-0.413464\pi\)
0.268523 + 0.963273i \(0.413464\pi\)
\(480\) 0 0
\(481\) −17.8088 −0.812010
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −50.1851 −2.27879
\(486\) 0 0
\(487\) 23.5092 1.06530 0.532651 0.846335i \(-0.321196\pi\)
0.532651 + 0.846335i \(0.321196\pi\)
\(488\) 0 0
\(489\) 32.0079 1.44745
\(490\) 0 0
\(491\) 29.3052 1.32252 0.661262 0.750155i \(-0.270021\pi\)
0.661262 + 0.750155i \(0.270021\pi\)
\(492\) 0 0
\(493\) −3.42988 −0.154474
\(494\) 0 0
\(495\) −75.2720 −3.38323
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −37.1336 −1.66233 −0.831164 0.556027i \(-0.812325\pi\)
−0.831164 + 0.556027i \(0.812325\pi\)
\(500\) 0 0
\(501\) 39.9370 1.78426
\(502\) 0 0
\(503\) 31.5636 1.40735 0.703675 0.710522i \(-0.251541\pi\)
0.703675 + 0.710522i \(0.251541\pi\)
\(504\) 0 0
\(505\) 22.4910 1.00084
\(506\) 0 0
\(507\) 9.44888 0.419639
\(508\) 0 0
\(509\) 3.81890 0.169270 0.0846350 0.996412i \(-0.473028\pi\)
0.0846350 + 0.996412i \(0.473028\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.78838 −0.211412
\(514\) 0 0
\(515\) 50.2680 2.21507
\(516\) 0 0
\(517\) −0.983224 −0.0432421
\(518\) 0 0
\(519\) 28.1520 1.23574
\(520\) 0 0
\(521\) −16.3956 −0.718302 −0.359151 0.933279i \(-0.616934\pi\)
−0.359151 + 0.933279i \(0.616934\pi\)
\(522\) 0 0
\(523\) 28.0981 1.22864 0.614322 0.789055i \(-0.289429\pi\)
0.614322 + 0.789055i \(0.289429\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.86039 −0.385965
\(528\) 0 0
\(529\) 9.81419 0.426704
\(530\) 0 0
\(531\) 62.5516 2.71451
\(532\) 0 0
\(533\) −35.1527 −1.52263
\(534\) 0 0
\(535\) 14.0927 0.609282
\(536\) 0 0
\(537\) 47.8732 2.06588
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −32.5542 −1.39961 −0.699807 0.714332i \(-0.746731\pi\)
−0.699807 + 0.714332i \(0.746731\pi\)
\(542\) 0 0
\(543\) −20.9905 −0.900787
\(544\) 0 0
\(545\) −41.8770 −1.79381
\(546\) 0 0
\(547\) −34.6056 −1.47963 −0.739814 0.672812i \(-0.765086\pi\)
−0.739814 + 0.672812i \(0.765086\pi\)
\(548\) 0 0
\(549\) 44.1647 1.88491
\(550\) 0 0
\(551\) 3.16724 0.134929
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 37.7174 1.60101
\(556\) 0 0
\(557\) 18.1093 0.767314 0.383657 0.923476i \(-0.374665\pi\)
0.383657 + 0.923476i \(0.374665\pi\)
\(558\) 0 0
\(559\) 32.3635 1.36883
\(560\) 0 0
\(561\) 15.5406 0.656125
\(562\) 0 0
\(563\) 17.0718 0.719489 0.359745 0.933051i \(-0.382864\pi\)
0.359745 + 0.933051i \(0.382864\pi\)
\(564\) 0 0
\(565\) 6.69237 0.281550
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.33801 0.391470 0.195735 0.980657i \(-0.437291\pi\)
0.195735 + 0.980657i \(0.437291\pi\)
\(570\) 0 0
\(571\) 3.93740 0.164775 0.0823876 0.996600i \(-0.473745\pi\)
0.0823876 + 0.996600i \(0.473745\pi\)
\(572\) 0 0
\(573\) −48.3835 −2.02125
\(574\) 0 0
\(575\) 25.9218 1.08101
\(576\) 0 0
\(577\) −16.4363 −0.684254 −0.342127 0.939654i \(-0.611147\pi\)
−0.342127 + 0.939654i \(0.611147\pi\)
\(578\) 0 0
\(579\) −11.9968 −0.498569
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 38.4495 1.59242
\(584\) 0 0
\(585\) −59.0310 −2.44063
\(586\) 0 0
\(587\) 31.7915 1.31218 0.656089 0.754684i \(-0.272210\pi\)
0.656089 + 0.754684i \(0.272210\pi\)
\(588\) 0 0
\(589\) 8.18192 0.337130
\(590\) 0 0
\(591\) 10.0889 0.415001
\(592\) 0 0
\(593\) −28.8411 −1.18436 −0.592182 0.805805i \(-0.701733\pi\)
−0.592182 + 0.805805i \(0.701733\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −51.3256 −2.10062
\(598\) 0 0
\(599\) −44.0348 −1.79921 −0.899606 0.436703i \(-0.856146\pi\)
−0.899606 + 0.436703i \(0.856146\pi\)
\(600\) 0 0
\(601\) −2.40658 −0.0981666 −0.0490833 0.998795i \(-0.515630\pi\)
−0.0490833 + 0.998795i \(0.515630\pi\)
\(602\) 0 0
\(603\) 38.5676 1.57059
\(604\) 0 0
\(605\) −48.3487 −1.96565
\(606\) 0 0
\(607\) −3.13678 −0.127318 −0.0636590 0.997972i \(-0.520277\pi\)
−0.0636590 + 0.997972i \(0.520277\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.771079 −0.0311945
\(612\) 0 0
\(613\) −9.28527 −0.375028 −0.187514 0.982262i \(-0.560043\pi\)
−0.187514 + 0.982262i \(0.560043\pi\)
\(614\) 0 0
\(615\) 74.4502 3.00212
\(616\) 0 0
\(617\) −16.4951 −0.664067 −0.332034 0.943268i \(-0.607735\pi\)
−0.332034 + 0.943268i \(0.607735\pi\)
\(618\) 0 0
\(619\) −11.6429 −0.467969 −0.233984 0.972240i \(-0.575176\pi\)
−0.233984 + 0.972240i \(0.575176\pi\)
\(620\) 0 0
\(621\) 27.4296 1.10071
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −27.1487 −1.08595
\(626\) 0 0
\(627\) −14.3506 −0.573108
\(628\) 0 0
\(629\) −4.76221 −0.189882
\(630\) 0 0
\(631\) −28.3865 −1.13005 −0.565024 0.825075i \(-0.691133\pi\)
−0.565024 + 0.825075i \(0.691133\pi\)
\(632\) 0 0
\(633\) −40.2244 −1.59878
\(634\) 0 0
\(635\) −13.1969 −0.523704
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −22.2763 −0.881237
\(640\) 0 0
\(641\) −5.97591 −0.236034 −0.118017 0.993012i \(-0.537654\pi\)
−0.118017 + 0.993012i \(0.537654\pi\)
\(642\) 0 0
\(643\) −1.33053 −0.0524711 −0.0262356 0.999656i \(-0.508352\pi\)
−0.0262356 + 0.999656i \(0.508352\pi\)
\(644\) 0 0
\(645\) −68.5430 −2.69888
\(646\) 0 0
\(647\) 5.81167 0.228480 0.114240 0.993453i \(-0.463557\pi\)
0.114240 + 0.993453i \(0.463557\pi\)
\(648\) 0 0
\(649\) 68.3901 2.68455
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 33.2035 1.29935 0.649676 0.760211i \(-0.274905\pi\)
0.649676 + 0.760211i \(0.274905\pi\)
\(654\) 0 0
\(655\) 33.9126 1.32507
\(656\) 0 0
\(657\) 30.7244 1.19867
\(658\) 0 0
\(659\) 15.5795 0.606890 0.303445 0.952849i \(-0.401863\pi\)
0.303445 + 0.952849i \(0.401863\pi\)
\(660\) 0 0
\(661\) −20.3700 −0.792299 −0.396150 0.918186i \(-0.629654\pi\)
−0.396150 + 0.918186i \(0.629654\pi\)
\(662\) 0 0
\(663\) 12.1875 0.473323
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.1431 −0.702505
\(668\) 0 0
\(669\) 53.0556 2.05125
\(670\) 0 0
\(671\) 48.2870 1.86410
\(672\) 0 0
\(673\) 36.1669 1.39413 0.697065 0.717008i \(-0.254489\pi\)
0.697065 + 0.717008i \(0.254489\pi\)
\(674\) 0 0
\(675\) 21.6682 0.834010
\(676\) 0 0
\(677\) −18.8558 −0.724686 −0.362343 0.932045i \(-0.618023\pi\)
−0.362343 + 0.932045i \(0.618023\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.332811 −0.0127534
\(682\) 0 0
\(683\) −22.2251 −0.850420 −0.425210 0.905095i \(-0.639800\pi\)
−0.425210 + 0.905095i \(0.639800\pi\)
\(684\) 0 0
\(685\) −46.6725 −1.78327
\(686\) 0 0
\(687\) −38.3720 −1.46398
\(688\) 0 0
\(689\) 30.1535 1.14876
\(690\) 0 0
\(691\) 20.1072 0.764912 0.382456 0.923974i \(-0.375078\pi\)
0.382456 + 0.923974i \(0.375078\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 64.7614 2.45654
\(696\) 0 0
\(697\) −9.40012 −0.356055
\(698\) 0 0
\(699\) 56.7236 2.14548
\(700\) 0 0
\(701\) −0.702956 −0.0265503 −0.0132751 0.999912i \(-0.504226\pi\)
−0.0132751 + 0.999912i \(0.504226\pi\)
\(702\) 0 0
\(703\) 4.39755 0.165857
\(704\) 0 0
\(705\) 1.63308 0.0615052
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −13.7387 −0.515969 −0.257985 0.966149i \(-0.583058\pi\)
−0.257985 + 0.966149i \(0.583058\pi\)
\(710\) 0 0
\(711\) −10.9500 −0.410655
\(712\) 0 0
\(713\) −46.8690 −1.75526
\(714\) 0 0
\(715\) −64.5409 −2.41369
\(716\) 0 0
\(717\) 8.50890 0.317771
\(718\) 0 0
\(719\) −3.00236 −0.111969 −0.0559845 0.998432i \(-0.517830\pi\)
−0.0559845 + 0.998432i \(0.517830\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −72.6138 −2.70054
\(724\) 0 0
\(725\) −14.3323 −0.532288
\(726\) 0 0
\(727\) 31.2768 1.15999 0.579997 0.814619i \(-0.303054\pi\)
0.579997 + 0.814619i \(0.303054\pi\)
\(728\) 0 0
\(729\) −43.9926 −1.62936
\(730\) 0 0
\(731\) 8.65427 0.320090
\(732\) 0 0
\(733\) −28.4488 −1.05078 −0.525391 0.850861i \(-0.676081\pi\)
−0.525391 + 0.850861i \(0.676081\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 42.1674 1.55326
\(738\) 0 0
\(739\) −32.1040 −1.18096 −0.590482 0.807051i \(-0.701062\pi\)
−0.590482 + 0.807051i \(0.701062\pi\)
\(740\) 0 0
\(741\) −11.2543 −0.413435
\(742\) 0 0
\(743\) −17.2263 −0.631972 −0.315986 0.948764i \(-0.602335\pi\)
−0.315986 + 0.948764i \(0.602335\pi\)
\(744\) 0 0
\(745\) 1.29459 0.0474302
\(746\) 0 0
\(747\) 69.5370 2.54423
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −24.1134 −0.879911 −0.439955 0.898020i \(-0.645006\pi\)
−0.439955 + 0.898020i \(0.645006\pi\)
\(752\) 0 0
\(753\) −48.6503 −1.77291
\(754\) 0 0
\(755\) −10.7390 −0.390831
\(756\) 0 0
\(757\) −15.4641 −0.562054 −0.281027 0.959700i \(-0.590675\pi\)
−0.281027 + 0.959700i \(0.590675\pi\)
\(758\) 0 0
\(759\) 82.2055 2.98387
\(760\) 0 0
\(761\) −12.2374 −0.443604 −0.221802 0.975092i \(-0.571194\pi\)
−0.221802 + 0.975092i \(0.571194\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −15.7854 −0.570722
\(766\) 0 0
\(767\) 53.6340 1.93661
\(768\) 0 0
\(769\) 28.4514 1.02598 0.512992 0.858393i \(-0.328537\pi\)
0.512992 + 0.858393i \(0.328537\pi\)
\(770\) 0 0
\(771\) 19.2723 0.694073
\(772\) 0 0
\(773\) −1.84646 −0.0664125 −0.0332063 0.999449i \(-0.510572\pi\)
−0.0332063 + 0.999449i \(0.510572\pi\)
\(774\) 0 0
\(775\) −37.0245 −1.32996
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.68032 0.311005
\(780\) 0 0
\(781\) −24.3555 −0.871510
\(782\) 0 0
\(783\) −15.1660 −0.541988
\(784\) 0 0
\(785\) −20.9107 −0.746334
\(786\) 0 0
\(787\) 37.5576 1.33878 0.669392 0.742909i \(-0.266555\pi\)
0.669392 + 0.742909i \(0.266555\pi\)
\(788\) 0 0
\(789\) −28.6591 −1.02029
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 37.8684 1.34475
\(794\) 0 0
\(795\) −63.8623 −2.26496
\(796\) 0 0
\(797\) 23.6411 0.837411 0.418706 0.908122i \(-0.362484\pi\)
0.418706 + 0.908122i \(0.362484\pi\)
\(798\) 0 0
\(799\) −0.206193 −0.00729458
\(800\) 0 0
\(801\) −17.3571 −0.613283
\(802\) 0 0
\(803\) 33.5922 1.18544
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 55.6322 1.95835
\(808\) 0 0
\(809\) 7.98180 0.280625 0.140313 0.990107i \(-0.455189\pi\)
0.140313 + 0.990107i \(0.455189\pi\)
\(810\) 0 0
\(811\) 21.7435 0.763517 0.381758 0.924262i \(-0.375319\pi\)
0.381758 + 0.924262i \(0.375319\pi\)
\(812\) 0 0
\(813\) −15.5875 −0.546676
\(814\) 0 0
\(815\) −35.5467 −1.24515
\(816\) 0 0
\(817\) −7.99159 −0.279590
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −29.5062 −1.02977 −0.514886 0.857259i \(-0.672166\pi\)
−0.514886 + 0.857259i \(0.672166\pi\)
\(822\) 0 0
\(823\) 47.1421 1.64327 0.821635 0.570013i \(-0.193062\pi\)
0.821635 + 0.570013i \(0.193062\pi\)
\(824\) 0 0
\(825\) 64.9388 2.26088
\(826\) 0 0
\(827\) 9.47543 0.329493 0.164747 0.986336i \(-0.447319\pi\)
0.164747 + 0.986336i \(0.447319\pi\)
\(828\) 0 0
\(829\) 20.1639 0.700322 0.350161 0.936689i \(-0.386127\pi\)
0.350161 + 0.936689i \(0.386127\pi\)
\(830\) 0 0
\(831\) −3.06536 −0.106336
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −44.3525 −1.53488
\(836\) 0 0
\(837\) −39.1782 −1.35420
\(838\) 0 0
\(839\) −12.0088 −0.414591 −0.207296 0.978278i \(-0.566466\pi\)
−0.207296 + 0.978278i \(0.566466\pi\)
\(840\) 0 0
\(841\) −18.9686 −0.654089
\(842\) 0 0
\(843\) 34.9495 1.20373
\(844\) 0 0
\(845\) −10.4935 −0.360989
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −88.7193 −3.04484
\(850\) 0 0
\(851\) −25.1908 −0.863530
\(852\) 0 0
\(853\) −11.3292 −0.387904 −0.193952 0.981011i \(-0.562131\pi\)
−0.193952 + 0.981011i \(0.562131\pi\)
\(854\) 0 0
\(855\) 14.5766 0.498511
\(856\) 0 0
\(857\) 43.5287 1.48691 0.743456 0.668785i \(-0.233185\pi\)
0.743456 + 0.668785i \(0.233185\pi\)
\(858\) 0 0
\(859\) 46.8152 1.59731 0.798657 0.601786i \(-0.205544\pi\)
0.798657 + 0.601786i \(0.205544\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.4038 0.932835 0.466417 0.884565i \(-0.345544\pi\)
0.466417 + 0.884565i \(0.345544\pi\)
\(864\) 0 0
\(865\) −31.2645 −1.06303
\(866\) 0 0
\(867\) −43.9846 −1.49379
\(868\) 0 0
\(869\) −11.9720 −0.406122
\(870\) 0 0
\(871\) 33.0692 1.12051
\(872\) 0 0
\(873\) 76.7998 2.59928
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −30.4575 −1.02848 −0.514238 0.857648i \(-0.671925\pi\)
−0.514238 + 0.857648i \(0.671925\pi\)
\(878\) 0 0
\(879\) −1.59561 −0.0538186
\(880\) 0 0
\(881\) −48.9723 −1.64992 −0.824960 0.565191i \(-0.808802\pi\)
−0.824960 + 0.565191i \(0.808802\pi\)
\(882\) 0 0
\(883\) −39.2534 −1.32098 −0.660490 0.750835i \(-0.729652\pi\)
−0.660490 + 0.750835i \(0.729652\pi\)
\(884\) 0 0
\(885\) −113.592 −3.81835
\(886\) 0 0
\(887\) −43.0844 −1.44663 −0.723316 0.690517i \(-0.757383\pi\)
−0.723316 + 0.690517i \(0.757383\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.45142 −0.149128
\(892\) 0 0
\(893\) 0.190404 0.00637163
\(894\) 0 0
\(895\) −53.1661 −1.77715
\(896\) 0 0
\(897\) 64.4685 2.15254
\(898\) 0 0
\(899\) 25.9141 0.864284
\(900\) 0 0
\(901\) 8.06329 0.268627
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.3112 0.774890
\(906\) 0 0
\(907\) 22.0151 0.731000 0.365500 0.930811i \(-0.380898\pi\)
0.365500 + 0.930811i \(0.380898\pi\)
\(908\) 0 0
\(909\) −34.4187 −1.14160
\(910\) 0 0
\(911\) 27.6824 0.917158 0.458579 0.888654i \(-0.348359\pi\)
0.458579 + 0.888654i \(0.348359\pi\)
\(912\) 0 0
\(913\) 76.0275 2.51614
\(914\) 0 0
\(915\) −80.2019 −2.65139
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 29.0442 0.958079 0.479040 0.877793i \(-0.340985\pi\)
0.479040 + 0.877793i \(0.340985\pi\)
\(920\) 0 0
\(921\) 20.6353 0.679957
\(922\) 0 0
\(923\) −19.1005 −0.628700
\(924\) 0 0
\(925\) −19.8996 −0.654296
\(926\) 0 0
\(927\) −76.9266 −2.52660
\(928\) 0 0
\(929\) −6.20578 −0.203605 −0.101803 0.994805i \(-0.532461\pi\)
−0.101803 + 0.994805i \(0.532461\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −91.4122 −2.99270
\(934\) 0 0
\(935\) −17.2588 −0.564422
\(936\) 0 0
\(937\) 23.4286 0.765380 0.382690 0.923877i \(-0.374998\pi\)
0.382690 + 0.923877i \(0.374998\pi\)
\(938\) 0 0
\(939\) −54.0813 −1.76487
\(940\) 0 0
\(941\) −7.80972 −0.254590 −0.127295 0.991865i \(-0.540629\pi\)
−0.127295 + 0.991865i \(0.540629\pi\)
\(942\) 0 0
\(943\) −49.7240 −1.61924
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 34.9744 1.13652 0.568258 0.822850i \(-0.307618\pi\)
0.568258 + 0.822850i \(0.307618\pi\)
\(948\) 0 0
\(949\) 26.3442 0.855168
\(950\) 0 0
\(951\) −31.9018 −1.03449
\(952\) 0 0
\(953\) 22.4430 0.727001 0.363501 0.931594i \(-0.381581\pi\)
0.363501 + 0.931594i \(0.381581\pi\)
\(954\) 0 0
\(955\) 53.7328 1.73875
\(956\) 0 0
\(957\) −45.4519 −1.46925
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 35.9438 1.15948
\(962\) 0 0
\(963\) −21.5665 −0.694971
\(964\) 0 0
\(965\) 13.3231 0.428887
\(966\) 0 0
\(967\) −15.1114 −0.485949 −0.242975 0.970033i \(-0.578123\pi\)
−0.242975 + 0.970033i \(0.578123\pi\)
\(968\) 0 0
\(969\) −3.00948 −0.0966785
\(970\) 0 0
\(971\) −6.54519 −0.210045 −0.105023 0.994470i \(-0.533491\pi\)
−0.105023 + 0.994470i \(0.533491\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 50.9273 1.63098
\(976\) 0 0
\(977\) −6.11997 −0.195795 −0.0978976 0.995196i \(-0.531212\pi\)
−0.0978976 + 0.995196i \(0.531212\pi\)
\(978\) 0 0
\(979\) −18.9772 −0.606514
\(980\) 0 0
\(981\) 64.0856 2.04610
\(982\) 0 0
\(983\) −20.8829 −0.666061 −0.333031 0.942916i \(-0.608071\pi\)
−0.333031 + 0.942916i \(0.608071\pi\)
\(984\) 0 0
\(985\) −11.2043 −0.356999
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 45.7787 1.45568
\(990\) 0 0
\(991\) 32.4748 1.03159 0.515797 0.856711i \(-0.327496\pi\)
0.515797 + 0.856711i \(0.327496\pi\)
\(992\) 0 0
\(993\) 45.9573 1.45841
\(994\) 0 0
\(995\) 57.0002 1.80703
\(996\) 0 0
\(997\) −39.9989 −1.26678 −0.633389 0.773833i \(-0.718337\pi\)
−0.633389 + 0.773833i \(0.718337\pi\)
\(998\) 0 0
\(999\) −21.0572 −0.666219
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.2.a.m.1.6 7
7.2 even 3 532.2.i.c.305.2 14
7.4 even 3 532.2.i.c.457.2 yes 14
7.6 odd 2 3724.2.a.n.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.i.c.305.2 14 7.2 even 3
532.2.i.c.457.2 yes 14 7.4 even 3
3724.2.a.m.1.6 7 1.1 even 1 trivial
3724.2.a.n.1.2 7 7.6 odd 2